On computer simulation of Feynman-Kac path-integrals
Consider a path-integral E x exp {∞ t o V( X( s)) ds} f( X( t)) which is the solution to a diffusion version of the generalized Schrödinger's equation ∂u ∂t = Hu , u(0,x) = ƒ(x). Here H = A + V, where A is an infinitesimal generator of a strong continuous Markov semigroup corresponding to the d...
Saved in:
Published in | Journal of computational and applied mathematics Vol. 66; no. 1; pp. 333 - 336 |
---|---|
Main Author | |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.01.1996
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Consider a path-integral
E
x
exp {∞
t
o
V(
X(
s))
ds}
f(
X(
t)) which is the solution to a diffusion version of the generalized Schrödinger's equation
∂u
∂t
= Hu
,
u(0,x) = ƒ(x). Here
H =
A +
V, where
A is an infinitesimal generator of a strong continuous Markov semigroup corresponding to the diffusion process {
X(
s), 0⩽
s⩽
t,
X(0) =
x}. To see a connection to quantum mechanics, take
A =
1
2
Δ
and replace
V by −
V. Then one obtains
H
̄
= −H = −
1
2
Δ + V
, which is a quantum mechanical Hamiltonian corresponding to a particle of mass 1 (in atomic units) subject to interaction with potential
V. Path-integrals play a role in obtaining physical quantities such as ground state energies. This paper will be concerned with explanations of two approaches in the actual computer evaluations of path-integrals through simulations of the diffusion processes. The results will be presented by comparing, in concrete examples, the computational advantages or disadvantages depending on whether the diffusion process
X(
t) is ergodic or not. |
---|---|
AbstractList | Consider a path-integral
E
x
exp {∞
t
o
V(
X(
s))
ds}
f(
X(
t)) which is the solution to a diffusion version of the generalized Schrödinger's equation
∂u
∂t
= Hu
,
u(0,x) = ƒ(x). Here
H =
A +
V, where
A is an infinitesimal generator of a strong continuous Markov semigroup corresponding to the diffusion process {
X(
s), 0⩽
s⩽
t,
X(0) =
x}. To see a connection to quantum mechanics, take
A =
1
2
Δ
and replace
V by −
V. Then one obtains
H
̄
= −H = −
1
2
Δ + V
, which is a quantum mechanical Hamiltonian corresponding to a particle of mass 1 (in atomic units) subject to interaction with potential
V. Path-integrals play a role in obtaining physical quantities such as ground state energies. This paper will be concerned with explanations of two approaches in the actual computer evaluations of path-integrals through simulations of the diffusion processes. The results will be presented by comparing, in concrete examples, the computational advantages or disadvantages depending on whether the diffusion process
X(
t) is ergodic or not. Consider a path-integral E sub(x)exp{ integral of. super(t) sub(0)V(X(s))ds} f(X(t)) which is the solution to a diffusion version of the generalized Schrodinger's equation partial differential u/ partial differential t identical with Hu, u(0, x) identical with f(x). Here H identical with A+V, where A is an infinitesimal generator of a strongly continuous Markov semigroup corresponding to the diffusion process {X(s), 0 less than or equal to s less than or equal to t, x(0) identical with x}. To see a connection to quantum mechanics, take A identical with is equivalent / Delta and replace V by -V. Then one obtains H identical with -H identical with - is equivalent Delta +V, which is a quantum mechanical Hamiltonian corresponding to a particle of mass 1 (in atomic units) subject to interaction with potential V. Path-integrals play a role in obtaining physical quantities such as ground state energies. This paper will be concerned with explanations of two approaches in the actual computer evaluations of path-integrals through simulations of the diffusion processes. The results will be presented by comparing, in concrete examples, the computational advantages or disadvantages depending on whether the diffusion process X(t) is ergodic or not. |
Author | Korzeniowski, Andrzej |
Author_xml | – sequence: 1 givenname: Andrzej surname: Korzeniowski fullname: Korzeniowski, Andrzej email: kor@utamat.uta.edu organization: Department of Mathematics, University of Texas at Arlington, Box 19408, Arlington, TX 76019-0408, United States |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3104316$$DView record in Pascal Francis |
BookMark | eNqFkDtPwzAUhS0EEuXxDxgyIARDwI_EiRmQUMVLVOrCbt3c2GCUOMV2kfrvSVvEwADTWb5zdPQdkF0_eEPICaOXjDJ5RUVV5bTg1bkqLyhlFc3pDpmwulI5q6p6l0x-kH1yEOM7pVQqVkxIMfcZDv1imUzIouuXHSQ3-Gyw2b1Z-R58_gyYLSC95c4n8xqgi0dkz45hjr_zkLzc371MH_PZ_OFpejvLUcgi5QJEI0BKU9iibpW03EjVSsQKhOJtybEB3tS8hPEzY1Kigto2jKFAYa04JGfb2UUYPpYmJt27iKbrwJthGTWXnCsq6QiefoMQETobwKOLehFcD2GlBaOFYHLEii2GYYgxGPtDMKrXIvXakl5b0qrUG5F6vX79q4YubSylAK77r3yzLZvR06czQUd0xqNpXTCYdDu4vwe-AD8AjOk |
CODEN | JCAMDI |
CitedBy_id | crossref_primary_10_1142_S0217979224503132 crossref_primary_10_1142_S0217979223500248 crossref_primary_10_1103_PhysRevA_61_030502 crossref_primary_10_1142_S0219876216500328 crossref_primary_10_3390_physics4010002 crossref_primary_10_1002_qua_22959 crossref_primary_10_1088_0305_4470_33_14_312 crossref_primary_10_1140_epjp_i2018_12024_0 |
Cites_doi | 10.1090/S0273-0979-1982-15041-8 10.1063/1.454227 10.1103/PhysRevLett.69.893 10.1016/0898-1221(92)90012-7 10.1017/S0269964800001923 |
ContentType | Journal Article Conference Proceeding |
Copyright | 1996 1996 INIST-CNRS |
Copyright_xml | – notice: 1996 – notice: 1996 INIST-CNRS |
DBID | 6I. AAFTH AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/0377-0427(95)00170-0 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Physics |
EISSN | 1879-1778 |
EndPage | 336 |
ExternalDocumentID | 3104316 10_1016_0377_0427_95_00170_0 0377042795001700 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABTAH ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A NCXOZ NHB O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 UPT WUQ XPP YQT ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 08R ABPIF IQODW 7SC 8FD AFXIZ JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c364t-3a3b3a66e4f48d96f2e69d6cc7a392d52cba2b825a0011166c9a8fb11c3c3ff3 |
IEDL.DBID | AIKHN |
ISSN | 0377-0427 |
IngestDate | Thu Jul 10 22:58:08 EDT 2025 Sun Oct 22 16:03:29 EDT 2023 Tue Jul 01 03:58:31 EDT 2025 Thu Apr 24 23:00:07 EDT 2025 Fri Feb 23 02:34:25 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Hydrogen atom 81S40 65C05 58D30 Diffusion random walks Harmonic oscillator Feynman integral Feynman path integral Partial differential equations Random walk Numerical simulation Schroedinger equation Harmonic oscillators |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MeetingName | International Congress on Computational and Applied Mathematics |
MergedId | FETCHMERGED-LOGICAL-c364t-3a3b3a66e4f48d96f2e69d6cc7a392d52cba2b825a0011166c9a8fb11c3c3ff3 |
Notes | SourceType-Scholarly Journals-2 ObjectType-Feature-2 ObjectType-Conference Paper-1 content type line 23 SourceType-Conference Papers & Proceedings-1 ObjectType-Article-3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/0377042795001700 |
PQID | 26229060 |
PQPubID | 23500 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_26229060 pascalfrancis_primary_3104316 crossref_primary_10_1016_0377_0427_95_00170_0 crossref_citationtrail_10_1016_0377_0427_95_00170_0 elsevier_sciencedirect_doi_10_1016_0377_0427_95_00170_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 19960101 |
PublicationDateYYYYMMDD | 1996-01-01 |
PublicationDate_xml | – month: 01 year: 1996 text: 19960101 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of computational and applied mathematics |
PublicationYear | 1996 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Korzeniowski, Fry, Orr, Fazleev (BIB3) 1992; 69 Nagasawa (BIB5) 1993 Simon (BIB6) 1982; 7 Korzeniowski, Hawkins (BIB4) 1991; 5 Korzeniowski (BIB2) 1992; 24 Caffarel, Claverie (BIB1) 1988; 88 Korzeniowski (10.1016/0377-0427(95)00170-0_BIB2) 1992; 24 Korzeniowski (10.1016/0377-0427(95)00170-0_BIB4) 1991; 5 Korzeniowski (10.1016/0377-0427(95)00170-0_BIB3) 1992; 69 Nagasawa (10.1016/0377-0427(95)00170-0_BIB5) 1993 Simon (10.1016/0377-0427(95)00170-0_BIB6) 1982; 7 Caffarel (10.1016/0377-0427(95)00170-0_BIB1) 1988; 88 |
References_xml | – volume: 24 start-page: 99 year: 1992 end-page: 102 ident: BIB2 article-title: Quantum mechanical simulation of the hydrogen molecule publication-title: Comput. Math. Appl. – volume: 69 start-page: 893 year: 1992 end-page: 896 ident: BIB3 article-title: Feynman-Kac path-integral of the ground-state energies of atoms publication-title: Phys. Rev. Lett. – year: 1993 ident: BIB5 article-title: Schrödinger Equations and Diffusion Theory – volume: 88 start-page: 1088 year: 1988 end-page: 1099 ident: BIB1 article-title: Development of a pure diffusion quantum Monte Carlo method using a full generalized Feynman-Kac formula. I. Formalism publication-title: J. Chem. Phys. – volume: 5 start-page: 101 year: 1991 end-page: 112 ident: BIB4 article-title: On simulating Wiener integrals and their expectations publication-title: Probab. Engng. Inform. Sci. – volume: 7 start-page: 447 year: 1982 end-page: 526 ident: BIB6 article-title: Schrödinger semigroups publication-title: Bull. Amer. Math. Soc. – volume: 7 start-page: 447 year: 1982 ident: 10.1016/0377-0427(95)00170-0_BIB6 article-title: Schrödinger semigroups publication-title: Bull. Amer. Math. Soc. doi: 10.1090/S0273-0979-1982-15041-8 – volume: 88 start-page: 1088 year: 1988 ident: 10.1016/0377-0427(95)00170-0_BIB1 article-title: Development of a pure diffusion quantum Monte Carlo method using a full generalized Feynman-Kac formula. I. Formalism publication-title: J. Chem. Phys. doi: 10.1063/1.454227 – volume: 69 start-page: 893 year: 1992 ident: 10.1016/0377-0427(95)00170-0_BIB3 article-title: Feynman-Kac path-integral of the ground-state energies of atoms publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.69.893 – volume: 24 start-page: 99 year: 1992 ident: 10.1016/0377-0427(95)00170-0_BIB2 article-title: Quantum mechanical simulation of the hydrogen molecule publication-title: Comput. Math. Appl. doi: 10.1016/0898-1221(92)90012-7 – volume: 5 start-page: 101 year: 1991 ident: 10.1016/0377-0427(95)00170-0_BIB4 article-title: On simulating Wiener integrals and their expectations publication-title: Probab. Engng. Inform. Sci. doi: 10.1017/S0269964800001923 – year: 1993 ident: 10.1016/0377-0427(95)00170-0_BIB5 |
SSID | ssj0006914 |
Score | 1.5306765 |
Snippet | Consider a path-integral
E
x
exp {∞
t
o
V(
X(
s))
ds}
f(
X(
t)) which is the solution to a diffusion version of the generalized Schrödinger's equation
∂u
∂t
=... Consider a path-integral E sub(x)exp{ integral of. super(t) sub(0)V(X(s))ds} f(X(t)) which is the solution to a diffusion version of the generalized... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 333 |
SubjectTerms | Classical and quantum physics: mechanics and fields Diffusion random walks Exact sciences and technology Functional analytical methods Global analysis, analysis on manifolds Harmonic oscillator Hydrogen atom Mathematical methods in physics Mathematics Numerical analysis Numerical analysis. Scientific computation Numerical approximation and analysis Numerical simulation Numerical simulation, solution of equations Physics Quantum mechanics Sciences and techniques of general use Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds |
Title | On computer simulation of Feynman-Kac path-integrals |
URI | https://dx.doi.org/10.1016/0377-0427(95)00170-0 https://www.proquest.com/docview/26229060 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4ULhpj_BlRwR086KGyrWtHj0gkIILGaMKt6bo2IYFBHBy8-Lfbbt0iMYbEa9Ouy_feXl-7vu8D4Fr4IsJSxNAQv8AAuxJGSJjTJukqhYXyI1PgPByR3nvwOMbjH7Uw5lqljf15TM-itW1pWjSbi8mk6aIwNEIRFGccMHrbXvURJdqzq-3-oDcq4zGhOcO37g_NgKKAziPNsu2G4tvsMdD9a4HaW_BUw6ZyvYtfoTtbj7oHYN8mkk47f9dDsCWTI7A7LFlY02MQPCeOsKoNTjqZWaUuZ66crvxMZjyBAy4cI0oMLW3END0Bb92Ht04PWpUEKBAJlhBxFCFOiAxU0IopUb4kNCZChFznPjHWxuB-pDeCPNOVJ0RQ3lKR5wkkkFLoFFSSeSLPgEMN-5XewUjpx4FyJUUo0vbCHHmxz5GsAVQgw4RlEDdCFlNWXBUzeDKDJ6OYZXgytwZgOWqRM2hs6B8WoLM1T2A6yG8YWV-zUTmdTmFNxX8NXBU2Y_ojMn9GeCLnq5T5JKO9d8__PfcF2Mnvc5vDmUtQWX6sZF2nK8uoAbbvvryG9srO69NLw3qnbu2P778BGJPlyw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA4yDyoi_sSpcz140ENc2zTpchRxTPfDy4TdQpomMNi6YbeDF_92kzStDpGB15I05XvJy0v63vcBcCNCkWApUmiIX2CEfQkTJMxtk_SVwkKFiSlwHgxJ9y16GePxj1oYk1bpfH_h0623dk9aDs3WYjJp-SiOjVAExZYDRh_btyO9es3ivP_8TvMgtOD31q2haV6WzwWkVT27pfjOvgT6f21P-wuea9BUoXbxy3Hb3ahzCA5cGOk9FF96BLZkdgz2BhUHa34CotfME06zwcsnM6fT5c2V15Ef2YxnsMeFZySJoSONmOanYNR5Gj12odNIgAKRaAkRRwnihMhIRe2UEhVKQlMiRMx15JNibQoeJvoYyK2qPCGC8rZKgkAggZRCZ6CWzTN5DjxquK_0-UXKMI2ULylCibYW5ihIQ45kHaASGSYcf7iRsZiyMlHM4MkMnoxiZvFkfh3Aqtei4M_Y0D4uQWdr84BpF7-hZ2PNRtVwOoA19f510CxtxvQSMv9FeCbnq5yFxJLe-xf_HrsJdrqjQZ_1n4e9S7BbZHaba5orUFu-r2RDBy7L5NrOzC9j1-P2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Journal+of+computational+and+applied+mathematics&rft.atitle=On+computer+simulation+of+Feynman-Kac+path-integrals&rft.au=KORZENIOWSKI%2C+A&rft.date=1996-01-01&rft.pub=Elsevier&rft.issn=0377-0427&rft.eissn=1879-1778&rft.volume=66&rft.issue=1-2&rft.spage=333&rft.epage=336&rft_id=info:doi/10.1016%2F0377-0427%2895%2900170-0&rft.externalDBID=n%2Fa&rft.externalDocID=3104316 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon |