On computer simulation of Feynman-Kac path-integrals

Consider a path-integral E x exp {∞ t o V( X( s)) ds} f( X( t)) which is the solution to a diffusion version of the generalized Schrödinger's equation ∂u ∂t = Hu , u(0,x) = ƒ(x). Here H = A + V, where A is an infinitesimal generator of a strong continuous Markov semigroup corresponding to the d...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and applied mathematics Vol. 66; no. 1; pp. 333 - 336
Main Author Korzeniowski, Andrzej
Format Journal Article Conference Proceeding
LanguageEnglish
Published Amsterdam Elsevier B.V 01.01.1996
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Consider a path-integral E x exp {∞ t o V( X( s)) ds} f( X( t)) which is the solution to a diffusion version of the generalized Schrödinger's equation ∂u ∂t = Hu , u(0,x) = ƒ(x). Here H = A + V, where A is an infinitesimal generator of a strong continuous Markov semigroup corresponding to the diffusion process { X( s), 0⩽ s⩽ t, X(0) = x}. To see a connection to quantum mechanics, take A = 1 2 Δ and replace V by − V. Then one obtains H ̄ = −H = − 1 2 Δ + V , which is a quantum mechanical Hamiltonian corresponding to a particle of mass 1 (in atomic units) subject to interaction with potential V. Path-integrals play a role in obtaining physical quantities such as ground state energies. This paper will be concerned with explanations of two approaches in the actual computer evaluations of path-integrals through simulations of the diffusion processes. The results will be presented by comparing, in concrete examples, the computational advantages or disadvantages depending on whether the diffusion process X( t) is ergodic or not.
AbstractList Consider a path-integral E x exp {∞ t o V( X( s)) ds} f( X( t)) which is the solution to a diffusion version of the generalized Schrödinger's equation ∂u ∂t = Hu , u(0,x) = ƒ(x). Here H = A + V, where A is an infinitesimal generator of a strong continuous Markov semigroup corresponding to the diffusion process { X( s), 0⩽ s⩽ t, X(0) = x}. To see a connection to quantum mechanics, take A = 1 2 Δ and replace V by − V. Then one obtains H ̄ = −H = − 1 2 Δ + V , which is a quantum mechanical Hamiltonian corresponding to a particle of mass 1 (in atomic units) subject to interaction with potential V. Path-integrals play a role in obtaining physical quantities such as ground state energies. This paper will be concerned with explanations of two approaches in the actual computer evaluations of path-integrals through simulations of the diffusion processes. The results will be presented by comparing, in concrete examples, the computational advantages or disadvantages depending on whether the diffusion process X( t) is ergodic or not.
Consider a path-integral E sub(x)exp{ integral of. super(t) sub(0)V(X(s))ds} f(X(t)) which is the solution to a diffusion version of the generalized Schrodinger's equation partial differential u/ partial differential t identical with Hu, u(0, x) identical with f(x). Here H identical with A+V, where A is an infinitesimal generator of a strongly continuous Markov semigroup corresponding to the diffusion process {X(s), 0 less than or equal to s less than or equal to t, x(0) identical with x}. To see a connection to quantum mechanics, take A identical with is equivalent / Delta and replace V by -V. Then one obtains H identical with -H identical with - is equivalent Delta +V, which is a quantum mechanical Hamiltonian corresponding to a particle of mass 1 (in atomic units) subject to interaction with potential V. Path-integrals play a role in obtaining physical quantities such as ground state energies. This paper will be concerned with explanations of two approaches in the actual computer evaluations of path-integrals through simulations of the diffusion processes. The results will be presented by comparing, in concrete examples, the computational advantages or disadvantages depending on whether the diffusion process X(t) is ergodic or not.
Author Korzeniowski, Andrzej
Author_xml – sequence: 1
  givenname: Andrzej
  surname: Korzeniowski
  fullname: Korzeniowski, Andrzej
  email: kor@utamat.uta.edu
  organization: Department of Mathematics, University of Texas at Arlington, Box 19408, Arlington, TX 76019-0408, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3104316$$DView record in Pascal Francis
BookMark eNqFkDtPwzAUhS0EEuXxDxgyIARDwI_EiRmQUMVLVOrCbt3c2GCUOMV2kfrvSVvEwADTWb5zdPQdkF0_eEPICaOXjDJ5RUVV5bTg1bkqLyhlFc3pDpmwulI5q6p6l0x-kH1yEOM7pVQqVkxIMfcZDv1imUzIouuXHSQ3-Gyw2b1Z-R58_gyYLSC95c4n8xqgi0dkz45hjr_zkLzc371MH_PZ_OFpejvLUcgi5QJEI0BKU9iibpW03EjVSsQKhOJtybEB3tS8hPEzY1Kigto2jKFAYa04JGfb2UUYPpYmJt27iKbrwJthGTWXnCsq6QiefoMQETobwKOLehFcD2GlBaOFYHLEii2GYYgxGPtDMKrXIvXakl5b0qrUG5F6vX79q4YubSylAK77r3yzLZvR06czQUd0xqNpXTCYdDu4vwe-AD8AjOk
CODEN JCAMDI
CitedBy_id crossref_primary_10_1142_S0217979224503132
crossref_primary_10_1142_S0217979223500248
crossref_primary_10_1103_PhysRevA_61_030502
crossref_primary_10_1142_S0219876216500328
crossref_primary_10_3390_physics4010002
crossref_primary_10_1002_qua_22959
crossref_primary_10_1088_0305_4470_33_14_312
crossref_primary_10_1140_epjp_i2018_12024_0
Cites_doi 10.1090/S0273-0979-1982-15041-8
10.1063/1.454227
10.1103/PhysRevLett.69.893
10.1016/0898-1221(92)90012-7
10.1017/S0269964800001923
ContentType Journal Article
Conference Proceeding
Copyright 1996
1996 INIST-CNRS
Copyright_xml – notice: 1996
– notice: 1996 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/0377-0427(95)00170-0
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Physics
EISSN 1879-1778
EndPage 336
ExternalDocumentID 3104316
10_1016_0377_0427_95_00170_0
0377042795001700
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
NHB
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
WUQ
XPP
YQT
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
08R
ABPIF
IQODW
7SC
8FD
AFXIZ
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c364t-3a3b3a66e4f48d96f2e69d6cc7a392d52cba2b825a0011166c9a8fb11c3c3ff3
IEDL.DBID AIKHN
ISSN 0377-0427
IngestDate Thu Jul 10 22:58:08 EDT 2025
Sun Oct 22 16:03:29 EDT 2023
Tue Jul 01 03:58:31 EDT 2025
Thu Apr 24 23:00:07 EDT 2025
Fri Feb 23 02:34:25 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Hydrogen atom
81S40
65C05
58D30
Diffusion random walks
Harmonic oscillator
Feynman integral
Feynman path integral
Partial differential equations
Random walk
Numerical simulation
Schroedinger equation
Harmonic oscillators
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MeetingName International Congress on Computational and Applied Mathematics
MergedId FETCHMERGED-LOGICAL-c364t-3a3b3a66e4f48d96f2e69d6cc7a392d52cba2b825a0011166c9a8fb11c3c3ff3
Notes SourceType-Scholarly Journals-2
ObjectType-Feature-2
ObjectType-Conference Paper-1
content type line 23
SourceType-Conference Papers & Proceedings-1
ObjectType-Article-3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/0377042795001700
PQID 26229060
PQPubID 23500
PageCount 4
ParticipantIDs proquest_miscellaneous_26229060
pascalfrancis_primary_3104316
crossref_primary_10_1016_0377_0427_95_00170_0
crossref_citationtrail_10_1016_0377_0427_95_00170_0
elsevier_sciencedirect_doi_10_1016_0377_0427_95_00170_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 19960101
PublicationDateYYYYMMDD 1996-01-01
PublicationDate_xml – month: 01
  year: 1996
  text: 19960101
  day: 01
PublicationDecade 1990
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of computational and applied mathematics
PublicationYear 1996
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Korzeniowski, Fry, Orr, Fazleev (BIB3) 1992; 69
Nagasawa (BIB5) 1993
Simon (BIB6) 1982; 7
Korzeniowski, Hawkins (BIB4) 1991; 5
Korzeniowski (BIB2) 1992; 24
Caffarel, Claverie (BIB1) 1988; 88
Korzeniowski (10.1016/0377-0427(95)00170-0_BIB2) 1992; 24
Korzeniowski (10.1016/0377-0427(95)00170-0_BIB4) 1991; 5
Korzeniowski (10.1016/0377-0427(95)00170-0_BIB3) 1992; 69
Nagasawa (10.1016/0377-0427(95)00170-0_BIB5) 1993
Simon (10.1016/0377-0427(95)00170-0_BIB6) 1982; 7
Caffarel (10.1016/0377-0427(95)00170-0_BIB1) 1988; 88
References_xml – volume: 24
  start-page: 99
  year: 1992
  end-page: 102
  ident: BIB2
  article-title: Quantum mechanical simulation of the hydrogen molecule
  publication-title: Comput. Math. Appl.
– volume: 69
  start-page: 893
  year: 1992
  end-page: 896
  ident: BIB3
  article-title: Feynman-Kac path-integral of the ground-state energies of atoms
  publication-title: Phys. Rev. Lett.
– year: 1993
  ident: BIB5
  article-title: Schrödinger Equations and Diffusion Theory
– volume: 88
  start-page: 1088
  year: 1988
  end-page: 1099
  ident: BIB1
  article-title: Development of a pure diffusion quantum Monte Carlo method using a full generalized Feynman-Kac formula. I. Formalism
  publication-title: J. Chem. Phys.
– volume: 5
  start-page: 101
  year: 1991
  end-page: 112
  ident: BIB4
  article-title: On simulating Wiener integrals and their expectations
  publication-title: Probab. Engng. Inform. Sci.
– volume: 7
  start-page: 447
  year: 1982
  end-page: 526
  ident: BIB6
  article-title: Schrödinger semigroups
  publication-title: Bull. Amer. Math. Soc.
– volume: 7
  start-page: 447
  year: 1982
  ident: 10.1016/0377-0427(95)00170-0_BIB6
  article-title: Schrödinger semigroups
  publication-title: Bull. Amer. Math. Soc.
  doi: 10.1090/S0273-0979-1982-15041-8
– volume: 88
  start-page: 1088
  year: 1988
  ident: 10.1016/0377-0427(95)00170-0_BIB1
  article-title: Development of a pure diffusion quantum Monte Carlo method using a full generalized Feynman-Kac formula. I. Formalism
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.454227
– volume: 69
  start-page: 893
  year: 1992
  ident: 10.1016/0377-0427(95)00170-0_BIB3
  article-title: Feynman-Kac path-integral of the ground-state energies of atoms
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.893
– volume: 24
  start-page: 99
  year: 1992
  ident: 10.1016/0377-0427(95)00170-0_BIB2
  article-title: Quantum mechanical simulation of the hydrogen molecule
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(92)90012-7
– volume: 5
  start-page: 101
  year: 1991
  ident: 10.1016/0377-0427(95)00170-0_BIB4
  article-title: On simulating Wiener integrals and their expectations
  publication-title: Probab. Engng. Inform. Sci.
  doi: 10.1017/S0269964800001923
– year: 1993
  ident: 10.1016/0377-0427(95)00170-0_BIB5
SSID ssj0006914
Score 1.5306765
Snippet Consider a path-integral E x exp {∞ t o V( X( s)) ds} f( X( t)) which is the solution to a diffusion version of the generalized Schrödinger's equation ∂u ∂t =...
Consider a path-integral E sub(x)exp{ integral of. super(t) sub(0)V(X(s))ds} f(X(t)) which is the solution to a diffusion version of the generalized...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 333
SubjectTerms Classical and quantum physics: mechanics and fields
Diffusion random walks
Exact sciences and technology
Functional analytical methods
Global analysis, analysis on manifolds
Harmonic oscillator
Hydrogen atom
Mathematical methods in physics
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical approximation and analysis
Numerical simulation
Numerical simulation, solution of equations
Physics
Quantum mechanics
Sciences and techniques of general use
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
Title On computer simulation of Feynman-Kac path-integrals
URI https://dx.doi.org/10.1016/0377-0427(95)00170-0
https://www.proquest.com/docview/26229060
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4ULhpj_BlRwR086KGyrWtHj0gkIILGaMKt6bo2IYFBHBy8-Lfbbt0iMYbEa9Ouy_feXl-7vu8D4Fr4IsJSxNAQv8AAuxJGSJjTJukqhYXyI1PgPByR3nvwOMbjH7Uw5lqljf15TM-itW1pWjSbi8mk6aIwNEIRFGccMHrbXvURJdqzq-3-oDcq4zGhOcO37g_NgKKAziPNsu2G4tvsMdD9a4HaW_BUw6ZyvYtfoTtbj7oHYN8mkk47f9dDsCWTI7A7LFlY02MQPCeOsKoNTjqZWaUuZ66crvxMZjyBAy4cI0oMLW3END0Bb92Ht04PWpUEKBAJlhBxFCFOiAxU0IopUb4kNCZChFznPjHWxuB-pDeCPNOVJ0RQ3lKR5wkkkFLoFFSSeSLPgEMN-5XewUjpx4FyJUUo0vbCHHmxz5GsAVQgw4RlEDdCFlNWXBUzeDKDJ6OYZXgytwZgOWqRM2hs6B8WoLM1T2A6yG8YWV-zUTmdTmFNxX8NXBU2Y_ojMn9GeCLnq5T5JKO9d8__PfcF2Mnvc5vDmUtQWX6sZF2nK8uoAbbvvryG9srO69NLw3qnbu2P778BGJPlyw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA4yDyoi_sSpcz140ENc2zTpchRxTPfDy4TdQpomMNi6YbeDF_92kzStDpGB15I05XvJy0v63vcBcCNCkWApUmiIX2CEfQkTJMxtk_SVwkKFiSlwHgxJ9y16GePxj1oYk1bpfH_h0623dk9aDs3WYjJp-SiOjVAExZYDRh_btyO9es3ivP_8TvMgtOD31q2haV6WzwWkVT27pfjOvgT6f21P-wuea9BUoXbxy3Hb3ahzCA5cGOk9FF96BLZkdgz2BhUHa34CotfME06zwcsnM6fT5c2V15Ef2YxnsMeFZySJoSONmOanYNR5Gj12odNIgAKRaAkRRwnihMhIRe2UEhVKQlMiRMx15JNibQoeJvoYyK2qPCGC8rZKgkAggZRCZ6CWzTN5DjxquK_0-UXKMI2ULylCibYW5ihIQ45kHaASGSYcf7iRsZiyMlHM4MkMnoxiZvFkfh3Aqtei4M_Y0D4uQWdr84BpF7-hZ2PNRtVwOoA19f510CxtxvQSMv9FeCbnq5yFxJLe-xf_HrsJdrqjQZ_1n4e9S7BbZHaba5orUFu-r2RDBy7L5NrOzC9j1-P2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Journal+of+computational+and+applied+mathematics&rft.atitle=On+computer+simulation+of+Feynman-Kac+path-integrals&rft.au=KORZENIOWSKI%2C+A&rft.date=1996-01-01&rft.pub=Elsevier&rft.issn=0377-0427&rft.eissn=1879-1778&rft.volume=66&rft.issue=1-2&rft.spage=333&rft.epage=336&rft_id=info:doi/10.1016%2F0377-0427%2895%2900170-0&rft.externalDBID=n%2Fa&rft.externalDocID=3104316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon