Advancing sustainable shape memory polymers through 4D printing of polylactic acid-polybutylene adipate terephthalate blends
[Display omitted] •3D/4D printing of novel biodegradable PLA-PBAT blends.•Direct printing by Granule-based FDM printer with low cost.•Achieving fast shape recovery in less than a few seconds (4 s)•Excellent softening of PLA with PBAT resulting in over 200 % elongation.•Achieving excellent thermo-mec...
Saved in:
Published in | European polymer journal Vol. 216; p. 113289 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
07.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•3D/4D printing of novel biodegradable PLA-PBAT blends.•Direct printing by Granule-based FDM printer with low cost.•Achieving fast shape recovery in less than a few seconds (4 s)•Excellent softening of PLA with PBAT resulting in over 200 % elongation.•Achieving excellent thermo-mechanical properties and shape memory effects.
One of the major challenges in 4D printed Shape Memory Polymers (SMPs) is their slow response to thermal stimuli. Synthetic carbon fillers have been introduced to address this issue; however, their use comes with environmental concerns. On the other hand, Polylactic Acid (PLA) is commonly used for 3D/4D printing of SMPs, but it requires softening to achieve large deformations. This research paper introduces a sustainable solution through blending PLA with Polybutylene Adipate Terephthalate (PBAT) that not only addresses these challenges but also possesses environmental eco-friendliness due to PBAT’s high biodegradability rate. PBAT with weight percentages of 15 %, 30 %, and 45 % is utilized to soften PLA, and their composites are successfully 4D printed. Mechanical properties, shape memory effects, morphology, and thermal behaviors are comprehensively investigated. The results show that blending PLA with 45 % PBAT weight results in excellent features such as 220 % elongation and 93 % shape recovery in just a few seconds. The other two PLA-PBAT blends achieve complete shape recovery in less than 8 s. The PLA-PBAT contains 15 % PBAT, in addition to high strength (40 MPa), has 17 % elongation. This, coupled with the low melting temperature of PBAT, drives the high shape recovery rate. Scanning electron microscopy images finally confirm the high printability of all three blends, with the PLA-PBAT composite containing 30 % PBAT exhibiting the best quality in layer interfaces and the least porosity. |
---|---|
AbstractList | [Display omitted]
•3D/4D printing of novel biodegradable PLA-PBAT blends.•Direct printing by Granule-based FDM printer with low cost.•Achieving fast shape recovery in less than a few seconds (4 s)•Excellent softening of PLA with PBAT resulting in over 200 % elongation.•Achieving excellent thermo-mechanical properties and shape memory effects.
One of the major challenges in 4D printed Shape Memory Polymers (SMPs) is their slow response to thermal stimuli. Synthetic carbon fillers have been introduced to address this issue; however, their use comes with environmental concerns. On the other hand, Polylactic Acid (PLA) is commonly used for 3D/4D printing of SMPs, but it requires softening to achieve large deformations. This research paper introduces a sustainable solution through blending PLA with Polybutylene Adipate Terephthalate (PBAT) that not only addresses these challenges but also possesses environmental eco-friendliness due to PBAT’s high biodegradability rate. PBAT with weight percentages of 15 %, 30 %, and 45 % is utilized to soften PLA, and their composites are successfully 4D printed. Mechanical properties, shape memory effects, morphology, and thermal behaviors are comprehensively investigated. The results show that blending PLA with 45 % PBAT weight results in excellent features such as 220 % elongation and 93 % shape recovery in just a few seconds. The other two PLA-PBAT blends achieve complete shape recovery in less than 8 s. The PLA-PBAT contains 15 % PBAT, in addition to high strength (40 MPa), has 17 % elongation. This, coupled with the low melting temperature of PBAT, drives the high shape recovery rate. Scanning electron microscopy images finally confirm the high printability of all three blends, with the PLA-PBAT composite containing 30 % PBAT exhibiting the best quality in layer interfaces and the least porosity. |
ArticleNumber | 113289 |
Author | Rahmatabadi, Davood Khajepour, Mahdi Bodaghi, Mahdi Bayati, Abbas Amin Yousefi, Mohammad Ghasemi, Ismaeil Shegeft, Atefeh Abrinia, Karen Mirasadi, Kiandokht Baniassadi, Majid Baghani, Mostafa |
Author_xml | – sequence: 1 givenname: Davood orcidid: 0000-0002-6898-3061 surname: Rahmatabadi fullname: Rahmatabadi, Davood organization: School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran – sequence: 2 givenname: Mahdi surname: Khajepour fullname: Khajepour, Mahdi organization: School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran – sequence: 3 givenname: Abbas orcidid: 0009-0007-2740-7213 surname: Bayati fullname: Bayati, Abbas organization: School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran – sequence: 4 givenname: Kiandokht surname: Mirasadi fullname: Mirasadi, Kiandokht organization: School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran – sequence: 5 givenname: Mohammad surname: Amin Yousefi fullname: Amin Yousefi, Mohammad organization: School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran – sequence: 6 givenname: Atefeh surname: Shegeft fullname: Shegeft, Atefeh organization: Faculty of Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran – sequence: 7 givenname: Ismaeil surname: Ghasemi fullname: Ghasemi, Ismaeil organization: Faculty of Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran – sequence: 8 givenname: Majid surname: Baniassadi fullname: Baniassadi, Majid organization: School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran – sequence: 9 givenname: Karen orcidid: 0000-0003-1168-9061 surname: Abrinia fullname: Abrinia, Karen organization: School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran – sequence: 10 givenname: Mahdi orcidid: 0000-0002-0707-944X surname: Bodaghi fullname: Bodaghi, Mahdi email: mahdi.bodaghi@ntu.ac.uk organization: Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK – sequence: 11 givenname: Mostafa orcidid: 0000-0001-6695-3128 surname: Baghani fullname: Baghani, Mostafa email: baghani@ut.ac.ir organization: School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran |
BookMark | eNqNkM1qwzAQhEVJoUnaZ6hewKlkybF96CGkvxDopT2LjbSOFRzZSEog0IevnZQeemlPyzB8s8xMyMi1Dgm55WzGGZ_fbWe4913bHHfbWcpSOeNcpEV5Qca8yEXCS5mNyJgxLhPBsvyKTELYMsZyMRdj8rkwB3Daug0N-xDBOlg3SEMNHdId7lp_pKdw9IHG2rf7TU3lA-28dXGg2urkN6Cj1RS0Ncmg1_t4bNAhBWM7iEgjeuzqWEMzqP6HM-GaXFbQBLz5vlPy8fT4vnxJVm_Pr8vFKtFiLmOSCsFkyQuRGWSpyEtgackg5ymiNIxrEKLUkqd9I8SshKIoUGZVts5MXvXulNyfc7VvQ_BYKW0jRNu66ME2ijM1TKm26mdKNUypzlP2fP6L7-vvwB__QS7OJPb1Dha9Ctqi02isRx2Vae2fGV-yPpmg |
CitedBy_id | crossref_primary_10_1016_j_matlet_2025_138205 crossref_primary_10_1016_j_cej_2024_158264 crossref_primary_10_1080_17452759_2024_2438899 crossref_primary_10_1016_j_jmapro_2024_09_098 crossref_primary_10_1109_JSEN_2025_3529135 crossref_primary_10_1007_s13726_024_01439_x crossref_primary_10_1016_j_aiepr_2024_11_002 crossref_primary_10_1007_s40964_025_00989_7 crossref_primary_10_1002_pat_70015 crossref_primary_10_1007_s13726_024_01413_7 crossref_primary_10_3390_jcs8100412 crossref_primary_10_1002_app_56710 crossref_primary_10_1016_j_matdes_2025_113674 crossref_primary_10_1016_j_apmt_2025_102604 crossref_primary_10_1080_17452759_2024_2422384 crossref_primary_10_3390_polym16202904 crossref_primary_10_1007_s11665_025_10912_4 crossref_primary_10_1016_j_eurpolymj_2024_113563 crossref_primary_10_1016_j_mtcomm_2024_110573 crossref_primary_10_1021_acsabm_4c02009 crossref_primary_10_1016_j_powtec_2025_120799 crossref_primary_10_1016_j_eurpolymj_2024_113642 crossref_primary_10_1016_j_apm_2025_115926 crossref_primary_10_3390_polym16172529 crossref_primary_10_3390_polym16152221 crossref_primary_10_3390_polym17060769 crossref_primary_10_1016_j_eurpolymj_2025_113829 crossref_primary_10_1016_j_cej_2024_158850 crossref_primary_10_1080_25740881_2025_2460063 crossref_primary_10_1088_1361_665X_ad8aac crossref_primary_10_1016_j_eurpolymj_2024_113606 crossref_primary_10_1007_s13726_024_01405_7 crossref_primary_10_1016_j_jmrt_2024_09_059 crossref_primary_10_1016_j_addma_2024_104544 crossref_primary_10_1016_j_addma_2024_104465 crossref_primary_10_1016_j_mtcomm_2024_110934 crossref_primary_10_1016_j_eurpolymj_2025_113735 crossref_primary_10_1016_j_polymer_2024_127718 crossref_primary_10_1007_s10924_024_03447_7 crossref_primary_10_1088_1402_4896_adbc2e crossref_primary_10_1021_acsanm_4c06353 crossref_primary_10_1007_s00170_025_15012_0 crossref_primary_10_1016_j_polymer_2025_128214 crossref_primary_10_1108_RPJ_06_2024_0257 crossref_primary_10_3390_polym16212969 crossref_primary_10_1002_pol_20240649 crossref_primary_10_1016_j_ijbiomac_2024_137318 crossref_primary_10_1016_j_polymertesting_2025_108763 crossref_primary_10_1016_j_compositesb_2025_112354 crossref_primary_10_1016_j_mser_2024_100890 crossref_primary_10_3390_ma17153829 crossref_primary_10_1016_j_eurpolymj_2024_113451 crossref_primary_10_1002_marc_202400661 crossref_primary_10_1108_RPJ_08_2024_0349 crossref_primary_10_1016_j_eurpolymj_2024_113546 crossref_primary_10_3390_polym17030315 crossref_primary_10_1088_2053_1591_ada1a6 crossref_primary_10_1016_j_jmapro_2024_11_005 crossref_primary_10_3390_polym16223125 crossref_primary_10_1039_D4TA04338C crossref_primary_10_1177_09544054241289506 crossref_primary_10_1016_j_ijbiomac_2024_135365 crossref_primary_10_1007_s11665_025_10837_y crossref_primary_10_1016_j_jmapro_2024_10_003 crossref_primary_10_1016_j_matdes_2024_113361 crossref_primary_10_1007_s10237_024_01904_9 crossref_primary_10_1016_j_rineng_2025_104564 crossref_primary_10_1016_j_polymertesting_2025_108697 crossref_primary_10_1002_marc_202401066 crossref_primary_10_1007_s00170_025_15128_3 crossref_primary_10_1016_j_matdes_2024_113567 crossref_primary_10_1016_j_cej_2025_160450 |
Cites_doi | 10.1038/s41598-020-63020-9 10.1016/j.jmbbm.2023.105813 10.1016/j.compscitech.2019.107866 10.3390/polym15214305 10.1021/acssuschemeng.9b04925 10.1021/acssuschemeng.9b01830 10.1016/j.jmps.2011.03.001 10.3390/polym14163305 10.1016/S1526-6125(04)70071-7 10.1002/pen.26481 10.1016/j.biortech.2010.05.075 10.1016/j.ijmecsci.2020.105451 10.1016/j.polymertesting.2022.107738 10.1016/j.compscitech.2020.108399 10.1007/s10924-018-1256-x 10.1002/adem.202201309 10.1088/0964-1726/21/5/055022 10.1016/j.eurpolymj.2023.112356 10.1002/(SICI)1099-1581(199803)9:3<169::AID-PAT740>3.0.CO;2-Z 10.1088/1402-4896/ad1957 10.1016/j.polymertesting.2021.107205 10.1016/j.jmrt.2021.08.044 10.3390/polym11061049 10.1016/j.radphyschem.2020.109239 10.1016/j.matlet.2024.136075 10.1016/j.jmrt.2022.11.024 10.1007/s10853-007-2440-x 10.1002/admt.201800495 10.1016/j.jmrt.2022.04.076 10.1002/app.30907 10.1016/j.eurpolymj.2022.111106 10.1088/0964-1726/18/9/095031 10.3390/polym15040881 10.1016/j.compositesb.2019.107028 10.1016/j.compositesb.2020.108034 10.1002/masy.202000157 10.1007/s00170-023-11571-2 10.3390/polym16060831 10.3390/app11136218 10.3390/ma13214897 10.1021/acsomega.8b02549 10.1007/s10924-023-02899-7 10.1002/vnl.22099 10.1021/acs.macromol.9b00595 10.1002/polb.10223 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) |
Copyright_xml | – notice: 2024 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.eurpolymj.2024.113289 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-1945 |
ExternalDocumentID | 10_1016_j_eurpolymj_2024_113289 S0014305724005500 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAEPC AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABXRA ACDAQ ACGFO ACGFS ACIWK ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSK SSZ T5K XPP ZMT ~G- 29G AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 M24 M41 R2- SCB SMS SSH T9H WUQ |
ID | FETCH-LOGICAL-c364t-2330491835de02379a0290a712ee4d01ca339c412363ee59a888e45f5b5d7fca3 |
IEDL.DBID | .~1 |
ISSN | 0014-3057 |
IngestDate | Thu Apr 24 23:05:58 EDT 2025 Tue Jul 01 01:59:14 EDT 2025 Sat Jul 27 15:40:58 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Polylactic Acid 3D/4D Printing Shape Memory Polymers Polybutylene Adipate Terephthalate Shape Recovery |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-2330491835de02379a0290a712ee4d01ca339c412363ee59a888e45f5b5d7fca3 |
ORCID | 0000-0002-6898-3061 0000-0002-0707-944X 0000-0001-6695-3128 0009-0007-2740-7213 0000-0003-1168-9061 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0014305724005500 |
ParticipantIDs | crossref_citationtrail_10_1016_j_eurpolymj_2024_113289 crossref_primary_10_1016_j_eurpolymj_2024_113289 elsevier_sciencedirect_doi_10_1016_j_eurpolymj_2024_113289 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-07 |
PublicationDateYYYYMMDD | 2024-08-07 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-07 day: 07 |
PublicationDecade | 2020 |
PublicationTitle | European polymer journal |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Razavi, Wang (b0190) 2019; 52 Lalegani Dezaki, Bodaghi (b0050) 2023 Bianchi, Dorigato, Morreale, Pegoretti (b0160) 2023; 15 Ádám, Weltsch (b0105) 2021; 11 Kumar, Mohanty, Nayak, Rahail (b0155) 2010; 101 Rahmatabadi, Aberoumand, Soltanmohammadi, Soleyman, Ghasemi, Baniassadi (b0255) 2023; 25 Li, Gao, Zhao, Gao, He, Cong (b0070) 2022; 115 Akbar, El Hadrouz, El Mansori, Lagoudas (b0025) 2022; 168 Li, Xu (b0075) 2011; 59 Zhao, Zhang, Leng, Liu (b0045) 2019; 184 Jeong, Lee, Ha, Kim, Jun (b0030) 2019; 4 Su, Duhme, Kopitzky (b0225) 2020; 13 Zeng, Liu, Bian, Liu, Leng (b0040) 2020; 194 Soleyman, Aberoumand, Rahmatabadi, Soltanmohammadi, Ghasemi, Baniassadi (b0065) 2022; 18 Bodaghi, Serjouei, Zolfagharian, Fotouhi, Rahman, Durand (b0060) 2020; 173 Fekete, Ronkay, Lendvai (b0115) 2021; 99 Andrzejewski, Cheng, Anstey, Mohanty, Misra (b0165) 2020; 8 Cardoso, Coutinho, Drummond, da Conceição, Thiré RM da (b0170) 2020; 394 Yu, Sun, Li, Li, Lei, Wei (b0125) 2023; 15 Deng, Yu, Wongwiwattana, Thomas (b0240) 2018; 26 Rahmatabadi, Ghasemi, Baniassadi, Abrinia, Baghani (b0135) 2022; 21 Suhr, Koratkar (b0185) 2008; 43 Jian, Xiangbin, Xianbo (b0195) 2020; 3 Yeh, Tsou, Huang, Chen, Wu, Chai (b0230) 2010; 116 Leng, Wu, Liu (b0250) 2009; 18 Yao, Zhu, Xu, Wu, Yang, Liu (b0095) 2023; 63 Sun, Wang, Chen, Salvekar, Naveen, Xu (b0085) 2019; 11 Dezaki, Bodaghi (b0015) 2024; 210 Aharoni (b0205) 1998; 9 Appukuttan, Joseph (b0180) 2014 Shinde, Mane, Vardikar, Dhumal, Rajput (b0020) 2023; 197 Liu, Chen (b0210) 2024 Priya, Jog (b0200) 2002; 40 Åkerlund, Diez-Escudero, Grzeszczak, Persson (b0100) 2022; 14 Bayati, Rahmatabadi, Ghasemi, Khodaei, Baniassadi, Abrinia (b0010) 2024; 361 Bellehumeur, Li, Sun, Gu (b0220) 2004; 6 Qahtani, Wu, Misra, Gregori, Mielewski, Mohanty (b0215) 2019; 7 Ou-Yang, Guo, Xu (b0120) 2018; 3 Wang, Peng, Chen, Yu, Zhao (b0145) 2019; 173 Jeong, Woo, Kim, Jun (b0055) 2020; 10 Wei, Zhu, Tang, Tian, Xie (b0245) 2012; 21 da Costa, Parra, Cardoso, Güven (b0235) 2023; 31 Rahmatabadi, Soltanmohammadi, Aberoumand, Soleyman, Ghasemi, Baniassadi (b0090) 2024; 99 Rahmatabadi, Ghasemi, Baniassadi, Abrinia, Baghani (b0140) 2023; 2023 Chen, Qi, Li, Tao (b0175) 2021; 180 Singamneni, Behera, Truong, Le Guen, Macrae, Pickering (b0150) 2021; 15 Bhagia, Bornani, Agarwal, Satlewal, Ďurkovič, Lagaňa (b0080) 2021; 24 Rahmatabadi, Soltanmohammadi, Pahlavani, Aberoumand, Soleyman, Ghasemi (b0035) 2023; 127 Karimi, Rahmatabadi, Baghani (b0005) 2024; 16 Kumar, Alex, Nayak, Mohanty (b0110) 2023; 141 Lyu, Chen, Lin, Zhang, Shi (b0130) 2020; 200 Ádám (10.1016/j.eurpolymj.2024.113289_b0105) 2021; 11 Lalegani Dezaki (10.1016/j.eurpolymj.2024.113289_b0050) 2023 Deng (10.1016/j.eurpolymj.2024.113289_b0240) 2018; 26 Cardoso (10.1016/j.eurpolymj.2024.113289_b0170) 2020; 394 Fekete (10.1016/j.eurpolymj.2024.113289_b0115) 2021; 99 Bodaghi (10.1016/j.eurpolymj.2024.113289_b0060) 2020; 173 da Costa (10.1016/j.eurpolymj.2024.113289_b0235) 2023; 31 Akbar (10.1016/j.eurpolymj.2024.113289_b0025) 2022; 168 Rahmatabadi (10.1016/j.eurpolymj.2024.113289_b0135) 2022; 21 Jeong (10.1016/j.eurpolymj.2024.113289_b0030) 2019; 4 Bellehumeur (10.1016/j.eurpolymj.2024.113289_b0220) 2004; 6 Jeong (10.1016/j.eurpolymj.2024.113289_b0055) 2020; 10 Andrzejewski (10.1016/j.eurpolymj.2024.113289_b0165) 2020; 8 Yeh (10.1016/j.eurpolymj.2024.113289_b0230) 2010; 116 Rahmatabadi (10.1016/j.eurpolymj.2024.113289_b0035) 2023; 127 Sun (10.1016/j.eurpolymj.2024.113289_b0085) 2019; 11 Wang (10.1016/j.eurpolymj.2024.113289_b0145) 2019; 173 Suhr (10.1016/j.eurpolymj.2024.113289_b0185) 2008; 43 Bianchi (10.1016/j.eurpolymj.2024.113289_b0160) 2023; 15 Liu (10.1016/j.eurpolymj.2024.113289_b0210) 2024 Zhao (10.1016/j.eurpolymj.2024.113289_b0045) 2019; 184 Åkerlund (10.1016/j.eurpolymj.2024.113289_b0100) 2022; 14 Dezaki (10.1016/j.eurpolymj.2024.113289_b0015) 2024; 210 Ou-Yang (10.1016/j.eurpolymj.2024.113289_b0120) 2018; 3 Li (10.1016/j.eurpolymj.2024.113289_b0070) 2022; 115 Kumar (10.1016/j.eurpolymj.2024.113289_b0155) 2010; 101 Shinde (10.1016/j.eurpolymj.2024.113289_b0020) 2023; 197 Singamneni (10.1016/j.eurpolymj.2024.113289_b0150) 2021; 15 Lyu (10.1016/j.eurpolymj.2024.113289_b0130) 2020; 200 Jian (10.1016/j.eurpolymj.2024.113289_b0195) 2020; 3 Aharoni (10.1016/j.eurpolymj.2024.113289_b0205) 1998; 9 Zeng (10.1016/j.eurpolymj.2024.113289_b0040) 2020; 194 Soleyman (10.1016/j.eurpolymj.2024.113289_b0065) 2022; 18 Karimi (10.1016/j.eurpolymj.2024.113289_b0005) 2024; 16 Rahmatabadi (10.1016/j.eurpolymj.2024.113289_b0140) 2023; 2023 Priya (10.1016/j.eurpolymj.2024.113289_b0200) 2002; 40 Leng (10.1016/j.eurpolymj.2024.113289_b0250) 2009; 18 Su (10.1016/j.eurpolymj.2024.113289_b0225) 2020; 13 Yao (10.1016/j.eurpolymj.2024.113289_b0095) 2023; 63 Li (10.1016/j.eurpolymj.2024.113289_b0075) 2011; 59 Rahmatabadi (10.1016/j.eurpolymj.2024.113289_b0255) 2023; 25 Qahtani (10.1016/j.eurpolymj.2024.113289_b0215) 2019; 7 Chen (10.1016/j.eurpolymj.2024.113289_b0175) 2021; 180 Bhagia (10.1016/j.eurpolymj.2024.113289_b0080) 2021; 24 Rahmatabadi (10.1016/j.eurpolymj.2024.113289_b0090) 2024; 99 Yu (10.1016/j.eurpolymj.2024.113289_b0125) 2023; 15 Wei (10.1016/j.eurpolymj.2024.113289_b0245) 2012; 21 Bayati (10.1016/j.eurpolymj.2024.113289_b0010) 2024; 361 Kumar (10.1016/j.eurpolymj.2024.113289_b0110) 2023; 141 Appukuttan (10.1016/j.eurpolymj.2024.113289_b0180) 2014 Razavi (10.1016/j.eurpolymj.2024.113289_b0190) 2019; 52 |
References_xml | – volume: 99 year: 2021 ident: b0115 article-title: Highly toughened blends of poly(lactic acid) (PLA) and natural rubber (NR) for FDM-based 3D printing applications: the effect of composition and infill pattern publication-title: Polym. Test. – volume: 2023 start-page: 1 year: 2023 end-page: 17 ident: b0140 article-title: 4D printing of PLA-TPU blends: effect of PLA concentration, loading mode, and programming temperature on the shape memory effect publication-title: J. Mater. Sci. – volume: 101 start-page: 8406 year: 2010 end-page: 8415 ident: b0155 article-title: Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites publication-title: Bioresour. Technol. – volume: 59 start-page: 1231 year: 2011 end-page: 