Occluded Pedestrian Detection Techniques by Deformable Attention-Guided Network (DAGN)

Although many deep-learning-based methods have achieved considerable detection performance for pedestrians with high visibility, their overall performances are still far from satisfactory, especially when heavily occluded instances are included. In this research, we have developed a novel pedestrian...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 11; no. 13; p. 6025
Main Authors Xie, Han, Zheng, Wenqi, Shin, Hyunchul
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although many deep-learning-based methods have achieved considerable detection performance for pedestrians with high visibility, their overall performances are still far from satisfactory, especially when heavily occluded instances are included. In this research, we have developed a novel pedestrian detector using a deformable attention-guided network (DAGN). Considering that pedestrians may be deformed with occlusions or under diverse poses, we have designed a deformable convolution with an attention module (DCAM) to sample from non-rigid locations, and obtained the attention feature map by aggregating global context information. Furthermore, the loss function was optimized to get accurate detection bounding boxes, by adopting complete-IoU loss for regression, and the distance IoU-NMS was used to refine the predicted boxes. Finally, a preprocessing technique based on tone mapping was applied to cope with the low visibility cases due to poor illumination. Extensive evaluations were conducted on three popular traffic datasets. Our method could decrease the log-average miss rate (MR−2) by 12.44% and 7.8%, respectively, for the heavy occlusion and overall cases, when compared to the published state-of-the-art results of the Caltech pedestrian dataset. Of the CityPersons and EuroCity Persons datasets, our proposed method outperformed the current best results by about 5% in MR−2 for the heavy occlusion cases.
AbstractList Although many deep-learning-based methods have achieved considerable detection performance for pedestrians with high visibility, their overall performances are still far from satisfactory, especially when heavily occluded instances are included. In this research, we have developed a novel pedestrian detector using a deformable attention-guided network (DAGN). Considering that pedestrians may be deformed with occlusions or under diverse poses, we have designed a deformable convolution with an attention module (DCAM) to sample from non-rigid locations, and obtained the attention feature map by aggregating global context information. Furthermore, the loss function was optimized to get accurate detection bounding boxes, by adopting complete-IoU loss for regression, and the distance IoU-NMS was used to refine the predicted boxes. Finally, a preprocessing technique based on tone mapping was applied to cope with the low visibility cases due to poor illumination. Extensive evaluations were conducted on three popular traffic datasets. Our method could decrease the log-average miss rate (MR−2) by 12.44% and 7.8%, respectively, for the heavy occlusion and overall cases, when compared to the published state-of-the-art results of the Caltech pedestrian dataset. Of the CityPersons and EuroCity Persons datasets, our proposed method outperformed the current best results by about 5% in MR−2 for the heavy occlusion cases.
Author Shin, Hyunchul
Zheng, Wenqi
Xie, Han
Author_xml – sequence: 1
  givenname: Han
  orcidid: 0000-0002-2672-3990
  surname: Xie
  fullname: Xie, Han
– sequence: 2
  givenname: Wenqi
  orcidid: 0000-0001-7697-4715
  surname: Zheng
  fullname: Zheng, Wenqi
– sequence: 3
  givenname: Hyunchul
  orcidid: 0000-0003-3020-5130
  surname: Shin
  fullname: Shin, Hyunchul
BookMark eNptkUtLxDAQx4Mo-Dz5BQpeFKnm2aTHxdVVEPWgXkMeU81amzXNIn57W1dExLnMMPzmP69ttN7FDhDaJ_iEsRqfmsWCEMIqTMUa2qJYViXjRK7_ijfRXt_P8WA1YYrgLfR461y79OCLO_DQ5xRMV0whg8shdsU9uOcuvC2hL-zHkG9iejW2hWKSM3QjUs6WYSy_gfwe00txOJ3Mbo520UZj2h72vv0Oerg4vz-7LK9vZ1dnk-vSsYrnkmMJlLNaeCBU1EBlzUFIVUklpQQvKkOdoh6LprGSNiAZcC-J5dw4YTnbQVcrXR_NXC9SeDXpQ0cT9FcipidtUg6uBS24V9JSW1HuuVXS0ErRusLcgjLEqUHrYKW1SHHcOOt5XKZuGF9TwethPkpH6nhFuRT7PkHz05VgPf5B__rDQJM_tAvZjHfLyYT235pPebyKiQ
CitedBy_id crossref_primary_10_1016_j_inffus_2023_02_014
crossref_primary_10_3390_app12041799
crossref_primary_10_1109_TCSVT_2023_3245613
crossref_primary_10_1038_s41598_024_78959_2
crossref_primary_10_1109_TITS_2022_3142445
crossref_primary_10_1007_s00371_024_03374_7
crossref_primary_10_1016_j_neucom_2022_08_026
crossref_primary_10_1109_TITS_2022_3171250
crossref_primary_10_1109_TIM_2024_3428635
crossref_primary_10_4018_IJSWIS_345651
crossref_primary_10_1007_s41365_024_01435_z
crossref_primary_10_1109_ACCESS_2024_3512666
crossref_primary_10_1109_TITS_2024_3495814
crossref_primary_10_3390_s21217267
Cites_doi 10.1109/TMM.2020.2966878
10.1007/978-3-030-01234-2_1
10.1109/CVPR.2016.141
10.1109/TPAMI.2017.2738645
10.1007/978-3-319-46448-0_2
10.1109/CVPR.2019.00953
10.1109/CVPR.2018.00813
10.1609/aaai.v34i07.6999
10.1109/CVPR.2019.00334
10.1109/CVPR.2017.474
10.1007/978-3-319-46475-6_28
10.1109/TPAMI.2019.2897684
10.1109/CVPR.2017.106
10.1111/1467-8659.00689
10.1109/ICCVW.2019.00246
10.1007/s10489-018-1326-8
10.1007/978-3-030-01234-2_33
10.1109/CVPR.2016.90
10.1007/s11045-021-00764-1
10.1109/CVPR.2019.00075
10.1109/TPAMI.2011.155
10.5244/C.31.34
10.1109/CVPR.2018.00644
10.1109/CVPR.2014.81
10.1109/CVPR.2018.00811
10.1109/CVPR46437.2021.01117
10.1109/TPAMI.2016.2577031
10.1109/CVPR.2019.00968
10.1109/CVPR.2019.00662
10.1007/978-3-030-01264-9_38
10.1109/ICCV.2015.169
10.1007/978-3-030-01219-9_39
10.1109/TPAMI.2019.2913372
10.1109/ICCV.2017.530
10.1109/CVPR.2019.00533
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app11136025
DatabaseName CrossRef
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_54d87b2b624d4b87a26829604be8a1c8
10_3390_app11136025
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c364t-407e24395de1259e2794e578678777ed56a2c82d05ffb72fe73e4d71b44ac5b43
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:31:49 EDT 2025
Mon Jun 30 07:29:00 EDT 2025
Tue Jul 01 00:50:55 EDT 2025
Thu Apr 24 23:11:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-407e24395de1259e2794e578678777ed56a2c82d05ffb72fe73e4d71b44ac5b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2672-3990
0000-0001-7697-4715
0000-0003-3020-5130
OpenAccessLink https://doaj.org/article/54d87b2b624d4b87a26829604be8a1c8
PQID 2549259228
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_54d87b2b624d4b87a26829604be8a1c8
proquest_journals_2549259228
crossref_primary_10_3390_app11136025
crossref_citationtrail_10_3390_app11136025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Xie (ref_3) 2019; 49
Wojek (ref_8) 2012; 34
ref_36
ref_13
ref_12
Li (ref_22) 2018; 20
ref_34
ref_11
ref_33
ref_10
ref_32
ref_31
ref_30
ref_19
ref_17
ref_16
ref_15
ref_37
Ouyang (ref_24) 2018; 40
Cai (ref_5) 2016; Volume 9908
ref_25
Braun (ref_14) 2019; 41
ref_23
Hu (ref_35) 2020; 42
Ren (ref_18) 2017; 39
ref_21
ref_43
ref_20
ref_42
ref_41
Xie (ref_7) 2021; 32
ref_40
ref_1
ref_2
ref_29
Ma (ref_39) 2019; 1
ref_27
ref_26
ref_9
Zhang (ref_28) 2020; 9210
Drago (ref_38) 2003; 22
ref_4
ref_6
References_xml – volume: 9210
  start-page: 1
  year: 2020
  ident: ref_28
  article-title: Attribute-aware Pedestrian Detection in a Crowd
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2020.2966878
– ident: ref_37
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref_41
  doi: 10.1109/CVPR.2016.141
– volume: 40
  start-page: 1874
  year: 2018
  ident: ref_24
  article-title: Jointly Learning Deep Features, Deformable Parts, Occlusion and Classification for Pedestrian Detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2738645
– ident: ref_16
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref_10
  doi: 10.1109/CVPR.2019.00953
– ident: ref_36
  doi: 10.1109/CVPR.2018.00813
– ident: ref_13
  doi: 10.1609/aaai.v34i07.6999
– ident: ref_11
– ident: ref_30
  doi: 10.1109/CVPR.2019.00334
– ident: ref_9
  doi: 10.1109/CVPR.2017.474
– ident: ref_4
  doi: 10.1007/978-3-319-46475-6_28
– volume: 41
  start-page: 1844
  year: 2019
  ident: ref_14
  article-title: EuroCity Persons: A Novel Benchmark for Person Detection in Traffic Scenes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2897684
– ident: ref_40
– ident: ref_32
  doi: 10.1109/CVPR.2017.106
– volume: 22
  start-page: 419
  year: 2003
  ident: ref_38
  article-title: Adaptive Logarithmic Mapping for Displaying High Contrast Scenes
  publication-title: Comput. Graph. Forum
  doi: 10.1111/1467-8659.00689
– ident: ref_34
  doi: 10.1109/ICCVW.2019.00246
– volume: 49
  start-page: 1200
  year: 2019
  ident: ref_3
  article-title: Context-aware pedestrian detection especially for small-sized instances with Deconvolution Integrated Faster RCNN (DIF R-CNN)
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1326-8
– ident: ref_43
  doi: 10.1007/978-3-030-01234-2_33
– volume: 1
  start-page: 105
  year: 2019
  ident: ref_39
  article-title: PaddlePaddle: An Open-Source Deep Learning Platform from Industrial Practice
  publication-title: Front. Data Comput.
– ident: ref_33
  doi: 10.1109/CVPR.2016.90
– volume: 32
  start-page: 897
  year: 2021
  ident: ref_7
  article-title: Two-stream small-scale pedestrian detection network with feature aggregation for drone-view videos
  publication-title: Multidimens. Syst. Signal Process.
  doi: 10.1007/s11045-021-00764-1
– ident: ref_12
  doi: 10.1109/CVPR.2019.00075
– volume: 34
  start-page: 743
  year: 2012
  ident: ref_8
  article-title: Pedestrian detection: An evaluation of the state of the art
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.155
– ident: ref_23
  doi: 10.5244/C.31.34
– ident: ref_31
  doi: 10.1109/CVPR.2018.00644
– volume: 20
  start-page: 985
  year: 2018
  ident: ref_22
  article-title: Scale-Aware Fast R-CNN for Pedestrian Detection
  publication-title: IEEE Trans. Multimed.
– ident: ref_20
  doi: 10.1109/CVPR.2014.81
– ident: ref_25
  doi: 10.1109/CVPR.2018.00811
– ident: ref_42
  doi: 10.1109/CVPR46437.2021.01117
– volume: 39
  start-page: 1137
  year: 2017
  ident: ref_18
  article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref_29
  doi: 10.1109/CVPR.2019.00968
– ident: ref_15
– ident: ref_27
  doi: 10.1109/CVPR.2019.00662
– ident: ref_6
  doi: 10.1007/978-3-030-01264-9_38
– ident: ref_21
  doi: 10.1109/ICCV.2015.169
– ident: ref_26
  doi: 10.1007/978-3-030-01219-9_39
– ident: ref_17
– ident: ref_19
– volume: 42
  start-page: 2011
  year: 2020
  ident: ref_35
  article-title: Squeeze-and-Excitation Networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2913372
– ident: ref_2
  doi: 10.1109/ICCV.2017.530
– ident: ref_1
  doi: 10.1109/CVPR.2019.00533
– volume: Volume 9908
  start-page: 354
  year: 2016
  ident: ref_5
  article-title: A unified multi-scale deep convolutional neural network for fast object detection
  publication-title: Proceedings of the Lecture Notes in Computer Science (Including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SSID ssj0000913810
Score 2.2751398
Snippet Although many deep-learning-based methods have achieved considerable detection performance for pedestrians with high visibility, their overall performances are...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 6025
SubjectTerms Boxes
computer vision
Datasets
Design
feature extraction
image processing
Localization
Methods
Neural networks
pedestrian detection
Proposals
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELaALjAgnqK85IGhRYpIHCd2JlReRUgUhACxRX5cEFKVAk0H_j2-xC2VQKzOZbHvzt_Z5-8j5ChLEl2kcRGAVDzgJswCpQACsA6uQxQVyuLj5NtBev3Eb16SF3_gNvZtldOcWCdqOzJ4Rn6ChYyD6ozJ0_ePAFWj8HbVS2gskpZLwdIVX62zy8H9w-yUBVkvZRQ2D_NiV9_jvTCqq6chimPPbUU1Y_-vhFzvMldrZNXDQ9pr1nOdLEC5QVbmSAM3yLoPxzHteM7o7iZ5vjNmOLFg6T1YqLU4SnoBVd1oVdLHKVPrmOovN14jVT0E2quqpt8x6E_e8PdB0xZOOxe9_qC7RZ6uLh_PrwMvmRCYOOWVqwYFMIcxEgsOuWTAXLiBC0q3JQkhwCapYkYyGyZFoQUrQMTArYg058okmsfbZKkclbBDKJepdmhRFYUy3CotTZaZ0AqDjO8mitrkeDp7ufF84ihrMcxdXYFTnc9NdZsczYzfGxqNv83OcBlmJsh9XQ-MPl9zH0p5wq0UmumUccu1FIqlkiHHjHb-FhnZJvvTRcx9QI7zH_fZ_f_zHllm2LZSd-Tuk6XqcwIHDndU-tA71zdFQ9e-
  priority: 102
  providerName: ProQuest
Title Occluded Pedestrian Detection Techniques by Deformable Attention-Guided Network (DAGN)
URI https://www.proquest.com/docview/2549259228
https://doaj.org/article/54d87b2b624d4b87a26829604be8a1c8
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB58XPQg1gfWR9lDD1YINptNdnOsj7YI1iIq3sI-JiCUKDY9-O_d3aQloODF6zLZhNmZnW_IzDcA3TSOVZ5EeYBCsoDpfhpIiRigsXAdwzCXxjUn30-S8TO7e41fG6O-XE1YRQ9cKe4yZkZwRVVCmWFKcEkTQR2jiLK7h9q3-dqY10im_B2cho66qmrIi2xe7_4Hu6nqSd8NxW6EIM_U_-Mi9tFluAs7NSwkg-pzWrCGxR5sN8gC96BVu-GcnNdc0b19eHnQerYwaMgUDfoZHAW5wdIXWBXkacnQOifqy657hKpmSAZlWdU5BqPFm3t8UpWDk_ObwWjSO4Dn4e3T9TioRyUEOkpYabNAjtRii9igRSwpUutmaJ3RhiLOOZo4kVQLavpxnitOc-QRMsNDxZjUsWLRIWwU7wUeAWEiURYlyjyXmhmphE5T3TdcO6Z3HYZtuFhqL9M1j7gbZzHLbD7hVJ01VN2G7kr4o6LP-F3syh3DSsRxXvsFawlZbQnZX5bQhtPlIWa1I84zl_9ahVAqjv_jHSewRV1Ri6_XPYWN8nOBZxaVlKoD62I46sDm1e1k-tjx5vgNBqzgsw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOqC0gAi3soUgtkoW9XnvXB1SlhCSlbeCQot7cfYwRUuSUxhHqn-I3suNHiATi1uvu2ofZb167s98A7GdJYoo0LgJUWgTChlmgNWKAzofrGEWFdvQ4-XySji_Ep8vkcgN-dW9hqKyys4m1oXZzS2fk7yiR8aE65-ro-kdAXaPodrVrodHA4hRvf_qUbfH-ZOD39w3nw4_TD-Og7SoQ2DgVlU-YJHLvhhOH3rlnyD0i0ePWW20pJbok1dwq7sKkKIzkBcoYhZOREULbxIjY__ce3BdxnJFGqeFodaZDHJsqCptngH4-pFto6uWehtSKe83x1f0B_jL_tU8bbsHjNhhl_QY927CB5Q48WqMo3IHtVvkX7KBlqD58Al8_WztbOnTsCzqsO3-UbIBVXdZVsmnHC7tg5taP13GxmSHrV1VTXRmMlt_p80lThM4OBv3R5PApXNyJKJ_BZjkv8TkwoVLjY1NdFNoKp42yWWZDJy3xy9so6sHbTnq5bdnLqYnGLPdZDIk6XxN1D_ZXi68b0o5_LzumbVgtIabtemB-8y1vFTdPhFPScJNy4YRRUvNUcWK0MR7dkVU92O02MW_Vf5H_AeuL_0-_hgfj6flZfnYyOX0JDzkVzNS1wLuwWd0scc9HPJV5VcOMwdVd4_o3dzISNw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFD7BJTH6YAA1rgLOAyZg0tBOp53pgyELywKidWPA8FbmcsaYbLrIdmP4a_46Z3pZNtH4xut0Og9nvp7L9Mz3AexkSaJsGtsAhWQB02EWSIkYoHHpOkaRlcZfTv6cp6eX7ONVcrUCv7u7ML6tsvOJtaM2U-3PyPd9IeNSdUrFvm3bIsbD0cHNz8ArSPk_rZ2cRgORc7z75cq32Yezodvrd5SOji-OToNWYSDQccoqVzxxpC4kJwZdoM-QOnSiw7Dz4JxzNEkqqRbUhIm1ilOLPEZmeKQYkzpRLHbrPoJV7tYJe7B6eJyPvy5OeDzjpojC5lJgHGeh_yftld3T0AtzL4XBWi3gr2BQR7jRGjxrU1MyaLC0DitYbsDTJcLCDVhvXcGM7LZ81XvP4dsXrSdzg4aM0WCtA1KSIVZ1k1dJLjqW2BlRd268zpLVBMmgqppey-Bk_sO_njct6WR3ODjJ917A5YMY8yX0ymmJr4AwkSqXqUprpWZGKqGzTIeGa882r6OoD-876xW65TL3khqTwtU03tTFkqn7sLOYfNNQePx72qHfhsUUz7tdD0xvvxftZ1wkzAiuqEopM0wJLmkqqOe3UQ7rkRZ92Ow2sWidway4h-7r_z9-C48dpotPZ_n5G3hCffdM3Ri8Cb3qdo5bLv2p1HaLMwLXDw3tP8kNF8k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Occluded+Pedestrian+Detection+Techniques+by+Deformable+Attention-Guided+Network+%28DAGN%29&rft.jtitle=Applied+sciences&rft.au=Han+Xie&rft.au=Wenqi+Zheng&rft.au=Hyunchul+Shin&rft.date=2021-07-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=11&rft.issue=13&rft.spage=6025&rft_id=info:doi/10.3390%2Fapp11136025&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_54d87b2b624d4b87a26829604be8a1c8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon