Atomic Receiver by Utilizing Multiple Radio-Frequency Coupling at Rydberg States of Rubidium

Rydberg atoms have been extensively utilized in microwave measurement with high sensitivity, which has great potential in the field of communication. In this study, we discuss the digital communication based on a Rydberg atomic receiver under simultaneously coupling by resonant and near detuning mic...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 10; no. 4; p. 1346
Main Authors Zou, Haiyang, Song, Zhenfei, Mu, Huihui, Feng, Zhigang, Qu, Jifeng, Wang, Qilong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rydberg atoms have been extensively utilized in microwave measurement with high sensitivity, which has great potential in the field of communication. In this study, we discuss the digital communication based on a Rydberg atomic receiver under simultaneously coupling by resonant and near detuning microwaves. In addition, we verify the feasibility of the Rydberg atom-based frequency division multiplexing (FDM) in microwave communication. We demonstrate the principle and performance of the atom-based FDM receiver by applying amplitude modulation (AM) and frequency modulation (FM), respectively. To demonstrate the actual communication performance at different data transfer rates, we consider monochromatic images as an example. The experimental results show that the maximum acceptable data transfer rate of both AM and FM is about 200 kbps, whereas their maximum bit error rates (BER) is less than 5%. When compared with the traditional electronic receiver, this atomic receiver, which is compatible with FDM, has numerous advantages, such as small size, low power consumption, and high sensitivity. Furthermore, this receiver has a strong ability of anti-electromagnetic interference, and the signals transmitted do not interfere with each other in different channels.
AbstractList Rydberg atoms have been extensively utilized in microwave measurement with high sensitivity, which has great potential in the field of communication. In this study, we discuss the digital communication based on a Rydberg atomic receiver under simultaneously coupling by resonant and near detuning microwaves. In addition, we verify the feasibility of the Rydberg atom-based frequency division multiplexing (FDM) in microwave communication. We demonstrate the principle and performance of the atom-based FDM receiver by applying amplitude modulation (AM) and frequency modulation (FM), respectively. To demonstrate the actual communication performance at different data transfer rates, we consider monochromatic images as an example. The experimental results show that the maximum acceptable data transfer rate of both AM and FM is about 200 kbps, whereas their maximum bit error rates (BER) is less than 5%. When compared with the traditional electronic receiver, this atomic receiver, which is compatible with FDM, has numerous advantages, such as small size, low power consumption, and high sensitivity. Furthermore, this receiver has a strong ability of anti-electromagnetic interference, and the signals transmitted do not interfere with each other in different channels.
Author Zou, Haiyang
Qu, Jifeng
Mu, Huihui
Song, Zhenfei
Feng, Zhigang
Wang, Qilong
Author_xml – sequence: 1
  givenname: Haiyang
  surname: Zou
  fullname: Zou, Haiyang
– sequence: 2
  givenname: Zhenfei
  orcidid: 0000-0002-2003-6356
  surname: Song
  fullname: Song, Zhenfei
– sequence: 3
  givenname: Huihui
  surname: Mu
  fullname: Mu, Huihui
– sequence: 4
  givenname: Zhigang
  surname: Feng
  fullname: Feng, Zhigang
– sequence: 5
  givenname: Jifeng
  surname: Qu
  fullname: Qu, Jifeng
– sequence: 6
  givenname: Qilong
  surname: Wang
  fullname: Wang, Qilong
BookMark eNpNkV1LwzAUhoNMcM5d-QcCXko1ab7ayzH8GEyE6u6EkKTpyOiamqZC_fV2TmTn5hwOD-97Du8lmDS-sQBcY3RHSI7uVdtihCgmlJ-BaYoETwjFYnIyX4B51-3QWDkmGUZT8LGIfu8MLKyx7ssGqAe4ia52367Zwpe-jq6tLSxU6XzyGOxnbxszwKXv2_pAqAiLodQ2bOFbVNF20Few6LUrXb-_AueVqjs7_-szsHl8eF8-J-vXp9VysU4M4TQmKadc4JxX3DAjFEY054JrgjXFGTOEaUwptRgxYRgXeaYZsTrlOVcoYwqRGVgddUuvdrINbq_CIL1y8nfhw1aqEJ2prRRVihWyjDKdU6ozpbQZ7UjOSoWpoaPWzVGrDX58toty5_vQjOfLlBPEsCCcjNTtkTLBd12w1b8rRvKQhjxJg_wALCR8Dg
CitedBy_id crossref_primary_10_3390_photonics9040250
crossref_primary_10_7498_aps_71_20220972
crossref_primary_10_1364_AO_472295
crossref_primary_10_1016_j_chip_2024_100089
crossref_primary_10_1088_1612_202X_ac9f34
crossref_primary_10_1109_JPHOT_2024_3372640
crossref_primary_10_1063_5_0048415
crossref_primary_10_1140_epjqt_s40507_023_00209_7
crossref_primary_10_1038_s41467_022_29686_7
crossref_primary_10_1016_j_scib_2024_03_032
crossref_primary_10_7498_aps_72_20222091
crossref_primary_10_1140_epjqt_s40507_023_00212_y
crossref_primary_10_1063_5_0146768
crossref_primary_10_1088_1361_6633_acf22f
crossref_primary_10_1364_AO_449918
crossref_primary_10_1109_LAWP_2023_3297729
crossref_primary_10_1063_1_5144616
crossref_primary_10_1140_epjqt_s40507_024_00231_3
crossref_primary_10_3390_app10228110
crossref_primary_10_3788_IRLA20230264
crossref_primary_10_1364_AO_399918
crossref_primary_10_1364_OE_454873
crossref_primary_10_3390_photonics10030328
crossref_primary_10_1016_j_optcom_2022_128603
crossref_primary_10_35848_1347_4065_ac8461
crossref_primary_10_1063_5_0162101
Cites_doi 10.1088/1367-2630/18/5/053017
10.1109/GLOCOMW.2018.8644429
10.1038/nphoton.2016.214
10.1038/nphys2423
10.1109/LAWP.2017.2652476
10.1103/PhysRevA.81.053836
10.1103/RevModPhys.82.2313
10.1063/1.5028357
10.1063/1.4890094
10.1364/OE.27.008848
10.1103/PhysRevA.77.032305
10.1063/1.4984201
10.1109/LAWP.2019.2931450
10.1088/0953-4075/41/20/201002
10.1088/0953-4075/48/20/202001
10.1063/1.5031033
10.1103/PhysRevLett.66.2593
10.1515/9781400837045
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app10041346
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
ProQuest Central
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Academic
ProQuest Central China
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_7f21a0e545b944b8aabc496395da14c4
10_3390_app10041346
GroupedDBID .4S
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARAPS
ARCSS
ATCPS
BBNVY
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
HCIFZ
IAO
K6-
K6V
K7-
KB.
KC.
KQ8
L6V
LK5
LK8
M0K
M7P
M7R
M7S
MODMG
M~E
OK1
P62
PATMY
PCBAR
PDBOC
PIMPY
PROAC
PYCSY
RIG
TUS
2XV
ABUWG
AZQEC
DWQXO
ITC
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c364t-26467196f6c5c7a1049676b31b4185c35b1444e1057c56798b53eb2696a085a03
IEDL.DBID 8FG
ISSN 2076-3417
IngestDate Tue Oct 22 15:16:22 EDT 2024
Thu Oct 10 21:56:58 EDT 2024
Thu Aug 22 11:31:14 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-26467196f6c5c7a1049676b31b4185c35b1444e1057c56798b53eb2696a085a03
ORCID 0000-0002-2003-6356
OpenAccessLink https://www.proquest.com/docview/2630517363?pq-origsite=%requestingapplication%
PQID 2630517363
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_7f21a0e545b944b8aabc496395da14c4
proquest_journals_2630517363
crossref_primary_10_3390_app10041346
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wade (ref_5) 2017; 11
Miller (ref_4) 2016; 18
Song (ref_11) 2017; 16
Gordon (ref_10) 2014; 105
Weatherill (ref_6) 2008; 41
ref_14
(ref_8) 2010; 81
Holloway (ref_2) 2017; 121
Saffman (ref_3) 2010; 82
Deb (ref_12) 2018; 112
Sedlacek (ref_1) 2012; 8
Bason (ref_7) 2008; 77
ref_19
Song (ref_16) 2019; 27
Boller (ref_18) 1991; 66
Meyer (ref_13) 2018; 112
Fan (ref_9) 2015; 48
ref_15
Holloway (ref_17) 2019; 18
References_xml – volume: 18
  start-page: 053017
  year: 2016
  ident: ref_4
  article-title: Radio-frequency-modulated Rydberg states in a vapor cell
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/5/053017
  contributor:
    fullname: Miller
– ident: ref_15
  doi: 10.1109/GLOCOMW.2018.8644429
– volume: 11
  start-page: 40
  year: 2017
  ident: ref_5
  article-title: Real-time near-field terahertz imaging with atomic optical fluorescence
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2016.214
  contributor:
    fullname: Wade
– volume: 8
  start-page: 819
  year: 2012
  ident: ref_1
  article-title: Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2423
  contributor:
    fullname: Sedlacek
– volume: 16
  start-page: 1589
  year: 2017
  ident: ref_11
  article-title: Quantum-based determination of antenna finite range gain by using Rydberg atoms
  publication-title: IEEE Antennas Wirel. Propag. Lett.
  doi: 10.1109/LAWP.2017.2652476
  contributor:
    fullname: Song
– volume: 81
  start-page: 053836
  year: 2010
  ident: ref_8
  article-title: Electromagnetically induced transparency and Autler–Townes splitting: Two similar but distinct phenomena in two categories of three-level atomic systems
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.81.053836
– volume: 82
  start-page: 2313
  year: 2010
  ident: ref_3
  article-title: Quantum information with Rydberg atoms
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.2313
  contributor:
    fullname: Saffman
– volume: 112
  start-page: 211108
  year: 2018
  ident: ref_13
  article-title: Digital communication with Rydberg atoms and amplitude-modulated microwave fields
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5028357
  contributor:
    fullname: Meyer
– volume: 105
  start-page: 024104
  year: 2014
  ident: ref_10
  article-title: Millimeter wave detection via Autler–Townes splitting in rubidium Rydberg atoms
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4890094
  contributor:
    fullname: Gordon
– volume: 27
  start-page: 8848
  year: 2019
  ident: ref_16
  article-title: Rydberg-atom-based digital communication using a continuously tunable radio-frequency carrier
  publication-title: Opt. Express
  doi: 10.1364/OE.27.008848
  contributor:
    fullname: Song
– ident: ref_14
– volume: 77
  start-page: 032305
  year: 2008
  ident: ref_7
  article-title: Electro-optic control of atom-light interactions using Rydberg dark-state polaritons
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.77.032305
  contributor:
    fullname: Bason
– volume: 121
  start-page: 233106
  year: 2017
  ident: ref_2
  article-title: Electric field metrology for SI traceability: Systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4984201
  contributor:
    fullname: Holloway
– volume: 18
  start-page: 1853
  year: 2019
  ident: ref_17
  article-title: Detecting and Receiving Phase Modulated Signals with a Rydberg Atom-Based Mixer
  publication-title: IEEE Antennas Wirel. Propag. Lett.
  doi: 10.1109/LAWP.2019.2931450
  contributor:
    fullname: Holloway
– volume: 41
  start-page: 201002
  year: 2008
  ident: ref_6
  article-title: Electromagnetically induced transparency of an interacting cold Rydberg ensemble
  publication-title: J. Phys. At. Mol. Opt. Phys.
  doi: 10.1088/0953-4075/41/20/201002
  contributor:
    fullname: Weatherill
– volume: 48
  start-page: 202001
  year: 2015
  ident: ref_9
  article-title: Atom based RF electric field sensing
  publication-title: J. Phys. B At. Mol. Opt. Phys.
  doi: 10.1088/0953-4075/48/20/202001
  contributor:
    fullname: Fan
– volume: 112
  start-page: 211106
  year: 2018
  ident: ref_12
  article-title: Radio-over-fiber using an optical antenna based on Rydberg states of atoms
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5031033
  contributor:
    fullname: Deb
– volume: 66
  start-page: 2593
  year: 1991
  ident: ref_18
  article-title: Observation of electromagnetically induced transparency
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.66.2593
  contributor:
    fullname: Boller
– ident: ref_19
  doi: 10.1515/9781400837045
SSID ssj0000913810
Score 2.334011
Snippet Rydberg atoms have been extensively utilized in microwave measurement with high sensitivity, which has great potential in the field of communication. In this...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 1346
SubjectTerms Amplitude modulation
Antennas
Bit error rate
Data transfer (computers)
Electromagnetic interference
Frequency dependence
Frequency division multiplexing
Lasers
microwave communication
Microwave communications
Microwaves
Power consumption
Receivers & amplifiers
Rubidium
rydberg atoms
Rydberg states
Sensitivity
Spectrum allocation
Spectrum analysis
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA7iSQ_ipuJ0Sg476KG4_Gi6HudwDEEPw8EOQknSVAq6ytYe5l_ve00nBQ9evJaUlvfy8r6PfPlCyCAzgBEkMwG0EhfIEC1v0ywOlLQpS23Gna7VFs9qtpCPy3DZuuoLNWHeHtgH7i7KONNDB43exFKakdbGSpg1cZhqJq13Ah3GLTJVr8ExQ-sqfyBPAK_H_WA0R2MCoW6rBdVO_b8W4rq7TI_JUQML6dj_TofsuVWXHLbMAruk05Thht40XtG3J-R1XOKxYgroz6HCgpotXZT5e_4F79CnRi1I5zrNi2C69rrpLZ0UFZ7EfaO6pPNtihov6mEnLTI6r0ye5tXHKVlMH14ms6C5MCGwQskS1WoqgpLKlA1tpIFpxSpSRjCDFjVWhAbok3R4ta8NcfvFhAKYtYqVBuSlh-KM7K-KlTsnNIt5CkO4k9zKyKmRZNxBvULN89CqUY8MdjFMPr0vRgJ8AkOdtELdI_cY358haGZdP4AUJ02Kk79S3CP9XXaSpsI2CVcC7cWEEhf_8Y1LcsCRSdd67D7ZL9eVuwK4UZrremZ9A_sm0CI
  priority: 102
  providerName: Directory of Open Access Journals
Title Atomic Receiver by Utilizing Multiple Radio-Frequency Coupling at Rydberg States of Rubidium
URI https://www.proquest.com/docview/2630517363
https://doaj.org/article/7f21a0e545b944b8aabc496395da14c4
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS9xAFH5UvdRDqbbitnaZg4f2ENz5kUlyKipuRVDK0gUPQphfkYBudDd72P71fS-Z1QWh12QC4c28me-b-eZ7AMeVRYyguE1wKQmJSsny1ldFopXz3LtKBNOpLW705VRd3aa3ccNtEWWV6zmxm6h942iP_ERoSXZSUsufT88JVY2i09VYQmMLdrjIMiJf-fjXyx4LeV7mfNRfy5PI7ulUmCzSuCTAu7EQdX79b6bjbo0Zf4QPERyy07439-BdmO3D7oZl4D7sxWRcsO_RMfrHJ7g7belyMUMMGEhnweyKTdv6of6L37DrqBlkE-PrJhnPe_X0ip03S7qPe89MyyYrT0ov1oNP1lRssrS1r5ePn2E6vvhzfpnEsgmJk1q1pFnTGSZWpV3qMoN8q9CZtpJbMqpxMrVIolSgAr8upUMYm0rk17rQBvGXGckD2J41s3AIrCqExyYiKOFUFnSuuAiYtZj5InU6H8DxOoblU--OUSKroFCXG6EewBnF96UJWVp3D5r5fRkzpMwqwc0oIKKzhVI2N8Y6_HNZpN5w5dQAjta9U8Y8W5Svo-LL_19_hfeCmHKntz6C7Xa-DN8QTrR22I2ZIeycXdz8ngw7Uv4PPr7KGA
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9tAEB21cKAcqgKtCKWwBw5wsBrvrtfxCQEipHwdIiJxqGTtlyNLEEPiHNJf3xl7QyNV4mqvJWt2Z-fN7ps3AEeFQYwgYxNhKPGRTEjy1hVZpKR1sbMF97phW9yrwUhePyaP4cBtFmiVyz2x2ahdZemM_CdXguSkhBKnL68RdY2i29XQQuMjrEuBsZoqxftXb2cspHnZi7ttWZ7A7J5uhUkiLRYEeFcCUaPX_9923MSY_hf4HMAhO2tncws--Mk2bK5IBm7DVnDGGTsOitEnO_D7rKbiYoYY0BPPgpkFG9XlU_kHv2F3gTPIhtqVVdSftuzpBbuo5lSPO2a6ZsOFI6YXa8Enqwo2nJvSlfPnrzDqXz5cDKLQNiGyQsmaOGsqRccqlE1sqjHfylSqjIgNCdVYkRhMoqSnBr82oUsYkwjMr1WmNOIv3RXfYG1STfwusCLjDodwL7mVqVc9GXOPXouezxOreh04Wtowf2nVMXLMKsjU-YqpO3BO9n0bQpLWzYNqOs6Dh-RpwWPd9YjoTCal6WltLP65yBKnY2llB_aXs5MHP5vl_1bF3vuvD2Fj8HB3m9_-ur_5Dp84Zc0N93of1urp3P9AaFGbg2b9_AWuYMpr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5RkKpyqApt1W2h-MCBHiI2tuMkJwSU8GhB1aorcagU-RUUqWzobvaw_HpmEi9dqVKviSNF9jy-sT9_A7BfGcQIMjYRphIfyYQkb12VR0paFztbca87tsWNuhjLq9vkNvCfZoFWuYyJXaB2jaU98kOuBMlJCSUOq0CL-PG1OHr4E1EHKTppDe00XsAGZkVFNp8V58_7LaR_mcXD_oqewEqfTohJLi0WBH5XklKn3f9PaO7yTfEGXgegyI77ld2CNT_Zhs0V-cBt2AqOOWMHQT36y1v4ddzSRWOGeNAT54KZBRu39e_6Eb9h14E_yEba1U1UTHsm9YKdNnO6m3vHdMtGC0esL9YDUdZUbDQ3tavn9-9gXJz9PL2IQguFyAolW-KvqRSdrFI2sanG2itXqTIiNiRaY0VisKCSnpr92oQOZEwisNZWudKIxfRQvIf1STPxH4BVOXc4hHvJrUy9ymTMPXowRgGeWJUNYH85h-VDr5RRYoVBU12uTPUATmh-n4eQvHX3oJnelcFbyrTisR56RHcml9JkWhuLfy7yxOlYWjmAneXqlMHnZuVfC_n4_9d78BJNp_x-efPtE7ziVEB3NOwdWG-nc7-LKKM1nzvzeQIo5s6j
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomic+Receiver+by+Utilizing+Multiple+Radio-Frequency+Coupling+at+Rydberg+States+of+Rubidium&rft.jtitle=Applied+sciences&rft.au=Zou%2C+Haiyang&rft.au=Song%2C+Zhenfei&rft.au=Mu%2C+Huihui&rft.au=Feng%2C+Zhigang&rft.date=2020-02-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=10&rft.issue=4&rft.spage=1346&rft_id=info:doi/10.3390%2Fapp10041346&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon