Highly efficient prismatic perovskite solar cells
Lead halide perovskites, such as methylammonium lead iodide (MAPbI 3 ) can reach near 100% internal quantum efficiency in single solar cells, but they still encounter significant thermodynamic losses in photon energy to offset device photovoltage and performance. Herein, a novel prismatic perovskite...
Saved in:
Published in | Energy & environmental science Vol. 12; no. 3; pp. 929 - 937 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lead halide perovskites, such as methylammonium lead iodide (MAPbI
3
) can reach near 100% internal quantum efficiency in single solar cells, but they still encounter significant thermodynamic losses in photon energy to offset device photovoltage and performance. Herein, a novel prismatic perovskite solar cell with light trapping configuration, namely, Prim PVSC, is designed to mitigate such losses in devices, through modulating the pathway of light inside series cells, wherein incident high-to-low energy photons are separately captured by four horizontally aligned MAPbI
x
Br
3−x
subcells with varied bandgaps. This newly designed PVSC has remarkably led to a record open circuit voltage of 5.3 V in four series devices and power conversion efficiency of 21.3%, which could provide a new way to break the performance bottleneck of perovskites. Practically, this type of device architecture could also be applied in flexible modules for large-area application. |
---|---|
AbstractList | Lead halide perovskites, such as methylammonium lead iodide (MAPbI
3
) can reach near 100% internal quantum efficiency in single solar cells, but they still encounter significant thermodynamic losses in photon energy to offset device photovoltage and performance. Herein, a novel prismatic perovskite solar cell with light trapping configuration, namely, Prim PVSC, is designed to mitigate such losses in devices, through modulating the pathway of light inside series cells, wherein incident high-to-low energy photons are separately captured by four horizontally aligned MAPbI
x
Br
3−x
subcells with varied bandgaps. This newly designed PVSC has remarkably led to a record open circuit voltage of 5.3 V in four series devices and power conversion efficiency of 21.3%, which could provide a new way to break the performance bottleneck of perovskites. Practically, this type of device architecture could also be applied in flexible modules for large-area application. Lead halide perovskites, such as methylammonium lead iodide (MAPbI3) can reach near 100% internal quantum efficiency in single solar cells, but they still encounter significant thermodynamic losses in photon energy to offset device photovoltage and performance. Herein, a novel prismatic perovskite solar cell with light trapping configuration, namely, Prim PVSC, is designed to mitigate such losses in devices, through modulating the pathway of light inside series cells, wherein incident high-to-low energy photons are separately captured by four horizontally aligned MAPbIxBr3−x subcells with varied bandgaps. This newly designed PVSC has remarkably led to a record open circuit voltage of 5.3 V in four series devices and power conversion efficiency of 21.3%, which could provide a new way to break the performance bottleneck of perovskites. Practically, this type of device architecture could also be applied in flexible modules for large-area application. |
Author | Huang, Jiang Xiang, Siheng Yu, Junsheng Li, Chang-Zhi |
Author_xml | – sequence: 1 givenname: Jiang surname: Huang fullname: Huang, Jiang organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P. R. China – sequence: 2 givenname: Siheng surname: Xiang fullname: Xiang, Siheng organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P. R. China – sequence: 3 givenname: Junsheng orcidid: 0000-0002-7484-8114 surname: Yu fullname: Yu, Junsheng organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P. R. China – sequence: 4 givenname: Chang-Zhi orcidid: 0000-0003-1968-2032 surname: Li fullname: Li, Chang-Zhi organization: MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 |
BookMark | eNptkEFLxDAQhYOs4O7qxV9Q8CZUJ500aY5SqysseNFziXGqWbvNmmSF_fdWVhHE07zDNzPvvRmbDH4gxk45XHBAfVlXTQNFqcrrAzblqhR5qUBOfrTUxRGbxbgCkAUoPWV84V5e-11GXeesoyFlm-Di2iRnsw0F_xHfXKIs-t6EzFLfx2N22Jk-0sn3nLPHm-ahXuTL-9u7-mqZW5Qi5WhUpQsjZFWg5NShqSyRQtHhU2WkMQJKrRBBKgSjhCSJXHNEC8_SAuGcne3vboJ_31JM7cpvwzC-bAuuR_NCKjlS53vKBh9joK4d_a9N2LUc2q9K2t9KRhj-wNalMaofUjCu_2_lE3CjYxU |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_1c03994 crossref_primary_10_1016_j_solener_2021_06_074 crossref_primary_10_1016_j_jssc_2019_05_027 crossref_primary_10_1021_acsenergylett_0c02445 crossref_primary_10_1002_adfm_202214357 crossref_primary_10_1002_er_7151 crossref_primary_10_1016_j_solener_2025_113327 crossref_primary_10_1016_j_orgel_2020_105636 crossref_primary_10_1016_j_xcrp_2019_100001 crossref_primary_10_1039_D0CC02984J crossref_primary_10_1002_admi_202202271 crossref_primary_10_1002_adfm_202406354 crossref_primary_10_1016_j_solener_2022_01_060 crossref_primary_10_1016_j_nantod_2020_101062 crossref_primary_10_1016_j_solener_2020_01_086 crossref_primary_10_1039_D1TA08964A crossref_primary_10_1016_j_ijleo_2020_165625 crossref_primary_10_1134_S1063782620090055 crossref_primary_10_1039_C9TA03073E crossref_primary_10_1007_s12034_020_02086_7 crossref_primary_10_3390_polym11020384 crossref_primary_10_1016_j_solener_2020_01_080 crossref_primary_10_1049_mnl_2019_0777 crossref_primary_10_3390_mi13122073 crossref_primary_10_1002_smtd_202300664 crossref_primary_10_1002_solr_202000733 crossref_primary_10_1016_j_jpowsour_2021_230302 crossref_primary_10_3390_electronics10161904 crossref_primary_10_1007_s00339_023_06428_0 crossref_primary_10_1002_cssc_202101089 crossref_primary_10_1088_2631_8695_ab7b38 crossref_primary_10_1103_PRXEnergy_2_033004 crossref_primary_10_1016_j_nanoen_2020_105552 crossref_primary_10_1021_acsapm_0c00791 crossref_primary_10_1021_acsenergylett_2c00304 crossref_primary_10_1007_s40843_020_1306_0 crossref_primary_10_1039_D0EE03387A crossref_primary_10_1016_j_synthmet_2020_116428 crossref_primary_10_1016_j_mtchem_2021_100427 crossref_primary_10_1021_acsaem_0c03086 crossref_primary_10_1039_D0CP02367A crossref_primary_10_1039_D1TA03156B crossref_primary_10_1016_j_rser_2019_109608 crossref_primary_10_1016_j_optmat_2020_110127 crossref_primary_10_1002_solr_201900303 crossref_primary_10_1080_02678292_2021_1896040 crossref_primary_10_1002_solr_202400666 crossref_primary_10_1002_ente_201901042 crossref_primary_10_1002_solr_202200196 crossref_primary_10_1021_acsaem_0c02213 crossref_primary_10_7498_aps_68_20190355 crossref_primary_10_1016_j_synthmet_2021_116921 crossref_primary_10_1088_2053_1591_ab5cbb crossref_primary_10_1016_j_solener_2019_12_024 crossref_primary_10_1002_aenm_201903090 |
Cites_doi | 10.1126/science.aah5557 10.1126/science.1243982 10.1039/C8TA05636F 10.1063/1.4905177 10.1039/C7NR04501H 10.1016/j.solmat.2004.01.038 10.1002/adma.201501629 10.1039/C4TA00435C 10.1002/anie.201309361 10.1038/natrevmats.2017.42 10.1002/adma.201604545 10.1021/nl400349b 10.1038/nenergy.2016.148 10.1002/admi.201800090 10.1039/C7TA00366H 10.1021/jacs.6b00039 10.1126/science.1254050 10.1038/s41560-018-0200-6 10.1038/s41563-018-0115-4 10.1002/aenm.201700228 10.1038/ncomms3761 10.1126/science.aan2301 10.1039/C6EE00030D 10.1039/C4CP03788J 10.1039/C4SC03141E 10.1002/aenm.201800438 10.1021/acs.nanolett.7b02532 10.1021/ja809598r 10.1021/jacs.5b03144 10.1002/anie.201405176 10.1038/nmat3263 10.1038/ncomms9932 10.1039/C5TA08565A 10.1126/science.aaa9272 10.1002/adma.201703980 10.1002/adfm.201704836 10.1038/nature12340 10.1039/C6EE02100J 10.1002/anie.201604399 10.1038/nenergy.2016.177 10.1016/j.joule.2017.07.014 10.1016/j.cclet.2016.11.009 10.1063/1.2789393 10.1038/nenergy.2016.81 10.1002/adma.201306217 10.1038/nenergy.2017.9 10.1038/nenergy.2015.17 10.1038/s41560-018-0153-9 10.1021/jp411112k 10.1038/nenergy.2017.18 10.1039/C5EE03874J 10.1038/s41560-018-0190-4 10.1063/1.1736034 10.1002/adma.201404189 10.1021/acsnano.5b08135 10.1002/aenm.201700012 10.1021/acsenergylett.7b01217 10.1038/nature23877 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
DOI | 10.1039/C8EE02575D |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-5706 |
EndPage | 937 |
ExternalDocumentID | 10_1039_C8EE02575D |
GroupedDBID | 0-7 0R~ 29G 4.4 5GY 705 70~ 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRZK AFVBQ AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CITATION CS3 EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3I M4U N9A O-G O9- P2P RAOCF RCNCU RPMJG RRC RSCEA RVUXY SKA SLH TOV 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
ID | FETCH-LOGICAL-c364t-3a7892a4682361ef3a8cee734f3b8a6aa405973306730a746e6319133c0d6c0e3 |
ISSN | 1754-5692 |
IngestDate | Mon Jun 30 11:58:40 EDT 2025 Tue Jul 01 01:45:42 EDT 2025 Thu Apr 24 23:08:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c364t-3a7892a4682361ef3a8cee734f3b8a6aa405973306730a746e6319133c0d6c0e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7484-8114 0000-0003-1968-2032 |
PQID | 2190794676 |
PQPubID | 2047494 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2190794676 crossref_primary_10_1039_C8EE02575D crossref_citationtrail_10_1039_C8EE02575D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190101 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 20190101 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Energy & environmental science |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Jeon (C8EE02575D-(cit33)/*[position()=1]) 2018; 3 Saliba (C8EE02575D-(cit16)/*[position()=1]) 2016; 9 Yu (C8EE02575D-(cit52)/*[position()=1]) 2015; 4 Zhu (C8EE02575D-(cit57)/*[position()=1]) 2014; 53 Longo (C8EE02575D-(cit9)/*[position()=1]) 2018; 3 Bush (C8EE02575D-(cit49)/*[position()=1]) 2017; 2 Chen (C8EE02575D-(cit31)/*[position()=1]) 2017; 7 Dong (C8EE02575D-(cit41)/*[position()=1]) 2017; 17 Dong (C8EE02575D-(cit13)/*[position()=1]) 2018; 28 Yang (C8EE02575D-(cit14)/*[position()=1]) 2015; 137 Ullah (C8EE02575D-(cit32)/*[position()=1]) 2017; 28 Sahli (C8EE02575D-(cit50)/*[position()=1]) 2018; 17 Zhang (C8EE02575D-(cit35)/*[position()=1]) 2018; 5 Polman (C8EE02575D-(cit43)/*[position()=1]) 2012; 11 Jiang (C8EE02575D-(cit28)/*[position()=1]) 2016; 2 Kim (C8EE02575D-(cit29)/*[position()=1]) 2015; 27 Yan (C8EE02575D-(cit25)/*[position()=1]) 2018; 6 Ávila (C8EE02575D-(cit8)/*[position()=1]) 2017; 1 Suarez (C8EE02575D-(cit55)/*[position()=1]) 2014; 5 Lin (C8EE02575D-(cit27)/*[position()=1]) 2017; 29 Gao (C8EE02575D-(cit40)/*[position()=1]) 2017; 29 Saliba (C8EE02575D-(cit60)/*[position()=1]) 2016; 1 Zhao (C8EE02575D-(cit26)/*[position()=1]) 2016; 55 Shockley (C8EE02575D-(cit42)/*[position()=1]) 1961; 32 Huang (C8EE02575D-(cit2)/*[position()=1]) 2017; 2 Zhao (C8EE02575D-(cit48)/*[position()=1]) 2017; 2 Chen (C8EE02575D-(cit11)/*[position()=1]) 2017; 550 Saliba (C8EE02575D-(cit19)/*[position()=1]) 2016; 354 Zhou (C8EE02575D-(cit10)/*[position()=1]) 2014; 345 Uzu (C8EE02575D-(cit46)/*[position()=1]) 2015; 106 Pellet (C8EE02575D-(cit18)/*[position()=1]) 2014; 53 Noh (C8EE02575D-(cit21)/*[position()=1]) 2013; 13 Deng (C8EE02575D-(cit5)/*[position()=1]) 2018; 3 Yang (C8EE02575D-(cit6)/*[position()=1]) 2017; 356 Stranks (C8EE02575D-(cit1)/*[position()=1]) 2013; 342 Burschka (C8EE02575D-(cit34)/*[position()=1]) 2013; 499 Yang (C8EE02575D-(cit38)/*[position()=1]) 2017; 5 Hoke (C8EE02575D-(cit53)/*[position()=1]) 2015; 6 Imenes (C8EE02575D-(cit45)/*[position()=1]) 2004; 84 Zhu (C8EE02575D-(cit58)/*[position()=1]) 2017; 9 Huang (C8EE02575D-(cit30)/*[position()=1]) 2016; 138 Tvingstedt (C8EE02575D-(cit47)/*[position()=1]) 2007; 91 Kojima (C8EE02575D-(cit3)/*[position()=1]) 2009; 131 C8EE02575D-(cit4)/*[position()=1] Yang (C8EE02575D-(cit15)/*[position()=1]) 2015; 348 Momblona (C8EE02575D-(cit7)/*[position()=1]) 2016; 9 Löper (C8EE02575D-(cit51)/*[position()=1]) 2015; 17 Koh (C8EE02575D-(cit17)/*[position()=1]) 2014; 118 Duong (C8EE02575D-(cit54)/*[position()=1]) 2017; 7 Wu (C8EE02575D-(cit12)/*[position()=1]) 2016; 1 Docampo (C8EE02575D-(cit23)/*[position()=1]) 2013; 4 Yin (C8EE02575D-(cit36)/*[position()=1]) 2016; 10 Chen (C8EE02575D-(cit24)/*[position()=1]) 2018; 8 Son (C8EE02575D-(cit20)/*[position()=1]) 2016; 1 Jacobsson (C8EE02575D-(cit22)/*[position()=1]) 2016; 9 Jeng (C8EE02575D-(cit59)/*[position()=1]) 2014; 26 Heo (C8EE02575D-(cit44)/*[position()=1]) 2015; 28 Leijtens (C8EE02575D-(cit39)/*[position()=1]) 2018; 3 Kulkarni (C8EE02575D-(cit56)/*[position()=1]) 2014; 2 Fan (C8EE02575D-(cit37)/*[position()=1]) 2015; 6 |
References_xml | – volume: 354 start-page: 206 year: 2016 ident: C8EE02575D-(cit19)/*[position()=1] publication-title: Science doi: 10.1126/science.aah5557 – volume: 342 start-page: 341 year: 2013 ident: C8EE02575D-(cit1)/*[position()=1] publication-title: Science doi: 10.1126/science.1243982 – volume: 6 start-page: 15495 year: 2018 ident: C8EE02575D-(cit25)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05636F – volume: 106 start-page: 013506 year: 2015 ident: C8EE02575D-(cit46)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4905177 – volume: 9 start-page: 12316 year: 2017 ident: C8EE02575D-(cit58)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR04501H – volume: 84 start-page: 19 year: 2004 ident: C8EE02575D-(cit45)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2004.01.038 – volume: 28 start-page: 5121 year: 2015 ident: C8EE02575D-(cit44)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201501629 – volume: 2 start-page: 9221 year: 2014 ident: C8EE02575D-(cit56)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA00435C – volume: 53 start-page: 3151 year: 2014 ident: C8EE02575D-(cit18)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201309361 – volume: 2 start-page: 17042 year: 2017 ident: C8EE02575D-(cit2)/*[position()=1] publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.42 – volume: 29 start-page: 1604545 year: 2017 ident: C8EE02575D-(cit27)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201604545 – volume: 13 start-page: 1764 year: 2013 ident: C8EE02575D-(cit21)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl400349b – volume: 1 start-page: 16148 year: 2016 ident: C8EE02575D-(cit12)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2016.148 – volume: 5 start-page: 1800090 year: 2018 ident: C8EE02575D-(cit35)/*[position()=1] publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201800090 – volume: 5 start-page: 11462 year: 2017 ident: C8EE02575D-(cit38)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00366H – volume: 138 start-page: 2528 year: 2016 ident: C8EE02575D-(cit30)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00039 – volume: 345 start-page: 542 year: 2014 ident: C8EE02575D-(cit10)/*[position()=1] publication-title: Science doi: 10.1126/science.1254050 – volume: 3 start-page: 682 year: 2018 ident: C8EE02575D-(cit33)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/s41560-018-0200-6 – volume: 17 start-page: 820 year: 2018 ident: C8EE02575D-(cit50)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/s41563-018-0115-4 – volume: 7 start-page: 1700228 year: 2017 ident: C8EE02575D-(cit54)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700228 – volume: 4 start-page: 2761 year: 2013 ident: C8EE02575D-(cit23)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms3761 – volume: 356 start-page: 1376 year: 2017 ident: C8EE02575D-(cit6)/*[position()=1] publication-title: Science doi: 10.1126/science.aan2301 – volume: 9 start-page: 1706 year: 2016 ident: C8EE02575D-(cit22)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00030D – volume: 17 start-page: 1619 year: 2015 ident: C8EE02575D-(cit51)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP03788J – volume: 6 start-page: 613 year: 2015 ident: C8EE02575D-(cit53)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C4SC03141E – volume: 8 start-page: 1800438 year: 2018 ident: C8EE02575D-(cit24)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800438 – volume: 17 start-page: 5140 year: 2017 ident: C8EE02575D-(cit41)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b02532 – volume: 131 start-page: 6050 year: 2009 ident: C8EE02575D-(cit3)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809598r – volume: 137 start-page: 9210 year: 2015 ident: C8EE02575D-(cit14)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03144 – volume: 53 start-page: 12571 year: 2014 ident: C8EE02575D-(cit57)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201405176 – volume: 11 start-page: 174 year: 2012 ident: C8EE02575D-(cit43)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3263 – volume: 6 start-page: 8932 year: 2015 ident: C8EE02575D-(cit37)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms9932 – volume: 4 start-page: 321 year: 2015 ident: C8EE02575D-(cit52)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA08565A – volume: 348 start-page: 1234 year: 2015 ident: C8EE02575D-(cit15)/*[position()=1] publication-title: Science doi: 10.1126/science.aaa9272 – ident: C8EE02575D-(cit4)/*[position()=1] – volume: 5 start-page: 1628 year: 2014 ident: C8EE02575D-(cit55)/*[position()=1] publication-title: J. Phys. Lett. – volume: 29 start-page: 1703980 year: 2017 ident: C8EE02575D-(cit40)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201703980 – volume: 28 start-page: 1704836 year: 2018 ident: C8EE02575D-(cit13)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704836 – volume: 499 start-page: 316 year: 2013 ident: C8EE02575D-(cit34)/*[position()=1] publication-title: Nature doi: 10.1038/nature12340 – volume: 9 start-page: 3456 year: 2016 ident: C8EE02575D-(cit7)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C6EE02100J – volume: 55 start-page: 8999 year: 2016 ident: C8EE02575D-(cit26)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201604399 – volume: 2 start-page: 16177 year: 2016 ident: C8EE02575D-(cit28)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2016.177 – volume: 1 start-page: 431 year: 2017 ident: C8EE02575D-(cit8)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2017.07.014 – volume: 28 start-page: 503 year: 2017 ident: C8EE02575D-(cit32)/*[position()=1] publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2016.11.009 – volume: 91 start-page: 123514 year: 2007 ident: C8EE02575D-(cit47)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2789393 – volume: 1 start-page: 16081 year: 2016 ident: C8EE02575D-(cit20)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2016.81 – volume: 26 start-page: 4107 year: 2014 ident: C8EE02575D-(cit59)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201306217 – volume: 2 start-page: 17009 year: 2017 ident: C8EE02575D-(cit49)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2017.9 – volume: 1 start-page: 15017 year: 2016 ident: C8EE02575D-(cit60)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2015.17 – volume: 3 start-page: 560 year: 2018 ident: C8EE02575D-(cit5)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/s41560-018-0153-9 – volume: 118 start-page: 16458 year: 2014 ident: C8EE02575D-(cit17)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp411112k – volume: 2 start-page: 17018 year: 2017 ident: C8EE02575D-(cit48)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2017.18 – volume: 9 start-page: 1989 year: 2016 ident: C8EE02575D-(cit16)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03874J – volume: 3 start-page: 828 year: 2018 ident: C8EE02575D-(cit39)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/s41560-018-0190-4 – volume: 32 start-page: 510 year: 1961 ident: C8EE02575D-(cit42)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.1736034 – volume: 27 start-page: 695 year: 2015 ident: C8EE02575D-(cit29)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201404189 – volume: 10 start-page: 3630 year: 2016 ident: C8EE02575D-(cit36)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b08135 – volume: 7 start-page: 1700012 year: 2017 ident: C8EE02575D-(cit31)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700012 – volume: 3 start-page: 214 year: 2018 ident: C8EE02575D-(cit9)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b01217 – volume: 550 start-page: 92 year: 2017 ident: C8EE02575D-(cit11)/*[position()=1] publication-title: Nature doi: 10.1038/nature23877 |
SSID | ssj0062079 |
Score | 2.503115 |
Snippet | Lead halide perovskites, such as methylammonium lead iodide (MAPbI
3
) can reach near 100% internal quantum efficiency in single solar cells, but they still... Lead halide perovskites, such as methylammonium lead iodide (MAPbI3) can reach near 100% internal quantum efficiency in single solar cells, but they still... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 929 |
SubjectTerms | Circuit design Computer architecture Data processing Energy conversion efficiency Iodides Lead Open circuit voltage Perovskites Photons Photovoltaic cells Quantum efficiency Solar cells |
Title | Highly efficient prismatic perovskite solar cells |
URI | https://www.proquest.com/docview/2190794676 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgvcABQVtES0GRygWtUrxxYsfHUrZUpbSXXbFwiRzH2a5UharZIsGvZ8bOh6NWVeFirZwoSjIv4_HsvDeEvIswiNbCIHhlGJcwpMqwUJeJLCUtaG6QO_z1jB_P4pN5Mu8pBJZdssr39Z87eSX_Y1WYA7siS_YfLNtdFCbgN9gXRrAwjA-yMRZpXP7Gmoyl5TWOrKih1WBF_e9fNaZmRzXuXkeYoa8HeXjH-kPTe2y3liPpG7xJKZ8AkhZdRmZ5YarFaO7Pfb9xPI-qxmNe4UC1CH9cOBr20k8zILNpkGZwyYy2ktRWijT96DznKZI4TLjrbbdvvDlB-cDjRh6ymOc-ZZP9cCuxdHIwt5w8ZaiRqlNjIGATSdEvZe3f92fn2dHs9DSbTubTx2Q9gi0E-MD1gy8fP39r12keUavE2N11K17L5If-2sNwZbha2xBk-pw8a_YOwYEDwgvyyFQb5KmnKLlJxg4SQQeJoINE0EMisJAILCS2yOxoMj08DpuuGKFmPF6FTIlURirm2Kp-bEqmUgh0BItLlqeKKwUhuBQMt4KMKhFzw8HNjhnTtOCaGvaSrFU_K_OKBLxMIpoWglOjYlkUSudmHJWMC1GaSObb5H378JluJOOxc8llZksXmMwO08nEvqhP22SvO_fKCaXcedZu-w6z5kOqM1g0KfY5EHzn_sOvyZMemrtkbXV9Y95ATLjK3zbG_Qu8BGPG |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+efficient+prismatic+perovskite+solar+cells&rft.jtitle=Energy+%26+environmental+science&rft.au=Huang%2C+Jiang&rft.au=Siheng+Xiang&rft.au=Yu%2C+Junsheng&rft.au=Chang-Zhi%2C+Li&rft.date=2019-01-01&rft.pub=Royal+Society+of+Chemistry&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=12&rft.issue=3&rft.spage=929&rft.epage=937&rft_id=info:doi/10.1039%2Fc8ee02575d&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |