Terahertz Broadband Adjustable Absorber Based on VO2 Multiple Ring Structure

A broadband adjustable absorber operating in the terahertz (THz) range is presented based on a vanadium dioxide (VO2) multiple ring structure with a certain gap design. The dynamic absorption regulation of the absorber is realized by utilizing the phase-change characteristics of VO2, which is easily...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 13; no. 1; p. 252
Main Authors Wang, Xiaoxin, Wu, Guozhang, Wang, Yuandong, Liu, Jianguo
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A broadband adjustable absorber operating in the terahertz (THz) range is presented based on a vanadium dioxide (VO2) multiple ring structure with a certain gap design. The dynamic absorption regulation of the absorber is realized by utilizing the phase-change characteristics of VO2, which is easily affected by external temperature. The simulation results show that when the external temperature reaches 350 K, the conductivity of VO2 can reach 2 × 105 S/m, and the absorber can obtain an absorption efficiency of over 90% from 3.01 THz to 7.27 THz. At this time, the absorption bandwidth reaches 4.26 THz with 82.9% of the relative bandwidth. When the external temperature reaches 300 K, the conductivity changes to 200 S/m, and the absorption efficiency is less than 4%, indicating the strong THz absorption dynamic adjustable ability. Further, through analyzing the optimal impedance matching and the electric field distribution under different conductivities, the broadband absorption mechanism of the absorber can be obtained. Finally, this paper shows that the absorption spectrum cannot be influenced by small angle incidences in both polarization modes. Therefore, the ultra-wideband adjustable absorber is expected to have applications in the terahertz fields of detecting, modulating, and switching.
AbstractList A broadband adjustable absorber operating in the terahertz (THz) range is presented based on a vanadium dioxide (VO2) multiple ring structure with a certain gap design. The dynamic absorption regulation of the absorber is realized by utilizing the phase-change characteristics of VO2, which is easily affected by external temperature. The simulation results show that when the external temperature reaches 350 K, the conductivity of VO2 can reach 2 × 105 S/m, and the absorber can obtain an absorption efficiency of over 90% from 3.01 THz to 7.27 THz. At this time, the absorption bandwidth reaches 4.26 THz with 82.9% of the relative bandwidth. When the external temperature reaches 300 K, the conductivity changes to 200 S/m, and the absorption efficiency is less than 4%, indicating the strong THz absorption dynamic adjustable ability. Further, through analyzing the optimal impedance matching and the electric field distribution under different conductivities, the broadband absorption mechanism of the absorber can be obtained. Finally, this paper shows that the absorption spectrum cannot be influenced by small angle incidences in both polarization modes. Therefore, the ultra-wideband adjustable absorber is expected to have applications in the terahertz fields of detecting, modulating, and switching.
Author Liu, Jianguo
Wang, Xiaoxin
Wang, Yuandong
Wu, Guozhang
Author_xml – sequence: 1
  givenname: Xiaoxin
  surname: Wang
  fullname: Wang, Xiaoxin
– sequence: 2
  givenname: Guozhang
  surname: Wu
  fullname: Wu, Guozhang
– sequence: 3
  givenname: Yuandong
  surname: Wang
  fullname: Wang, Yuandong
– sequence: 4
  givenname: Jianguo
  surname: Liu
  fullname: Liu, Jianguo
BookMark eNptUctKBDEQDKLg8-QPDHiU1U4ySSbH3cUXrCz4uoa8RmcZJ2OSOejXO7oKi9iXbqqrioLaR9td6DxCxxjOKJVwrvseU8BAGNlCewQEn9ASi-2NexcdpbSCcSSmFYY9tHjwUb_4mD-KWQzaGd25YupWQ8ratL6YmhSi8bGY6eRdEbriaUmK26HNTT--75ruubjPcbB5iP4Q7dS6Tf7oZx-gx8uLh_n1ZLG8uplPFxNLeZknxHnmKtCaG4aNsNJT4EZyMOAd1KJkFjgRRnhmLZXcgqyJqKtqTE1kyegBuln7uqBXqo_Nq47vKuhGfQMhPisdc2NbryovDSuZkSBwKS2uJDWlrgw1NXdcktHrZO3Vx_A2-JTVKgyxG-MrIjjGjAChIwuvWTaGlKKvlW2yzk3octRNqzCorw7URgej5vSP5jfpf-xPp9yHBQ
CitedBy_id crossref_primary_10_1016_j_carbon_2024_119569
crossref_primary_10_3390_photonics10060621
crossref_primary_10_1109_ACCESS_2024_3404480
crossref_primary_10_1016_j_photonics_2023_101211
crossref_primary_10_1109_LPT_2023_3313935
crossref_primary_10_1016_j_surfin_2024_104403
crossref_primary_10_1007_s11468_023_01990_y
crossref_primary_10_1103_PhysRevApplied_22_024004
crossref_primary_10_1039_D5DT00153F
crossref_primary_10_1364_AO_525092
crossref_primary_10_1016_j_optcom_2025_131672
crossref_primary_10_1038_s41598_024_69875_6
crossref_primary_10_1007_s11468_023_02115_1
crossref_primary_10_1007_s12648_024_03292_3
crossref_primary_10_1364_JOSAB_538116
crossref_primary_10_1364_JOSAB_499122
crossref_primary_10_1364_AO_544937
Cites_doi 10.1103/PhysRevA.77.023821
10.1088/0022-3727/45/23/235106
10.1103/PhysRevLett.106.037403
10.1063/1.3463466
10.1364/OE.25.032280
10.1364/OE.391066
10.1103/PhysRevLett.100.207402
10.1007/s10854-017-6570-x
10.1016/j.ymssp.2022.108832
10.1364/OE.388066
10.1063/5.0019902
10.3788/CJL202047.0903001
10.1038/ncomms13236
10.1016/j.carbon.2020.12.001
10.3390/app10207259
10.1364/OE.25.028295
10.1126/science.1058847
10.3390/nano12152693
10.1364/AO.57.000959
10.1103/PhysRevE.74.036621
10.1109/LPT.2016.2593699
10.1109/TAP.2018.2889006
10.1016/j.optcom.2019.07.057
10.1016/j.optlastec.2022.108764
10.1063/1.4916232
10.1088/1402-4896/ac1842
10.1016/j.optcom.2015.10.031
10.1038/s41598-017-04692-8
10.1063/1.4894181
10.1103/PhysRevB.65.195104
10.1088/0953-8984/24/41/415604
10.1364/OME.9.002067
10.1038/nphoton.2007.28
10.1016/j.optcom.2020.125835
10.1016/j.optcom.2016.08.003
10.1364/OE.16.011802
10.1063/5.0082295
10.2528/PIER13050601
10.1364/OE.394359
10.1038/nature11231
10.1109/JPHOT.2019.2898981
10.1142/S0217984914502509
10.1002/adom.201801318
10.1016/j.jallcom.2022.166617
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app13010252
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (New) (NC LIVE)
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_8e9b545b907149c1893b4a8b3bf6d692
10_3390_app13010252
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c364t-2de5d80aa6b51b7c9e306b960b0ed0f745c0627b7e5cc396c09f27f8809129453
IEDL.DBID BENPR
ISSN 2076-3417
IngestDate Wed Aug 27 01:31:14 EDT 2025
Mon Jun 30 11:09:44 EDT 2025
Tue Jul 01 04:32:40 EDT 2025
Thu Apr 24 22:58:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-2de5d80aa6b51b7c9e306b960b0ed0f745c0627b7e5cc396c09f27f8809129453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2761152023?pq-origsite=%requestingapplication%
PQID 2761152023
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_8e9b545b907149c1893b4a8b3bf6d692
proquest_journals_2761152023
crossref_citationtrail_10_3390_app13010252
crossref_primary_10_3390_app13010252
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Bae (ref_4) 2022; 170
Li (ref_20) 2022; 925
Hao (ref_24) 2014; 105
Song (ref_26) 2020; 28
Liu (ref_42) 2012; 24
Cummer (ref_7) 2006; 74
ref_36
Wen (ref_39) 2010; 97
Cheng (ref_27) 2016; 361
Li (ref_29) 2019; 9
Bai (ref_33) 2019; 452
Li (ref_6) 2019; 67
Zhou (ref_35) 2021; 96
Liu (ref_30) 2020; 128
Yang (ref_38) 2022; 12
Wen (ref_22) 2012; 45
Chen (ref_25) 2020; 28
Shelby (ref_1) 2001; 292
ref_19
Li (ref_34) 2020; 47
Landy (ref_11) 2008; 100
Liu (ref_21) 2022; 174
Jiang (ref_31) 2020; 471
Diincer (ref_2) 2013; 140
Wang (ref_28) 2017; 25
Liu (ref_43) 2016; 7
Song (ref_32) 2019; 11
Shen (ref_12) 2011; 106
Liu (ref_40) 2012; 487
Chen (ref_18) 2019; 7
Cai (ref_8) 2007; 1
Li (ref_5) 2023; 157
Almoneef (ref_10) 2015; 106
Deng (ref_23) 2017; 25
Zhang (ref_14) 2017; 382
Smith (ref_44) 2002; 65
Diincer (ref_3) 2014; 28
Wang (ref_13) 2017; 28
Kwon (ref_9) 2008; 16
Rahmanzadeh (ref_16) 2018; 57
Huang (ref_37) 2020; 28
Campbell (ref_17) 2008; 77
Pan (ref_15) 2016; 28
Wang (ref_41) 2017; 7
References_xml – volume: 77
  start-page: 023821
  year: 2008
  ident: ref_17
  article-title: Limitations of decomposition-based imaging of longitudinal absorber configurations
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.77.023821
– volume: 45
  start-page: 235106
  year: 2012
  ident: ref_22
  article-title: A tunable hybrid metamaterial absorber based on vanadium oxide films
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/45/23/235106
– volume: 106
  start-page: 037403
  year: 2011
  ident: ref_12
  article-title: Optically implemented broadband blueshift switch in the terahertz regime
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.037403
– volume: 97
  start-page: 021111
  year: 2010
  ident: ref_39
  article-title: THz metamaterials with VO2 cut-wires for thermal tunability
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3463466
– volume: 25
  start-page: 32280
  year: 2017
  ident: ref_28
  article-title: Triple-band tunable perfect THz metamaterial absorber with liquid crystal
  publication-title: Opt. Express
  doi: 10.1364/OE.25.032280
– volume: 28
  start-page: 12487
  year: 2020
  ident: ref_26
  article-title: Achieving broadband absorption and polarization conversion with a vanadium dioxide metasurface in the same THz frequencies
  publication-title: Opt. Express
  doi: 10.1364/OE.391066
– volume: 100
  start-page: 207402
  year: 2008
  ident: ref_11
  article-title: Perfect metamaterial absorber
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.207402
– volume: 28
  start-page: 8487
  year: 2017
  ident: ref_13
  article-title: Temperature tunable metamaterial absorber at THz frequencies
  publication-title: J. Mater. Sci.-Mater. Electron.
  doi: 10.1007/s10854-017-6570-x
– volume: 170
  start-page: 108832
  year: 2022
  ident: ref_4
  article-title: Nonlinear elastic metamaterial for tunable bandgap at quasi-static frequency
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.108832
– volume: 28
  start-page: 6565
  year: 2020
  ident: ref_25
  article-title: Simultaneous realizations of absorber and transparent conducting metal in a single metamaterial
  publication-title: Opt. Express
  doi: 10.1364/OE.388066
– volume: 128
  start-page: 093104
  year: 2020
  ident: ref_30
  article-title: Ultra-broadband THz absorber based on a multilayer graphene metamaterial
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0019902
– volume: 47
  start-page: 0903001
  year: 2020
  ident: ref_34
  article-title: Broadband Tunable Terahertz Absorber Based on Hybrid Graphene-Vanadium Dioxide Metamaterials
  publication-title: Chin. J. Lasers
  doi: 10.3788/CJL202047.0903001
– volume: 7
  start-page: 13236
  year: 2016
  ident: ref_43
  article-title: Hybrid metamaterials for electrically triggered multifunctional control
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13236
– volume: 174
  start-page: 617
  year: 2022
  ident: ref_21
  article-title: Terahertz absorption modulator with largely tunable bandwidth and intensity
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.12.001
– ident: ref_36
  doi: 10.3390/app10207259
– volume: 25
  start-page: 28295
  year: 2017
  ident: ref_23
  article-title: Broadband infrared absorbers with stacked double chromium ring resonators
  publication-title: Opt. Express
  doi: 10.1364/OE.25.028295
– volume: 292
  start-page: 77
  year: 2001
  ident: ref_1
  article-title: Experimental verification of a negative index of refraction
  publication-title: Science
  doi: 10.1126/science.1058847
– ident: ref_19
  doi: 10.3390/nano12152693
– volume: 57
  start-page: 959
  year: 2018
  ident: ref_16
  article-title: Multilayer graphene-based metasurfaces: Robust design method for extremely broadband, wide-angle, and polarization-insensitive terahertz absorbers
  publication-title: Appl. Opt.
  doi: 10.1364/AO.57.000959
– volume: 74
  start-page: 036621
  year: 2006
  ident: ref_7
  article-title: Full-wave simulations of electromagnetic cloaking structures
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.74.036621
– volume: 28
  start-page: 2335
  year: 2016
  ident: ref_15
  article-title: A novel design of broadband terahertz metamaterial absorber based on nested circle rings
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2016.2593699
– volume: 67
  start-page: 2442
  year: 2019
  ident: ref_6
  article-title: Design of a broadband metasurface luneburg lens for full-angle operation
  publication-title: IEEE Trans. Antennas. Propag.
  doi: 10.1109/TAP.2018.2889006
– volume: 452
  start-page: 292
  year: 2019
  ident: ref_33
  article-title: Tunable broadband THz absorber using vanadium dioxide metamaterials
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2019.07.057
– volume: 157
  start-page: 108764
  year: 2023
  ident: ref_5
  article-title: Tailoring terahertz wavefront with state switching in VO2 Pancharatnam–Berry metasurfaces
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2022.108764
– volume: 106
  start-page: 153902
  year: 2015
  ident: ref_10
  article-title: Metamaterial electromagnetic energy harvester with near unity efficiency
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4916232
– volume: 96
  start-page: 115506
  year: 2021
  ident: ref_35
  article-title: Switchable bifunctional metamaterial for terahertz anomalous reflection and broadband absorption
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ac1842
– volume: 361
  start-page: 41
  year: 2016
  ident: ref_27
  article-title: A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for THz waves
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2015.10.031
– volume: 7
  start-page: 4326
  year: 2017
  ident: ref_41
  article-title: Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2)
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-04692-8
– volume: 105
  start-page: 081102
  year: 2014
  ident: ref_24
  article-title: Bandwidth enhancement in disordered metamaterial absorbers
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4894181
– volume: 65
  start-page: 195104
  year: 2002
  ident: ref_44
  article-title: Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.195104
– volume: 24
  start-page: 415604
  year: 2012
  ident: ref_42
  article-title: Ultrafast insulator–metal phase transition in vanadium dioxide studied using optical pump–THz probe spectroscopy
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/24/41/415604
– volume: 9
  start-page: 2067
  year: 2019
  ident: ref_29
  article-title: Flexible dual-band all-graphene-dielectric THz absorber
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.9.002067
– volume: 1
  start-page: 224
  year: 2007
  ident: ref_8
  article-title: Optical cloaking with metamaterials
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2007.28
– volume: 471
  start-page: 125835
  year: 2020
  ident: ref_31
  article-title: Ultra-broadband wide-angle THz absorber realized by a doped silicon metamaterial
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2020.125835
– volume: 382
  start-page: 281
  year: 2017
  ident: ref_14
  article-title: Graphene induced tunable and polarization-insensitive broadband metamaterial absorber
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2016.08.003
– volume: 16
  start-page: 11802
  year: 2008
  ident: ref_9
  article-title: Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation
  publication-title: Opt. Express
  doi: 10.1364/OE.16.011802
– volume: 12
  start-page: 045219
  year: 2022
  ident: ref_38
  article-title: Tunable broadband terahertz metamaterial absorber based on vanadium dioxide
  publication-title: AIP Adv.
  doi: 10.1063/5.0082295
– volume: 140
  start-page: 227
  year: 2013
  ident: ref_2
  article-title: Asymmetric transmission of linearly polarized waves and dynamically wave rotation using chiral metamaterial
  publication-title: Prog. Electromagn. Res.
  doi: 10.2528/PIER13050601
– volume: 28
  start-page: 17832
  year: 2020
  ident: ref_37
  article-title: Broadband terahertz absorber with a flexible, reconfigurable performance based on hybrid-patterned vanadium dioxide metasurfaces
  publication-title: Opt. Express
  doi: 10.1364/OE.394359
– volume: 487
  start-page: 345
  year: 2012
  ident: ref_40
  article-title: THz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial
  publication-title: Nature
  doi: 10.1038/nature11231
– volume: 11
  start-page: 4600607
  year: 2019
  ident: ref_32
  article-title: Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces
  publication-title: IEEE Photon. J.
  doi: 10.1109/JPHOT.2019.2898981
– volume: 28
  start-page: 1450250
  year: 2014
  ident: ref_3
  article-title: Asymmetric transmission of linearly polarized electromagnetic waves using chiral metamaterials with constant chirality over a certain frequency band
  publication-title: Mode. Phys. Lett. B
  doi: 10.1142/S0217984914502509
– volume: 7
  start-page: 1801318
  year: 2019
  ident: ref_18
  article-title: Graphene-Based Materials toward Microwave and THz Absorbing Stealth Technologies
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201801318
– volume: 925
  start-page: 166617
  year: 2022
  ident: ref_20
  article-title: Dual-band tunable terahertz perfect absorber based on all-dielectric InSb resonator structure for sensing application
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.166617
SSID ssj0000913810
Score 2.3802695
Snippet A broadband adjustable absorber operating in the terahertz (THz) range is presented based on a vanadium dioxide (VO2) multiple ring structure with a certain...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 252
SubjectTerms absorber
adjustable
Bandwidths
Conductivity
Efficiency
Electric fields
Spectrum allocation
terahertz
vanadium dioxide
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iSQ-iq-LqKjnsQYVi26RJc1xFWcQPUFf2VjLJ9CBLV3bXi7_eSVtlRcGLt1KGtMx05s2kmTeM9ZNEW61D-5n1GElrRQSJkJFMEgElhIOLYb_j9k4NR_J6nI2XRn2FM2ENPXCjuLMcDRDKgwmdNsYlhK8gbQ60kvLK1NGXMG-pmKpjsEkCdVXTkCeorg__gylcE5xm6TcIqpn6fwTiGl2uNtlGmxbyQfM6W2wFqw5bXyIL7LCt1g3n_Ljlij7ZZjdPdEFqX7xzKqitB1t5PvAvoS0KJsgHMJ_OAGf8nNDK82nFn-9TftueIuQPtDJ_rClk32a4w0ZXl08Xw6gdkBA5oeQiSj1mPo-tVZAloJ1BKgCAahKI0cellpkLLMSgMXNOGOViU6a6JJc1BPMyE7tstZpWuMe4LxFjL9HmpZAiVxaVSn0Wsq0Stddddvqps8K17OFhiMWkoCoiKLhYUnCX9b-EXxvSjN_FzoPyv0QC03V9g-xftPYv_rJ_l_U-TVe07jcvUq0o0w2T4ff_4xkHbC2s1ey89NgqmQUPKRdZwFH92X0Ap17ZdQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Terahertz Broadband Adjustable Absorber Based on VO2 Multiple Ring Structure
URI https://www.proquest.com/docview/2761152023
https://doaj.org/article/8e9b545b907149c1893b4a8b3bf6d692
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BbtQwELXo9gKHqi0gWtqVDz0AUkQSO7ZzQruoS4VoQaVFvUUee4KEqqTsLhe-npmsdykCcUqUWD6MPfNmxp43QpwUhfXWcvmZj5hp71UGhdKZLgoFLfDFRc53nF-Ys2v9_qa6SQm3RbpWubaJg6GOfeAc-euS4m3CGoKYN3ffM-4axaerqYXGltgmE-zcSGxPTy8-XW6yLMx66Yp8VZinKL7nc2Ey2wSrVfkHFA2M_X8Z5AFlZrtiJ7mHcrJazz3xALt98egeaeC-2EvquJAvEmf0y8fiwxW9kPiXPyUF1j6C76KcxG9cHgW3KCew6OeAczkl1Iqy7-SXj6U8T7cJ5SXNLD8PVLI_5vhEXM9Or96eZalRQhaU0cusjFhFl3tvoCrAhhopEACKTSDHmLdWV4HZiMFiFYKqTcjrtrQtqW5NcK8r9VSMur7DZ0LGFjGPGr1rlVbOeDSmjBV7XS3aaA_Eq7XMmpBYxLmZxW1D0QQLuLkn4ANxshl8tyLP-PewKQt_M4QZr4cP_fxrkxSocVgDeXtQc8VVHQrys0B7B7SjTDQ1TXK0XromqeGi-b1pDv__-7l4yI9VbuVIjEjgeEzexhLGYsvN3o3TxhoPMfsvIkHUng
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiLYgCm3xoUgtUkQejp0cENoWlm27WyTYot6Cx54goSopu4tQ-VH8RmbyWIpA3HqLHMuH8Xi-mbHnGyF2o8hYY7j8zHoMlLVJAFGiAhVFCZTADxc53zE51aMzdXyenq-In30tDD-r7G1iY6h97ThH_iKmeJuwhiDm1eXXgLtG8e1q30KjVYsTvPpOIdv85dFr2t9ncTx8Mz0cBV1XgcAlWi2C2GPqs9BaDWkExuVIXjOQIw8h-rA0KnVM3QsGU-eSXLswL2NTkp7nhI2Ku0SQyb-lEkJyrkwfvl3mdJhjM4vCtgyQ_od8C00gQSCexn8AX9Mf4C_z32Da8L641zmjctBqz5pYwWpd3L1GUbgu1rrDP5d7HUP1_oYYT-mDNnvxQ1IYbz3YysuB_8LFWHCBcgDzegY4kweEkV7Wlfz4LpaT7u2ifE8ryw8Nce23GT4QZzciwIditaorfCSkLxFDr9BmZaKSTFvUOvYp-3glGm82xfNeZoXrOMu5dcZFQbELC7i4JuBNsbucfNlSdfx72gELfzmF-bWbgXr2ueiOa5FhDuRbQs71XbmLyKsDZTMg_dVe57TIVr91RXfo58VvFX38_99Pxe3RdDIuxkenJ0_EHR5qszpbYpWEj9vk5yxgp1EuKT7dtDb_AhgoDWo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEN-QIzH6YAQ1oqj7gImaNLbd7W77QMydcAGBkyAY3sp-TE0MafHuDNE_jb-OmXZ7YjS-8dZsN_sw--t8deY3jG0kiTZaU_uZ8RBJY0RkEyEjmSTCVpYKFynfcTBROyfy42l2usSu-l4YKqvsdWKrqH3jKEf-LsV4G20N0fJUoSzicGv8_uJ7RBOk6E9rP06jg8ge_LzE8G22ubuFd_0qTcfbxx92ojBhIHJCyXmUesh8HhujbJZY7QpAD9qiU29j8HGlZeaIxtdqyJwThXJxUaW6QswXaCclTYxA9b-sKSoasOXR9uTwaJHhIcbNPIm7pkAhipj-SaPJQJOepX-YwXZawF_GoLVw4wfsfnBN-bDD0gpbgnqV3btBWLjKVoIqmPHXga_6zUO2f4wPePXzXxyDeuOtqT0f-m_UmmXPgQ_trJlamPIRWkzPm5p_-ZTyg1DJyI_wZP65pbH9MYVH7ORWRPiYDeqmhieM-wog9hJMXgkpcmVAqdRn5PFVoL1eY297mZUuMJjTII3zEiMZEnB5Q8BrbGOx-aIj7vj3thEJf7GF2LbbhWb6tQwfb5lDYdHTtAV1exUuQR_PSpNbRLPyqsBD1vurK4MKmJW_Afv0_69fsjuI5HJ_d7L3jN2llS7Fs84GKHt4jk7P3L4I6OLs7LYBfQ0coRL8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Terahertz+Broadband+Adjustable+Absorber+Based+on+VO2+Multiple+Ring+Structure&rft.jtitle=Applied+sciences&rft.au=Wang%2C+Xiaoxin&rft.au=Wu%2C+Guozhang&rft.au=Wang%2C+Yuandong&rft.au=Liu%2C+Jianguo&rft.date=2023-01-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=13&rft.issue=1&rft.spage=252&rft_id=info:doi/10.3390%2Fapp13010252&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app13010252
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon