Terahertz Broadband Adjustable Absorber Based on VO2 Multiple Ring Structure
A broadband adjustable absorber operating in the terahertz (THz) range is presented based on a vanadium dioxide (VO2) multiple ring structure with a certain gap design. The dynamic absorption regulation of the absorber is realized by utilizing the phase-change characteristics of VO2, which is easily...
Saved in:
Published in | Applied sciences Vol. 13; no. 1; p. 252 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A broadband adjustable absorber operating in the terahertz (THz) range is presented based on a vanadium dioxide (VO2) multiple ring structure with a certain gap design. The dynamic absorption regulation of the absorber is realized by utilizing the phase-change characteristics of VO2, which is easily affected by external temperature. The simulation results show that when the external temperature reaches 350 K, the conductivity of VO2 can reach 2 × 105 S/m, and the absorber can obtain an absorption efficiency of over 90% from 3.01 THz to 7.27 THz. At this time, the absorption bandwidth reaches 4.26 THz with 82.9% of the relative bandwidth. When the external temperature reaches 300 K, the conductivity changes to 200 S/m, and the absorption efficiency is less than 4%, indicating the strong THz absorption dynamic adjustable ability. Further, through analyzing the optimal impedance matching and the electric field distribution under different conductivities, the broadband absorption mechanism of the absorber can be obtained. Finally, this paper shows that the absorption spectrum cannot be influenced by small angle incidences in both polarization modes. Therefore, the ultra-wideband adjustable absorber is expected to have applications in the terahertz fields of detecting, modulating, and switching. |
---|---|
AbstractList | A broadband adjustable absorber operating in the terahertz (THz) range is presented based on a vanadium dioxide (VO2) multiple ring structure with a certain gap design. The dynamic absorption regulation of the absorber is realized by utilizing the phase-change characteristics of VO2, which is easily affected by external temperature. The simulation results show that when the external temperature reaches 350 K, the conductivity of VO2 can reach 2 × 105 S/m, and the absorber can obtain an absorption efficiency of over 90% from 3.01 THz to 7.27 THz. At this time, the absorption bandwidth reaches 4.26 THz with 82.9% of the relative bandwidth. When the external temperature reaches 300 K, the conductivity changes to 200 S/m, and the absorption efficiency is less than 4%, indicating the strong THz absorption dynamic adjustable ability. Further, through analyzing the optimal impedance matching and the electric field distribution under different conductivities, the broadband absorption mechanism of the absorber can be obtained. Finally, this paper shows that the absorption spectrum cannot be influenced by small angle incidences in both polarization modes. Therefore, the ultra-wideband adjustable absorber is expected to have applications in the terahertz fields of detecting, modulating, and switching. |
Author | Liu, Jianguo Wang, Xiaoxin Wang, Yuandong Wu, Guozhang |
Author_xml | – sequence: 1 givenname: Xiaoxin surname: Wang fullname: Wang, Xiaoxin – sequence: 2 givenname: Guozhang surname: Wu fullname: Wu, Guozhang – sequence: 3 givenname: Yuandong surname: Wang fullname: Wang, Yuandong – sequence: 4 givenname: Jianguo surname: Liu fullname: Liu, Jianguo |
BookMark | eNptUctKBDEQDKLg8-QPDHiU1U4ySSbH3cUXrCz4uoa8RmcZJ2OSOejXO7oKi9iXbqqrioLaR9td6DxCxxjOKJVwrvseU8BAGNlCewQEn9ASi-2NexcdpbSCcSSmFYY9tHjwUb_4mD-KWQzaGd25YupWQ8ratL6YmhSi8bGY6eRdEbriaUmK26HNTT--75ruubjPcbB5iP4Q7dS6Tf7oZx-gx8uLh_n1ZLG8uplPFxNLeZknxHnmKtCaG4aNsNJT4EZyMOAd1KJkFjgRRnhmLZXcgqyJqKtqTE1kyegBuln7uqBXqo_Nq47vKuhGfQMhPisdc2NbryovDSuZkSBwKS2uJDWlrgw1NXdcktHrZO3Vx_A2-JTVKgyxG-MrIjjGjAChIwuvWTaGlKKvlW2yzk3octRNqzCorw7URgej5vSP5jfpf-xPp9yHBQ |
CitedBy_id | crossref_primary_10_1016_j_carbon_2024_119569 crossref_primary_10_3390_photonics10060621 crossref_primary_10_1109_ACCESS_2024_3404480 crossref_primary_10_1016_j_photonics_2023_101211 crossref_primary_10_1109_LPT_2023_3313935 crossref_primary_10_1016_j_surfin_2024_104403 crossref_primary_10_1007_s11468_023_01990_y crossref_primary_10_1103_PhysRevApplied_22_024004 crossref_primary_10_1039_D5DT00153F crossref_primary_10_1364_AO_525092 crossref_primary_10_1016_j_optcom_2025_131672 crossref_primary_10_1038_s41598_024_69875_6 crossref_primary_10_1007_s11468_023_02115_1 crossref_primary_10_1007_s12648_024_03292_3 crossref_primary_10_1364_JOSAB_538116 crossref_primary_10_1364_JOSAB_499122 crossref_primary_10_1364_AO_544937 |
Cites_doi | 10.1103/PhysRevA.77.023821 10.1088/0022-3727/45/23/235106 10.1103/PhysRevLett.106.037403 10.1063/1.3463466 10.1364/OE.25.032280 10.1364/OE.391066 10.1103/PhysRevLett.100.207402 10.1007/s10854-017-6570-x 10.1016/j.ymssp.2022.108832 10.1364/OE.388066 10.1063/5.0019902 10.3788/CJL202047.0903001 10.1038/ncomms13236 10.1016/j.carbon.2020.12.001 10.3390/app10207259 10.1364/OE.25.028295 10.1126/science.1058847 10.3390/nano12152693 10.1364/AO.57.000959 10.1103/PhysRevE.74.036621 10.1109/LPT.2016.2593699 10.1109/TAP.2018.2889006 10.1016/j.optcom.2019.07.057 10.1016/j.optlastec.2022.108764 10.1063/1.4916232 10.1088/1402-4896/ac1842 10.1016/j.optcom.2015.10.031 10.1038/s41598-017-04692-8 10.1063/1.4894181 10.1103/PhysRevB.65.195104 10.1088/0953-8984/24/41/415604 10.1364/OME.9.002067 10.1038/nphoton.2007.28 10.1016/j.optcom.2020.125835 10.1016/j.optcom.2016.08.003 10.1364/OE.16.011802 10.1063/5.0082295 10.2528/PIER13050601 10.1364/OE.394359 10.1038/nature11231 10.1109/JPHOT.2019.2898981 10.1142/S0217984914502509 10.1002/adom.201801318 10.1016/j.jallcom.2022.166617 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app13010252 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (New) (NC LIVE) ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_8e9b545b907149c1893b4a8b3bf6d692 10_3390_app13010252 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c364t-2de5d80aa6b51b7c9e306b960b0ed0f745c0627b7e5cc396c09f27f8809129453 |
IEDL.DBID | BENPR |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:31:14 EDT 2025 Mon Jun 30 11:09:44 EDT 2025 Tue Jul 01 04:32:40 EDT 2025 Thu Apr 24 22:58:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-2de5d80aa6b51b7c9e306b960b0ed0f745c0627b7e5cc396c09f27f8809129453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2761152023?pq-origsite=%requestingapplication% |
PQID | 2761152023 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8e9b545b907149c1893b4a8b3bf6d692 proquest_journals_2761152023 crossref_citationtrail_10_3390_app13010252 crossref_primary_10_3390_app13010252 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Bae (ref_4) 2022; 170 Li (ref_20) 2022; 925 Hao (ref_24) 2014; 105 Song (ref_26) 2020; 28 Liu (ref_42) 2012; 24 Cummer (ref_7) 2006; 74 ref_36 Wen (ref_39) 2010; 97 Cheng (ref_27) 2016; 361 Li (ref_29) 2019; 9 Bai (ref_33) 2019; 452 Li (ref_6) 2019; 67 Zhou (ref_35) 2021; 96 Liu (ref_30) 2020; 128 Yang (ref_38) 2022; 12 Wen (ref_22) 2012; 45 Chen (ref_25) 2020; 28 Shelby (ref_1) 2001; 292 ref_19 Li (ref_34) 2020; 47 Landy (ref_11) 2008; 100 Liu (ref_21) 2022; 174 Jiang (ref_31) 2020; 471 Diincer (ref_2) 2013; 140 Wang (ref_28) 2017; 25 Liu (ref_43) 2016; 7 Song (ref_32) 2019; 11 Shen (ref_12) 2011; 106 Liu (ref_40) 2012; 487 Chen (ref_18) 2019; 7 Cai (ref_8) 2007; 1 Li (ref_5) 2023; 157 Almoneef (ref_10) 2015; 106 Deng (ref_23) 2017; 25 Zhang (ref_14) 2017; 382 Smith (ref_44) 2002; 65 Diincer (ref_3) 2014; 28 Wang (ref_13) 2017; 28 Kwon (ref_9) 2008; 16 Rahmanzadeh (ref_16) 2018; 57 Huang (ref_37) 2020; 28 Campbell (ref_17) 2008; 77 Pan (ref_15) 2016; 28 Wang (ref_41) 2017; 7 |
References_xml | – volume: 77 start-page: 023821 year: 2008 ident: ref_17 article-title: Limitations of decomposition-based imaging of longitudinal absorber configurations publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.77.023821 – volume: 45 start-page: 235106 year: 2012 ident: ref_22 article-title: A tunable hybrid metamaterial absorber based on vanadium oxide films publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/45/23/235106 – volume: 106 start-page: 037403 year: 2011 ident: ref_12 article-title: Optically implemented broadband blueshift switch in the terahertz regime publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.037403 – volume: 97 start-page: 021111 year: 2010 ident: ref_39 article-title: THz metamaterials with VO2 cut-wires for thermal tunability publication-title: Appl. Phys. Lett. doi: 10.1063/1.3463466 – volume: 25 start-page: 32280 year: 2017 ident: ref_28 article-title: Triple-band tunable perfect THz metamaterial absorber with liquid crystal publication-title: Opt. Express doi: 10.1364/OE.25.032280 – volume: 28 start-page: 12487 year: 2020 ident: ref_26 article-title: Achieving broadband absorption and polarization conversion with a vanadium dioxide metasurface in the same THz frequencies publication-title: Opt. Express doi: 10.1364/OE.391066 – volume: 100 start-page: 207402 year: 2008 ident: ref_11 article-title: Perfect metamaterial absorber publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.207402 – volume: 28 start-page: 8487 year: 2017 ident: ref_13 article-title: Temperature tunable metamaterial absorber at THz frequencies publication-title: J. Mater. Sci.-Mater. Electron. doi: 10.1007/s10854-017-6570-x – volume: 170 start-page: 108832 year: 2022 ident: ref_4 article-title: Nonlinear elastic metamaterial for tunable bandgap at quasi-static frequency publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.108832 – volume: 28 start-page: 6565 year: 2020 ident: ref_25 article-title: Simultaneous realizations of absorber and transparent conducting metal in a single metamaterial publication-title: Opt. Express doi: 10.1364/OE.388066 – volume: 128 start-page: 093104 year: 2020 ident: ref_30 article-title: Ultra-broadband THz absorber based on a multilayer graphene metamaterial publication-title: J. Appl. Phys. doi: 10.1063/5.0019902 – volume: 47 start-page: 0903001 year: 2020 ident: ref_34 article-title: Broadband Tunable Terahertz Absorber Based on Hybrid Graphene-Vanadium Dioxide Metamaterials publication-title: Chin. J. Lasers doi: 10.3788/CJL202047.0903001 – volume: 7 start-page: 13236 year: 2016 ident: ref_43 article-title: Hybrid metamaterials for electrically triggered multifunctional control publication-title: Nat. Commun. doi: 10.1038/ncomms13236 – volume: 174 start-page: 617 year: 2022 ident: ref_21 article-title: Terahertz absorption modulator with largely tunable bandwidth and intensity publication-title: Carbon doi: 10.1016/j.carbon.2020.12.001 – ident: ref_36 doi: 10.3390/app10207259 – volume: 25 start-page: 28295 year: 2017 ident: ref_23 article-title: Broadband infrared absorbers with stacked double chromium ring resonators publication-title: Opt. Express doi: 10.1364/OE.25.028295 – volume: 292 start-page: 77 year: 2001 ident: ref_1 article-title: Experimental verification of a negative index of refraction publication-title: Science doi: 10.1126/science.1058847 – ident: ref_19 doi: 10.3390/nano12152693 – volume: 57 start-page: 959 year: 2018 ident: ref_16 article-title: Multilayer graphene-based metasurfaces: Robust design method for extremely broadband, wide-angle, and polarization-insensitive terahertz absorbers publication-title: Appl. Opt. doi: 10.1364/AO.57.000959 – volume: 74 start-page: 036621 year: 2006 ident: ref_7 article-title: Full-wave simulations of electromagnetic cloaking structures publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.74.036621 – volume: 28 start-page: 2335 year: 2016 ident: ref_15 article-title: A novel design of broadband terahertz metamaterial absorber based on nested circle rings publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/LPT.2016.2593699 – volume: 67 start-page: 2442 year: 2019 ident: ref_6 article-title: Design of a broadband metasurface luneburg lens for full-angle operation publication-title: IEEE Trans. Antennas. Propag. doi: 10.1109/TAP.2018.2889006 – volume: 452 start-page: 292 year: 2019 ident: ref_33 article-title: Tunable broadband THz absorber using vanadium dioxide metamaterials publication-title: Opt. Commun. doi: 10.1016/j.optcom.2019.07.057 – volume: 157 start-page: 108764 year: 2023 ident: ref_5 article-title: Tailoring terahertz wavefront with state switching in VO2 Pancharatnam–Berry metasurfaces publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2022.108764 – volume: 106 start-page: 153902 year: 2015 ident: ref_10 article-title: Metamaterial electromagnetic energy harvester with near unity efficiency publication-title: Appl. Phys. Lett. doi: 10.1063/1.4916232 – volume: 96 start-page: 115506 year: 2021 ident: ref_35 article-title: Switchable bifunctional metamaterial for terahertz anomalous reflection and broadband absorption publication-title: Phys. Scr. doi: 10.1088/1402-4896/ac1842 – volume: 361 start-page: 41 year: 2016 ident: ref_27 article-title: A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for THz waves publication-title: Opt. Commun. doi: 10.1016/j.optcom.2015.10.031 – volume: 7 start-page: 4326 year: 2017 ident: ref_41 article-title: Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2) publication-title: Sci. Rep. doi: 10.1038/s41598-017-04692-8 – volume: 105 start-page: 081102 year: 2014 ident: ref_24 article-title: Bandwidth enhancement in disordered metamaterial absorbers publication-title: Appl. Phys. Lett. doi: 10.1063/1.4894181 – volume: 65 start-page: 195104 year: 2002 ident: ref_44 article-title: Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.65.195104 – volume: 24 start-page: 415604 year: 2012 ident: ref_42 article-title: Ultrafast insulator–metal phase transition in vanadium dioxide studied using optical pump–THz probe spectroscopy publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/24/41/415604 – volume: 9 start-page: 2067 year: 2019 ident: ref_29 article-title: Flexible dual-band all-graphene-dielectric THz absorber publication-title: Opt. Mater. Express doi: 10.1364/OME.9.002067 – volume: 1 start-page: 224 year: 2007 ident: ref_8 article-title: Optical cloaking with metamaterials publication-title: Nat. Photonics doi: 10.1038/nphoton.2007.28 – volume: 471 start-page: 125835 year: 2020 ident: ref_31 article-title: Ultra-broadband wide-angle THz absorber realized by a doped silicon metamaterial publication-title: Opt. Commun. doi: 10.1016/j.optcom.2020.125835 – volume: 382 start-page: 281 year: 2017 ident: ref_14 article-title: Graphene induced tunable and polarization-insensitive broadband metamaterial absorber publication-title: Opt. Commun. doi: 10.1016/j.optcom.2016.08.003 – volume: 16 start-page: 11802 year: 2008 ident: ref_9 article-title: Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation publication-title: Opt. Express doi: 10.1364/OE.16.011802 – volume: 12 start-page: 045219 year: 2022 ident: ref_38 article-title: Tunable broadband terahertz metamaterial absorber based on vanadium dioxide publication-title: AIP Adv. doi: 10.1063/5.0082295 – volume: 140 start-page: 227 year: 2013 ident: ref_2 article-title: Asymmetric transmission of linearly polarized waves and dynamically wave rotation using chiral metamaterial publication-title: Prog. Electromagn. Res. doi: 10.2528/PIER13050601 – volume: 28 start-page: 17832 year: 2020 ident: ref_37 article-title: Broadband terahertz absorber with a flexible, reconfigurable performance based on hybrid-patterned vanadium dioxide metasurfaces publication-title: Opt. Express doi: 10.1364/OE.394359 – volume: 487 start-page: 345 year: 2012 ident: ref_40 article-title: THz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial publication-title: Nature doi: 10.1038/nature11231 – volume: 11 start-page: 4600607 year: 2019 ident: ref_32 article-title: Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces publication-title: IEEE Photon. J. doi: 10.1109/JPHOT.2019.2898981 – volume: 28 start-page: 1450250 year: 2014 ident: ref_3 article-title: Asymmetric transmission of linearly polarized electromagnetic waves using chiral metamaterials with constant chirality over a certain frequency band publication-title: Mode. Phys. Lett. B doi: 10.1142/S0217984914502509 – volume: 7 start-page: 1801318 year: 2019 ident: ref_18 article-title: Graphene-Based Materials toward Microwave and THz Absorbing Stealth Technologies publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201801318 – volume: 925 start-page: 166617 year: 2022 ident: ref_20 article-title: Dual-band tunable terahertz perfect absorber based on all-dielectric InSb resonator structure for sensing application publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.166617 |
SSID | ssj0000913810 |
Score | 2.3802695 |
Snippet | A broadband adjustable absorber operating in the terahertz (THz) range is presented based on a vanadium dioxide (VO2) multiple ring structure with a certain... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 252 |
SubjectTerms | absorber adjustable Bandwidths Conductivity Efficiency Electric fields Spectrum allocation terahertz vanadium dioxide |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iSQ-iq-LqKjnsQYVi26RJc1xFWcQPUFf2VjLJ9CBLV3bXi7_eSVtlRcGLt1KGtMx05s2kmTeM9ZNEW61D-5n1GElrRQSJkJFMEgElhIOLYb_j9k4NR_J6nI2XRn2FM2ENPXCjuLMcDRDKgwmdNsYlhK8gbQ60kvLK1NGXMG-pmKpjsEkCdVXTkCeorg__gylcE5xm6TcIqpn6fwTiGl2uNtlGmxbyQfM6W2wFqw5bXyIL7LCt1g3n_Ljlij7ZZjdPdEFqX7xzKqitB1t5PvAvoS0KJsgHMJ_OAGf8nNDK82nFn-9TftueIuQPtDJ_rClk32a4w0ZXl08Xw6gdkBA5oeQiSj1mPo-tVZAloJ1BKgCAahKI0cellpkLLMSgMXNOGOViU6a6JJc1BPMyE7tstZpWuMe4LxFjL9HmpZAiVxaVSn0Wsq0Stddddvqps8K17OFhiMWkoCoiKLhYUnCX9b-EXxvSjN_FzoPyv0QC03V9g-xftPYv_rJ_l_U-TVe07jcvUq0o0w2T4ff_4xkHbC2s1ey89NgqmQUPKRdZwFH92X0Ap17ZdQ priority: 102 providerName: Directory of Open Access Journals |
Title | Terahertz Broadband Adjustable Absorber Based on VO2 Multiple Ring Structure |
URI | https://www.proquest.com/docview/2761152023 https://doaj.org/article/8e9b545b907149c1893b4a8b3bf6d692 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BbtQwELXo9gKHqi0gWtqVDz0AUkQSO7ZzQruoS4VoQaVFvUUee4KEqqTsLhe-npmsdykCcUqUWD6MPfNmxp43QpwUhfXWcvmZj5hp71UGhdKZLgoFLfDFRc53nF-Ys2v9_qa6SQm3RbpWubaJg6GOfeAc-euS4m3CGoKYN3ffM-4axaerqYXGltgmE-zcSGxPTy8-XW6yLMx66Yp8VZinKL7nc2Ey2wSrVfkHFA2M_X8Z5AFlZrtiJ7mHcrJazz3xALt98egeaeC-2EvquJAvEmf0y8fiwxW9kPiXPyUF1j6C76KcxG9cHgW3KCew6OeAczkl1Iqy7-SXj6U8T7cJ5SXNLD8PVLI_5vhEXM9Or96eZalRQhaU0cusjFhFl3tvoCrAhhopEACKTSDHmLdWV4HZiMFiFYKqTcjrtrQtqW5NcK8r9VSMur7DZ0LGFjGPGr1rlVbOeDSmjBV7XS3aaA_Eq7XMmpBYxLmZxW1D0QQLuLkn4ANxshl8tyLP-PewKQt_M4QZr4cP_fxrkxSocVgDeXtQc8VVHQrys0B7B7SjTDQ1TXK0XromqeGi-b1pDv__-7l4yI9VbuVIjEjgeEzexhLGYsvN3o3TxhoPMfsvIkHUng |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiLYgCm3xoUgtUkQejp0cENoWlm27WyTYot6Cx54goSopu4tQ-VH8RmbyWIpA3HqLHMuH8Xi-mbHnGyF2o8hYY7j8zHoMlLVJAFGiAhVFCZTADxc53zE51aMzdXyenq-In30tDD-r7G1iY6h97ThH_iKmeJuwhiDm1eXXgLtG8e1q30KjVYsTvPpOIdv85dFr2t9ncTx8Mz0cBV1XgcAlWi2C2GPqs9BaDWkExuVIXjOQIw8h-rA0KnVM3QsGU-eSXLswL2NTkp7nhI2Ku0SQyb-lEkJyrkwfvl3mdJhjM4vCtgyQ_od8C00gQSCexn8AX9Mf4C_z32Da8L641zmjctBqz5pYwWpd3L1GUbgu1rrDP5d7HUP1_oYYT-mDNnvxQ1IYbz3YysuB_8LFWHCBcgDzegY4kweEkV7Wlfz4LpaT7u2ifE8ryw8Nce23GT4QZzciwIditaorfCSkLxFDr9BmZaKSTFvUOvYp-3glGm82xfNeZoXrOMu5dcZFQbELC7i4JuBNsbucfNlSdfx72gELfzmF-bWbgXr2ueiOa5FhDuRbQs71XbmLyKsDZTMg_dVe57TIVr91RXfo58VvFX38_99Pxe3RdDIuxkenJ0_EHR5qszpbYpWEj9vk5yxgp1EuKT7dtDb_AhgoDWo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEN-QIzH6YAQ1oqj7gImaNLbd7W77QMydcAGBkyAY3sp-TE0MafHuDNE_jb-OmXZ7YjS-8dZsN_sw--t8deY3jG0kiTZaU_uZ8RBJY0RkEyEjmSTCVpYKFynfcTBROyfy42l2usSu-l4YKqvsdWKrqH3jKEf-LsV4G20N0fJUoSzicGv8_uJ7RBOk6E9rP06jg8ge_LzE8G22ubuFd_0qTcfbxx92ojBhIHJCyXmUesh8HhujbJZY7QpAD9qiU29j8HGlZeaIxtdqyJwThXJxUaW6QswXaCclTYxA9b-sKSoasOXR9uTwaJHhIcbNPIm7pkAhipj-SaPJQJOepX-YwXZawF_GoLVw4wfsfnBN-bDD0gpbgnqV3btBWLjKVoIqmPHXga_6zUO2f4wPePXzXxyDeuOtqT0f-m_UmmXPgQ_trJlamPIRWkzPm5p_-ZTyg1DJyI_wZP65pbH9MYVH7ORWRPiYDeqmhieM-wog9hJMXgkpcmVAqdRn5PFVoL1eY297mZUuMJjTII3zEiMZEnB5Q8BrbGOx-aIj7vj3thEJf7GF2LbbhWb6tQwfb5lDYdHTtAV1exUuQR_PSpNbRLPyqsBD1vurK4MKmJW_Afv0_69fsjuI5HJ_d7L3jN2llS7Fs84GKHt4jk7P3L4I6OLs7LYBfQ0coRL8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Terahertz+Broadband+Adjustable+Absorber+Based+on+VO2+Multiple+Ring+Structure&rft.jtitle=Applied+sciences&rft.au=Wang%2C+Xiaoxin&rft.au=Wu%2C+Guozhang&rft.au=Wang%2C+Yuandong&rft.au=Liu%2C+Jianguo&rft.date=2023-01-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=13&rft.issue=1&rft.spage=252&rft_id=info:doi/10.3390%2Fapp13010252&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app13010252 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |