Multiplicity of forced oscillations for the spherical pendulum acted on by a retarded periodic force

We prove a multiplicity result for forced oscillations of a spherical pendulum (that is, a massive point moving on a sphere) subject to a periodic action, with or without friction, allowed to depend on the whole past of the motion. The approach is based on topological methods. In particular, when th...

Full description

Saved in:
Bibliographic Details
Published inNonlinear analysis Vol. 151; pp. 252 - 264
Main Authors Calamai, Alessandro, Pera, Maria Patrizia, Spadini, Marco
Format Journal Article
LanguageEnglish
Published Elmsford Elsevier Ltd 01.03.2017
Elsevier BV
Subjects
Online AccessGet full text
ISSN0362-546X
1873-5215
DOI10.1016/j.na.2016.12.006

Cover

Abstract We prove a multiplicity result for forced oscillations of a spherical pendulum (that is, a massive point moving on a sphere) subject to a periodic action, with or without friction, allowed to depend on the whole past of the motion. The approach is based on topological methods. In particular, when the unperturbed forcing term is the gravity, we obtain two harmonic forced oscillations regardless of the presence of friction and of the form of the perturbing force field.
AbstractList We prove a multiplicity result for forced oscillations of a spherical pendulum (that is, a massive point moving on a sphere) subject to a periodic action, with or without friction, allowed to depend on the whole past of the motion. The approach is based on topological methods. In particular, when the unperturbed forcing term is the gravity, we obtain two harmonic forced oscillations regardless of the presence of friction and of the form of the perturbing force field.
We prove a multiplicity result for forced oscillations of a spherical pendulum (that is, a massive point moving on a sphere) subject to a periodic action, with or without friction, allowed to depend on the whole past of the motion. The approach is based on topological methods. In particular, when the unperturbed forcing term is the gravity, we obtain two harmonic forced oscillations regardless of the presence of friction and of the form of the perturbing force field.
Author Spadini, Marco
Calamai, Alessandro
Pera, Maria Patrizia
Author_xml – sequence: 1
  givenname: Alessandro
  surname: Calamai
  fullname: Calamai, Alessandro
  organization: Dipartimento di Ingegneria Civile, Edile e Architettura, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
– sequence: 2
  givenname: Maria Patrizia
  orcidid: 0000-0003-2667-8875
  surname: Pera
  fullname: Pera, Maria Patrizia
  organization: Dipartimento di Matematica e Informatica ‘U. Dini’, Università di Firenze, Via Santa Marta 3, 50139 Firenze, Italy
– sequence: 3
  givenname: Marco
  orcidid: 0000-0003-1720-8134
  surname: Spadini
  fullname: Spadini, Marco
  email: marco.spadini@unifi.it
  organization: Dipartimento di Matematica e Informatica ‘U. Dini’, Università di Firenze, Via Santa Marta 3, 50139 Firenze, Italy
BookMark eNp9kE1L7DAUhoMoOH7sXQZct-Ykbdq6E9F7BcWNgruQr2KGmtQkFebfm3FcCbrK4fA-J7zPEdr3wVuEzoDUQIBfrGsva1qmGmhNCN9DK-g7VrUU2n20IozTqm34yyE6SmlNCIGO8RUyD8uU3Tw57fIGhxGPIWprcEjaTZPMLvi03eH8anGaX210Wk54tt4s0_KGpc7btMdqgyWONstoymIuuWCc3p07QQejnJI9_X6P0fPtzdP1_-r-8d_d9dV9pRlvctVA36qO0XGgilGmJO-5sUo3QDvJ1GBUC9qObLASGNEjA92ZAZSSve6UUewYne_uzjG8LzZlsQ5L9OVLAUMDfBh63pUU36V0DClFO4rS_atpjtJNAojYGhVr4aXYGhVARTFaQPIDnKN7k3HzF3K5Q2yp_eFsFMWr9cWwi1ZnYYL7Hf4E9MyRBA
CitedBy_id crossref_primary_10_14232_ejqtde_2023_1_18
crossref_primary_10_1002_mma_4720
crossref_primary_10_1515_ans_2018_2028
crossref_primary_10_1098_rsta_2020_0351
Cites_doi 10.1002/mma.3390
10.1515/ans-2012-0210
10.12775/TMNA.1998.009
10.1007/s11784-015-0215-6
10.1016/j.na.2015.07.022
10.1016/j.jmaa.2003.11.057
10.1006/jdeq.1998.3557
10.1016/S0362-546X(97)00609-3
10.1016/S0377-0427(99)00259-9
10.1007/s10884-010-9201-2
10.1016/0022-0396(86)90045-8
10.1007/s000300050008
10.1016/j.shpsb.2014.01.006
10.1016/0022-0396(84)90180-3
10.3934/dcds.2013.33.27
10.1007/s00013-014-0644-2
10.1016/S0362-546X(96)00296-9
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright Elsevier BV Mar 2017
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 2017
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.na.2016.12.006
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1873-5215
EndPage 264
ExternalDocumentID 10_1016_j_na_2016_12_006
S0362546X16303078
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
GBLVA
HMJ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M26
M41
MHUIS
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WUQ
XPP
YQT
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7TB
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c364t-4185b732f92b323ba686debc4127a3b9db51cef39ea130cf31c7d91bba8c7bdb3
IEDL.DBID AIKHN
ISSN 0362-546X
IngestDate Fri Jul 25 07:09:01 EDT 2025
Tue Jul 01 01:42:18 EDT 2025
Thu Apr 24 23:13:18 EDT 2025
Fri Feb 23 02:33:22 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords 34C25
70K40
Retarded functional differential equations
Degree of a tangent vector field
34C40
Forced motion on manifolds
34K13
Multiplicity of periodic solutions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-4185b732f92b323ba686debc4127a3b9db51cef39ea130cf31c7d91bba8c7bdb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2667-8875
0000-0003-1720-8134
OpenAccessLink http://hdl.handle.net/2158/1068615
PQID 1941699867
PQPubID 2045425
PageCount 13
ParticipantIDs proquest_journals_1941699867
crossref_citationtrail_10_1016_j_na_2016_12_006
crossref_primary_10_1016_j_na_2016_12_006
elsevier_sciencedirect_doi_10_1016_j_na_2016_12_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2017
2017-03-00
20170301
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: March 2017
PublicationDecade 2010
PublicationPlace Elmsford
PublicationPlace_xml – name: Elmsford
PublicationTitle Nonlinear analysis
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Furi (br000055) 1995; vol. 472
Polekhin (br000140) 2015; 128
Furi, Pera, Spadini (br000075) 2005
Benevieri, Calamai, Furi, Pera (br000015) 2011; 23
Furi, Spadini (br000095) 1999; 154
Furi, Spadini (br000085) 1997; 29
Boscaggin, Ortega, Zanolin (br000040) 2014; 102
Mawhin, Willem (br000130) 1984; 52
Benevieri, Calamai, Furi, Pera (br000025) 2013; 33
Furi, Pera, Spadini (br000080) 2011; 15
Furi, Spadini (br000090) 1998; 11
Mawhin (br000115) 1998
Furi, Pera (br000060) 1990; 4
Hale, Verduyn Lunel (br000100) 1993; vol. 99
Furi, Pera (br000065) 1991; vol. 1475
Mawhin (br000120) 2004
Katriel (br000105) 1998; 34
Benci (br000005) 1986; 63
Furi, Pera, Spadini (br000070) 2000; 113
Lewicka, Spadini (br000110) 1999; 6
Bisconti, Spadini (br000035) 2015; 38
Benevieri, Calamai, Furi, Pera (br000030) 2014; 16
Mawhin (br000125) 2014; 47
Fonda, Toader (br000050) 2012; 12
Ureña (br000145) 2005; 302
Milnor (br000135) 1997
Cronin (br000045) 1994; vol. 180
Benevieri, Calamai, Furi, Pera (br000020) 2013; 2013
Benci, Degiovanni (br000010) 1990; vol. 4
Bisconti (10.1016/j.na.2016.12.006_br000035) 2015; 38
Katriel (10.1016/j.na.2016.12.006_br000105) 1998; 34
Furi (10.1016/j.na.2016.12.006_br000065) 1991; vol. 1475
Benevieri (10.1016/j.na.2016.12.006_br000015) 2011; 23
Ureña (10.1016/j.na.2016.12.006_br000145) 2005; 302
Furi (10.1016/j.na.2016.12.006_br000080) 2011; 15
Benevieri (10.1016/j.na.2016.12.006_br000030) 2014; 16
Mawhin (10.1016/j.na.2016.12.006_br000115) 1998
Furi (10.1016/j.na.2016.12.006_br000075) 2005
Furi (10.1016/j.na.2016.12.006_br000085) 1997; 29
Benci (10.1016/j.na.2016.12.006_br000005) 1986; 63
Hale (10.1016/j.na.2016.12.006_br000100) 1993; vol. 99
Furi (10.1016/j.na.2016.12.006_br000090) 1998; 11
Mawhin (10.1016/j.na.2016.12.006_br000130) 1984; 52
Boscaggin (10.1016/j.na.2016.12.006_br000040) 2014; 102
Furi (10.1016/j.na.2016.12.006_br000055) 1995; vol. 472
Milnor (10.1016/j.na.2016.12.006_br000135) 1997
Cronin (10.1016/j.na.2016.12.006_br000045) 1994; vol. 180
Furi (10.1016/j.na.2016.12.006_br000095) 1999; 154
Furi (10.1016/j.na.2016.12.006_br000060) 1990; 4
Lewicka (10.1016/j.na.2016.12.006_br000110) 1999; 6
Polekhin (10.1016/j.na.2016.12.006_br000140) 2015; 128
Mawhin (10.1016/j.na.2016.12.006_br000120) 2004
Furi (10.1016/j.na.2016.12.006_br000070) 2000; 113
Benevieri (10.1016/j.na.2016.12.006_br000020) 2013; 2013
Mawhin (10.1016/j.na.2016.12.006_br000125) 2014; 47
Benci (10.1016/j.na.2016.12.006_br000010) 1990; vol. 4
Benevieri (10.1016/j.na.2016.12.006_br000025) 2013; 33
Fonda (10.1016/j.na.2016.12.006_br000050) 2012; 12
References_xml – volume: 47
  start-page: 124
  year: 2014
  end-page: 130
  ident: br000125
  article-title: The implicit function theorem and its substitutes in Poincaré’s qualitative theory of differential equations
  publication-title: Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Modern Phys.
– volume: 128
  start-page: 100
  year: 2015
  end-page: 105
  ident: br000140
  article-title: Forced oscillations of a massive point on a compact surface with a boundary
  publication-title: Nonlinear Anal.
– volume: vol. 1475
  start-page: 176
  year: 1991
  end-page: 182
  ident: br000065
  article-title: The forced spherical pendulum does have forced oscillations
  publication-title: Delay Differential Equations and Dynamical Systems (Claremont, CA, 1990)
– volume: 11
  start-page: 147
  year: 1998
  end-page: 157
  ident: br000090
  article-title: Multiplicity of forced oscillations for the spherical pendulum
  publication-title: Topol. Methods Nonlinear Anal.
– volume: 12
  start-page: 395
  year: 2012
  end-page: 408
  ident: br000050
  article-title: Periodic solutions of pendulum-like Hamiltonian systems in the plane
  publication-title: Adv. Nonlinear Stud.
– volume: 4
  start-page: 381
  year: 1990
  end-page: 390
  ident: br000060
  article-title: On the existence of forced oscillations for the spherical pendulum
  publication-title: Boll. Un. Mat. Ital. B (7)
– start-page: 741
  year: 2005
  end-page: 782
  ident: br000075
  article-title: The fixed point index of the Poincaré translation operator on differentiable manifolds
  publication-title: Handbook of Topological Fixed Point Theory
– volume: vol. 99
  year: 1993
  ident: br000100
  publication-title: Introduction to Functional-Differential Equations
– volume: 34
  start-page: 687
  year: 1998
  end-page: 699
  ident: br000105
  article-title: Many periodic solutions for pendulum-type equations
  publication-title: Nonlinear Anal.
– volume: 302
  start-page: 318
  year: 2005
  end-page: 341
  ident: br000145
  article-title: Using closed orbits to bifurcate many periodic solutions for pendulum-type equations
  publication-title: J. Math. Anal. Appl.
– volume: 16
  start-page: 273
  year: 2014
  end-page: 300
  ident: br000030
  article-title: Global continuation of forced oscillations of retarded motion equations on manifolds
  publication-title: J. Fixed Point Theory Appl.
– volume: vol. 4
  start-page: 395
  year: 1990
  end-page: 411
  ident: br000010
  article-title: Periodic solutions of dissipative dynamical systems
  publication-title: Variational Methods (Paris, 1988)
– volume: 154
  start-page: 96
  year: 1999
  end-page: 106
  ident: br000095
  article-title: Branches of forced oscillations for periodically perturbed second order autonomous ODEs on manifolds
  publication-title: J. Differential Equations
– volume: 113
  start-page: 241
  year: 2000
  end-page: 254
  ident: br000070
  article-title: Forced oscillations on manifolds and multiplicity results for periodically perturbed autonomous systems
  publication-title: J. Comput. Appl. Math.
– year: 1997
  ident: br000135
  publication-title: Topology from the Differentiable Viewpoint
– volume: vol. 472
  start-page: 89
  year: 1995
  end-page: 127
  ident: br000055
  article-title: Second order differential equations on manifolds and forced oscillations
  publication-title: Topological Methods in Differential Equations and Inclusions (Montreal, PQ, 1994)
– volume: 38
  start-page: 4760
  year: 2015
  end-page: 4773
  ident: br000035
  article-title: About the notion of non-
  publication-title: Math. Methods Appl. Sci.
– volume: vol. 180
  year: 1994
  ident: br000045
  publication-title: Differential Equations: Introduction and Qualitative Theory
– volume: 29
  start-page: 963
  year: 1997
  end-page: 970
  ident: br000085
  article-title: On the set of harmonic solutions of periodically perturbed autonomous differential equations on manifolds
  publication-title: Nonlinear Anal.
– start-page: 115
  year: 1998
  end-page: 145
  ident: br000115
  article-title: Seventy-five years of global analysis around the forced pendulum equation
  publication-title: Proceedings of Equadiff 9
– start-page: 533
  year: 2004
  end-page: 589
  ident: br000120
  article-title: Global results for the forced pendulum equation
  publication-title: Handbook of Differential Equations, Vol. 1
– volume: 52
  start-page: 264
  year: 1984
  end-page: 287
  ident: br000130
  article-title: Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations
  publication-title: J. Differential Equations
– volume: 2013
  start-page: 19
  year: 2013
  ident: br000020
  article-title: Global continuation of periodic solutions for retarded functional differential equations on manifolds
  publication-title: Bound. Value Probl.
– volume: 15
  start-page: 381
  year: 2011
  end-page: 394
  ident: br000080
  article-title: Periodic solutions of retarded functional perturbations of autonomous differential equations on manifolds
  publication-title: Commun. Appl. Anal.
– volume: 23
  start-page: 541
  year: 2011
  end-page: 549
  ident: br000015
  article-title: On the existence of forced oscillations for the spherical pendulum acted on by a retarded periodic force
  publication-title: J. Dynam. Differential Equations
– volume: 33
  start-page: 27
  year: 2013
  end-page: 46
  ident: br000025
  article-title: On general properties of retarded functional differential equations on manifolds
  publication-title: Discrete Contin. Dyn. Syst.
– volume: 63
  start-page: 135
  year: 1986
  end-page: 161
  ident: br000005
  article-title: Periodic solutions of Lagrangian systems on a compact manifold
  publication-title: J. Differential Equations
– volume: 6
  start-page: 357
  year: 1999
  end-page: 369
  ident: br000110
  article-title: On the genericity of the multiplicity results for forced oscillations on compact manifolds
  publication-title: NoDEA Nonlinear Differential Equations Appl.
– volume: 102
  start-page: 459
  year: 2014
  end-page: 468
  ident: br000040
  article-title: Subharmonic solutions of the forced pendulum equation: a symplectic approach
  publication-title: Arch. Math. (Basel)
– volume: vol. 4
  start-page: 395
  year: 1990
  ident: 10.1016/j.na.2016.12.006_br000010
  article-title: Periodic solutions of dissipative dynamical systems
– volume: 2013
  start-page: 19
  issue: 21
  year: 2013
  ident: 10.1016/j.na.2016.12.006_br000020
  article-title: Global continuation of periodic solutions for retarded functional differential equations on manifolds
  publication-title: Bound. Value Probl.
– volume: vol. 99
  year: 1993
  ident: 10.1016/j.na.2016.12.006_br000100
– start-page: 741
  year: 2005
  ident: 10.1016/j.na.2016.12.006_br000075
  article-title: The fixed point index of the Poincaré translation operator on differentiable manifolds
– volume: 4
  start-page: 381
  issue: 2
  year: 1990
  ident: 10.1016/j.na.2016.12.006_br000060
  article-title: On the existence of forced oscillations for the spherical pendulum
  publication-title: Boll. Un. Mat. Ital. B (7)
– volume: 38
  start-page: 4760
  issue: 18
  year: 2015
  ident: 10.1016/j.na.2016.12.006_br000035
  article-title: About the notion of non-T-resonance and applications to topological multiplicity results for ODEs on differentiable manifolds
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.3390
– volume: vol. 180
  year: 1994
  ident: 10.1016/j.na.2016.12.006_br000045
– volume: 12
  start-page: 395
  issue: 2
  year: 2012
  ident: 10.1016/j.na.2016.12.006_br000050
  article-title: Periodic solutions of pendulum-like Hamiltonian systems in the plane
  publication-title: Adv. Nonlinear Stud.
  doi: 10.1515/ans-2012-0210
– volume: 11
  start-page: 147
  issue: 1
  year: 1998
  ident: 10.1016/j.na.2016.12.006_br000090
  article-title: Multiplicity of forced oscillations for the spherical pendulum
  publication-title: Topol. Methods Nonlinear Anal.
  doi: 10.12775/TMNA.1998.009
– volume: 16
  start-page: 273
  issue: 1–2
  year: 2014
  ident: 10.1016/j.na.2016.12.006_br000030
  article-title: Global continuation of forced oscillations of retarded motion equations on manifolds
  publication-title: J. Fixed Point Theory Appl.
  doi: 10.1007/s11784-015-0215-6
– volume: 128
  start-page: 100
  year: 2015
  ident: 10.1016/j.na.2016.12.006_br000140
  article-title: Forced oscillations of a massive point on a compact surface with a boundary
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2015.07.022
– volume: 302
  start-page: 318
  issue: 2
  year: 2005
  ident: 10.1016/j.na.2016.12.006_br000145
  article-title: Using closed orbits to bifurcate many periodic solutions for pendulum-type equations
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2003.11.057
– volume: 154
  start-page: 96
  issue: 1
  year: 1999
  ident: 10.1016/j.na.2016.12.006_br000095
  article-title: Branches of forced oscillations for periodically perturbed second order autonomous ODEs on manifolds
  publication-title: J. Differential Equations
  doi: 10.1006/jdeq.1998.3557
– volume: 34
  start-page: 687
  issue: 5
  year: 1998
  ident: 10.1016/j.na.2016.12.006_br000105
  article-title: Many periodic solutions for pendulum-type equations
  publication-title: Nonlinear Anal.
  doi: 10.1016/S0362-546X(97)00609-3
– volume: 113
  start-page: 241
  issue: 1–2
  year: 2000
  ident: 10.1016/j.na.2016.12.006_br000070
  article-title: Forced oscillations on manifolds and multiplicity results for periodically perturbed autonomous systems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(99)00259-9
– volume: 23
  start-page: 541
  year: 2011
  ident: 10.1016/j.na.2016.12.006_br000015
  article-title: On the existence of forced oscillations for the spherical pendulum acted on by a retarded periodic force
  publication-title: J. Dynam. Differential Equations
  doi: 10.1007/s10884-010-9201-2
– volume: 63
  start-page: 135
  year: 1986
  ident: 10.1016/j.na.2016.12.006_br000005
  article-title: Periodic solutions of Lagrangian systems on a compact manifold
  publication-title: J. Differential Equations
  doi: 10.1016/0022-0396(86)90045-8
– volume: 6
  start-page: 357
  issue: 4
  year: 1999
  ident: 10.1016/j.na.2016.12.006_br000110
  article-title: On the genericity of the multiplicity results for forced oscillations on compact manifolds
  publication-title: NoDEA Nonlinear Differential Equations Appl.
  doi: 10.1007/s000300050008
– volume: vol. 1475
  start-page: 176
  year: 1991
  ident: 10.1016/j.na.2016.12.006_br000065
  article-title: The forced spherical pendulum does have forced oscillations
– volume: 47
  start-page: 124
  year: 2014
  ident: 10.1016/j.na.2016.12.006_br000125
  article-title: The implicit function theorem and its substitutes in Poincaré’s qualitative theory of differential equations
  publication-title: Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Modern Phys.
  doi: 10.1016/j.shpsb.2014.01.006
– year: 1997
  ident: 10.1016/j.na.2016.12.006_br000135
– volume: 52
  start-page: 264
  issue: 2
  year: 1984
  ident: 10.1016/j.na.2016.12.006_br000130
  article-title: Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations
  publication-title: J. Differential Equations
  doi: 10.1016/0022-0396(84)90180-3
– volume: 33
  start-page: 27
  issue: 1
  year: 2013
  ident: 10.1016/j.na.2016.12.006_br000025
  article-title: On general properties of retarded functional differential equations on manifolds
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2013.33.27
– start-page: 533
  year: 2004
  ident: 10.1016/j.na.2016.12.006_br000120
  article-title: Global results for the forced pendulum equation
– volume: 102
  start-page: 459
  issue: 5
  year: 2014
  ident: 10.1016/j.na.2016.12.006_br000040
  article-title: Subharmonic solutions of the forced pendulum equation: a symplectic approach
  publication-title: Arch. Math. (Basel)
  doi: 10.1007/s00013-014-0644-2
– volume: 15
  start-page: 381
  issue: 2–4
  year: 2011
  ident: 10.1016/j.na.2016.12.006_br000080
  article-title: Periodic solutions of retarded functional perturbations of autonomous differential equations on manifolds
  publication-title: Commun. Appl. Anal.
– volume: vol. 472
  start-page: 89
  year: 1995
  ident: 10.1016/j.na.2016.12.006_br000055
  article-title: Second order differential equations on manifolds and forced oscillations
– volume: 29
  start-page: 963
  issue: 8
  year: 1997
  ident: 10.1016/j.na.2016.12.006_br000085
  article-title: On the set of harmonic solutions of periodically perturbed autonomous differential equations on manifolds
  publication-title: Nonlinear Anal.
  doi: 10.1016/S0362-546X(96)00296-9
– start-page: 115
  year: 1998
  ident: 10.1016/j.na.2016.12.006_br000115
  article-title: Seventy-five years of global analysis around the forced pendulum equation
SSID ssj0001736
Score 2.200405
Snippet We prove a multiplicity result for forced oscillations of a spherical pendulum (that is, a massive point moving on a sphere) subject to a periodic action, with...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 252
SubjectTerms Degree of a tangent vector field
Differential equations
Forced motion on manifolds
Friction
Gravitation
Mathematical analysis
Multiplicity of periodic solutions
Oscillations
Oscillators
Retarded functional differential equations
Title Multiplicity of forced oscillations for the spherical pendulum acted on by a retarded periodic force
URI https://dx.doi.org/10.1016/j.na.2016.12.006
https://www.proquest.com/docview/1941699867
Volume 151
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5Bu8DAG_GsPLAwhOJHnHhECFRAZQGkblbs2FIRSitaBhZ-O77EqQAhBsacfFbis-8-O-fvAE6UEAVzqUu8zE0iuDtPcpWKROH-2gplfX0pbHgvB0_idpSOluCyvQuDaZXR9zc-vfbWUdKPo9mfjsf9B_S9qZCjgChwpubL0GVcybQD3Yubu8H9wiHTjMuWRQoV4t_KJs2rQvIhKuszQSx79Ht0-uGn6-BzvQFrETWSi-bFNmHJVVuwHhEkietztgWrX-gFw9Nwwck624Zy2OQOjm0A3mTiSYCr4fMJslm-xIw4lJGgQ2bINoD2I1gjF08ICdI6h9YVMe-kIJim-FoGATIlT8qxbbrbgafrq8fLQRJrLCSWSzFPkLvGZJx5xQxn3BQyl6UzVlCWFdyo0qTUOs-VK0K0s55Tm5WKGlPkNjOl4bvQqSaV2wPCcit9joSEjAqPvHS5p05ZhRAvwK596Ldjq20kIMc6GC-6zTR71lWh0RqaMh2ssQ-nC41pQ77xR1vemkt_m0A6xIY_tI5ay-q4eGeaqoBSwzZUZgf_6vQQVhgG_zpT7Qg689c3dxygy9z0YPnsg_biBP0E5CvsWw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcoAeSnmptEvrA5ceosWPOPERoaLlsXspSHuzYseWFqEsYpdD_31nEmfVVogDR1sZK_GMZz47428ATo1SlQh5yKIuXaZkOMtKk6vM0P7aK-NjeylsMtXje3U9y2cbcNHfhaG0yuT7O5_eeuvUM0qzOXqaz0e_yPfmSs8QUZCllpuwpbCNpr11fnUznq4dMi-k7lmkSCD9rezSvBoiH-K6PROkskevR6f__HQbfC4_wceEGtl592J7sBGafdhNCJKl9bnchw9_0Qtia7LmZF0eQD3pcgfnHoE3W0SGcBU_nxGb5WPKiKM-hjJsSWwDpD9GNXLphJARrTM-3TD3m1WM0hSfa-wgpuRFPffdcIdwf_nz7mKcpRoLmZdarTLirnGFFNEIJ4V0lS51HZxXXBSVdKZ2OfchShMqjHY-Su6L2nDnqtIXrnbyCAbNogmfgYnS61gSIaHgKhIvXRl5MN4QxEPYdQyjfm6tTwTkVAfj0faZZg-2qSxpw3JhURvH8GMt8dSRb7zxrOzVZf8xIIux4Q2pYa9Zmxbv0nKDKBW3obr48q5Bv8P2-G5ya2-vpjdfYUcQEGiz1oYwWD2_hBOEMSv3LZnpH4-m7ko
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiplicity+of+forced+oscillations+for+the+spherical+pendulum+acted+on+by+a+retarded+periodic+force&rft.jtitle=Nonlinear+analysis&rft.au=Calamai%2C+Alessandro&rft.au=Pera%2C+Maria+Patrizia&rft.au=Spadini%2C+Marco&rft.date=2017-03-01&rft.issn=0362-546X&rft.volume=151&rft.spage=252&rft.epage=264&rft_id=info:doi/10.1016%2Fj.na.2016.12.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_na_2016_12_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0362-546X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0362-546X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0362-546X&client=summon