Deep learning aided computer vision system for automated linear type trait evaluation in dairy cows

•Developed an automatic system for linear type trait estimation of dairy cows.•System consists of RGB-D camera and CNNs for segmentation of body parts.•CNN-based models achieved mIoU over 90.0% for body parts of cows.•Developed various algorithms to extract key points of traits.•Achieved MAPE below...

Full description

Saved in:
Bibliographic Details
Published inSmart agricultural technology Vol. 8; p. 100509
Main Authors Devi, Indu, Singh, Naseeb, Dudi, Kuldeep, Ranjan, Rakesh, Lathwal, Surender Singh, Tomar, Divyanshu Singh, Nagar, Harsh
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2024
Elsevier
Subjects
Online AccessGet full text
ISSN2772-3755
2772-3755
DOI10.1016/j.atech.2024.100509

Cover

Loading…
Abstract •Developed an automatic system for linear type trait estimation of dairy cows.•System consists of RGB-D camera and CNNs for segmentation of body parts.•CNN-based models achieved mIoU over 90.0% for body parts of cows.•Developed various algorithms to extract key points of traits.•Achieved MAPE below 15.0% in estimated traits by developed system. The assessment of traits is important in determining production potential, reproductive performance, and overall health of dairy cows. The assessment of these traits typically involves visual inspection and manual measurement, which can be time-consuming, subject to bias, and potentially distressing for the animals. To address these challenges, convolutional neural networks (CNNs)-aided non-invasive computer vision system was developed in the present study. This system consists of a depth camera to acquire the RGB images and depth information of cows. The DeepLabV3+ model, having the ResNet50 model as a backbone, was utilized to segment the body parts of cows from RGB images. Image processing-based algorithms were developed to extract key pixel locations for each trait from these segmented images. The system estimated trait dimensions utilizing 3D data of respective key points. The mean-IoU (intersection-over-union) values for the developed segmentation models were 93.46%, 91.25%, and 99.27% for side-view, back-view traits, and stature, respectively. Additionally, the vision system was able to estimate the trait dimensions with mean absolute percentage error (MAPE) below 6.0%. For a few traits, MAPE, however, exceeded 10.0%, indicating higher error. Inaccurate segmentation, imprecise key point extraction, visual overlaps of specific body parts, and variations in cow postures contribute to such errors. The developed system attained a Ratio of Performance to Deviation (RPD) above 1.2 for all traits, indicating its ability to estimate the dimensions of traits efficaciously. Thus, the present study demonstrated the potential of a CNN-based computer vision-based system for automating the trait measurement process in cows.
AbstractList The assessment of traits is important in determining production potential, reproductive performance, and overall health of dairy cows. The assessment of these traits typically involves visual inspection and manual measurement, which can be time-consuming, subject to bias, and potentially distressing for the animals. To address these challenges, convolutional neural networks (CNNs)-aided non-invasive computer vision system was developed in the present study. This system consists of a depth camera to acquire the RGB images and depth information of cows. The DeepLabV3+ model, having the ResNet50 model as a backbone, was utilized to segment the body parts of cows from RGB images. Image processing-based algorithms were developed to extract key pixel locations for each trait from these segmented images. The system estimated trait dimensions utilizing 3D data of respective key points. The mean-IoU (intersection-over-union) values for the developed segmentation models were 93.46%, 91.25%, and 99.27% for side-view, back-view traits, and stature, respectively. Additionally, the vision system was able to estimate the trait dimensions with mean absolute percentage error (MAPE) below 6.0%. For a few traits, MAPE, however, exceeded 10.0%, indicating higher error. Inaccurate segmentation, imprecise key point extraction, visual overlaps of specific body parts, and variations in cow postures contribute to such errors. The developed system attained a Ratio of Performance to Deviation (RPD) above 1.2 for all traits, indicating its ability to estimate the dimensions of traits efficaciously. Thus, the present study demonstrated the potential of a CNN-based computer vision-based system for automating the trait measurement process in cows.
•Developed an automatic system for linear type trait estimation of dairy cows.•System consists of RGB-D camera and CNNs for segmentation of body parts.•CNN-based models achieved mIoU over 90.0% for body parts of cows.•Developed various algorithms to extract key points of traits.•Achieved MAPE below 15.0% in estimated traits by developed system. The assessment of traits is important in determining production potential, reproductive performance, and overall health of dairy cows. The assessment of these traits typically involves visual inspection and manual measurement, which can be time-consuming, subject to bias, and potentially distressing for the animals. To address these challenges, convolutional neural networks (CNNs)-aided non-invasive computer vision system was developed in the present study. This system consists of a depth camera to acquire the RGB images and depth information of cows. The DeepLabV3+ model, having the ResNet50 model as a backbone, was utilized to segment the body parts of cows from RGB images. Image processing-based algorithms were developed to extract key pixel locations for each trait from these segmented images. The system estimated trait dimensions utilizing 3D data of respective key points. The mean-IoU (intersection-over-union) values for the developed segmentation models were 93.46%, 91.25%, and 99.27% for side-view, back-view traits, and stature, respectively. Additionally, the vision system was able to estimate the trait dimensions with mean absolute percentage error (MAPE) below 6.0%. For a few traits, MAPE, however, exceeded 10.0%, indicating higher error. Inaccurate segmentation, imprecise key point extraction, visual overlaps of specific body parts, and variations in cow postures contribute to such errors. The developed system attained a Ratio of Performance to Deviation (RPD) above 1.2 for all traits, indicating its ability to estimate the dimensions of traits efficaciously. Thus, the present study demonstrated the potential of a CNN-based computer vision-based system for automating the trait measurement process in cows.
ArticleNumber 100509
Author Lathwal, Surender Singh
Dudi, Kuldeep
Singh, Naseeb
Devi, Indu
Tomar, Divyanshu Singh
Ranjan, Rakesh
Nagar, Harsh
Author_xml – sequence: 1
  givenname: Indu
  surname: Devi
  fullname: Devi, Indu
  organization: Livestock Production Management Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
– sequence: 2
  givenname: Naseeb
  orcidid: 0000-0003-4555-7753
  surname: Singh
  fullname: Singh, Naseeb
  email: naseeb501@gmail.com
  organization: Division of System Research and Engineering, ICAR RC for NEH Region, Umiam, Meghalaya 793103, India
– sequence: 3
  givenname: Kuldeep
  surname: Dudi
  fullname: Dudi, Kuldeep
  organization: Krishi Vigyan Kendra (under Haryana Agricultural University, Hisar), Panipat, Haryana 132103, India
– sequence: 4
  givenname: Rakesh
  surname: Ranjan
  fullname: Ranjan, Rakesh
  organization: The Conservation Fund Freshwater Institute, Shepherdstown, WV 25443, United States
– sequence: 5
  givenname: Surender Singh
  surname: Lathwal
  fullname: Lathwal, Surender Singh
  organization: Livestock Production Management Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
– sequence: 6
  givenname: Divyanshu Singh
  surname: Tomar
  fullname: Tomar, Divyanshu Singh
  organization: Livestock Production Management Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
– sequence: 7
  givenname: Harsh
  surname: Nagar
  fullname: Nagar, Harsh
  organization: Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302, India
BookMark eNp9kE1LAzEQhoMo-PkLvOQPtCab3SZ78CB-Q8GLnsPsZFZTtpuSpJX-e1Mr4snTDAPPMzPvKTscw0iMXUoxlULOrhZTyIQf00pUdZmIRrQH7KTSupoo3TSHf_pjdpHSQghRmWZmWnPC8I5oxQeCOPrxnYN35DiG5WqdKfKNTz6MPG1TpiXvQ-SwzmFZ9jk--LFQPG9XxHMEnzltYFhD3hF-5A583BbVZzpnRz0MiS5-6hl7e7h_vX2azF8en29v5hNUszqXA7HunDKAsqGqqxrRqEaglL1CqSV0gnRNSlFfGtQgXN2KqtXoqDVGd-qMPe-9LsDCrqJfQtzaAN5-D0J8txCzx4GsorqoBSo907UGMrUBI5Vz0He9RFFcau_CGFKK1P_6pLC72O3Cfsdud7HbfeyFut5TVN7ceIo2oacRyflImMsd_l_-C8WZjxo
Cites_doi 10.1109/TPAMI.2016.2644615
10.1186/2193-1801-3-225
10.1007/s42853-024-00226-z
10.1016/j.compag.2011.02.001
10.3390/rs13244998
10.1109/TPAMI.2017.2699184
10.1016/j.compag.2022.107059
10.1016/j.compag.2018.07.033
10.1080/09712119.2018.1450257
10.1007/s11250-024-04050-7
10.1109/ACCESS.2021.3107353
10.3168/jds.S0022-0302(03)74021-1
10.1016/j.compag.2020.105821
10.3390/s21093218
10.3389/fgene.2020.00513
10.1016/j.livsci.2020.104054
10.1016/j.biosystemseng.2022.08.018
10.1155/2020/1475164
10.1007/978-3-319-24574-4_28
10.3168/jds.2017-13319
10.3390/s18093014
10.3168/jds.2022-22761
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.atech.2024.100509
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2772-3755
ExternalDocumentID oai_doaj_org_article_3e450c0c376747ae848a813ddafbf1c0
10_1016_j_atech_2024_100509
S277237552400114X
GroupedDBID 0SF
6I.
AAFTH
AAHBH
AALRI
AAXUO
ADVLN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c364t-37c4bd38ac15e2b2505350c11f3c171ab0e74e33ef0e7c7a0d490297cde9887b3
IEDL.DBID DOA
ISSN 2772-3755
IngestDate Wed Aug 27 01:27:21 EDT 2025
Tue Jul 01 01:09:56 EDT 2025
Sat Aug 31 16:02:23 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Computer vision
Automatic measurement
Precision livestock farming
Dairy cattle
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-37c4bd38ac15e2b2505350c11f3c171ab0e74e33ef0e7c7a0d490297cde9887b3
ORCID 0000-0003-4555-7753
OpenAccessLink https://doaj.org/article/3e450c0c376747ae848a813ddafbf1c0
ParticipantIDs doaj_primary_oai_doaj_org_article_3e450c0c376747ae848a813ddafbf1c0
crossref_primary_10_1016_j_atech_2024_100509
elsevier_sciencedirect_doi_10_1016_j_atech_2024_100509
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationTitle Smart agricultural technology
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Google Colaboratory, 2021. Google colaboratory [WWW Document]. (accessed on 11.17.23).
Brogna, Palmonari, Canestrari, Mammi, Dal Prà, Formigoni (bib0042) 2018; 101
Zhang, Pei Wu, Tana Wuyun, Xinhua Jiang, Chuanzhong Xuan, Yanhua Ma (bib0002) 2018; 153
Singh, Tewari, Biswas, Dhruw (bib0036) 2023; 8
Martins, Mendes, Silva, Moreira, Costa, Rotta, Chizzotti, Marcondes (bib0010) 2020; 236
Wang, Bai, Gao, Li, Zhao, Li, Zhang (bib0030) 2022; 223
Choe, Choi, Kim (bib0035) 2020; 2020
Schneider, Dürr, Cue, Monardes (bib0003) 2003; 86
Batanov, Starostina, Baranova (bib0001) 2019; 315
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L., 2014. Semantic image segmentation with deep convolutional nets and fully connected CRFs.
Tkachenko, M., Malyuk, M., Holmanyuk, A., Liubimo, N., 2020. Label studio: data labeling software.
Huang, Li, Zhu, Fan, Zhang, Wang (bib0006) 2018; 18
Wang, Hu, Cui, Wang, Mao, Wu (bib0031) 2021; 13
Bremer, Maj, Nordbø, Kommisrud (bib0018) 2023; 3
Chen, Papandreou, Kokkinos, Murphy, Yuille (bib0026) 2018; 40
Weales, Moussa, Tarry (bib0012) 2021; 1
Nye, Zingaretti, Pérez-Enciso (bib0016) 2020; 11
Singh, Tewari, Biswas, Pareek, Dhruw (bib0013) 2021; 5
He, Zhang, Ren, Sun (bib0033) 2016
Warhade, Devi, Singh, Arya, Dudi, Lathwal, Tomar (bib0020) 2024; 56
Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard, Kudlur, Levenberg, Monga, Moore, Murray, Steiner, Tucker, Vasudevan, Warden, Wicke, Yu, Zheng (bib0040) 2016; 10
Zhang, Wu, Jiang, Xuan, Ma, Zhang (bib0008) 2018; 46
Tasdemir, Urkmez, Inal (bib0007) 2011; 76
Chen, L.-C., Papandreou, G., Schroff, F., Adam, H., 2017. Rethinking atrous convolution for semantic image segmentation.
Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: convolutional networks for biomedical image segmentation. arXiv:1505.04597 [cs].
Badrinarayanan, Kendall, Cipolla (bib0025) 2017; 39
Bi, Campos, Wang, Yu, Hanigan, Morota (bib0017) 2023; 6
Krizhevsky, Sutskever, Hinton (bib0014) 2012; 25
.
Singh, Tewari, Biswas, Dhruw, Pareek, Singh (bib0023) 2022; 2
Kingma, D.P., Ba, J., 2017. Adam: a method for stochastic optimization. arXiv:1412.6980 [cs].
Du, Guo, Lu, Su, Ma, Ruchay, Marinello, Pezzuolo (bib0005) 2022; 198
Singh, Devi, Dudi, Chouriya (bib0019) 2024
Das, Fime, Siddique, Hashem (bib0029) 2021; 9
Ruchay, Kober, Dorofeev, Kolpakov, Miroshnikov (bib0011) 2020; 179
Okkema, Eilertson, Grandin (bib0021) 2023; 106
Fujii, Tanaka, Ikeuchi, Hotta (bib0038) 2021
Deng, Dong, Socher, Li, Li, Fei-Fei (bib0034) 2009
Qian, Wang, Huo, Tang (bib0004) 2008
Zhang, Zhuang, Ji, Teng (bib0015) 2021; 21
Salau, Haas, Junge, Bauer, Harms, Bieletzki (bib0009) 2014; 3
Fujinaga, Nakanishi (bib0032) 2023
Chollet, F., 2015. Keras. (accessed on 11.14.23).
Zhang (10.1016/j.atech.2024.100509_bib0008) 2018; 46
10.1016/j.atech.2024.100509_bib0037
10.1016/j.atech.2024.100509_bib0039
Qian (10.1016/j.atech.2024.100509_bib0004) 2008
Salau (10.1016/j.atech.2024.100509_bib0009) 2014; 3
Zhang (10.1016/j.atech.2024.100509_bib0002) 2018; 153
He (10.1016/j.atech.2024.100509_bib0033) 2016
Deng (10.1016/j.atech.2024.100509_bib0034) 2009
Bi (10.1016/j.atech.2024.100509_bib0017) 2023; 6
Batanov (10.1016/j.atech.2024.100509_bib0001) 2019; 315
Nye (10.1016/j.atech.2024.100509_bib0016) 2020; 11
Wang (10.1016/j.atech.2024.100509_bib0030) 2022; 223
Fujii (10.1016/j.atech.2024.100509_bib0038) 2021
Bremer (10.1016/j.atech.2024.100509_bib0018) 2023; 3
10.1016/j.atech.2024.100509_bib0041
Ruchay (10.1016/j.atech.2024.100509_bib0011) 2020; 179
Singh (10.1016/j.atech.2024.100509_bib0019) 2024
Martins (10.1016/j.atech.2024.100509_bib0010) 2020; 236
Okkema (10.1016/j.atech.2024.100509_bib0021) 2023; 106
10.1016/j.atech.2024.100509_bib0027
Choe (10.1016/j.atech.2024.100509_bib0035) 2020; 2020
10.1016/j.atech.2024.100509_bib0028
Zhang (10.1016/j.atech.2024.100509_bib0015) 2021; 21
10.1016/j.atech.2024.100509_bib0022
10.1016/j.atech.2024.100509_bib0024
Schneider (10.1016/j.atech.2024.100509_bib0003) 2003; 86
Du (10.1016/j.atech.2024.100509_bib0005) 2022; 198
Abadi (10.1016/j.atech.2024.100509_bib0040) 2016; 10
Krizhevsky (10.1016/j.atech.2024.100509_bib0014) 2012; 25
Chen (10.1016/j.atech.2024.100509_bib0026) 2018; 40
Weales (10.1016/j.atech.2024.100509_bib0012) 2021; 1
Warhade (10.1016/j.atech.2024.100509_bib0020) 2024; 56
Singh (10.1016/j.atech.2024.100509_bib0023) 2022; 2
Wang (10.1016/j.atech.2024.100509_bib0031) 2021; 13
Singh (10.1016/j.atech.2024.100509_bib0036) 2023; 8
Das (10.1016/j.atech.2024.100509_bib0029) 2021; 9
Brogna (10.1016/j.atech.2024.100509_bib0042) 2018; 101
Huang (10.1016/j.atech.2024.100509_bib0006) 2018; 18
Tasdemir (10.1016/j.atech.2024.100509_bib0007) 2011; 76
Singh (10.1016/j.atech.2024.100509_bib0013) 2021; 5
Badrinarayanan (10.1016/j.atech.2024.100509_bib0025) 2017; 39
Fujinaga (10.1016/j.atech.2024.100509_bib0032) 2023
References_xml – volume: 25
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0014
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural. Inf. Process. Syst.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0033
  article-title: Deep residual learning for image recognition
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Presented at the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 198
  year: 2022
  ident: bib0005
  article-title: Automatic livestock body measurement based on keypoint detection with multiple depth cameras
  publication-title: Comput. Electron. Agric.
– volume: 153
  start-page: 33
  year: 2018
  end-page: 45
  ident: bib0002
  article-title: Algorithm of sheep body dimension measurement and its applications based on image analysis
  publication-title: Comput. Electron. Agric.
– volume: 1
  year: 2021
  ident: bib0012
  article-title: A robust machine vision system for body measurements of beef calves
  publication-title: Smart Agric. Technol.
– start-page: 303
  year: 2008
  end-page: 311
  ident: bib0004
  article-title: Study on linear appraisal of dairy cow's conformation based on image processing
  publication-title: Computer And Computing Technologies In Agriculture, Volume I, The International Federation for Information Processing
– volume: 21
  start-page: 3218
  year: 2021
  ident: bib0015
  article-title: Pig Weight and Body Size Estimation Using a Multiple Output Regression Convolutional Neural Network: A Fast and Fully Automatic Method
  publication-title: Sensors
– volume: 3
  year: 2023
  ident: bib0018
  article-title: Deep learning–based automated measurements of the scrotal circumference of Norwegian Red bulls from 3D images
  publication-title: Smart Agric. Technol.
– volume: 11
  start-page: 513
  year: 2020
  ident: bib0016
  article-title: Estimating conformational traits in dairy cattle with DeepAPS: a two-step deep learning automated phenotyping and segmentation approach
  publication-title: Front. Genet.
– reference: Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: convolutional networks for biomedical image segmentation. arXiv:1505.04597 [cs].
– volume: 9
  start-page: 121060
  year: 2021
  end-page: 121075
  ident: bib0029
  article-title: Estimation of road boundary for intelligent vehicles based on DeepLabV3+ architecture
  publication-title: IEEe Access.
– volume: 5
  start-page: 142
  year: 2021
  end-page: 156
  ident: bib0013
  article-title: Image processing algorithms for in-field cotton boll detection in natural lighting conditions
  publication-title: Artif. Intell. Agric.
– volume: 223
  start-page: 259
  year: 2022
  end-page: 276
  ident: bib0030
  article-title: Oestrus detection in dairy cows by using atrous spatial pyramid and attention mechanism
  publication-title: Biosyst. Eng.
– reference: Kingma, D.P., Ba, J., 2017. Adam: a method for stochastic optimization. arXiv:1412.6980 [cs].
– volume: 2
  year: 2022
  ident: bib0023
  article-title: Semantic segmentation of in-field cotton bolls from the sky using deep convolutional neural networks
  publication-title: Smart Agric. Technol.
– volume: 236
  year: 2020
  ident: bib0010
  article-title: Estimating body weight, body condition score, and type traits in dairy cows using three dimensional cameras and manual body measurements
  publication-title: Livest. Sci.
– volume: 56
  start-page: 192
  year: 2024
  ident: bib0020
  article-title: Attention module incorporated transfer learning empowered deep learning-based models for classification of phenotypically similar tropical cattle breeds (Bos indicus)
  publication-title: Trop. Anim. Health Prod.
– volume: 13
  start-page: 4998
  year: 2021
  ident: bib0031
  article-title: Animal migration patterns extraction based on Atrous-Gated CNN deep learning model
  publication-title: Remote Sens. (Basel)
– volume: 179
  year: 2020
  ident: bib0011
  article-title: Accurate body measurement of live cattle using three depth cameras and non-rigid 3-D shape recovery
  publication-title: Comput. Electron. Agric.
– reference: Google Colaboratory, 2021. Google colaboratory [WWW Document]. (accessed on 11.17.23).
– volume: 8
  start-page: 1
  year: 2023
  end-page: 19
  ident: bib0036
  article-title: Lightweight convolutional neural network models for semantic segmentation of in-field cotton bolls
  publication-title: Artif. Intell. Agric.
– volume: 10
  start-page: 265
  year: 2016
  end-page: 283
  ident: bib0040
  article-title: TensorFlow: a system for large-scale machine learning
  publication-title: Bus. Opp.
– start-page: 248
  year: 2009
  end-page: 255
  ident: bib0034
  article-title: ImageNet: a large-scale hierarchical image database
  publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition. Presented at the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops)
– volume: 6
  year: 2023
  ident: bib0017
  article-title: Depth video data-enabled predictions of longitudinal dairy cow body weight using thresholding and Mask R-CNN algorithms
  publication-title: Smart Agric. Technol.
– volume: 101
  start-page: 1234
  year: 2018
  end-page: 1239
  ident: bib0042
  article-title: Near infrared reflectance spectroscopy to predict fecal indigestible neutral detergent fiber for dairy cows
  publication-title: J. Dairy. Sci.
– volume: 46
  start-page: 1004
  year: 2018
  end-page: 1015
  ident: bib0008
  article-title: Development and validation of a visual image analysis for monitoring the body size of sheep
  publication-title: J. Appl. Anim. Res.
– volume: 18
  start-page: 3014
  year: 2018
  ident: bib0006
  article-title: Non-contact body measurement for Qinchuan cattle with LiDAR sensor
  publication-title: Sensors
– reference: Tkachenko, M., Malyuk, M., Holmanyuk, A., Liubimo, N., 2020. Label studio: data labeling software.
– volume: 315
  year: 2019
  ident: bib0001
  article-title: Non-contact methods of cattle conformation assessment using mobile measuring systems
  publication-title: IOP Conf. Ser.: Earth Environ. Sci.
– reference: Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L., 2014. Semantic image segmentation with deep convolutional nets and fully connected CRFs.
– volume: 76
  start-page: 189
  year: 2011
  end-page: 197
  ident: bib0007
  article-title: Determination of body measurements on the Holstein cows using digital image analysis and estimation of live weight with regression analysis
  publication-title: Comput. Electron. Agric.
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: bib0025
  article-title: SegNet: a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEe Trans. Pattern. Anal. Mach. Intell.
– reference: Chen, L.-C., Papandreou, G., Schroff, F., Adam, H., 2017. Rethinking atrous convolution for semantic image segmentation.
– start-page: 1
  year: 2023
  end-page: 6
  ident: bib0032
  article-title: Semantic segmentation of strawberry plants using DeepLabV3+ for small agricultural robot
  publication-title: 2023 IEEE/SICE International Symposium on System Integration (SII). Presented at the 2023 IEEE/SICE International Symposium on System Integration (SII)
– reference: .
– volume: 86
  start-page: 4083
  year: 2003
  end-page: 4089
  ident: bib0003
  article-title: Impact of type traits on functional herd life of Quebec Holsteins assessed by survival analysis
  publication-title: J. Dairy. Sci.
– volume: 106
  start-page: 7924
  year: 2023
  end-page: 7931
  ident: bib0021
  article-title: Effects of udder edema on parlor behavior in first- and second-lactation Holstein dairy cows
  publication-title: J. Dairy. Sci.
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 13
  ident: bib0035
  article-title: The real-time mobile application for classifying of endangered parrot species using the CNN models based on transfer learning
  publication-title: Mobile Inf. Syst.
– volume: 3
  start-page: 225
  year: 2014
  ident: bib0009
  article-title: Feasibility of automated body trait determination using the SR4K time-of-flight camera in cow barns
  publication-title: Springerplus.
– reference: Chollet, F., 2015. Keras. (accessed on 11.14.23).
– volume: 40
  start-page: 834
  year: 2018
  end-page: 848
  ident: bib0026
  article-title: DeepLab: semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs
  publication-title: IEEe Trans. Pattern. Anal. Mach. Intell.
– year: 2024
  ident: bib0019
  article-title: Development of attention-enabled multi-scale pyramid network-based models for body part segmentation of dairy cows
  publication-title: J. Biosyst. Eng.
– start-page: 3788
  year: 2021
  end-page: 3795
  ident: bib0038
  article-title: X-net with different loss functions for cell image segmentation
  publication-title: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Presented at the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
– volume: 39
  start-page: 2481
  year: 2017
  ident: 10.1016/j.atech.2024.100509_bib0025
  article-title: SegNet: a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEe Trans. Pattern. Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– volume: 3
  year: 2023
  ident: 10.1016/j.atech.2024.100509_bib0018
  article-title: Deep learning–based automated measurements of the scrotal circumference of Norwegian Red bulls from 3D images
  publication-title: Smart Agric. Technol.
– ident: 10.1016/j.atech.2024.100509_bib0028
– start-page: 1
  year: 2023
  ident: 10.1016/j.atech.2024.100509_bib0032
  article-title: Semantic segmentation of strawberry plants using DeepLabV3+ for small agricultural robot
– volume: 8
  start-page: 1
  year: 2023
  ident: 10.1016/j.atech.2024.100509_bib0036
  article-title: Lightweight convolutional neural network models for semantic segmentation of in-field cotton bolls
  publication-title: Artif. Intell. Agric.
– volume: 10
  start-page: 265
  year: 2016
  ident: 10.1016/j.atech.2024.100509_bib0040
  article-title: TensorFlow: a system for large-scale machine learning
  publication-title: Bus. Opp.
– volume: 3
  start-page: 225
  year: 2014
  ident: 10.1016/j.atech.2024.100509_bib0009
  article-title: Feasibility of automated body trait determination using the SR4K time-of-flight camera in cow barns
  publication-title: Springerplus.
  doi: 10.1186/2193-1801-3-225
– year: 2024
  ident: 10.1016/j.atech.2024.100509_bib0019
  article-title: Development of attention-enabled multi-scale pyramid network-based models for body part segmentation of dairy cows
  publication-title: J. Biosyst. Eng.
  doi: 10.1007/s42853-024-00226-z
– ident: 10.1016/j.atech.2024.100509_bib0022
– volume: 76
  start-page: 189
  year: 2011
  ident: 10.1016/j.atech.2024.100509_bib0007
  article-title: Determination of body measurements on the Holstein cows using digital image analysis and estimation of live weight with regression analysis
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2011.02.001
– volume: 1
  year: 2021
  ident: 10.1016/j.atech.2024.100509_bib0012
  article-title: A robust machine vision system for body measurements of beef calves
  publication-title: Smart Agric. Technol.
– volume: 2
  year: 2022
  ident: 10.1016/j.atech.2024.100509_bib0023
  article-title: Semantic segmentation of in-field cotton bolls from the sky using deep convolutional neural networks
  publication-title: Smart Agric. Technol.
– volume: 13
  start-page: 4998
  year: 2021
  ident: 10.1016/j.atech.2024.100509_bib0031
  article-title: Animal migration patterns extraction based on Atrous-Gated CNN deep learning model
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs13244998
– volume: 40
  start-page: 834
  year: 2018
  ident: 10.1016/j.atech.2024.100509_bib0026
  article-title: DeepLab: semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs
  publication-title: IEEe Trans. Pattern. Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– volume: 315
  year: 2019
  ident: 10.1016/j.atech.2024.100509_bib0001
  article-title: Non-contact methods of cattle conformation assessment using mobile measuring systems
  publication-title: IOP Conf. Ser.: Earth Environ. Sci.
– ident: 10.1016/j.atech.2024.100509_bib0041
– volume: 198
  year: 2022
  ident: 10.1016/j.atech.2024.100509_bib0005
  article-title: Automatic livestock body measurement based on keypoint detection with multiple depth cameras
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107059
– volume: 153
  start-page: 33
  year: 2018
  ident: 10.1016/j.atech.2024.100509_bib0002
  article-title: Algorithm of sheep body dimension measurement and its applications based on image analysis
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.07.033
– start-page: 303
  year: 2008
  ident: 10.1016/j.atech.2024.100509_bib0004
  article-title: Study on linear appraisal of dairy cow's conformation based on image processing
– start-page: 3788
  year: 2021
  ident: 10.1016/j.atech.2024.100509_bib0038
  article-title: X-net with different loss functions for cell image segmentation
– volume: 46
  start-page: 1004
  year: 2018
  ident: 10.1016/j.atech.2024.100509_bib0008
  article-title: Development and validation of a visual image analysis for monitoring the body size of sheep
  publication-title: J. Appl. Anim. Res.
  doi: 10.1080/09712119.2018.1450257
– volume: 56
  start-page: 192
  year: 2024
  ident: 10.1016/j.atech.2024.100509_bib0020
  article-title: Attention module incorporated transfer learning empowered deep learning-based models for classification of phenotypically similar tropical cattle breeds (Bos indicus)
  publication-title: Trop. Anim. Health Prod.
  doi: 10.1007/s11250-024-04050-7
– ident: 10.1016/j.atech.2024.100509_bib0037
– volume: 9
  start-page: 121060
  year: 2021
  ident: 10.1016/j.atech.2024.100509_bib0029
  article-title: Estimation of road boundary for intelligent vehicles based on DeepLabV3+ architecture
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2021.3107353
– volume: 86
  start-page: 4083
  year: 2003
  ident: 10.1016/j.atech.2024.100509_bib0003
  article-title: Impact of type traits on functional herd life of Quebec Holsteins assessed by survival analysis
  publication-title: J. Dairy. Sci.
  doi: 10.3168/jds.S0022-0302(03)74021-1
– volume: 179
  year: 2020
  ident: 10.1016/j.atech.2024.100509_bib0011
  article-title: Accurate body measurement of live cattle using three depth cameras and non-rigid 3-D shape recovery
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105821
– volume: 5
  start-page: 142
  year: 2021
  ident: 10.1016/j.atech.2024.100509_bib0013
  article-title: Image processing algorithms for in-field cotton boll detection in natural lighting conditions
  publication-title: Artif. Intell. Agric.
– volume: 21
  start-page: 3218
  year: 2021
  ident: 10.1016/j.atech.2024.100509_bib0015
  article-title: Pig Weight and Body Size Estimation Using a Multiple Output Regression Convolutional Neural Network: A Fast and Fully Automatic Method
  publication-title: Sensors
  doi: 10.3390/s21093218
– volume: 11
  start-page: 513
  year: 2020
  ident: 10.1016/j.atech.2024.100509_bib0016
  article-title: Estimating conformational traits in dairy cattle with DeepAPS: a two-step deep learning automated phenotyping and segmentation approach
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2020.00513
– volume: 236
  year: 2020
  ident: 10.1016/j.atech.2024.100509_bib0010
  article-title: Estimating body weight, body condition score, and type traits in dairy cows using three dimensional cameras and manual body measurements
  publication-title: Livest. Sci.
  doi: 10.1016/j.livsci.2020.104054
– volume: 223
  start-page: 259
  year: 2022
  ident: 10.1016/j.atech.2024.100509_bib0030
  article-title: Oestrus detection in dairy cows by using atrous spatial pyramid and attention mechanism
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2022.08.018
– volume: 2020
  start-page: 1
  year: 2020
  ident: 10.1016/j.atech.2024.100509_bib0035
  article-title: The real-time mobile application for classifying of endangered parrot species using the CNN models based on transfer learning
  publication-title: Mobile Inf. Syst.
  doi: 10.1155/2020/1475164
– volume: 25
  start-page: 1097
  year: 2012
  ident: 10.1016/j.atech.2024.100509_bib0014
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: 10.1016/j.atech.2024.100509_bib0024
  doi: 10.1007/978-3-319-24574-4_28
– ident: 10.1016/j.atech.2024.100509_bib0027
– start-page: 248
  year: 2009
  ident: 10.1016/j.atech.2024.100509_bib0034
  article-title: ImageNet: a large-scale hierarchical image database
– volume: 101
  start-page: 1234
  year: 2018
  ident: 10.1016/j.atech.2024.100509_bib0042
  article-title: Near infrared reflectance spectroscopy to predict fecal indigestible neutral detergent fiber for dairy cows
  publication-title: J. Dairy. Sci.
  doi: 10.3168/jds.2017-13319
– volume: 18
  start-page: 3014
  year: 2018
  ident: 10.1016/j.atech.2024.100509_bib0006
  article-title: Non-contact body measurement for Qinchuan cattle with LiDAR sensor
  publication-title: Sensors
  doi: 10.3390/s18093014
– ident: 10.1016/j.atech.2024.100509_bib0039
– volume: 6
  year: 2023
  ident: 10.1016/j.atech.2024.100509_bib0017
  article-title: Depth video data-enabled predictions of longitudinal dairy cow body weight using thresholding and Mask R-CNN algorithms
  publication-title: Smart Agric. Technol.
– volume: 106
  start-page: 7924
  year: 2023
  ident: 10.1016/j.atech.2024.100509_bib0021
  article-title: Effects of udder edema on parlor behavior in first- and second-lactation Holstein dairy cows
  publication-title: J. Dairy. Sci.
  doi: 10.3168/jds.2022-22761
– start-page: 770
  year: 2016
  ident: 10.1016/j.atech.2024.100509_bib0033
  article-title: Deep residual learning for image recognition
SSID ssj0002856898
Score 2.278327
Snippet •Developed an automatic system for linear type trait estimation of dairy cows.•System consists of RGB-D camera and CNNs for segmentation of body...
The assessment of traits is important in determining production potential, reproductive performance, and overall health of dairy cows. The assessment of these...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 100509
SubjectTerms Automatic measurement
Computer vision
Dairy cattle
Deep learning
Precision livestock farming
Title Deep learning aided computer vision system for automated linear type trait evaluation in dairy cows
URI https://dx.doi.org/10.1016/j.atech.2024.100509
https://doaj.org/article/3e450c0c376747ae848a813ddafbf1c0
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxYEAkR5yQMjEXHsxM7Io6hCKhOVull-BbVDW5VUiIXfzl2cQCZYWKIoss7Rd5HvO_vyHSFXKQsZBxqcWMYKFNWuEst9lhRZJiU3pgiNHMPkuRhPxdMsn_VafWFNWJQHjsDd8CDy1KUOVUeENEEJZRTj3pvKVsw12TrEvF4ytWi2jPJClaqTGWoKugyqokJGmAksDcixBLEXihrF_l5E6kWZx32y19JDehtf64DshOUhcQ8hrGnb3-GVoqijp65tx0Dj3-E0SjJT4KDUbOsVEFEYhBzSbCjus1JsBlHTH3VvOl9Sb-abDzD1_nZEpo-jl_tx0jZHSBwvRA0LgxPWc2Ucy0NmkclwAIqxijsmmbFpkCJwHiq4cdKkXpTYqMr5UMLCYvkxGSxXy3BCqFFS4fEmcEcjXGZtIYF3CePBWgmEaUiuO5z0Ompg6K44bKEbWDXCqiOsQ3KHWH4PRQHr5gG4Vbdu1X-5dUiKzhO65QIxxoOp-W-zn_7H7GdkF03GQr9zMqg323AB5KO2l813BtfJ5-gLe1PYrg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+aided+computer+vision+system+for+automated+linear+type+trait+evaluation+in+dairy+cows&rft.jtitle=Smart+agricultural+technology&rft.au=Devi%2C+Indu&rft.au=Singh%2C+Naseeb&rft.au=Dudi%2C+Kuldeep&rft.au=Ranjan%2C+Rakesh&rft.date=2024-08-01&rft.issn=2772-3755&rft.eissn=2772-3755&rft.volume=8&rft.spage=100509&rft_id=info:doi/10.1016%2Fj.atech.2024.100509&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_atech_2024_100509
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2772-3755&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2772-3755&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2772-3755&client=summon