Highly efficient prismatic perovskite solar cells

Lead halide perovskites, such as methylammonium lead iodide (MAPbI 3 ) can reach near 100% internal quantum efficiency in single solar cells, but they still encounter significant thermodynamic losses in photon energy to offset device photovoltage and performance. Herein, a novel prismatic perovskite...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 12; no. 3; pp. 929 - 937
Main Authors Huang, Jiang, Xiang, Siheng, Yu, Junsheng, Li, Chang-Zhi
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lead halide perovskites, such as methylammonium lead iodide (MAPbI 3 ) can reach near 100% internal quantum efficiency in single solar cells, but they still encounter significant thermodynamic losses in photon energy to offset device photovoltage and performance. Herein, a novel prismatic perovskite solar cell with light trapping configuration, namely, Prim PVSC, is designed to mitigate such losses in devices, through modulating the pathway of light inside series cells, wherein incident high-to-low energy photons are separately captured by four horizontally aligned MAPbI x Br 3−x subcells with varied bandgaps. This newly designed PVSC has remarkably led to a record open circuit voltage of 5.3 V in four series devices and power conversion efficiency of 21.3%, which could provide a new way to break the performance bottleneck of perovskites. Practically, this type of device architecture could also be applied in flexible modules for large-area application.
AbstractList Lead halide perovskites, such as methylammonium lead iodide (MAPbI 3 ) can reach near 100% internal quantum efficiency in single solar cells, but they still encounter significant thermodynamic losses in photon energy to offset device photovoltage and performance. Herein, a novel prismatic perovskite solar cell with light trapping configuration, namely, Prim PVSC, is designed to mitigate such losses in devices, through modulating the pathway of light inside series cells, wherein incident high-to-low energy photons are separately captured by four horizontally aligned MAPbI x Br 3−x subcells with varied bandgaps. This newly designed PVSC has remarkably led to a record open circuit voltage of 5.3 V in four series devices and power conversion efficiency of 21.3%, which could provide a new way to break the performance bottleneck of perovskites. Practically, this type of device architecture could also be applied in flexible modules for large-area application.
Lead halide perovskites, such as methylammonium lead iodide (MAPbI3) can reach near 100% internal quantum efficiency in single solar cells, but they still encounter significant thermodynamic losses in photon energy to offset device photovoltage and performance. Herein, a novel prismatic perovskite solar cell with light trapping configuration, namely, Prim PVSC, is designed to mitigate such losses in devices, through modulating the pathway of light inside series cells, wherein incident high-to-low energy photons are separately captured by four horizontally aligned MAPbIxBr3−x subcells with varied bandgaps. This newly designed PVSC has remarkably led to a record open circuit voltage of 5.3 V in four series devices and power conversion efficiency of 21.3%, which could provide a new way to break the performance bottleneck of perovskites. Practically, this type of device architecture could also be applied in flexible modules for large-area application.
Author Huang, Jiang
Xiang, Siheng
Yu, Junsheng
Li, Chang-Zhi
Author_xml – sequence: 1
  givenname: Jiang
  surname: Huang
  fullname: Huang, Jiang
  organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P. R. China
– sequence: 2
  givenname: Siheng
  surname: Xiang
  fullname: Xiang, Siheng
  organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P. R. China
– sequence: 3
  givenname: Junsheng
  orcidid: 0000-0002-7484-8114
  surname: Yu
  fullname: Yu, Junsheng
  organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P. R. China
– sequence: 4
  givenname: Chang-Zhi
  orcidid: 0000-0003-1968-2032
  surname: Li
  fullname: Li, Chang-Zhi
  organization: MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027
BookMark eNptkEFLxDAQhYOs4O7qxV9Q8CZUJ500aY5SqysseNFziXGqWbvNmmSF_fdWVhHE07zDNzPvvRmbDH4gxk45XHBAfVlXTQNFqcrrAzblqhR5qUBOfrTUxRGbxbgCkAUoPWV84V5e-11GXeesoyFlm-Di2iRnsw0F_xHfXKIs-t6EzFLfx2N22Jk-0sn3nLPHm-ahXuTL-9u7-mqZW5Qi5WhUpQsjZFWg5NShqSyRQtHhU2WkMQJKrRBBKgSjhCSJXHNEC8_SAuGcne3vboJ_31JM7cpvwzC-bAuuR_NCKjlS53vKBh9joK4d_a9N2LUc2q9K2t9KRhj-wNalMaofUjCu_2_lE3CjYxU
CitedBy_id crossref_primary_10_1021_acs_jpcc_1c03994
crossref_primary_10_1016_j_solener_2021_06_074
crossref_primary_10_1016_j_jssc_2019_05_027
crossref_primary_10_1021_acsenergylett_0c02445
crossref_primary_10_1002_adfm_202214357
crossref_primary_10_1002_er_7151
crossref_primary_10_1016_j_solener_2025_113327
crossref_primary_10_1016_j_orgel_2020_105636
crossref_primary_10_1016_j_xcrp_2019_100001
crossref_primary_10_1039_D0CC02984J
crossref_primary_10_1002_admi_202202271
crossref_primary_10_1002_adfm_202406354
crossref_primary_10_1016_j_solener_2022_01_060
crossref_primary_10_1016_j_nantod_2020_101062
crossref_primary_10_1016_j_solener_2020_01_086
crossref_primary_10_1039_D1TA08964A
crossref_primary_10_1016_j_ijleo_2020_165625
crossref_primary_10_1134_S1063782620090055
crossref_primary_10_1039_C9TA03073E
crossref_primary_10_1007_s12034_020_02086_7
crossref_primary_10_3390_polym11020384
crossref_primary_10_1016_j_solener_2020_01_080
crossref_primary_10_1049_mnl_2019_0777
crossref_primary_10_3390_mi13122073
crossref_primary_10_1002_smtd_202300664
crossref_primary_10_1002_solr_202000733
crossref_primary_10_1016_j_jpowsour_2021_230302
crossref_primary_10_3390_electronics10161904
crossref_primary_10_1007_s00339_023_06428_0
crossref_primary_10_1002_cssc_202101089
crossref_primary_10_1088_2631_8695_ab7b38
crossref_primary_10_1103_PRXEnergy_2_033004
crossref_primary_10_1016_j_nanoen_2020_105552
crossref_primary_10_1021_acsapm_0c00791
crossref_primary_10_1021_acsenergylett_2c00304
crossref_primary_10_1007_s40843_020_1306_0
crossref_primary_10_1039_D0EE03387A
crossref_primary_10_1016_j_synthmet_2020_116428
crossref_primary_10_1016_j_mtchem_2021_100427
crossref_primary_10_1021_acsaem_0c03086
crossref_primary_10_1039_D0CP02367A
crossref_primary_10_1039_D1TA03156B
crossref_primary_10_1016_j_rser_2019_109608
crossref_primary_10_1016_j_optmat_2020_110127
crossref_primary_10_1002_solr_201900303
crossref_primary_10_1080_02678292_2021_1896040
crossref_primary_10_1002_solr_202400666
crossref_primary_10_1002_ente_201901042
crossref_primary_10_1002_solr_202200196
crossref_primary_10_1021_acsaem_0c02213
crossref_primary_10_7498_aps_68_20190355
crossref_primary_10_1016_j_synthmet_2021_116921
crossref_primary_10_1088_2053_1591_ab5cbb
crossref_primary_10_1016_j_solener_2019_12_024
crossref_primary_10_1002_aenm_201903090
Cites_doi 10.1126/science.aah5557
10.1126/science.1243982
10.1039/C8TA05636F
10.1063/1.4905177
10.1039/C7NR04501H
10.1016/j.solmat.2004.01.038
10.1002/adma.201501629
10.1039/C4TA00435C
10.1002/anie.201309361
10.1038/natrevmats.2017.42
10.1002/adma.201604545
10.1021/nl400349b
10.1038/nenergy.2016.148
10.1002/admi.201800090
10.1039/C7TA00366H
10.1021/jacs.6b00039
10.1126/science.1254050
10.1038/s41560-018-0200-6
10.1038/s41563-018-0115-4
10.1002/aenm.201700228
10.1038/ncomms3761
10.1126/science.aan2301
10.1039/C6EE00030D
10.1039/C4CP03788J
10.1039/C4SC03141E
10.1002/aenm.201800438
10.1021/acs.nanolett.7b02532
10.1021/ja809598r
10.1021/jacs.5b03144
10.1002/anie.201405176
10.1038/nmat3263
10.1038/ncomms9932
10.1039/C5TA08565A
10.1126/science.aaa9272
10.1002/adma.201703980
10.1002/adfm.201704836
10.1038/nature12340
10.1039/C6EE02100J
10.1002/anie.201604399
10.1038/nenergy.2016.177
10.1016/j.joule.2017.07.014
10.1016/j.cclet.2016.11.009
10.1063/1.2789393
10.1038/nenergy.2016.81
10.1002/adma.201306217
10.1038/nenergy.2017.9
10.1038/nenergy.2015.17
10.1038/s41560-018-0153-9
10.1021/jp411112k
10.1038/nenergy.2017.18
10.1039/C5EE03874J
10.1038/s41560-018-0190-4
10.1063/1.1736034
10.1002/adma.201404189
10.1021/acsnano.5b08135
10.1002/aenm.201700012
10.1021/acsenergylett.7b01217
10.1038/nature23877
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
DOI 10.1039/C8EE02575D
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 937
ExternalDocumentID 10_1039_C8EE02575D
GroupedDBID 0-7
0R~
29G
4.4
5GY
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CITATION
CS3
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3I
M4U
N9A
O-G
O9-
P2P
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
SKA
SLH
TOV
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
ID FETCH-LOGICAL-c364t-3a7892a4682361ef3a8cee734f3b8a6aa405973306730a746e6319133c0d6c0e3
ISSN 1754-5692
IngestDate Mon Jun 30 11:58:40 EDT 2025
Tue Jul 01 01:45:42 EDT 2025
Thu Apr 24 23:08:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c364t-3a7892a4682361ef3a8cee734f3b8a6aa405973306730a746e6319133c0d6c0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7484-8114
0000-0003-1968-2032
PQID 2190794676
PQPubID 2047494
PageCount 9
ParticipantIDs proquest_journals_2190794676
crossref_primary_10_1039_C8EE02575D
crossref_citationtrail_10_1039_C8EE02575D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 20190101
  day: 01
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Energy & environmental science
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Jeon (C8EE02575D-(cit33)/*[position()=1]) 2018; 3
Saliba (C8EE02575D-(cit16)/*[position()=1]) 2016; 9
Yu (C8EE02575D-(cit52)/*[position()=1]) 2015; 4
Zhu (C8EE02575D-(cit57)/*[position()=1]) 2014; 53
Longo (C8EE02575D-(cit9)/*[position()=1]) 2018; 3
Bush (C8EE02575D-(cit49)/*[position()=1]) 2017; 2
Chen (C8EE02575D-(cit31)/*[position()=1]) 2017; 7
Dong (C8EE02575D-(cit41)/*[position()=1]) 2017; 17
Dong (C8EE02575D-(cit13)/*[position()=1]) 2018; 28
Yang (C8EE02575D-(cit14)/*[position()=1]) 2015; 137
Ullah (C8EE02575D-(cit32)/*[position()=1]) 2017; 28
Sahli (C8EE02575D-(cit50)/*[position()=1]) 2018; 17
Zhang (C8EE02575D-(cit35)/*[position()=1]) 2018; 5
Polman (C8EE02575D-(cit43)/*[position()=1]) 2012; 11
Jiang (C8EE02575D-(cit28)/*[position()=1]) 2016; 2
Kim (C8EE02575D-(cit29)/*[position()=1]) 2015; 27
Yan (C8EE02575D-(cit25)/*[position()=1]) 2018; 6
Ávila (C8EE02575D-(cit8)/*[position()=1]) 2017; 1
Suarez (C8EE02575D-(cit55)/*[position()=1]) 2014; 5
Lin (C8EE02575D-(cit27)/*[position()=1]) 2017; 29
Gao (C8EE02575D-(cit40)/*[position()=1]) 2017; 29
Saliba (C8EE02575D-(cit60)/*[position()=1]) 2016; 1
Zhao (C8EE02575D-(cit26)/*[position()=1]) 2016; 55
Shockley (C8EE02575D-(cit42)/*[position()=1]) 1961; 32
Huang (C8EE02575D-(cit2)/*[position()=1]) 2017; 2
Zhao (C8EE02575D-(cit48)/*[position()=1]) 2017; 2
Chen (C8EE02575D-(cit11)/*[position()=1]) 2017; 550
Saliba (C8EE02575D-(cit19)/*[position()=1]) 2016; 354
Zhou (C8EE02575D-(cit10)/*[position()=1]) 2014; 345
Uzu (C8EE02575D-(cit46)/*[position()=1]) 2015; 106
Pellet (C8EE02575D-(cit18)/*[position()=1]) 2014; 53
Noh (C8EE02575D-(cit21)/*[position()=1]) 2013; 13
Deng (C8EE02575D-(cit5)/*[position()=1]) 2018; 3
Yang (C8EE02575D-(cit6)/*[position()=1]) 2017; 356
Stranks (C8EE02575D-(cit1)/*[position()=1]) 2013; 342
Burschka (C8EE02575D-(cit34)/*[position()=1]) 2013; 499
Yang (C8EE02575D-(cit38)/*[position()=1]) 2017; 5
Hoke (C8EE02575D-(cit53)/*[position()=1]) 2015; 6
Imenes (C8EE02575D-(cit45)/*[position()=1]) 2004; 84
Zhu (C8EE02575D-(cit58)/*[position()=1]) 2017; 9
Huang (C8EE02575D-(cit30)/*[position()=1]) 2016; 138
Tvingstedt (C8EE02575D-(cit47)/*[position()=1]) 2007; 91
Kojima (C8EE02575D-(cit3)/*[position()=1]) 2009; 131
C8EE02575D-(cit4)/*[position()=1]
Yang (C8EE02575D-(cit15)/*[position()=1]) 2015; 348
Momblona (C8EE02575D-(cit7)/*[position()=1]) 2016; 9
Löper (C8EE02575D-(cit51)/*[position()=1]) 2015; 17
Koh (C8EE02575D-(cit17)/*[position()=1]) 2014; 118
Duong (C8EE02575D-(cit54)/*[position()=1]) 2017; 7
Wu (C8EE02575D-(cit12)/*[position()=1]) 2016; 1
Docampo (C8EE02575D-(cit23)/*[position()=1]) 2013; 4
Yin (C8EE02575D-(cit36)/*[position()=1]) 2016; 10
Chen (C8EE02575D-(cit24)/*[position()=1]) 2018; 8
Son (C8EE02575D-(cit20)/*[position()=1]) 2016; 1
Jacobsson (C8EE02575D-(cit22)/*[position()=1]) 2016; 9
Jeng (C8EE02575D-(cit59)/*[position()=1]) 2014; 26
Heo (C8EE02575D-(cit44)/*[position()=1]) 2015; 28
Leijtens (C8EE02575D-(cit39)/*[position()=1]) 2018; 3
Kulkarni (C8EE02575D-(cit56)/*[position()=1]) 2014; 2
Fan (C8EE02575D-(cit37)/*[position()=1]) 2015; 6
References_xml – volume: 354
  start-page: 206
  year: 2016
  ident: C8EE02575D-(cit19)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aah5557
– volume: 342
  start-page: 341
  year: 2013
  ident: C8EE02575D-(cit1)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1243982
– volume: 6
  start-page: 15495
  year: 2018
  ident: C8EE02575D-(cit25)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05636F
– volume: 106
  start-page: 013506
  year: 2015
  ident: C8EE02575D-(cit46)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4905177
– volume: 9
  start-page: 12316
  year: 2017
  ident: C8EE02575D-(cit58)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR04501H
– volume: 84
  start-page: 19
  year: 2004
  ident: C8EE02575D-(cit45)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2004.01.038
– volume: 28
  start-page: 5121
  year: 2015
  ident: C8EE02575D-(cit44)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501629
– volume: 2
  start-page: 9221
  year: 2014
  ident: C8EE02575D-(cit56)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA00435C
– volume: 53
  start-page: 3151
  year: 2014
  ident: C8EE02575D-(cit18)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201309361
– volume: 2
  start-page: 17042
  year: 2017
  ident: C8EE02575D-(cit2)/*[position()=1]
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.42
– volume: 29
  start-page: 1604545
  year: 2017
  ident: C8EE02575D-(cit27)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604545
– volume: 13
  start-page: 1764
  year: 2013
  ident: C8EE02575D-(cit21)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl400349b
– volume: 1
  start-page: 16148
  year: 2016
  ident: C8EE02575D-(cit12)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.148
– volume: 5
  start-page: 1800090
  year: 2018
  ident: C8EE02575D-(cit35)/*[position()=1]
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201800090
– volume: 5
  start-page: 11462
  year: 2017
  ident: C8EE02575D-(cit38)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00366H
– volume: 138
  start-page: 2528
  year: 2016
  ident: C8EE02575D-(cit30)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00039
– volume: 345
  start-page: 542
  year: 2014
  ident: C8EE02575D-(cit10)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1254050
– volume: 3
  start-page: 682
  year: 2018
  ident: C8EE02575D-(cit33)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0200-6
– volume: 17
  start-page: 820
  year: 2018
  ident: C8EE02575D-(cit50)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0115-4
– volume: 7
  start-page: 1700228
  year: 2017
  ident: C8EE02575D-(cit54)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700228
– volume: 4
  start-page: 2761
  year: 2013
  ident: C8EE02575D-(cit23)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3761
– volume: 356
  start-page: 1376
  year: 2017
  ident: C8EE02575D-(cit6)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aan2301
– volume: 9
  start-page: 1706
  year: 2016
  ident: C8EE02575D-(cit22)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE00030D
– volume: 17
  start-page: 1619
  year: 2015
  ident: C8EE02575D-(cit51)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP03788J
– volume: 6
  start-page: 613
  year: 2015
  ident: C8EE02575D-(cit53)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC03141E
– volume: 8
  start-page: 1800438
  year: 2018
  ident: C8EE02575D-(cit24)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800438
– volume: 17
  start-page: 5140
  year: 2017
  ident: C8EE02575D-(cit41)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b02532
– volume: 131
  start-page: 6050
  year: 2009
  ident: C8EE02575D-(cit3)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809598r
– volume: 137
  start-page: 9210
  year: 2015
  ident: C8EE02575D-(cit14)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b03144
– volume: 53
  start-page: 12571
  year: 2014
  ident: C8EE02575D-(cit57)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201405176
– volume: 11
  start-page: 174
  year: 2012
  ident: C8EE02575D-(cit43)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3263
– volume: 6
  start-page: 8932
  year: 2015
  ident: C8EE02575D-(cit37)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9932
– volume: 4
  start-page: 321
  year: 2015
  ident: C8EE02575D-(cit52)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA08565A
– volume: 348
  start-page: 1234
  year: 2015
  ident: C8EE02575D-(cit15)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaa9272
– ident: C8EE02575D-(cit4)/*[position()=1]
– volume: 5
  start-page: 1628
  year: 2014
  ident: C8EE02575D-(cit55)/*[position()=1]
  publication-title: J. Phys. Lett.
– volume: 29
  start-page: 1703980
  year: 2017
  ident: C8EE02575D-(cit40)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703980
– volume: 28
  start-page: 1704836
  year: 2018
  ident: C8EE02575D-(cit13)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201704836
– volume: 499
  start-page: 316
  year: 2013
  ident: C8EE02575D-(cit34)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature12340
– volume: 9
  start-page: 3456
  year: 2016
  ident: C8EE02575D-(cit7)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE02100J
– volume: 55
  start-page: 8999
  year: 2016
  ident: C8EE02575D-(cit26)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201604399
– volume: 2
  start-page: 16177
  year: 2016
  ident: C8EE02575D-(cit28)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.177
– volume: 1
  start-page: 431
  year: 2017
  ident: C8EE02575D-(cit8)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2017.07.014
– volume: 28
  start-page: 503
  year: 2017
  ident: C8EE02575D-(cit32)/*[position()=1]
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2016.11.009
– volume: 91
  start-page: 123514
  year: 2007
  ident: C8EE02575D-(cit47)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2789393
– volume: 1
  start-page: 16081
  year: 2016
  ident: C8EE02575D-(cit20)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.81
– volume: 26
  start-page: 4107
  year: 2014
  ident: C8EE02575D-(cit59)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201306217
– volume: 2
  start-page: 17009
  year: 2017
  ident: C8EE02575D-(cit49)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.9
– volume: 1
  start-page: 15017
  year: 2016
  ident: C8EE02575D-(cit60)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2015.17
– volume: 3
  start-page: 560
  year: 2018
  ident: C8EE02575D-(cit5)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0153-9
– volume: 118
  start-page: 16458
  year: 2014
  ident: C8EE02575D-(cit17)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp411112k
– volume: 2
  start-page: 17018
  year: 2017
  ident: C8EE02575D-(cit48)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.18
– volume: 9
  start-page: 1989
  year: 2016
  ident: C8EE02575D-(cit16)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03874J
– volume: 3
  start-page: 828
  year: 2018
  ident: C8EE02575D-(cit39)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0190-4
– volume: 32
  start-page: 510
  year: 1961
  ident: C8EE02575D-(cit42)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1736034
– volume: 27
  start-page: 695
  year: 2015
  ident: C8EE02575D-(cit29)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404189
– volume: 10
  start-page: 3630
  year: 2016
  ident: C8EE02575D-(cit36)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b08135
– volume: 7
  start-page: 1700012
  year: 2017
  ident: C8EE02575D-(cit31)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700012
– volume: 3
  start-page: 214
  year: 2018
  ident: C8EE02575D-(cit9)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b01217
– volume: 550
  start-page: 92
  year: 2017
  ident: C8EE02575D-(cit11)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature23877
SSID ssj0062079
Score 2.503115
Snippet Lead halide perovskites, such as methylammonium lead iodide (MAPbI 3 ) can reach near 100% internal quantum efficiency in single solar cells, but they still...
Lead halide perovskites, such as methylammonium lead iodide (MAPbI3) can reach near 100% internal quantum efficiency in single solar cells, but they still...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 929
SubjectTerms Circuit design
Computer architecture
Data processing
Energy conversion efficiency
Iodides
Lead
Open circuit voltage
Perovskites
Photons
Photovoltaic cells
Quantum efficiency
Solar cells
Title Highly efficient prismatic perovskite solar cells
URI https://www.proquest.com/docview/2190794676
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgvcABQVtES0GRygWtUrxxYsfHUrZUpbSXXbFwiRzH2a5UharZIsGvZ8bOh6NWVeFirZwoSjIv4_HsvDeEvIswiNbCIHhlGJcwpMqwUJeJLCUtaG6QO_z1jB_P4pN5Mu8pBJZdssr39Z87eSX_Y1WYA7siS_YfLNtdFCbgN9gXRrAwjA-yMRZpXP7Gmoyl5TWOrKih1WBF_e9fNaZmRzXuXkeYoa8HeXjH-kPTe2y3liPpG7xJKZ8AkhZdRmZ5YarFaO7Pfb9xPI-qxmNe4UC1CH9cOBr20k8zILNpkGZwyYy2ktRWijT96DznKZI4TLjrbbdvvDlB-cDjRh6ymOc-ZZP9cCuxdHIwt5w8ZaiRqlNjIGATSdEvZe3f92fn2dHs9DSbTubTx2Q9gi0E-MD1gy8fP39r12keUavE2N11K17L5If-2sNwZbha2xBk-pw8a_YOwYEDwgvyyFQb5KmnKLlJxg4SQQeJoINE0EMisJAILCS2yOxoMj08DpuuGKFmPF6FTIlURirm2Kp-bEqmUgh0BItLlqeKKwUhuBQMt4KMKhFzw8HNjhnTtOCaGvaSrFU_K_OKBLxMIpoWglOjYlkUSudmHJWMC1GaSObb5H378JluJOOxc8llZksXmMwO08nEvqhP22SvO_fKCaXcedZu-w6z5kOqM1g0KfY5EHzn_sOvyZMemrtkbXV9Y95ATLjK3zbG_Qu8BGPG
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+efficient+prismatic+perovskite+solar+cells&rft.jtitle=Energy+%26+environmental+science&rft.au=Huang%2C+Jiang&rft.au=Siheng+Xiang&rft.au=Yu%2C+Junsheng&rft.au=Chang-Zhi%2C+Li&rft.date=2019-01-01&rft.pub=Royal+Society+of+Chemistry&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=12&rft.issue=3&rft.spage=929&rft.epage=937&rft_id=info:doi/10.1039%2Fc8ee02575d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon