EEG Signal Processing and Supervised Machine Learning to Early Diagnose Alzheimer’s Disease

Electroencephalography (EEG) signal analysis is a fast, inexpensive, and accessible technique to detect the early stages of dementia, such as Mild Cognitive Impairment (MCI) and Alzheimer’s disease (AD). In the last years, EEG signal analysis has become an important topic of research to extract suit...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 12; no. 11; p. 5413
Main Authors Pirrone, Daniele, Weitschek, Emanuel, Di Paolo, Primiano, De Salvo, Simona, De Cola, Maria Cristina
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroencephalography (EEG) signal analysis is a fast, inexpensive, and accessible technique to detect the early stages of dementia, such as Mild Cognitive Impairment (MCI) and Alzheimer’s disease (AD). In the last years, EEG signal analysis has become an important topic of research to extract suitable biomarkers to determine the subject’s cognitive impairment. In this work, we propose a novel simple and efficient method able to extract features with a finite response filter (FIR) in the double time domain in order to discriminate among patients affected by AD, MCI, and healthy controls (HC). Notably, we compute the power intensity for each high- and low-frequency band, using their absolute differences to distinguish among the three classes of subjects by means of different supervised machine learning methods. We use EEG recordings from a cohort of 105 subjects (48 AD, 37 MCI, and 20 HC) referred for dementia to the IRCCS Centro Neurolesi “Bonino-Pulejo” of Messina, Italy. The findings show that this method reaches 97%, 95%, and 83% accuracy when considering binary classifications (HC vs. AD, HC vs. MCI, and MCI vs. AD) and an accuracy of 75% when dealing with the three classes (HC vs. AD vs. MCI). These results improve upon those obtained in previous studies and demonstrate the validity of our approach. Finally, the efficiency of the proposed method might allow its future development on embedded devices for low-cost real-time diagnosis.
AbstractList Electroencephalography (EEG) signal analysis is a fast, inexpensive, and accessible technique to detect the early stages of dementia, such as Mild Cognitive Impairment (MCI) and Alzheimer’s disease (AD). In the last years, EEG signal analysis has become an important topic of research to extract suitable biomarkers to determine the subject’s cognitive impairment. In this work, we propose a novel simple and efficient method able to extract features with a finite response filter (FIR) in the double time domain in order to discriminate among patients affected by AD, MCI, and healthy controls (HC). Notably, we compute the power intensity for each high- and low-frequency band, using their absolute differences to distinguish among the three classes of subjects by means of different supervised machine learning methods. We use EEG recordings from a cohort of 105 subjects (48 AD, 37 MCI, and 20 HC) referred for dementia to the IRCCS Centro Neurolesi “Bonino-Pulejo” of Messina, Italy. The findings show that this method reaches 97%, 95%, and 83% accuracy when considering binary classifications (HC vs. AD, HC vs. MCI, and MCI vs. AD) and an accuracy of 75% when dealing with the three classes (HC vs. AD vs. MCI). These results improve upon those obtained in previous studies and demonstrate the validity of our approach. Finally, the efficiency of the proposed method might allow its future development on embedded devices for low-cost real-time diagnosis.
Author Weitschek, Emanuel
De Salvo, Simona
De Cola, Maria Cristina
Di Paolo, Primiano
Pirrone, Daniele
Author_xml – sequence: 1
  givenname: Daniele
  surname: Pirrone
  fullname: Pirrone, Daniele
– sequence: 2
  givenname: Emanuel
  surname: Weitschek
  fullname: Weitschek, Emanuel
– sequence: 3
  givenname: Primiano
  surname: Di Paolo
  fullname: Di Paolo, Primiano
– sequence: 4
  givenname: Simona
  orcidid: 0000-0001-9501-3258
  surname: De Salvo
  fullname: De Salvo, Simona
– sequence: 5
  givenname: Maria Cristina
  orcidid: 0000-0002-7509-3833
  surname: De Cola
  fullname: De Cola, Maria Cristina
BookMark eNptkUtKBDEQhoMo-Fx5gYBLGc1r0uml6PiAEQV1KaEmXT1maJM26RHGldfwep7E1hERsTZV_PXVX1C1SVZDDEjILmcHUpbsENqWC86HissVsiFYoQdS8WL1V71OdnKesT5KLg1nG-R-NDqjN34aoKHXKTrM2YcphVDRm3mL6dlnrOgluAcfkI4RUvjsd5GOIDULeuJhGmJGetS8PKB_xPT--pZ7OSNk3CZrNTQZd77zFrk7Hd0enw_GV2cXx0fjgZNadQMBrlSgGVe1cliWQ1Y7haquELnBopLoWKUKXRfc1LJwmhljFJQS9NDUGuQWuVj6VhFmtk3-EdLCRvD2S4hpaiF13jVoFU6UEpVWvY2qjJ4IBignaMqhMJqL3mtv6dWm-DTH3NlZnKf-PtkKXSgpBRdFT-0vKZdizgnrn62c2c932F_v6Gn-h3a-g87H0CXwzb8zH8V2jsI
CitedBy_id crossref_primary_10_1016_j_knosys_2023_110858
crossref_primary_10_3389_fnhum_2023_1190203
crossref_primary_10_1038_s41598_024_63180_y
crossref_primary_10_1002_ima_23047
crossref_primary_10_1088_2632_2153_ad829d
crossref_primary_10_1016_j_bspc_2023_105462
crossref_primary_10_1007_s11571_024_10104_1
crossref_primary_10_1007_s00521_023_08971_6
crossref_primary_10_2174_0118750362298089240820111544
crossref_primary_10_3390_bioengineering11111153
crossref_primary_10_3390_eng5030078
crossref_primary_10_1007_s11571_025_10232_2
crossref_primary_10_3390_diagnostics15060773
crossref_primary_10_3390_brainsci14040335
crossref_primary_10_53759_7669_jmc202404080
crossref_primary_10_3390_diagnostics14151619
crossref_primary_10_3390_diagnostics13030477
crossref_primary_10_1016_j_medntd_2024_100343
crossref_primary_10_3389_fnagi_2024_1369545
crossref_primary_10_1109_JSEN_2023_3317538
crossref_primary_10_1016_j_dajour_2023_100336
crossref_primary_10_2147_NDT_S496307
crossref_primary_10_1007_s11042_022_14305_w
crossref_primary_10_1007_s11571_024_10198_7
crossref_primary_10_1007_s13246_024_01425_w
crossref_primary_10_1088_2632_2153_ad38fe
crossref_primary_10_1177_01423312241267046
crossref_primary_10_1016_j_dsp_2024_104399
crossref_primary_10_1007_s42979_024_03084_w
crossref_primary_10_3390_app14020534
crossref_primary_10_1109_ACCESS_2023_3337035
crossref_primary_10_1155_2023_3198066
crossref_primary_10_3390_s23198192
crossref_primary_10_1016_j_measen_2022_100506
crossref_primary_10_3390_diagnostics14121281
Cites_doi 10.1080/87565649109540500
10.1007/s11222-009-9153-8
10.1016/j.nlm.2021.107450
10.1007/978-0-85729-464-7
10.1111/jir.12627
10.1007/978-1-4419-9878-1
10.1142/S0129065721300023
10.3390/diagnostics11081437
10.1109/ICACCP.2019.8882943
10.3389/fnagi.2015.00031
10.1002/gps.4066
10.1016/j.neucom.2004.11.022
10.1109/JBHI.2020.2984238
10.1016/j.cmpb.2016.09.023
10.1109/TMI.2019.2953584
10.1007/s12021-020-09501-8
10.1016/j.irbm.2018.11.007
10.1080/03772063.2016.1241164
10.3389/fnagi.2014.00314
10.1155/2021/5511922
10.1109/JETCAS.2019.2951232
10.1109/BIBE.2017.00-86
10.2174/156720510792231720
10.1186/s12911-018-0613-y
10.1007/s11517-021-02427-6
10.3233/JAD-201455
10.1016/j.mejo.2020.104785
10.1109/TBME.2008.923145
10.1186/1471-2458-12-68
10.1017/S1041610297003943
10.1007/s10916-019-1504-1
10.1016/j.bspc.2021.102981
10.1016/j.bspc.2020.102223
10.1109/JBHI.2021.3069789
10.1016/j.pneurobio.2021.102076
10.1109/TKDE.2019.2912815
10.2217/nmt.12.7
10.1145/3447876
10.1016/j.cger.2014.04.001
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app12115413
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_4eb442d647c64d86b20ae3be89528612
10_3390_app12115413
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c364t-2ac94a6014f4ce9950fc4e4fdee18e7d3ec0d476f718f37c608884a93a658f6a3
IEDL.DBID BENPR
ISSN 2076-3417
IngestDate Wed Aug 27 01:31:17 EDT 2025
Mon Jun 30 07:30:52 EDT 2025
Thu Apr 24 23:08:29 EDT 2025
Tue Jul 01 00:41:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-2ac94a6014f4ce9950fc4e4fdee18e7d3ec0d476f718f37c608884a93a658f6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7509-3833
0000-0001-9501-3258
OpenAccessLink https://www.proquest.com/docview/2674332127?pq-origsite=%requestingapplication%
PQID 2674332127
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_4eb442d647c64d86b20ae3be89528612
proquest_journals_2674332127
crossref_primary_10_3390_app12115413
crossref_citationtrail_10_3390_app12115413
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Tzimourta (ref_28) 2021; 31
ref_50
Cejnek (ref_46) 2021; 59
Susana (ref_14) 2021; 182
Hugo (ref_4) 2014; 30
Musaeus (ref_17) 2019; 63
Pedregosa (ref_29) 2011; 12
ref_51
Oltu (ref_47) 2021; 63
Benz (ref_12) 2014; 6
ref_16
Kuo (ref_25) 2021; 70
Abasolo (ref_10) 2008; 55
Brooker (ref_5) 2014; 29
Moretti (ref_20) 2015; 7
Morillas (ref_7) 2021; 80
ref_24
Courtney (ref_13) 2021; 203
Kandasamy (ref_36) 2020; 21
Kanda (ref_22) 2017; 138
Finkel (ref_1) 1996; 8
Rodrigues (ref_21) 2021; 25
Fushiki (ref_32) 2011; 21
ref_34
ref_30
Zhang (ref_23) 2021; 13
Sharma (ref_9) 2019; 40
Zhao (ref_15) 2020; 39
ref_38
ref_37
Friedrichs (ref_39) 2005; 64
Benbow (ref_3) 2012; 2
Dauwels (ref_19) 2010; 7
Elgandelwar (ref_44) 2021; 13
Lyu (ref_33) 2021; 30
Amini (ref_11) 2021; 2021
Fernando (ref_18) 2021; 25
ref_43
ref_42
Sumaiyah (ref_27) 2020; 100
Sosulski (ref_31) 2021; 19
ref_41
Thatcher (ref_8) 1991; 7
Fu (ref_35) 2020; 44
Wong (ref_40) 2019; 32
Bairagi (ref_45) 2018; 10
Kulkarni (ref_49) 2017; 63
ref_2
Ieracitano (ref_48) 2021; 121
Fang (ref_26) 2019; 9
ref_6
References_xml – volume: 7
  start-page: 397
  year: 1991
  ident: ref_8
  article-title: Maturation of the human frontal lobes: Physiological evidence for staging
  publication-title: Dev. Neuropsychol.
  doi: 10.1080/87565649109540500
– volume: 21
  start-page: 137
  year: 2011
  ident: ref_32
  article-title: Estimation of prediction error by using K-fold cross-validation
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-009-9153-8
– volume: 182
  start-page: 107450
  year: 2021
  ident: ref_14
  article-title: Event-related brain potential indexes provide evidence for some decline in healthy people with subjective memory complaints during target evaluation and response inhibition processing
  publication-title: Neurobiol. Learn. Mem.
  doi: 10.1016/j.nlm.2021.107450
– ident: ref_51
  doi: 10.1007/978-0-85729-464-7
– volume: 63
  start-page: 1151
  year: 2019
  ident: ref_17
  article-title: Associations between electroencephalography power and Alzheimer’s disease in persons with Down syndrome
  publication-title: J. Intellect. Disabil. Res.
  doi: 10.1111/jir.12627
– ident: ref_34
  doi: 10.1007/978-1-4419-9878-1
– volume: 10
  start-page: 403
  year: 2018
  ident: ref_45
  article-title: EEG signal analysis for early diagnosis of Alzheimer disease using spectral and wavelet based features
  publication-title: Int. J. Inf. Technol.
– volume: 31
  start-page: 2130002
  year: 2021
  ident: ref_28
  article-title: Machine Learning Algorithms and Statistical Approaches for Alzheimer’s Disease Analysis Based on Resting-State EEG Recordings: A Systematic Review
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065721300023
– ident: ref_42
– volume: 13
  start-page: 376
  year: 2021
  ident: ref_44
  article-title: Power analysis of EEG bands for diagnosis of Alzheimer dis-ease
  publication-title: Int. J. Med. Eng. Inform.
– ident: ref_16
  doi: 10.3390/diagnostics11081437
– ident: ref_38
  doi: 10.1109/ICACCP.2019.8882943
– volume: 7
  start-page: 31
  year: 2015
  ident: ref_20
  article-title: Theta and alpha EEG frequency interplay in subjects with mild cognitive impairment: Evidence from EEG, MRI, and SPECT brain modifications
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2015.00031
– volume: 29
  start-page: 682
  year: 2014
  ident: ref_5
  article-title: Public health guidance to facilitate timely diagnosis of dementia: Alzheimer’s Cooperative Valuation in Europe recommendations
  publication-title: Int J. Geriatr. Psychiatry
  doi: 10.1002/gps.4066
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_29
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 64
  start-page: 107
  year: 2005
  ident: ref_39
  article-title: Evolutionary tuning of multiple SVM parameters
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2004.11.022
– volume: 25
  start-page: 69
  year: 2021
  ident: ref_18
  article-title: Identification of Children at Risk of Schizophrenia via Deep Learning and EEG Responses
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.2984238
– volume: 138
  start-page: 13
  year: 2017
  ident: ref_22
  article-title: EEG epochs with less alpha rhythm improve discrimination of mild Alzheimer’s
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2016.09.023
– volume: 39
  start-page: 1571
  year: 2020
  ident: ref_15
  article-title: Imaging of Nonlinear and Dynamic Functional Brain Connectivity Based on EEG Recordings With the Application on the Diagnosis of Alzheimer’s Disease
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2953584
– volume: 19
  start-page: 461
  year: 2021
  ident: ref_31
  article-title: Improving Covariance Matrices Derived from Tiny Training Datasets for the Classification of Event-Related Potentials with Linear Discriminant Analysis
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-020-09501-8
– volume: 40
  start-page: 113
  year: 2019
  ident: ref_9
  article-title: EEG and Cognitive Biomarkers Based Mild Cognitive Impairment Diagnosis
  publication-title: Irbm
  doi: 10.1016/j.irbm.2018.11.007
– ident: ref_41
– volume: 63
  start-page: 11
  year: 2017
  ident: ref_49
  article-title: Extracting salient features for EEG-based diagnosis of Alzheimer’s disease using support vector machine classifier
  publication-title: IETE J. Res.
  doi: 10.1080/03772063.2016.1241164
– volume: 6
  start-page: 314
  year: 2014
  ident: ref_12
  article-title: Slowing of EEG background activity in Parkinson’s and Alzheimer’s disease with early cognitive dysfunction
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2014.00314
– volume: 13
  start-page: 291
  year: 2021
  ident: ref_23
  article-title: The Significance of EEG Alpha Oscillation Spectral Power and Beta Oscillation Phase Synchronization for Diagnosing Probable Alzheimer Disease
  publication-title: Front. Aging Neurosci.
– volume: 2021
  start-page: 5511922
  year: 2021
  ident: ref_11
  article-title: Diagnosis of Alzheimer’s Disease by Time-Dependent Power Spectrum Descriptors and Convolutional Neural Network Using EEG Signal
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2021/5511922
– volume: 9
  start-page: 645
  year: 2019
  ident: ref_26
  article-title: Development and Validation of an EEG-Based Real-Time Emotion Recognition System Using Edge AI Computing Platform with Convolutional Neural Network System-on-Chip Design
  publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst.
  doi: 10.1109/JETCAS.2019.2951232
– ident: ref_30
  doi: 10.1109/BIBE.2017.00-86
– volume: 7
  start-page: 487
  year: 2010
  ident: ref_19
  article-title: Diagnosis of Alzheimer’s disease from EEG signals: Where are we standing?
  publication-title: Curr. Alzheimer Res.
  doi: 10.2174/156720510792231720
– ident: ref_24
  doi: 10.1186/s12911-018-0613-y
– volume: 59
  start-page: 2287
  year: 2021
  ident: ref_46
  article-title: Novelty detection-based approach for Alzheimer’s disease and mild cognitive impairment diagnosis from EEG
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-021-02427-6
– volume: 80
  start-page: 1363
  year: 2021
  ident: ref_7
  article-title: A Review of Automated Techniques for Assisting the Early Detection of Alzheimer’s Disease with a Focus on EEG
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-201455
– volume: 100
  start-page: 104785
  year: 2020
  ident: ref_27
  article-title: Design of low power Teager Energy Operator circuit for Sleep Spindle and K-Complex extraction
  publication-title: Microelectron. J.
  doi: 10.1016/j.mejo.2020.104785
– volume: 121
  start-page: 176
  year: 2021
  ident: ref_48
  article-title: A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia
  publication-title: Neural Netw.
– ident: ref_37
– volume: 55
  start-page: 2171
  year: 2008
  ident: ref_10
  article-title: A Study on the Possible Usefulness of Detrended Fluctuation Analysis of the Electroencephalogram Background Activity in Alzheimer’s Disease
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.923145
– volume: 21
  start-page: 1
  year: 2020
  ident: ref_36
  article-title: Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly
  publication-title: J. Mach. Learn. Res.
– ident: ref_6
  doi: 10.1186/1471-2458-12-68
– volume: 8
  start-page: 497
  year: 1996
  ident: ref_1
  article-title: Behavioral and psychological signs and symptoms of dementia: A consensus statement on current knowledge and implications for research and treatment
  publication-title: Int. Psychogeriatr.
  doi: 10.1017/S1041610297003943
– volume: 44
  start-page: 43
  year: 2020
  ident: ref_35
  article-title: Automatic Detection of Epileptic Seizures in EEG Using Sparse CSP and Fisher Linear Discrimination Analysis Algorithm
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-019-1504-1
– volume: 70
  start-page: 102981
  year: 2021
  ident: ref_25
  article-title: An EEG spectrogram-based automatic sleep stage scoring method via data augmentation, ensemble convolution neural network, and expert knowledge
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102981
– ident: ref_50
– volume: 63
  start-page: 102223
  year: 2021
  ident: ref_47
  article-title: A novel electroencephalography based approach for Alzheimer’s disease and mild cognitive impairment detection
  publication-title: Biomed. Signal. Process. Control
  doi: 10.1016/j.bspc.2020.102223
– volume: 25
  start-page: 3384
  year: 2021
  ident: ref_21
  article-title: Lacsogram: A New EEG Tool to Diagnose Alzheimer’s Disease
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2021.3069789
– ident: ref_2
– volume: 203
  start-page: 102076
  year: 2021
  ident: ref_13
  article-title: When the time is right: Temporal dynamics of brain activity in healthy aging and dementia
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2021.102076
– volume: 32
  start-page: 1586
  year: 2019
  ident: ref_40
  article-title: Reliable accuracy estimates from k-fold cross validation
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2912815
– volume: 2
  start-page: 165
  year: 2012
  ident: ref_3
  article-title: Dementia: Stigma and his effects
  publication-title: Neurodegener. Dis. Manag.
  doi: 10.2217/nmt.12.7
– volume: 30
  start-page: 54
  year: 2021
  ident: ref_33
  article-title: An empirical study of the impact of data splitting decisions on the performance of AIOps solutions
  publication-title: ACM Trans. Softw. Eng. Methodol.
  doi: 10.1145/3447876
– ident: ref_43
– volume: 30
  start-page: 421
  year: 2014
  ident: ref_4
  article-title: Dementia and cognitive impairment: Epidemiology, diagnosis, and treatment
  publication-title: Clin. Geriatr. Med.
  doi: 10.1016/j.cger.2014.04.001
SSID ssj0000913810
Score 2.500797
Snippet Electroencephalography (EEG) signal analysis is a fast, inexpensive, and accessible technique to detect the early stages of dementia, such as Mild Cognitive...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 5413
SubjectTerms Alzheimer's disease
Biomarkers
Classification
Cognition & reasoning
Dementia
EEG signals
Electrodes
Electroencephalography
FIR filtering
Machine learning
power spectrum
Signal processing
supervised machine learning
Wavelet transforms
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOexBhWK3maTp0ceuIqyXVfAiJU2mKugq7nrx5N_w7_lLnKRRVhS8eA1TWiaTmfmamW8Ya8scqzQ3dZJqKwigFCopNOaJI7ChlTJole937p-pkws4vZSXE6O-fE1YQw_cKG4PsALInILcKnBaVVlqUFSoC5lpFeYLZxTzJsBU8MFFx1NXNQ15gnC9vw_2bGYSOuJbCApM_T8ccYguvXk2F9NCvt98zgKbwuEim50gC1xkC_EYjvh25IreWWJX3e4xH9xe-4djzT8JczN0fPD86P3ACB3vh4pJ5JFM9ZqPH3hgNuZHTaUd8v27lxu8vcen99e3ES2Ha5tldtHrnh-eJHFiQmKFgnGSGVuAIYwFNVgsCpnWFhBqh9ihHXACbeogVzVFpFqQRsnHaDCFMJSI1MqIFTY9fBjiKuMyd3lmpPOMgkBJg5a5lZS-pMIZUNq02O6nEksb6cT9VIu7kmCF13g5ofEWa38JPzYsGr-LHfjd-BLx1NdhgQyijAZR_mUQLbbxuZdlPI-jMvO9FsKz2a_9xzvW2Uzm2yDC35gNNj1-esZNSk7G1Vawww-xMOAS
  priority: 102
  providerName: Directory of Open Access Journals
Title EEG Signal Processing and Supervised Machine Learning to Early Diagnose Alzheimer’s Disease
URI https://www.proquest.com/docview/2674332127
https://doaj.org/article/4eb442d647c64d86b20ae3be89528612
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbhMxEB7R9AIHRAuIQIl86AGQVmzWP-s9oRaSVkitEKVSL2jltWfTSiUJ2fTCidfg9XgSZhwnFIG42rPSasYez-83APu6xCYvXZvl1ktyUCqTVRbLLJCzYY1x6A33O5-cmuNz9f5CX6SAW5fKKtc6MSrqMPMcI39dcLW8ZDzyN_OvGU-N4uxqGqGxBdu0Y20Ptg9Hpx8-bqIsjHpph_mqMU-Sf895YUY102oo_3iKImL_Xwo5vjLjB3A_mYfiYCXPHbiD0124dws0cBd20nXsxIuEGf3yIXwejY7E2dWEP061_0Qs3DSIs5s564MOgziJlZMoEqjqRCxnIiIci3erijsUB9ffLvHqCy5-fv_R0XJM3zyC8_Ho09vjLE1OyLw0apkVzlfKka-lWuWxqnTeeoWqDYhDkkSQ6POgStPSy9TK0hvSNVa5SjoySFrj5GPoTWdTfAJCl6EsnA6MLKjIeLC69JrMmFwGp4x1fXi1ZmLtE6w4T7e4rsm9YI7Xtzjeh_0N8XyFpvFvskOWxoaEIbDjwmwxqdONqhU2ShXBKPp9FaxpityhbNBWurBkt_Vhby3LOt3Lrv59ip7-f_sZ3C240SHGW_agt1zc4HMyP5bNALbs-GiQTtogOvG_AB7722k
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhQxDLZKOQAHRAuIpQVyKBIgjZidZDKZQ4UK3e2WdntpK_WChkziWSqV3e3OVqiceA1egofiSbDnZykCces18Ywix3Hs2P4MsBEnmIeJLYLQOEkOSqqD1GASeHI2jNYWneZ65-GBHhyr9yfxyRL8aGthOK2y1YmVovYTx2_kryPOlpeMR_5meh5w1yiOrrYtNGqx2MPLL-SylZu727S_z6Oo3zt6NwiargKBk1rNg8i6VFnyQ1ShHKZpHBZOoSo8YpdW6SW60KtEF6S1C5k4TefQKJtKS5d1oa2k_96Am7SYlJ09099ZvOkwxqbphnUZIM2HHIVmDLVYdeUfF1_VH-Av9V_daf17cLcxRsVWLT0rsITjVbhzBaJwFVaaw1-KFw1C9cv78KHX2xGHpyP-uKk0IGJhx14cXkxZ-5ToxbDK00TRQLiOxHwiKjxlsV3n96HYOvv6CU8_4-znt-8lDVfBogdwfC0cfQjL48kYH4GIE59ENvaMY6jIVDFx4mIymkLprdLGduBVy8TMNSDm3EvjLCNnhjmeXeF4BzYWxNMau-PfZG95NxYkDLhdDUxmo6w5v5nCXKnIa0XLV97oPAotyhxNGkeGrMQOrLd7mTVaoMx-y-zj_08_g1uDo-F-tr97sLcGtyMusaheetZheT67wCdk-Mzzp5W0Cfh43eL9C9EWFYM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTkLwMLEBotsAPwwJkKKlseM4DwhttGVjrJoYk_YyBce-lElbW5pOCJ74GnwVPs4-yc6JU4ZAvO3VOUfW-Xx_7LvfAWzECeZhoosgVIZTgJLKIFWYBJaCDSWlRiNdvfP-QO4ciXfH8fEC_GpqYVxaZaMTK0Vtx8bdkW9GLlueOzzyzcKnRRx0-68nXwLXQcq9tDbtNGoR2cNvXyl8K1_tdmmvn0VRv_fxzU7gOwwEhksxCyJtUqEpJhGFMJimcVgYgaKwiB1aseVoQisSWZAGL3hiJJ1JJXTKNRnuQmpO_70Fi4mLilqwuN0bHHyY3_A4xE3VCeuiQM7T0L1JO0S1WHT4H2aw6hbwlzGoLFz_Hix515Rt1bK0DAs4WoG71wALV2DZq4KSPfd41S_uw0mv95Ydng7dZF93QMRMjyw7vJg4XVSiZftV1iYyD-g6ZLMxq9CVWbfO9kO2dfb9M56e4_Tyx8-ShqunowdwdCM8fQit0XiEj4DFiU0iHVuHaijIcVFxYmJyoUJutZBKt-Flw8TMeEhz11njLKPQxnE8u8bxNmzMiSc1kse_ybbdbsxJHPx2NTCeDjN_mjOBuRCRlYKWL6ySeRRq5DmqNI4U-YxtWG_2MvM6ocx-S_Dq_z8_hdsk2tn73cHeGtyJXL1Fde2zDq3Z9AIfkxc0y594cWPw6aYl_Ao8GhsV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG+Signal+Processing+and+Supervised+Machine+Learning+to+Early+Diagnose+Alzheimer%E2%80%99s+Disease&rft.jtitle=Applied+sciences&rft.au=Pirrone%2C+Daniele&rft.au=Weitschek%2C+Emanuel&rft.au=Di+Paolo%2C+Primiano&rft.au=De+Salvo%2C+Simona&rft.date=2022-06-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=12&rft.issue=11&rft.spage=5413&rft_id=info:doi/10.3390%2Fapp12115413&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app12115413
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon