EEG Signal Processing and Supervised Machine Learning to Early Diagnose Alzheimer’s Disease
Electroencephalography (EEG) signal analysis is a fast, inexpensive, and accessible technique to detect the early stages of dementia, such as Mild Cognitive Impairment (MCI) and Alzheimer’s disease (AD). In the last years, EEG signal analysis has become an important topic of research to extract suit...
Saved in:
Published in | Applied sciences Vol. 12; no. 11; p. 5413 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electroencephalography (EEG) signal analysis is a fast, inexpensive, and accessible technique to detect the early stages of dementia, such as Mild Cognitive Impairment (MCI) and Alzheimer’s disease (AD). In the last years, EEG signal analysis has become an important topic of research to extract suitable biomarkers to determine the subject’s cognitive impairment. In this work, we propose a novel simple and efficient method able to extract features with a finite response filter (FIR) in the double time domain in order to discriminate among patients affected by AD, MCI, and healthy controls (HC). Notably, we compute the power intensity for each high- and low-frequency band, using their absolute differences to distinguish among the three classes of subjects by means of different supervised machine learning methods. We use EEG recordings from a cohort of 105 subjects (48 AD, 37 MCI, and 20 HC) referred for dementia to the IRCCS Centro Neurolesi “Bonino-Pulejo” of Messina, Italy. The findings show that this method reaches 97%, 95%, and 83% accuracy when considering binary classifications (HC vs. AD, HC vs. MCI, and MCI vs. AD) and an accuracy of 75% when dealing with the three classes (HC vs. AD vs. MCI). These results improve upon those obtained in previous studies and demonstrate the validity of our approach. Finally, the efficiency of the proposed method might allow its future development on embedded devices for low-cost real-time diagnosis. |
---|---|
AbstractList | Electroencephalography (EEG) signal analysis is a fast, inexpensive, and accessible technique to detect the early stages of dementia, such as Mild Cognitive Impairment (MCI) and Alzheimer’s disease (AD). In the last years, EEG signal analysis has become an important topic of research to extract suitable biomarkers to determine the subject’s cognitive impairment. In this work, we propose a novel simple and efficient method able to extract features with a finite response filter (FIR) in the double time domain in order to discriminate among patients affected by AD, MCI, and healthy controls (HC). Notably, we compute the power intensity for each high- and low-frequency band, using their absolute differences to distinguish among the three classes of subjects by means of different supervised machine learning methods. We use EEG recordings from a cohort of 105 subjects (48 AD, 37 MCI, and 20 HC) referred for dementia to the IRCCS Centro Neurolesi “Bonino-Pulejo” of Messina, Italy. The findings show that this method reaches 97%, 95%, and 83% accuracy when considering binary classifications (HC vs. AD, HC vs. MCI, and MCI vs. AD) and an accuracy of 75% when dealing with the three classes (HC vs. AD vs. MCI). These results improve upon those obtained in previous studies and demonstrate the validity of our approach. Finally, the efficiency of the proposed method might allow its future development on embedded devices for low-cost real-time diagnosis. |
Author | Weitschek, Emanuel De Salvo, Simona De Cola, Maria Cristina Di Paolo, Primiano Pirrone, Daniele |
Author_xml | – sequence: 1 givenname: Daniele surname: Pirrone fullname: Pirrone, Daniele – sequence: 2 givenname: Emanuel surname: Weitschek fullname: Weitschek, Emanuel – sequence: 3 givenname: Primiano surname: Di Paolo fullname: Di Paolo, Primiano – sequence: 4 givenname: Simona orcidid: 0000-0001-9501-3258 surname: De Salvo fullname: De Salvo, Simona – sequence: 5 givenname: Maria Cristina orcidid: 0000-0002-7509-3833 surname: De Cola fullname: De Cola, Maria Cristina |
BookMark | eNptkUtKBDEQhoMo-Fx5gYBLGc1r0uml6PiAEQV1KaEmXT1maJM26RHGldfwep7E1hERsTZV_PXVX1C1SVZDDEjILmcHUpbsENqWC86HissVsiFYoQdS8WL1V71OdnKesT5KLg1nG-R-NDqjN34aoKHXKTrM2YcphVDRm3mL6dlnrOgluAcfkI4RUvjsd5GOIDULeuJhGmJGetS8PKB_xPT--pZ7OSNk3CZrNTQZd77zFrk7Hd0enw_GV2cXx0fjgZNadQMBrlSgGVe1cliWQ1Y7haquELnBopLoWKUKXRfc1LJwmhljFJQS9NDUGuQWuVj6VhFmtk3-EdLCRvD2S4hpaiF13jVoFU6UEpVWvY2qjJ4IBignaMqhMJqL3mtv6dWm-DTH3NlZnKf-PtkKXSgpBRdFT-0vKZdizgnrn62c2c932F_v6Gn-h3a-g87H0CXwzb8zH8V2jsI |
CitedBy_id | crossref_primary_10_1016_j_knosys_2023_110858 crossref_primary_10_3389_fnhum_2023_1190203 crossref_primary_10_1038_s41598_024_63180_y crossref_primary_10_1002_ima_23047 crossref_primary_10_1088_2632_2153_ad829d crossref_primary_10_1016_j_bspc_2023_105462 crossref_primary_10_1007_s11571_024_10104_1 crossref_primary_10_1007_s00521_023_08971_6 crossref_primary_10_2174_0118750362298089240820111544 crossref_primary_10_3390_bioengineering11111153 crossref_primary_10_3390_eng5030078 crossref_primary_10_1007_s11571_025_10232_2 crossref_primary_10_3390_diagnostics15060773 crossref_primary_10_3390_brainsci14040335 crossref_primary_10_53759_7669_jmc202404080 crossref_primary_10_3390_diagnostics14151619 crossref_primary_10_3390_diagnostics13030477 crossref_primary_10_1016_j_medntd_2024_100343 crossref_primary_10_3389_fnagi_2024_1369545 crossref_primary_10_1109_JSEN_2023_3317538 crossref_primary_10_1016_j_dajour_2023_100336 crossref_primary_10_2147_NDT_S496307 crossref_primary_10_1007_s11042_022_14305_w crossref_primary_10_1007_s11571_024_10198_7 crossref_primary_10_1007_s13246_024_01425_w crossref_primary_10_1088_2632_2153_ad38fe crossref_primary_10_1177_01423312241267046 crossref_primary_10_1016_j_dsp_2024_104399 crossref_primary_10_1007_s42979_024_03084_w crossref_primary_10_3390_app14020534 crossref_primary_10_1109_ACCESS_2023_3337035 crossref_primary_10_1155_2023_3198066 crossref_primary_10_3390_s23198192 crossref_primary_10_1016_j_measen_2022_100506 crossref_primary_10_3390_diagnostics14121281 |
Cites_doi | 10.1080/87565649109540500 10.1007/s11222-009-9153-8 10.1016/j.nlm.2021.107450 10.1007/978-0-85729-464-7 10.1111/jir.12627 10.1007/978-1-4419-9878-1 10.1142/S0129065721300023 10.3390/diagnostics11081437 10.1109/ICACCP.2019.8882943 10.3389/fnagi.2015.00031 10.1002/gps.4066 10.1016/j.neucom.2004.11.022 10.1109/JBHI.2020.2984238 10.1016/j.cmpb.2016.09.023 10.1109/TMI.2019.2953584 10.1007/s12021-020-09501-8 10.1016/j.irbm.2018.11.007 10.1080/03772063.2016.1241164 10.3389/fnagi.2014.00314 10.1155/2021/5511922 10.1109/JETCAS.2019.2951232 10.1109/BIBE.2017.00-86 10.2174/156720510792231720 10.1186/s12911-018-0613-y 10.1007/s11517-021-02427-6 10.3233/JAD-201455 10.1016/j.mejo.2020.104785 10.1109/TBME.2008.923145 10.1186/1471-2458-12-68 10.1017/S1041610297003943 10.1007/s10916-019-1504-1 10.1016/j.bspc.2021.102981 10.1016/j.bspc.2020.102223 10.1109/JBHI.2021.3069789 10.1016/j.pneurobio.2021.102076 10.1109/TKDE.2019.2912815 10.2217/nmt.12.7 10.1145/3447876 10.1016/j.cger.2014.04.001 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app12115413 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_4eb442d647c64d86b20ae3be89528612 10_3390_app12115413 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c364t-2ac94a6014f4ce9950fc4e4fdee18e7d3ec0d476f718f37c608884a93a658f6a3 |
IEDL.DBID | BENPR |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:31:17 EDT 2025 Mon Jun 30 07:30:52 EDT 2025 Thu Apr 24 23:08:29 EDT 2025 Tue Jul 01 00:41:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-2ac94a6014f4ce9950fc4e4fdee18e7d3ec0d476f718f37c608884a93a658f6a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7509-3833 0000-0001-9501-3258 |
OpenAccessLink | https://www.proquest.com/docview/2674332127?pq-origsite=%requestingapplication% |
PQID | 2674332127 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4eb442d647c64d86b20ae3be89528612 proquest_journals_2674332127 crossref_primary_10_3390_app12115413 crossref_citationtrail_10_3390_app12115413 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Tzimourta (ref_28) 2021; 31 ref_50 Cejnek (ref_46) 2021; 59 Susana (ref_14) 2021; 182 Hugo (ref_4) 2014; 30 Musaeus (ref_17) 2019; 63 Pedregosa (ref_29) 2011; 12 ref_51 Oltu (ref_47) 2021; 63 Benz (ref_12) 2014; 6 ref_16 Kuo (ref_25) 2021; 70 Abasolo (ref_10) 2008; 55 Brooker (ref_5) 2014; 29 Moretti (ref_20) 2015; 7 Morillas (ref_7) 2021; 80 ref_24 Courtney (ref_13) 2021; 203 Kandasamy (ref_36) 2020; 21 Kanda (ref_22) 2017; 138 Finkel (ref_1) 1996; 8 Rodrigues (ref_21) 2021; 25 Fushiki (ref_32) 2011; 21 ref_34 ref_30 Zhang (ref_23) 2021; 13 Sharma (ref_9) 2019; 40 Zhao (ref_15) 2020; 39 ref_38 ref_37 Friedrichs (ref_39) 2005; 64 Benbow (ref_3) 2012; 2 Dauwels (ref_19) 2010; 7 Elgandelwar (ref_44) 2021; 13 Lyu (ref_33) 2021; 30 Amini (ref_11) 2021; 2021 Fernando (ref_18) 2021; 25 ref_43 ref_42 Sumaiyah (ref_27) 2020; 100 Sosulski (ref_31) 2021; 19 ref_41 Thatcher (ref_8) 1991; 7 Fu (ref_35) 2020; 44 Wong (ref_40) 2019; 32 Bairagi (ref_45) 2018; 10 Kulkarni (ref_49) 2017; 63 ref_2 Ieracitano (ref_48) 2021; 121 Fang (ref_26) 2019; 9 ref_6 |
References_xml | – volume: 7 start-page: 397 year: 1991 ident: ref_8 article-title: Maturation of the human frontal lobes: Physiological evidence for staging publication-title: Dev. Neuropsychol. doi: 10.1080/87565649109540500 – volume: 21 start-page: 137 year: 2011 ident: ref_32 article-title: Estimation of prediction error by using K-fold cross-validation publication-title: Stat. Comput. doi: 10.1007/s11222-009-9153-8 – volume: 182 start-page: 107450 year: 2021 ident: ref_14 article-title: Event-related brain potential indexes provide evidence for some decline in healthy people with subjective memory complaints during target evaluation and response inhibition processing publication-title: Neurobiol. Learn. Mem. doi: 10.1016/j.nlm.2021.107450 – ident: ref_51 doi: 10.1007/978-0-85729-464-7 – volume: 63 start-page: 1151 year: 2019 ident: ref_17 article-title: Associations between electroencephalography power and Alzheimer’s disease in persons with Down syndrome publication-title: J. Intellect. Disabil. Res. doi: 10.1111/jir.12627 – ident: ref_34 doi: 10.1007/978-1-4419-9878-1 – volume: 10 start-page: 403 year: 2018 ident: ref_45 article-title: EEG signal analysis for early diagnosis of Alzheimer disease using spectral and wavelet based features publication-title: Int. J. Inf. Technol. – volume: 31 start-page: 2130002 year: 2021 ident: ref_28 article-title: Machine Learning Algorithms and Statistical Approaches for Alzheimer’s Disease Analysis Based on Resting-State EEG Recordings: A Systematic Review publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065721300023 – ident: ref_42 – volume: 13 start-page: 376 year: 2021 ident: ref_44 article-title: Power analysis of EEG bands for diagnosis of Alzheimer dis-ease publication-title: Int. J. Med. Eng. Inform. – ident: ref_16 doi: 10.3390/diagnostics11081437 – ident: ref_38 doi: 10.1109/ICACCP.2019.8882943 – volume: 7 start-page: 31 year: 2015 ident: ref_20 article-title: Theta and alpha EEG frequency interplay in subjects with mild cognitive impairment: Evidence from EEG, MRI, and SPECT brain modifications publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2015.00031 – volume: 29 start-page: 682 year: 2014 ident: ref_5 article-title: Public health guidance to facilitate timely diagnosis of dementia: Alzheimer’s Cooperative Valuation in Europe recommendations publication-title: Int J. Geriatr. Psychiatry doi: 10.1002/gps.4066 – volume: 12 start-page: 2825 year: 2011 ident: ref_29 article-title: Scikit-learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – volume: 64 start-page: 107 year: 2005 ident: ref_39 article-title: Evolutionary tuning of multiple SVM parameters publication-title: Neurocomputing doi: 10.1016/j.neucom.2004.11.022 – volume: 25 start-page: 69 year: 2021 ident: ref_18 article-title: Identification of Children at Risk of Schizophrenia via Deep Learning and EEG Responses publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2020.2984238 – volume: 138 start-page: 13 year: 2017 ident: ref_22 article-title: EEG epochs with less alpha rhythm improve discrimination of mild Alzheimer’s publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2016.09.023 – volume: 39 start-page: 1571 year: 2020 ident: ref_15 article-title: Imaging of Nonlinear and Dynamic Functional Brain Connectivity Based on EEG Recordings With the Application on the Diagnosis of Alzheimer’s Disease publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2953584 – volume: 19 start-page: 461 year: 2021 ident: ref_31 article-title: Improving Covariance Matrices Derived from Tiny Training Datasets for the Classification of Event-Related Potentials with Linear Discriminant Analysis publication-title: Neuroinformatics doi: 10.1007/s12021-020-09501-8 – volume: 40 start-page: 113 year: 2019 ident: ref_9 article-title: EEG and Cognitive Biomarkers Based Mild Cognitive Impairment Diagnosis publication-title: Irbm doi: 10.1016/j.irbm.2018.11.007 – ident: ref_41 – volume: 63 start-page: 11 year: 2017 ident: ref_49 article-title: Extracting salient features for EEG-based diagnosis of Alzheimer’s disease using support vector machine classifier publication-title: IETE J. Res. doi: 10.1080/03772063.2016.1241164 – volume: 6 start-page: 314 year: 2014 ident: ref_12 article-title: Slowing of EEG background activity in Parkinson’s and Alzheimer’s disease with early cognitive dysfunction publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2014.00314 – volume: 13 start-page: 291 year: 2021 ident: ref_23 article-title: The Significance of EEG Alpha Oscillation Spectral Power and Beta Oscillation Phase Synchronization for Diagnosing Probable Alzheimer Disease publication-title: Front. Aging Neurosci. – volume: 2021 start-page: 5511922 year: 2021 ident: ref_11 article-title: Diagnosis of Alzheimer’s Disease by Time-Dependent Power Spectrum Descriptors and Convolutional Neural Network Using EEG Signal publication-title: Comput. Math. Methods Med. doi: 10.1155/2021/5511922 – volume: 9 start-page: 645 year: 2019 ident: ref_26 article-title: Development and Validation of an EEG-Based Real-Time Emotion Recognition System Using Edge AI Computing Platform with Convolutional Neural Network System-on-Chip Design publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst. doi: 10.1109/JETCAS.2019.2951232 – ident: ref_30 doi: 10.1109/BIBE.2017.00-86 – volume: 7 start-page: 487 year: 2010 ident: ref_19 article-title: Diagnosis of Alzheimer’s disease from EEG signals: Where are we standing? publication-title: Curr. Alzheimer Res. doi: 10.2174/156720510792231720 – ident: ref_24 doi: 10.1186/s12911-018-0613-y – volume: 59 start-page: 2287 year: 2021 ident: ref_46 article-title: Novelty detection-based approach for Alzheimer’s disease and mild cognitive impairment diagnosis from EEG publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-021-02427-6 – volume: 80 start-page: 1363 year: 2021 ident: ref_7 article-title: A Review of Automated Techniques for Assisting the Early Detection of Alzheimer’s Disease with a Focus on EEG publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-201455 – volume: 100 start-page: 104785 year: 2020 ident: ref_27 article-title: Design of low power Teager Energy Operator circuit for Sleep Spindle and K-Complex extraction publication-title: Microelectron. J. doi: 10.1016/j.mejo.2020.104785 – volume: 121 start-page: 176 year: 2021 ident: ref_48 article-title: A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia publication-title: Neural Netw. – ident: ref_37 – volume: 55 start-page: 2171 year: 2008 ident: ref_10 article-title: A Study on the Possible Usefulness of Detrended Fluctuation Analysis of the Electroencephalogram Background Activity in Alzheimer’s Disease publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.923145 – volume: 21 start-page: 1 year: 2020 ident: ref_36 article-title: Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly publication-title: J. Mach. Learn. Res. – ident: ref_6 doi: 10.1186/1471-2458-12-68 – volume: 8 start-page: 497 year: 1996 ident: ref_1 article-title: Behavioral and psychological signs and symptoms of dementia: A consensus statement on current knowledge and implications for research and treatment publication-title: Int. Psychogeriatr. doi: 10.1017/S1041610297003943 – volume: 44 start-page: 43 year: 2020 ident: ref_35 article-title: Automatic Detection of Epileptic Seizures in EEG Using Sparse CSP and Fisher Linear Discrimination Analysis Algorithm publication-title: J. Med. Syst. doi: 10.1007/s10916-019-1504-1 – volume: 70 start-page: 102981 year: 2021 ident: ref_25 article-title: An EEG spectrogram-based automatic sleep stage scoring method via data augmentation, ensemble convolution neural network, and expert knowledge publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102981 – ident: ref_50 – volume: 63 start-page: 102223 year: 2021 ident: ref_47 article-title: A novel electroencephalography based approach for Alzheimer’s disease and mild cognitive impairment detection publication-title: Biomed. Signal. Process. Control doi: 10.1016/j.bspc.2020.102223 – volume: 25 start-page: 3384 year: 2021 ident: ref_21 article-title: Lacsogram: A New EEG Tool to Diagnose Alzheimer’s Disease publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2021.3069789 – ident: ref_2 – volume: 203 start-page: 102076 year: 2021 ident: ref_13 article-title: When the time is right: Temporal dynamics of brain activity in healthy aging and dementia publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2021.102076 – volume: 32 start-page: 1586 year: 2019 ident: ref_40 article-title: Reliable accuracy estimates from k-fold cross validation publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2019.2912815 – volume: 2 start-page: 165 year: 2012 ident: ref_3 article-title: Dementia: Stigma and his effects publication-title: Neurodegener. Dis. Manag. doi: 10.2217/nmt.12.7 – volume: 30 start-page: 54 year: 2021 ident: ref_33 article-title: An empirical study of the impact of data splitting decisions on the performance of AIOps solutions publication-title: ACM Trans. Softw. Eng. Methodol. doi: 10.1145/3447876 – ident: ref_43 – volume: 30 start-page: 421 year: 2014 ident: ref_4 article-title: Dementia and cognitive impairment: Epidemiology, diagnosis, and treatment publication-title: Clin. Geriatr. Med. doi: 10.1016/j.cger.2014.04.001 |
SSID | ssj0000913810 |
Score | 2.500797 |
Snippet | Electroencephalography (EEG) signal analysis is a fast, inexpensive, and accessible technique to detect the early stages of dementia, such as Mild Cognitive... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 5413 |
SubjectTerms | Alzheimer's disease Biomarkers Classification Cognition & reasoning Dementia EEG signals Electrodes Electroencephalography FIR filtering Machine learning power spectrum Signal processing supervised machine learning Wavelet transforms |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOexBhWK3maTp0ceuIqyXVfAiJU2mKugq7nrx5N_w7_lLnKRRVhS8eA1TWiaTmfmamW8Ya8scqzQ3dZJqKwigFCopNOaJI7ChlTJole937p-pkws4vZSXE6O-fE1YQw_cKG4PsALInILcKnBaVVlqUFSoC5lpFeYLZxTzJsBU8MFFx1NXNQ15gnC9vw_2bGYSOuJbCApM_T8ccYguvXk2F9NCvt98zgKbwuEim50gC1xkC_EYjvh25IreWWJX3e4xH9xe-4djzT8JczN0fPD86P3ACB3vh4pJ5JFM9ZqPH3hgNuZHTaUd8v27lxu8vcen99e3ES2Ha5tldtHrnh-eJHFiQmKFgnGSGVuAIYwFNVgsCpnWFhBqh9ihHXACbeogVzVFpFqQRsnHaDCFMJSI1MqIFTY9fBjiKuMyd3lmpPOMgkBJg5a5lZS-pMIZUNq02O6nEksb6cT9VIu7kmCF13g5ofEWa38JPzYsGr-LHfjd-BLx1NdhgQyijAZR_mUQLbbxuZdlPI-jMvO9FsKz2a_9xzvW2Uzm2yDC35gNNj1-esZNSk7G1Vawww-xMOAS priority: 102 providerName: Directory of Open Access Journals |
Title | EEG Signal Processing and Supervised Machine Learning to Early Diagnose Alzheimer’s Disease |
URI | https://www.proquest.com/docview/2674332127 https://doaj.org/article/4eb442d647c64d86b20ae3be89528612 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbhMxEB7R9AIHRAuIQIl86AGQVmzWP-s9oRaSVkitEKVSL2jltWfTSiUJ2fTCidfg9XgSZhwnFIG42rPSasYez-83APu6xCYvXZvl1ktyUCqTVRbLLJCzYY1x6A33O5-cmuNz9f5CX6SAW5fKKtc6MSrqMPMcI39dcLW8ZDzyN_OvGU-N4uxqGqGxBdu0Y20Ptg9Hpx8-bqIsjHpph_mqMU-Sf895YUY102oo_3iKImL_Xwo5vjLjB3A_mYfiYCXPHbiD0124dws0cBd20nXsxIuEGf3yIXwejY7E2dWEP061_0Qs3DSIs5s564MOgziJlZMoEqjqRCxnIiIci3erijsUB9ffLvHqCy5-fv_R0XJM3zyC8_Ho09vjLE1OyLw0apkVzlfKka-lWuWxqnTeeoWqDYhDkkSQ6POgStPSy9TK0hvSNVa5SjoySFrj5GPoTWdTfAJCl6EsnA6MLKjIeLC69JrMmFwGp4x1fXi1ZmLtE6w4T7e4rsm9YI7Xtzjeh_0N8XyFpvFvskOWxoaEIbDjwmwxqdONqhU2ShXBKPp9FaxpityhbNBWurBkt_Vhby3LOt3Lrv59ip7-f_sZ3C240SHGW_agt1zc4HMyP5bNALbs-GiQTtogOvG_AB7722k |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhQxDLZKOQAHRAuIpQVyKBIgjZidZDKZQ4UK3e2WdntpK_WChkziWSqV3e3OVqiceA1egofiSbDnZykCces18Ywix3Hs2P4MsBEnmIeJLYLQOEkOSqqD1GASeHI2jNYWneZ65-GBHhyr9yfxyRL8aGthOK2y1YmVovYTx2_kryPOlpeMR_5meh5w1yiOrrYtNGqx2MPLL-SylZu727S_z6Oo3zt6NwiargKBk1rNg8i6VFnyQ1ShHKZpHBZOoSo8YpdW6SW60KtEF6S1C5k4TefQKJtKS5d1oa2k_96Am7SYlJ09099ZvOkwxqbphnUZIM2HHIVmDLVYdeUfF1_VH-Av9V_daf17cLcxRsVWLT0rsITjVbhzBaJwFVaaw1-KFw1C9cv78KHX2xGHpyP-uKk0IGJhx14cXkxZ-5ToxbDK00TRQLiOxHwiKjxlsV3n96HYOvv6CU8_4-znt-8lDVfBogdwfC0cfQjL48kYH4GIE59ENvaMY6jIVDFx4mIymkLprdLGduBVy8TMNSDm3EvjLCNnhjmeXeF4BzYWxNMau-PfZG95NxYkDLhdDUxmo6w5v5nCXKnIa0XLV97oPAotyhxNGkeGrMQOrLd7mTVaoMx-y-zj_08_g1uDo-F-tr97sLcGtyMusaheetZheT67wCdk-Mzzp5W0Cfh43eL9C9EWFYM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTkLwMLEBotsAPwwJkKKlseM4DwhttGVjrJoYk_YyBce-lElbW5pOCJ74GnwVPs4-yc6JU4ZAvO3VOUfW-Xx_7LvfAWzECeZhoosgVIZTgJLKIFWYBJaCDSWlRiNdvfP-QO4ciXfH8fEC_GpqYVxaZaMTK0Vtx8bdkW9GLlueOzzyzcKnRRx0-68nXwLXQcq9tDbtNGoR2cNvXyl8K1_tdmmvn0VRv_fxzU7gOwwEhksxCyJtUqEpJhGFMJimcVgYgaKwiB1aseVoQisSWZAGL3hiJJ1JJXTKNRnuQmpO_70Fi4mLilqwuN0bHHyY3_A4xE3VCeuiQM7T0L1JO0S1WHT4H2aw6hbwlzGoLFz_Hix515Rt1bK0DAs4WoG71wALV2DZq4KSPfd41S_uw0mv95Ydng7dZF93QMRMjyw7vJg4XVSiZftV1iYyD-g6ZLMxq9CVWbfO9kO2dfb9M56e4_Tyx8-ShqunowdwdCM8fQit0XiEj4DFiU0iHVuHaijIcVFxYmJyoUJutZBKt-Flw8TMeEhz11njLKPQxnE8u8bxNmzMiSc1kse_ybbdbsxJHPx2NTCeDjN_mjOBuRCRlYKWL6ySeRRq5DmqNI4U-YxtWG_2MvM6ocx-S_Dq_z8_hdsk2tn73cHeGtyJXL1Fde2zDq3Z9AIfkxc0y594cWPw6aYl_Ao8GhsV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG+Signal+Processing+and+Supervised+Machine+Learning+to+Early+Diagnose+Alzheimer%E2%80%99s+Disease&rft.jtitle=Applied+sciences&rft.au=Pirrone%2C+Daniele&rft.au=Weitschek%2C+Emanuel&rft.au=Di+Paolo%2C+Primiano&rft.au=De+Salvo%2C+Simona&rft.date=2022-06-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=12&rft.issue=11&rft.spage=5413&rft_id=info:doi/10.3390%2Fapp12115413&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app12115413 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |