Occluded Pedestrian Detection Techniques by Deformable Attention-Guided Network (DAGN)
Although many deep-learning-based methods have achieved considerable detection performance for pedestrians with high visibility, their overall performances are still far from satisfactory, especially when heavily occluded instances are included. In this research, we have developed a novel pedestrian...
Saved in:
Published in | Applied sciences Vol. 11; no. 13; p. 6025 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although many deep-learning-based methods have achieved considerable detection performance for pedestrians with high visibility, their overall performances are still far from satisfactory, especially when heavily occluded instances are included. In this research, we have developed a novel pedestrian detector using a deformable attention-guided network (DAGN). Considering that pedestrians may be deformed with occlusions or under diverse poses, we have designed a deformable convolution with an attention module (DCAM) to sample from non-rigid locations, and obtained the attention feature map by aggregating global context information. Furthermore, the loss function was optimized to get accurate detection bounding boxes, by adopting complete-IoU loss for regression, and the distance IoU-NMS was used to refine the predicted boxes. Finally, a preprocessing technique based on tone mapping was applied to cope with the low visibility cases due to poor illumination. Extensive evaluations were conducted on three popular traffic datasets. Our method could decrease the log-average miss rate (MR−2) by 12.44% and 7.8%, respectively, for the heavy occlusion and overall cases, when compared to the published state-of-the-art results of the Caltech pedestrian dataset. Of the CityPersons and EuroCity Persons datasets, our proposed method outperformed the current best results by about 5% in MR−2 for the heavy occlusion cases. |
---|---|
AbstractList | Although many deep-learning-based methods have achieved considerable detection performance for pedestrians with high visibility, their overall performances are still far from satisfactory, especially when heavily occluded instances are included. In this research, we have developed a novel pedestrian detector using a deformable attention-guided network (DAGN). Considering that pedestrians may be deformed with occlusions or under diverse poses, we have designed a deformable convolution with an attention module (DCAM) to sample from non-rigid locations, and obtained the attention feature map by aggregating global context information. Furthermore, the loss function was optimized to get accurate detection bounding boxes, by adopting complete-IoU loss for regression, and the distance IoU-NMS was used to refine the predicted boxes. Finally, a preprocessing technique based on tone mapping was applied to cope with the low visibility cases due to poor illumination. Extensive evaluations were conducted on three popular traffic datasets. Our method could decrease the log-average miss rate (MR−2) by 12.44% and 7.8%, respectively, for the heavy occlusion and overall cases, when compared to the published state-of-the-art results of the Caltech pedestrian dataset. Of the CityPersons and EuroCity Persons datasets, our proposed method outperformed the current best results by about 5% in MR−2 for the heavy occlusion cases. |
Author | Shin, Hyunchul Zheng, Wenqi Xie, Han |
Author_xml | – sequence: 1 givenname: Han orcidid: 0000-0002-2672-3990 surname: Xie fullname: Xie, Han – sequence: 2 givenname: Wenqi orcidid: 0000-0001-7697-4715 surname: Zheng fullname: Zheng, Wenqi – sequence: 3 givenname: Hyunchul orcidid: 0000-0003-3020-5130 surname: Shin fullname: Shin, Hyunchul |
BookMark | eNptkUtLxDAQx4Mo-Dz5BQpeFKnm2aTHxdVVEPWgXkMeU81amzXNIn57W1dExLnMMPzmP69ttN7FDhDaJ_iEsRqfmsWCEMIqTMUa2qJYViXjRK7_ijfRXt_P8WA1YYrgLfR461y79OCLO_DQ5xRMV0whg8shdsU9uOcuvC2hL-zHkG9iejW2hWKSM3QjUs6WYSy_gfwe00txOJ3Mbo520UZj2h72vv0Oerg4vz-7LK9vZ1dnk-vSsYrnkmMJlLNaeCBU1EBlzUFIVUklpQQvKkOdoh6LprGSNiAZcC-J5dw4YTnbQVcrXR_NXC9SeDXpQ0cT9FcipidtUg6uBS24V9JSW1HuuVXS0ErRusLcgjLEqUHrYKW1SHHcOOt5XKZuGF9TwethPkpH6nhFuRT7PkHz05VgPf5B__rDQJM_tAvZjHfLyYT235pPebyKiQ |
CitedBy_id | crossref_primary_10_1016_j_inffus_2023_02_014 crossref_primary_10_3390_app12041799 crossref_primary_10_1109_TCSVT_2023_3245613 crossref_primary_10_1038_s41598_024_78959_2 crossref_primary_10_1109_TITS_2022_3142445 crossref_primary_10_1007_s00371_024_03374_7 crossref_primary_10_1016_j_neucom_2022_08_026 crossref_primary_10_1109_TITS_2022_3171250 crossref_primary_10_1109_TIM_2024_3428635 crossref_primary_10_4018_IJSWIS_345651 crossref_primary_10_1007_s41365_024_01435_z crossref_primary_10_1109_ACCESS_2024_3512666 crossref_primary_10_1109_TITS_2024_3495814 crossref_primary_10_3390_s21217267 |
Cites_doi | 10.1109/TMM.2020.2966878 10.1007/978-3-030-01234-2_1 10.1109/CVPR.2016.141 10.1109/TPAMI.2017.2738645 10.1007/978-3-319-46448-0_2 10.1109/CVPR.2019.00953 10.1109/CVPR.2018.00813 10.1609/aaai.v34i07.6999 10.1109/CVPR.2019.00334 10.1109/CVPR.2017.474 10.1007/978-3-319-46475-6_28 10.1109/TPAMI.2019.2897684 10.1109/CVPR.2017.106 10.1111/1467-8659.00689 10.1109/ICCVW.2019.00246 10.1007/s10489-018-1326-8 10.1007/978-3-030-01234-2_33 10.1109/CVPR.2016.90 10.1007/s11045-021-00764-1 10.1109/CVPR.2019.00075 10.1109/TPAMI.2011.155 10.5244/C.31.34 10.1109/CVPR.2018.00644 10.1109/CVPR.2014.81 10.1109/CVPR.2018.00811 10.1109/CVPR46437.2021.01117 10.1109/TPAMI.2016.2577031 10.1109/CVPR.2019.00968 10.1109/CVPR.2019.00662 10.1007/978-3-030-01264-9_38 10.1109/ICCV.2015.169 10.1007/978-3-030-01219-9_39 10.1109/TPAMI.2019.2913372 10.1109/ICCV.2017.530 10.1109/CVPR.2019.00533 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app11136025 |
DatabaseName | CrossRef ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_54d87b2b624d4b87a26829604be8a1c8 10_3390_app11136025 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c364t-407e24395de1259e2794e578678777ed56a2c82d05ffb72fe73e4d71b44ac5b43 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:31:49 EDT 2025 Mon Jun 30 07:29:00 EDT 2025 Tue Jul 01 00:50:55 EDT 2025 Thu Apr 24 23:11:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-407e24395de1259e2794e578678777ed56a2c82d05ffb72fe73e4d71b44ac5b43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2672-3990 0000-0001-7697-4715 0000-0003-3020-5130 |
OpenAccessLink | https://doaj.org/article/54d87b2b624d4b87a26829604be8a1c8 |
PQID | 2549259228 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_54d87b2b624d4b87a26829604be8a1c8 proquest_journals_2549259228 crossref_primary_10_3390_app11136025 crossref_citationtrail_10_3390_app11136025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Xie (ref_3) 2019; 49 Wojek (ref_8) 2012; 34 ref_36 ref_13 ref_12 Li (ref_22) 2018; 20 ref_34 ref_11 ref_33 ref_10 ref_32 ref_31 ref_30 ref_19 ref_17 ref_16 ref_15 ref_37 Ouyang (ref_24) 2018; 40 Cai (ref_5) 2016; Volume 9908 ref_25 Braun (ref_14) 2019; 41 ref_23 Hu (ref_35) 2020; 42 Ren (ref_18) 2017; 39 ref_21 ref_43 ref_20 ref_42 ref_41 Xie (ref_7) 2021; 32 ref_40 ref_1 ref_2 ref_29 Ma (ref_39) 2019; 1 ref_27 ref_26 ref_9 Zhang (ref_28) 2020; 9210 Drago (ref_38) 2003; 22 ref_4 ref_6 |
References_xml | – volume: 9210 start-page: 1 year: 2020 ident: ref_28 article-title: Attribute-aware Pedestrian Detection in a Crowd publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2020.2966878 – ident: ref_37 doi: 10.1007/978-3-030-01234-2_1 – ident: ref_41 doi: 10.1109/CVPR.2016.141 – volume: 40 start-page: 1874 year: 2018 ident: ref_24 article-title: Jointly Learning Deep Features, Deformable Parts, Occlusion and Classification for Pedestrian Detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2738645 – ident: ref_16 doi: 10.1007/978-3-319-46448-0_2 – ident: ref_10 doi: 10.1109/CVPR.2019.00953 – ident: ref_36 doi: 10.1109/CVPR.2018.00813 – ident: ref_13 doi: 10.1609/aaai.v34i07.6999 – ident: ref_11 – ident: ref_30 doi: 10.1109/CVPR.2019.00334 – ident: ref_9 doi: 10.1109/CVPR.2017.474 – ident: ref_4 doi: 10.1007/978-3-319-46475-6_28 – volume: 41 start-page: 1844 year: 2019 ident: ref_14 article-title: EuroCity Persons: A Novel Benchmark for Person Detection in Traffic Scenes publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2897684 – ident: ref_40 – ident: ref_32 doi: 10.1109/CVPR.2017.106 – volume: 22 start-page: 419 year: 2003 ident: ref_38 article-title: Adaptive Logarithmic Mapping for Displaying High Contrast Scenes publication-title: Comput. Graph. Forum doi: 10.1111/1467-8659.00689 – ident: ref_34 doi: 10.1109/ICCVW.2019.00246 – volume: 49 start-page: 1200 year: 2019 ident: ref_3 article-title: Context-aware pedestrian detection especially for small-sized instances with Deconvolution Integrated Faster RCNN (DIF R-CNN) publication-title: Appl. Intell. doi: 10.1007/s10489-018-1326-8 – ident: ref_43 doi: 10.1007/978-3-030-01234-2_33 – volume: 1 start-page: 105 year: 2019 ident: ref_39 article-title: PaddlePaddle: An Open-Source Deep Learning Platform from Industrial Practice publication-title: Front. Data Comput. – ident: ref_33 doi: 10.1109/CVPR.2016.90 – volume: 32 start-page: 897 year: 2021 ident: ref_7 article-title: Two-stream small-scale pedestrian detection network with feature aggregation for drone-view videos publication-title: Multidimens. Syst. Signal Process. doi: 10.1007/s11045-021-00764-1 – ident: ref_12 doi: 10.1109/CVPR.2019.00075 – volume: 34 start-page: 743 year: 2012 ident: ref_8 article-title: Pedestrian detection: An evaluation of the state of the art publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.155 – ident: ref_23 doi: 10.5244/C.31.34 – ident: ref_31 doi: 10.1109/CVPR.2018.00644 – volume: 20 start-page: 985 year: 2018 ident: ref_22 article-title: Scale-Aware Fast R-CNN for Pedestrian Detection publication-title: IEEE Trans. Multimed. – ident: ref_20 doi: 10.1109/CVPR.2014.81 – ident: ref_25 doi: 10.1109/CVPR.2018.00811 – ident: ref_42 doi: 10.1109/CVPR46437.2021.01117 – volume: 39 start-page: 1137 year: 2017 ident: ref_18 article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – ident: ref_29 doi: 10.1109/CVPR.2019.00968 – ident: ref_15 – ident: ref_27 doi: 10.1109/CVPR.2019.00662 – ident: ref_6 doi: 10.1007/978-3-030-01264-9_38 – ident: ref_21 doi: 10.1109/ICCV.2015.169 – ident: ref_26 doi: 10.1007/978-3-030-01219-9_39 – ident: ref_17 – ident: ref_19 – volume: 42 start-page: 2011 year: 2020 ident: ref_35 article-title: Squeeze-and-Excitation Networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2913372 – ident: ref_2 doi: 10.1109/ICCV.2017.530 – ident: ref_1 doi: 10.1109/CVPR.2019.00533 – volume: Volume 9908 start-page: 354 year: 2016 ident: ref_5 article-title: A unified multi-scale deep convolutional neural network for fast object detection publication-title: Proceedings of the Lecture Notes in Computer Science (Including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
SSID | ssj0000913810 |
Score | 2.2751398 |
Snippet | Although many deep-learning-based methods have achieved considerable detection performance for pedestrians with high visibility, their overall performances are... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 6025 |
SubjectTerms | Boxes computer vision Datasets Design feature extraction image processing Localization Methods Neural networks pedestrian detection Proposals |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELaALjAgnqK85IGhRYpIHCd2JlReRUgUhACxRX5cEFKVAk0H_j2-xC2VQKzOZbHvzt_Z5-8j5ChLEl2kcRGAVDzgJswCpQACsA6uQxQVyuLj5NtBev3Eb16SF3_gNvZtldOcWCdqOzJ4Rn6ChYyD6ozJ0_ePAFWj8HbVS2gskpZLwdIVX62zy8H9w-yUBVkvZRQ2D_NiV9_jvTCqq6chimPPbUU1Y_-vhFzvMldrZNXDQ9pr1nOdLEC5QVbmSAM3yLoPxzHteM7o7iZ5vjNmOLFg6T1YqLU4SnoBVd1oVdLHKVPrmOovN14jVT0E2quqpt8x6E_e8PdB0xZOOxe9_qC7RZ6uLh_PrwMvmRCYOOWVqwYFMIcxEgsOuWTAXLiBC0q3JQkhwCapYkYyGyZFoQUrQMTArYg058okmsfbZKkclbBDKJepdmhRFYUy3CotTZaZ0AqDjO8mitrkeDp7ufF84ihrMcxdXYFTnc9NdZsczYzfGxqNv83OcBlmJsh9XQ-MPl9zH0p5wq0UmumUccu1FIqlkiHHjHb-FhnZJvvTRcx9QI7zH_fZ_f_zHllm2LZSd-Tuk6XqcwIHDndU-tA71zdFQ9e- priority: 102 providerName: ProQuest |
Title | Occluded Pedestrian Detection Techniques by Deformable Attention-Guided Network (DAGN) |
URI | https://www.proquest.com/docview/2549259228 https://doaj.org/article/54d87b2b624d4b87a26829604be8a1c8 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB58XPQg1gfWR9lDD1YINptNdnOsj7YI1iIq3sI-JiCUKDY9-O_d3aQloODF6zLZhNmZnW_IzDcA3TSOVZ5EeYBCsoDpfhpIiRigsXAdwzCXxjUn30-S8TO7e41fG6O-XE1YRQ9cKe4yZkZwRVVCmWFKcEkTQR2jiLK7h9q3-dqY10im_B2cho66qmrIi2xe7_4Hu6nqSd8NxW6EIM_U_-Mi9tFluAs7NSwkg-pzWrCGxR5sN8gC96BVu-GcnNdc0b19eHnQerYwaMgUDfoZHAW5wdIXWBXkacnQOifqy657hKpmSAZlWdU5BqPFm3t8UpWDk_ObwWjSO4Dn4e3T9TioRyUEOkpYabNAjtRii9igRSwpUutmaJ3RhiLOOZo4kVQLavpxnitOc-QRMsNDxZjUsWLRIWwU7wUeAWEiURYlyjyXmhmphE5T3TdcO6Z3HYZtuFhqL9M1j7gbZzHLbD7hVJ01VN2G7kr4o6LP-F3syh3DSsRxXvsFawlZbQnZX5bQhtPlIWa1I84zl_9ahVAqjv_jHSewRV1Ri6_XPYWN8nOBZxaVlKoD62I46sDm1e1k-tjx5vgNBqzgsw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOqC0gAi3soUgtkoW9XnvXB1SlhCSlbeCQot7cfYwRUuSUxhHqn-I3suNHiATi1uvu2ofZb167s98A7GdJYoo0LgJUWgTChlmgNWKAzofrGEWFdvQ4-XySji_Ep8vkcgN-dW9hqKyys4m1oXZzS2fk7yiR8aE65-ro-kdAXaPodrVrodHA4hRvf_qUbfH-ZOD39w3nw4_TD-Og7SoQ2DgVlU-YJHLvhhOH3rlnyD0i0ePWW20pJbok1dwq7sKkKIzkBcoYhZOREULbxIjY__ce3BdxnJFGqeFodaZDHJsqCptngH4-pFto6uWehtSKe83x1f0B_jL_tU8bbsHjNhhl_QY927CB5Q48WqMo3IHtVvkX7KBlqD58Al8_WztbOnTsCzqsO3-UbIBVXdZVsmnHC7tg5taP13GxmSHrV1VTXRmMlt_p80lThM4OBv3R5PApXNyJKJ_BZjkv8TkwoVLjY1NdFNoKp42yWWZDJy3xy9so6sHbTnq5bdnLqYnGLPdZDIk6XxN1D_ZXi68b0o5_LzumbVgtIabtemB-8y1vFTdPhFPScJNy4YRRUvNUcWK0MR7dkVU92O02MW_Vf5H_AeuL_0-_hgfj6flZfnYyOX0JDzkVzNS1wLuwWd0scc9HPJV5VcOMwdVd4_o3dzISNw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFD7BJTH6YAA1rgLOAyZg0tBOp53pgyELywKidWPA8FbmcsaYbLrIdmP4a_46Z3pZNtH4xut0Og9nvp7L9Mz3AexkSaJsGtsAhWQB02EWSIkYoHHpOkaRlcZfTv6cp6eX7ONVcrUCv7u7ML6tsvOJtaM2U-3PyPd9IeNSdUrFvm3bIsbD0cHNz8ArSPk_rZ2cRgORc7z75cq32Yezodvrd5SOji-OToNWYSDQccoqVzxxpC4kJwZdoM-QOnSiw7Dz4JxzNEkqqRbUhIm1ilOLPEZmeKQYkzpRLHbrPoJV7tYJe7B6eJyPvy5OeDzjpojC5lJgHGeh_yftld3T0AtzL4XBWi3gr2BQR7jRGjxrU1MyaLC0DitYbsDTJcLCDVhvXcGM7LZ81XvP4dsXrSdzg4aM0WCtA1KSIVZ1k1dJLjqW2BlRd268zpLVBMmgqppey-Bk_sO_njct6WR3ODjJ917A5YMY8yX0ymmJr4AwkSqXqUprpWZGKqGzTIeGa882r6OoD-876xW65TL3khqTwtU03tTFkqn7sLOYfNNQePx72qHfhsUUz7tdD0xvvxftZ1wkzAiuqEopM0wJLmkqqOe3UQ7rkRZ92Ow2sWidway4h-7r_z9-C48dpotPZ_n5G3hCffdM3Ri8Cb3qdo5bLv2p1HaLMwLXDw3tP8kNF8k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Occluded+Pedestrian+Detection+Techniques+by+Deformable+Attention-Guided+Network+%28DAGN%29&rft.jtitle=Applied+sciences&rft.au=Han+Xie&rft.au=Wenqi+Zheng&rft.au=Hyunchul+Shin&rft.date=2021-07-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=11&rft.issue=13&rft.spage=6025&rft_id=info:doi/10.3390%2Fapp11136025&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_54d87b2b624d4b87a26829604be8a1c8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |