Double-Band Anticrossing in GaAsSbN Induced by Nitrogen and Antimony Incorporation
Photoreflectance spectroscopy is utilized to study the effect of dilute nitrogen and antimony on the electronic band structure of as-grown GaAs 1-x-y Sb x N y alloys, which are potential materials for 1 eV solar cells and long-wavelength optoelectronic devices. The band gap, spin--orbit splitting, a...
Saved in:
Published in | Applied physics express Vol. 6; no. 12; pp. 121202 - 121202-4 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
The Japan Society of Applied Physics
01.12.2013
|
Online Access | Get full text |
Cover
Loading…
Abstract | Photoreflectance spectroscopy is utilized to study the effect of dilute nitrogen and antimony on the electronic band structure of as-grown GaAs 1-x-y Sb x N y alloys, which are potential materials for 1 eV solar cells and long-wavelength optoelectronic devices. The band gap, spin--orbit splitting, and valence-band maximum to the N-induced upward conduction-band transition, for the first time, are obtained and analyzed using the double-band anticrossing model. The $E_{\text{N}}$ level with respect to the GaAs valence-band maximum and the interaction potential are determined as 1.540 and 2.839 eV, respectively. The results are helpful information for intermediate-band solar cell application. |
---|---|
AbstractList | Photoreflectance spectroscopy is utilized to study the effect of dilute nitrogen and antimony on the electronic band structure of as-grown GaAs 1-x-y Sb x N y alloys, which are potential materials for 1 eV solar cells and long-wavelength optoelectronic devices. The band gap, spin--orbit splitting, and valence-band maximum to the N-induced upward conduction-band transition, for the first time, are obtained and analyzed using the double-band anticrossing model. The $E_{\text{N}}$ level with respect to the GaAs valence-band maximum and the interaction potential are determined as 1.540 and 2.839 eV, respectively. The results are helpful information for intermediate-band solar cell application. |
Author | Lin, Kuang-I Lin, Kuo-Lung Wang, Bo-Wei Hwang, Jenn-Shyong Lin, Hao-Hsiung |
Author_xml | – sequence: 1 givenname: Kuang-I surname: Lin fullname: Lin, Kuang-I organization: Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan – sequence: 2 givenname: Kuo-Lung surname: Lin fullname: Lin, Kuo-Lung organization: Department of Electrical Engineering, National Chung Hsing University, Taichung 40227, Taiwan – sequence: 3 givenname: Bo-Wei surname: Wang fullname: Wang, Bo-Wei organization: Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan – sequence: 4 givenname: Hao-Hsiung surname: Lin fullname: Lin, Hao-Hsiung organization: Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan – sequence: 5 givenname: Jenn-Shyong surname: Hwang fullname: Hwang, Jenn-Shyong organization: Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan |
BookMark | eNqFkDtPwzAYRS1UJNrCyO6VIcWP1HbGUEqpVBXEQ2KLHPtzZdTakZMO_fe0BFiZ7h2Orq7OCA1CDIDQNSUTORXytnyef0zEhDLKCDtDQ6oUy4hUYvDXpbpAo7b9JETknIohermP-3oL2Z0OFpeh8ybFtvVhg33AC122r_UaL4PdG7C4PuC171LcQMC__C6GwxEwMTUx6c7HcInOnd62cPWTY_T-MH-bPWarp8VyVq4yw0XeZbkDx44vCDjg0knmGJ8SoZVTpgbOQRrH6lwVuaVOO1BgpVHUFjmxQAvDxyjrd78vJ3BVk_xOp0NFSXUSUp2EVKLqhRz5m573jW7-Yb8AEKhjFw |
CitedBy_id | crossref_primary_10_1088_1361_6641_abb525 crossref_primary_10_1088_1742_6596_2436_1_012032 crossref_primary_10_1007_s12034_019_1793_5 crossref_primary_10_1186_s11671_017_2129_2 crossref_primary_10_1016_j_solener_2021_04_041 crossref_primary_10_1063_1_5030625 crossref_primary_10_1063_1_4944437 crossref_primary_10_3390_coatings13122052 crossref_primary_10_1016_j_solener_2020_08_029 crossref_primary_10_1088_1742_6596_1762_1_012025 crossref_primary_10_1016_j_spmi_2017_03_035 crossref_primary_10_1088_1742_6596_1762_1_012042 crossref_primary_10_2478_msp_2020_0028 crossref_primary_10_1063_1_5034083 |
Cites_doi | 10.1016/0039-6028(73)90337-3 10.1016/j.jcrysgro.2004.10.050 10.1063/1.1368156 10.1016/j.mseb.2012.11.012 10.1103/PhysRevLett.82.3312 10.1049/el:19990864 10.1016/j.jcrysgro.2011.09.023 10.1109/JPHOTOV.2012.2228296 10.1063/1.2387972 10.1063/1.106575 10.1016/j.tsf.2010.12.056 10.1103/PhysRevLett.82.1221 10.1016/j.jcrysgro.2008.02.015 10.1088/0268-1242/17/8/315 10.1063/1.2769801 10.1063/1.3518479 10.1103/PhysRevB.75.045203 10.1063/1.3009199 10.1063/1.2777448 10.1063/1.344532 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.7567/APEX.6.121202 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1882-0786 |
EndPage | 121202-4 |
ExternalDocumentID | 10_7567_APEX_6_121202 |
GroupedDBID | 23M 4.4 5GY AAGCD AAGID AAJIO AALHV AAPBV ABEFU ACGFS ACNCT AEFHF AENEX AFYNE ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN B.R CEBXE CJUJL CS3 EBS EJD IIPPG IOP IZVLO KOT LI MC8 N5L P2P QTG RIN RNS ROL RW3 SJN UPT X XFK ZE2 -~X 6OB AATNI AAYXX ABCXL ABHWH ABJNI ABVAM ACHIP ADWVK AERVB AKPSB AOAED CITATION CRLBU IJHAN PJBAE RPA |
ID | FETCH-LOGICAL-c364t-4fef26430efe37f72f23506a8f8cbe33e7cf2b4894d1fafe8ed7c81d940de19c3 |
ISSN | 1882-0778 |
IngestDate | Thu Sep 26 17:01:41 EDT 2024 Mon Jan 18 10:57:14 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c364t-4fef26430efe37f72f23506a8f8cbe33e7cf2b4894d1fafe8ed7c81d940de19c3 |
Notes | (a) PR spectra of the GaAs 1-x-y Sb x N y alloys at 298 K pumped with a He--Ne laser operating at 633 nm. The numbers show the index of the $n$th extreme of FKOs. The lowest spectrum is enlarged three times. (b) Schematic diagram showing the relative positions of the energy levels at $\Gamma$ point of GaAsSbN explained using the DBAC model. (c) Plot of FKO extreme, $E'_{n}$ vs $F_{n}$ for the GaAsSbN alloys. The intercepts indicate the band gaps of the alloys. The inset shows the high-resolution X-ray rocking curve of the GaAs 0.932 Sb 0.051 N 0.017 /GaAs heterostructure, whose lattice mismatch of $-9.2\times 10^{-4}$ is larger than those of the other two samples. PR spectra of the GaAs 1-x-y Sb x N y alloys at 298 K pumped with a He--Cd laser operating at 325 nm. The spectra with energy below 1.25 eV are detected using an InGaAs photodiode and that above 1.25 eV are detected using a Si photodiode. The red lines represent theoretical fits using Eq. ( ). The band gap ($E_{0}$), the Sb-affected spin--orbit band to the conduction band minimum ($E_{0}+\Delta_{0}$), and the valence band maximum to the N-induced upward conduction band ($E_{+}$) are observed. Transition energies versus N and Sb composition. The solid symbols depict the transition energies of GaAs 1-x-y Sb x N y alloys obtained from PR spectra. The open symbols represent the calculated transition energies of GaAs 1-x Sb x alloys using the VCA and VBAC model. The colored symbols are projections of the transition energies on the energy--N Composition plane. Projections of the transition energies (symbols) as illustrated in Fig. . The solid lines are the least-squares fits to the CBAC model based on the energy levels of GaAs 1-x Sb x alloys considering the VCA and VBAC model. The dotted lines are produced using the obtained CBAC parameters, i.e., $E_{\text{N}}$ and $C_{\text{N}}$. |
ParticipantIDs | crossref_primary_10_7567_APEX_6_121202 ipap_primary_10_7567_APEX_6_121202 |
PublicationCentury | 2000 |
PublicationDate | 2013-12-01 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied physics express |
PublicationYear | 2013 |
Publisher | The Japan Society of Applied Physics |
Publisher_xml | – name: The Japan Society of Applied Physics |
References | K. Nunna, S. Iyer, L. Wu, J. Li, S. Bharatan, X. Wei, R. T. Senger, and K. K. Bajaj: J. Appl. Phys. 102 (2007) 053106. K. I. Lin and J. S. Hwang: Appl. Phys. Lett. 89 (2006) 192116. D. E. Aspnes: Surf. Sci. 37 (1973) 418. K. H. Tan, S. Wicaksono, W. K. Loke, D. Li, S. F. Yoon, E. A. Fitzgerald, S. A. Ringel, and J. S. Harris, Jr.: J. Cryst. Growth 335 (2011) 66. D. Fuertes Marrón, E. Cánovas, I. Artacho, C. R. Stanley, M. Steer, T. Kaizu, Y. Shoji, N. Ahsan, Y. Okada, E. Barrigón, I. Rey-Stolle, C. Algora, A. Martí, and A. Luque: Mater. Sci. Eng. B 178 (2013) 599. S. Wicaksono, S. F. Yoon, K. H. Tan, and W. K. Cheah: J. Cryst. Growth 274 (2005) 355. J. D. Perkins, A. Mascarenhas, Y. Zhang, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz: Phys. Rev. Lett. 82 (1999) 3312. T.-C. Ma, Y.-T. Lin, and H.-H. Lin: J. Cryst. Growth 310 (2008) 2854. N. Ben Sedrine, C. Bouhafs, J. C. Harmand, R. Chtourou, and V. Darakchieva: Appl. Phys. Lett. 97 (2010) 201903. Y.-T. Lin, T.-C. Ma, T.-Y. Chen, and H.-H. Lin: Appl. Phys. Lett. 93 (2008) 171914. N. Ben Sedrine, C. Bouhafs, M. Schubert, J. C. Harmand, R. Chtourou, and V. Darakchieva: Thin Solid Films 519 (2011) 2838. M. Sydor, N. Jahren, W. C. Mitchel, W. V. Lampert, T. W. Haas, M. Y. Yen, S. M. Mudare, and D. H. Tomich: J. Appl. Phys. 67 (1990) 7423. G. Ungaro, G. Le Roux, R. Teissier, and J. C. Harmand: Electron. Lett. 35 (1999) 1246. J. Misiewicz, P. Sitarek, G. Sek, and R. Kudrawiec: Mater. Sci. 21 (2003) 263. J. Wu, W. Shan, and W. Walukiewicz: Semicond. Sci. Technol. 17 (2002) 860. S. Tiwari and D. J. Frank: Appl. Phys. Lett. 60 (1992) 630. S. Wicaksono, S. F. Yoon, W. K. Loke, K. H. Tan, K. L. Lew, M. Zegaoui, J. P. Vilcot, D. Decoster, and J. Chazelas: J. Appl. Phys. 102 (2007) 044505. W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz: Phys. Rev. Lett. 82 (1999) 1221. N. Ahsan, N. Miyashita, M. M. Islam, K. M. Yu, W. Walukiewicz, and Y. Okada: IEEE J. Photovoltaics 3 (2013) 730. K. Alberi, J. Wu, W. Walukiewicz, K. M. Yu, O. D. Dubon, S. P. Watkins, C. X. Wang, X. Liu, Y.-J. Cho, and J. Furdyna: Phys. Rev. B 75 (2007) 045203. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan: J. Appl. Phys. 89 (2001) 5815. 11 12 J. Misiewicz (13) 2003; 21 14 15 16 17 18 19 1 J. Wu (21) 2002; 17 2 3 4 5 6 7 8 9 20 10 |
References_xml | – ident: 20 doi: 10.1016/0039-6028(73)90337-3 – ident: 3 doi: 10.1016/j.jcrysgro.2004.10.050 – ident: 19 doi: 10.1063/1.1368156 – ident: 15 doi: 10.1016/j.mseb.2012.11.012 – ident: 14 doi: 10.1103/PhysRevLett.82.3312 – ident: 1 doi: 10.1049/el:19990864 – ident: 5 doi: 10.1016/j.jcrysgro.2011.09.023 – ident: 6 doi: 10.1109/JPHOTOV.2012.2228296 – ident: 7 doi: 10.1063/1.2387972 – ident: 17 doi: 10.1063/1.106575 – ident: 11 doi: 10.1016/j.tsf.2010.12.056 – ident: 8 doi: 10.1103/PhysRevLett.82.1221 – ident: 16 doi: 10.1016/j.jcrysgro.2008.02.015 – volume: 17 start-page: 860 issn: 0268-1242 year: 2002 ident: 21 publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/17/8/315 contributor: fullname: J. Wu – ident: 2 doi: 10.1063/1.2769801 – ident: 12 doi: 10.1063/1.3518479 – ident: 9 doi: 10.1103/PhysRevB.75.045203 – ident: 10 doi: 10.1063/1.3009199 – volume: 21 start-page: 263 year: 2003 ident: 13 publication-title: Mater. Sci. contributor: fullname: J. Misiewicz – ident: 4 doi: 10.1063/1.2777448 – ident: 18 doi: 10.1063/1.344532 |
SSID | ssj0064316 |
Score | 2.1472461 |
Snippet | Photoreflectance spectroscopy is utilized to study the effect of dilute nitrogen and antimony on the electronic band structure of as-grown GaAs 1-x-y Sb x N y... |
SourceID | crossref ipap |
SourceType | Aggregation Database Publisher |
StartPage | 121202 |
Title | Double-Band Anticrossing in GaAsSbN Induced by Nitrogen and Antimony Incorporation |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegCIkXNL7EYCALIV4mlySO8_HYoUHHR6lgE32LHMdGkVBSrenD-Ou5i-023SY0eIki6-y0vp_ufmf7zoS8FtJEYalzJkwGAUolJZNgFJnMwlBBABGEBnd0v8yS6Vn8cSEW262YPrukK8fq97V5Jf-jVWgDvWKW7D9odjMoNMA76BeeoGF43kjHwH7LX5od4eL3pOnq3uW5JJUPcrL6Xs4O8W4OZWnmrO7OWxjs0MvDD71AC-GqGXsV-aK0jqDaxY8VXgawOa-BR3hs9YFPa9n8ZCdXWlv2ee28Yr9eb23KUct-6PqS8FS2bLqqvbhbgwj54DyHNZvI04PUXsYz1sM2V-ja2dpkCKloYDhDcKF96vUVm56KBHeVJ_PjxTgZb-V2a2df8mmbk4YQ4-AABXYvksJ2v03uRGCX0CCefJ17x51gVQCMz_2fsSVZsfvbna_vUJhRvZTLASU53SP3XSxBJxYYD8gt3Twkd-dWXY_ItwE86BAetG6ogwd18KDlBfXwoF4e4UF34PGYnL0_Pn03Ze4KDaZ4EncsNtoA5eWBNpqnJo1MxEWQyMxkqtSc61SZqIyzPK5CI43OdJUqCGHyOKh0mCv-hIyattFPCa0gVhAcAmSg2HFmdB6JCoSN0EJFwGr3yRs_K8XSVkoprp39ffIK5-zvQs9uOtpzcm-LyAMy6s7X-gXwxK582Wv3D_ntZB0 |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Double-Band+Anticrossing+in+GaAsSbN+Induced+by+Nitrogen+and+Antimony+Incorporation&rft.jtitle=Applied+physics+express&rft.au=Lin%2C+Kuang-I&rft.au=Lin%2C+Kuo-Lung&rft.au=Wang%2C+Bo-Wei&rft.au=Lin%2C+Hao-Hsiung&rft.date=2013-12-01&rft.issn=1882-0778&rft.eissn=1882-0786&rft.volume=6&rft.issue=12&rft.spage=121202&rft_id=info:doi/10.7567%2FAPEX.6.121202&rft.externalDBID=n%2Fa&rft.externalDocID=10_7567_APEX_6_121202 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1882-0778&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1882-0778&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1882-0778&client=summon |