Double-Band Anticrossing in GaAsSbN Induced by Nitrogen and Antimony Incorporation

Photoreflectance spectroscopy is utilized to study the effect of dilute nitrogen and antimony on the electronic band structure of as-grown GaAs 1-x-y Sb x N y alloys, which are potential materials for 1 eV solar cells and long-wavelength optoelectronic devices. The band gap, spin--orbit splitting, a...

Full description

Saved in:
Bibliographic Details
Published inApplied physics express Vol. 6; no. 12; pp. 121202 - 121202-4
Main Authors Lin, Kuang-I, Lin, Kuo-Lung, Wang, Bo-Wei, Lin, Hao-Hsiung, Hwang, Jenn-Shyong
Format Journal Article
LanguageEnglish
Published The Japan Society of Applied Physics 01.12.2013
Online AccessGet full text

Cover

Loading…
Abstract Photoreflectance spectroscopy is utilized to study the effect of dilute nitrogen and antimony on the electronic band structure of as-grown GaAs 1-x-y Sb x N y alloys, which are potential materials for 1 eV solar cells and long-wavelength optoelectronic devices. The band gap, spin--orbit splitting, and valence-band maximum to the N-induced upward conduction-band transition, for the first time, are obtained and analyzed using the double-band anticrossing model. The $E_{\text{N}}$ level with respect to the GaAs valence-band maximum and the interaction potential are determined as 1.540 and 2.839 eV, respectively. The results are helpful information for intermediate-band solar cell application.
AbstractList Photoreflectance spectroscopy is utilized to study the effect of dilute nitrogen and antimony on the electronic band structure of as-grown GaAs 1-x-y Sb x N y alloys, which are potential materials for 1 eV solar cells and long-wavelength optoelectronic devices. The band gap, spin--orbit splitting, and valence-band maximum to the N-induced upward conduction-band transition, for the first time, are obtained and analyzed using the double-band anticrossing model. The $E_{\text{N}}$ level with respect to the GaAs valence-band maximum and the interaction potential are determined as 1.540 and 2.839 eV, respectively. The results are helpful information for intermediate-band solar cell application.
Author Lin, Kuang-I
Lin, Kuo-Lung
Wang, Bo-Wei
Hwang, Jenn-Shyong
Lin, Hao-Hsiung
Author_xml – sequence: 1
  givenname: Kuang-I
  surname: Lin
  fullname: Lin, Kuang-I
  organization: Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan
– sequence: 2
  givenname: Kuo-Lung
  surname: Lin
  fullname: Lin, Kuo-Lung
  organization: Department of Electrical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
– sequence: 3
  givenname: Bo-Wei
  surname: Wang
  fullname: Wang, Bo-Wei
  organization: Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
– sequence: 4
  givenname: Hao-Hsiung
  surname: Lin
  fullname: Lin, Hao-Hsiung
  organization: Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
– sequence: 5
  givenname: Jenn-Shyong
  surname: Hwang
  fullname: Hwang, Jenn-Shyong
  organization: Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan
BookMark eNqFkDtPwzAYRS1UJNrCyO6VIcWP1HbGUEqpVBXEQ2KLHPtzZdTakZMO_fe0BFiZ7h2Orq7OCA1CDIDQNSUTORXytnyef0zEhDLKCDtDQ6oUy4hUYvDXpbpAo7b9JETknIohermP-3oL2Z0OFpeh8ybFtvVhg33AC122r_UaL4PdG7C4PuC171LcQMC__C6GwxEwMTUx6c7HcInOnd62cPWTY_T-MH-bPWarp8VyVq4yw0XeZbkDx44vCDjg0knmGJ8SoZVTpgbOQRrH6lwVuaVOO1BgpVHUFjmxQAvDxyjrd78vJ3BVk_xOp0NFSXUSUp2EVKLqhRz5m573jW7-Yb8AEKhjFw
CitedBy_id crossref_primary_10_1088_1361_6641_abb525
crossref_primary_10_1088_1742_6596_2436_1_012032
crossref_primary_10_1007_s12034_019_1793_5
crossref_primary_10_1186_s11671_017_2129_2
crossref_primary_10_1016_j_solener_2021_04_041
crossref_primary_10_1063_1_5030625
crossref_primary_10_1063_1_4944437
crossref_primary_10_3390_coatings13122052
crossref_primary_10_1016_j_solener_2020_08_029
crossref_primary_10_1088_1742_6596_1762_1_012025
crossref_primary_10_1016_j_spmi_2017_03_035
crossref_primary_10_1088_1742_6596_1762_1_012042
crossref_primary_10_2478_msp_2020_0028
crossref_primary_10_1063_1_5034083
Cites_doi 10.1016/0039-6028(73)90337-3
10.1016/j.jcrysgro.2004.10.050
10.1063/1.1368156
10.1016/j.mseb.2012.11.012
10.1103/PhysRevLett.82.3312
10.1049/el:19990864
10.1016/j.jcrysgro.2011.09.023
10.1109/JPHOTOV.2012.2228296
10.1063/1.2387972
10.1063/1.106575
10.1016/j.tsf.2010.12.056
10.1103/PhysRevLett.82.1221
10.1016/j.jcrysgro.2008.02.015
10.1088/0268-1242/17/8/315
10.1063/1.2769801
10.1063/1.3518479
10.1103/PhysRevB.75.045203
10.1063/1.3009199
10.1063/1.2777448
10.1063/1.344532
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.7567/APEX.6.121202
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1882-0786
EndPage 121202-4
ExternalDocumentID 10_7567_APEX_6_121202
GroupedDBID 23M
4.4
5GY
AAGCD
AAGID
AAJIO
AALHV
AAPBV
ABEFU
ACGFS
ACNCT
AEFHF
AENEX
AFYNE
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
B.R
CEBXE
CJUJL
CS3
EBS
EJD
IIPPG
IOP
IZVLO
KOT
LI
MC8
N5L
P2P
QTG
RIN
RNS
ROL
RW3
SJN
UPT
X
XFK
ZE2
-~X
6OB
AATNI
AAYXX
ABCXL
ABHWH
ABJNI
ABVAM
ACHIP
ADWVK
AERVB
AKPSB
AOAED
CITATION
CRLBU
IJHAN
PJBAE
RPA
ID FETCH-LOGICAL-c364t-4fef26430efe37f72f23506a8f8cbe33e7cf2b4894d1fafe8ed7c81d940de19c3
ISSN 1882-0778
IngestDate Thu Sep 26 17:01:41 EDT 2024
Mon Jan 18 10:57:14 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c364t-4fef26430efe37f72f23506a8f8cbe33e7cf2b4894d1fafe8ed7c81d940de19c3
Notes (a) PR spectra of the GaAs 1-x-y Sb x N y alloys at 298 K pumped with a He--Ne laser operating at 633 nm. The numbers show the index of the $n$th extreme of FKOs. The lowest spectrum is enlarged three times. (b) Schematic diagram showing the relative positions of the energy levels at $\Gamma$ point of GaAsSbN explained using the DBAC model. (c) Plot of FKO extreme, $E'_{n}$ vs $F_{n}$ for the GaAsSbN alloys. The intercepts indicate the band gaps of the alloys. The inset shows the high-resolution X-ray rocking curve of the GaAs 0.932 Sb 0.051 N 0.017 /GaAs heterostructure, whose lattice mismatch of $-9.2\times 10^{-4}$ is larger than those of the other two samples. PR spectra of the GaAs 1-x-y Sb x N y alloys at 298 K pumped with a He--Cd laser operating at 325 nm. The spectra with energy below 1.25 eV are detected using an InGaAs photodiode and that above 1.25 eV are detected using a Si photodiode. The red lines represent theoretical fits using Eq. ( ). The band gap ($E_{0}$), the Sb-affected spin--orbit band to the conduction band minimum ($E_{0}+\Delta_{0}$), and the valence band maximum to the N-induced upward conduction band ($E_{+}$) are observed. Transition energies versus N and Sb composition. The solid symbols depict the transition energies of GaAs 1-x-y Sb x N y alloys obtained from PR spectra. The open symbols represent the calculated transition energies of GaAs 1-x Sb x alloys using the VCA and VBAC model. The colored symbols are projections of the transition energies on the energy--N Composition plane. Projections of the transition energies (symbols) as illustrated in Fig. . The solid lines are the least-squares fits to the CBAC model based on the energy levels of GaAs 1-x Sb x alloys considering the VCA and VBAC model. The dotted lines are produced using the obtained CBAC parameters, i.e., $E_{\text{N}}$ and $C_{\text{N}}$.
ParticipantIDs crossref_primary_10_7567_APEX_6_121202
ipap_primary_10_7567_APEX_6_121202
PublicationCentury 2000
PublicationDate 2013-12-01
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied physics express
PublicationYear 2013
Publisher The Japan Society of Applied Physics
Publisher_xml – name: The Japan Society of Applied Physics
References K. Nunna, S. Iyer, L. Wu, J. Li, S. Bharatan, X. Wei, R. T. Senger, and K. K. Bajaj: J. Appl. Phys. 102 (2007) 053106.
K. I. Lin and J. S. Hwang: Appl. Phys. Lett. 89 (2006) 192116.
D. E. Aspnes: Surf. Sci. 37 (1973) 418.
K. H. Tan, S. Wicaksono, W. K. Loke, D. Li, S. F. Yoon, E. A. Fitzgerald, S. A. Ringel, and J. S. Harris, Jr.: J. Cryst. Growth 335 (2011) 66.
D. Fuertes Marrón, E. Cánovas, I. Artacho, C. R. Stanley, M. Steer, T. Kaizu, Y. Shoji, N. Ahsan, Y. Okada, E. Barrigón, I. Rey-Stolle, C. Algora, A. Martí, and A. Luque: Mater. Sci. Eng. B 178 (2013) 599.
S. Wicaksono, S. F. Yoon, K. H. Tan, and W. K. Cheah: J. Cryst. Growth 274 (2005) 355.
J. D. Perkins, A. Mascarenhas, Y. Zhang, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz: Phys. Rev. Lett. 82 (1999) 3312.
T.-C. Ma, Y.-T. Lin, and H.-H. Lin: J. Cryst. Growth 310 (2008) 2854.
N. Ben Sedrine, C. Bouhafs, J. C. Harmand, R. Chtourou, and V. Darakchieva: Appl. Phys. Lett. 97 (2010) 201903.
Y.-T. Lin, T.-C. Ma, T.-Y. Chen, and H.-H. Lin: Appl. Phys. Lett. 93 (2008) 171914.
N. Ben Sedrine, C. Bouhafs, M. Schubert, J. C. Harmand, R. Chtourou, and V. Darakchieva: Thin Solid Films 519 (2011) 2838.
M. Sydor, N. Jahren, W. C. Mitchel, W. V. Lampert, T. W. Haas, M. Y. Yen, S. M. Mudare, and D. H. Tomich: J. Appl. Phys. 67 (1990) 7423.
G. Ungaro, G. Le Roux, R. Teissier, and J. C. Harmand: Electron. Lett. 35 (1999) 1246.
J. Misiewicz, P. Sitarek, G. Sek, and R. Kudrawiec: Mater. Sci. 21 (2003) 263.
J. Wu, W. Shan, and W. Walukiewicz: Semicond. Sci. Technol. 17 (2002) 860.
S. Tiwari and D. J. Frank: Appl. Phys. Lett. 60 (1992) 630.
S. Wicaksono, S. F. Yoon, W. K. Loke, K. H. Tan, K. L. Lew, M. Zegaoui, J. P. Vilcot, D. Decoster, and J. Chazelas: J. Appl. Phys. 102 (2007) 044505.
W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz: Phys. Rev. Lett. 82 (1999) 1221.
N. Ahsan, N. Miyashita, M. M. Islam, K. M. Yu, W. Walukiewicz, and Y. Okada: IEEE J. Photovoltaics 3 (2013) 730.
K. Alberi, J. Wu, W. Walukiewicz, K. M. Yu, O. D. Dubon, S. P. Watkins, C. X. Wang, X. Liu, Y.-J. Cho, and J. Furdyna: Phys. Rev. B 75 (2007) 045203.
I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan: J. Appl. Phys. 89 (2001) 5815.
11
12
J. Misiewicz (13) 2003; 21
14
15
16
17
18
19
1
J. Wu (21) 2002; 17
2
3
4
5
6
7
8
9
20
10
References_xml – ident: 20
  doi: 10.1016/0039-6028(73)90337-3
– ident: 3
  doi: 10.1016/j.jcrysgro.2004.10.050
– ident: 19
  doi: 10.1063/1.1368156
– ident: 15
  doi: 10.1016/j.mseb.2012.11.012
– ident: 14
  doi: 10.1103/PhysRevLett.82.3312
– ident: 1
  doi: 10.1049/el:19990864
– ident: 5
  doi: 10.1016/j.jcrysgro.2011.09.023
– ident: 6
  doi: 10.1109/JPHOTOV.2012.2228296
– ident: 7
  doi: 10.1063/1.2387972
– ident: 17
  doi: 10.1063/1.106575
– ident: 11
  doi: 10.1016/j.tsf.2010.12.056
– ident: 8
  doi: 10.1103/PhysRevLett.82.1221
– ident: 16
  doi: 10.1016/j.jcrysgro.2008.02.015
– volume: 17
  start-page: 860
  issn: 0268-1242
  year: 2002
  ident: 21
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/17/8/315
  contributor:
    fullname: J. Wu
– ident: 2
  doi: 10.1063/1.2769801
– ident: 12
  doi: 10.1063/1.3518479
– ident: 9
  doi: 10.1103/PhysRevB.75.045203
– ident: 10
  doi: 10.1063/1.3009199
– volume: 21
  start-page: 263
  year: 2003
  ident: 13
  publication-title: Mater. Sci.
  contributor:
    fullname: J. Misiewicz
– ident: 4
  doi: 10.1063/1.2777448
– ident: 18
  doi: 10.1063/1.344532
SSID ssj0064316
Score 2.1472461
Snippet Photoreflectance spectroscopy is utilized to study the effect of dilute nitrogen and antimony on the electronic band structure of as-grown GaAs 1-x-y Sb x N y...
SourceID crossref
ipap
SourceType Aggregation Database
Publisher
StartPage 121202
Title Double-Band Anticrossing in GaAsSbN Induced by Nitrogen and Antimony Incorporation
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegCIkXNL7EYCALIV4mlySO8_HYoUHHR6lgE32LHMdGkVBSrenD-Ou5i-023SY0eIki6-y0vp_ufmf7zoS8FtJEYalzJkwGAUolJZNgFJnMwlBBABGEBnd0v8yS6Vn8cSEW262YPrukK8fq97V5Jf-jVWgDvWKW7D9odjMoNMA76BeeoGF43kjHwH7LX5od4eL3pOnq3uW5JJUPcrL6Xs4O8W4OZWnmrO7OWxjs0MvDD71AC-GqGXsV-aK0jqDaxY8VXgawOa-BR3hs9YFPa9n8ZCdXWlv2ee28Yr9eb23KUct-6PqS8FS2bLqqvbhbgwj54DyHNZvI04PUXsYz1sM2V-ja2dpkCKloYDhDcKF96vUVm56KBHeVJ_PjxTgZb-V2a2df8mmbk4YQ4-AABXYvksJ2v03uRGCX0CCefJ17x51gVQCMz_2fsSVZsfvbna_vUJhRvZTLASU53SP3XSxBJxYYD8gt3Twkd-dWXY_ItwE86BAetG6ogwd18KDlBfXwoF4e4UF34PGYnL0_Pn03Ze4KDaZ4EncsNtoA5eWBNpqnJo1MxEWQyMxkqtSc61SZqIyzPK5CI43OdJUqCGHyOKh0mCv-hIyattFPCa0gVhAcAmSg2HFmdB6JCoSN0EJFwGr3yRs_K8XSVkoprp39ffIK5-zvQs9uOtpzcm-LyAMy6s7X-gXwxK582Wv3D_ntZB0
link.rule.ids 315,783,787,27936,27937
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Double-Band+Anticrossing+in+GaAsSbN+Induced+by+Nitrogen+and+Antimony+Incorporation&rft.jtitle=Applied+physics+express&rft.au=Lin%2C+Kuang-I&rft.au=Lin%2C+Kuo-Lung&rft.au=Wang%2C+Bo-Wei&rft.au=Lin%2C+Hao-Hsiung&rft.date=2013-12-01&rft.issn=1882-0778&rft.eissn=1882-0786&rft.volume=6&rft.issue=12&rft.spage=121202&rft_id=info:doi/10.7567%2FAPEX.6.121202&rft.externalDBID=n%2Fa&rft.externalDocID=10_7567_APEX_6_121202
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1882-0778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1882-0778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1882-0778&client=summon