1250 ident: b0075 article-title: Thermomechanical behavior of thermoset shape memory polymer programmed by cold-compression: testing and constitutive modeling publication-title: J. Mech. Phys. Solids – volume: 116 start-page: 680 year: 2010 end-page: 687 ident: b0230 article-title: Compatible and crystallization properties of poly(lactic acid)/poly(butylene adipate- co -terephthalate) blends publication-title: J. Appl. Polym. Sci. – volume: 13 start-page: 1 year: 2020 end-page: 17 ident: b0225 article-title: Uncompatibilized pbat/pla blends: Manufacturability, miscibility and properties publication-title: Materials (Basel) – volume: 43 start-page: 4370 year: 2008 end-page: 4382 ident: b0185 article-title: Energy dissipation in carbon nanotube composites: a review publication-title: J. Mater. Sci. – volume: 210 year: 2024 ident: b0015 article-title: 4D printing and programming of continuous fibre-reinforced shape memory polymer composites publication-title: Eur. Polym. J. – volume: 40 start-page: 1682 year: 2002 end-page: 1689 ident: b0200 article-title: Poly(vinylidene fluoride)/clay nanocomposites prepared by melt intercalation: crystallization and dynamic mechanical behavior studies publication-title: J. Polym. Sci. B – volume: 26 start-page: 3802 year: 2018 end-page: 3816 ident: b0240 article-title: Optimising ductility of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends through co-continuous phase morphology publication-title: J. Polym. Environ. – volume: 16 start-page: 831 year: 2024 ident: b0005 article-title: Various FDM mechanisms used in the fabrication of continuous-fiber reinforced composites: a review publication-title: Polymers (Basel) – volume: 99 year: 2024 ident: b0090 article-title: 4D printing of porous PLA-TPU structures: effect of applied deformation, loading mode and infill pattern on the shape memory performance publication-title: Phys. Scr. – volume: 200 year: 2020 ident: b0130 article-title: Manipulating phase structure of biodegradable PLA/PBAT system: Effects on dynamic rheological responses and 3D printing publication-title: Compos. Sci. Technol. – volume: 15 start-page: 881 year: 2023 ident: b0160 article-title: Evaluation of the Physical and Shape Memory Properties of Fully Biodegradable Poly(lactic acid) (PLA)/Poly(butylene adipate terephthalate) (PBAT) Blends publication-title: Polymers (basel) – volume: 6 start-page: 170 year: 2004 end-page: 178 ident: b0220 article-title: Modeling of bond formation between polymer filaments in the fused deposition modeling process publication-title: J. Manuf. Process. – volume: 115 year: 2022 ident: b0070 article-title: Dual and triple shape memory properties of poly(ε-caprolactone)-based cross-linked polymer elastomers publication-title: Polym. Test. – volume: 3 start-page: 14309 year: 2018 end-page: 14317 ident: b0120 article-title: Preparation and Characterization of Poly(butylene succinate)/Polylactide Blends for Fused Deposition Modeling 3D Printing publication-title: ACS Omega – volume: 10 start-page: 1 year: 2020 end-page: 11 ident: b0055 article-title: Multicolor 4D printing of shape-memory polymers for light-induced selective heating and remote actuation publication-title: Sci. Rep. – volume: 31 start-page: 4662 year: 2023 end-page: 4690 ident: b0235 article-title: PLA, PBAT, cellulose nanocrystals (CNCs), and their blends: biodegradation, compatibilization, and nanoparticle interactions publication-title: J. Polym. Environ. – volume: 18 start-page: 95031 year: 2009 ident: b0250 article-title: Effect of a linear monomer on the thermomechanical properties of epoxy shape-memory polymer publication-title: Smart Mater. Struct. – volume: 127 start-page: 935 year: 2023 end-page: 950 ident: b0035 article-title: Shape memory performance assessment of FDM 3D printed PLA-TPU composites by Box-Behnken response surface methodology publication-title: Int. J. Adv. Manuf. Technol. – volume: 184 year: 2019 ident: b0045 article-title: Personalized 4D printing of bioinspired tracheal scaffold concept based on magnetic stimulated shape memory composites publication-title: Compos. Sci. Technol. – volume: 24 year: 2021 ident: b0080 article-title: Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries publication-title: Appl. Mater. Today – volume: 21 start-page: 3970 year: 2022 end-page: 3981 ident: b0135 article-title: 3D printing of PLA-TPU with different component ratios: Fracture toughness, mechanical properties, and morphology publication-title: J. Mater. Res. Technol. – volume: 3 start-page: 19 year: 2020 end-page: 26 ident: b0195 article-title: An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)–PBAT publication-title: Adv. Ind. Eng. Polym. Res. – volume: 173 year: 2019 ident: b0145 article-title: Mechanical properties, rheological behaviors, and phase morphologies of high-toughness PLA/PBAT blends by in-situ reactive compatibilization publication-title: Compos. B Eng. – start-page: 1 year: 2023 end-page: 14 ident: b0050 article-title: Sustainable 4D printing of magneto-electroactive shape memory polymer composites publication-title: Int. J. Adv. Manuf. Technol. – volume: 180 year: 2021 ident: b0175 article-title: The degradation investigation of biodegradable PLA/PBAT blend: thermal stability, mechanical properties and PALS analysis publication-title: Radiat. Phys. Chem. – volume: 394 year: 2020 ident: b0170 article-title: Evaluation of Printing Parameters on Porosity and Mechanical Properties of 3D Printed PLA/PBAT Blend Parts publication-title: Macromol. Symp. – volume: 9 start-page: 169 year: 1998 end-page: 201 ident: b0205 article-title: Increased glass transition temperature in motionally constrained semicrystalline polymers publication-title: Polym. Adv. Technol. – volume: 7 start-page: 14460 year: 2019 end-page: 14470 ident: b0215 article-title: Experimental design of sustainable 3D-printed poly(lactic acid)/biobased poly(butylene succinate) blends via fused deposition modeling publication-title: ACS Sustain. Chem. Eng. – volume: 25 start-page: 2201309 year: 2023 ident: b0255 article-title: 4D printing-encapsulated polycaprolactone-thermoplastic polyurethane with high shape memory performances publication-title: Adv. Eng. Mater. – volume: 15 start-page: 4305 year: 2023 ident: b0125 article-title: FDM 3D Printing and Properties of PBS/PLA Blends publication-title: Polym – volume: 197 year: 2023 ident: b0020 article-title: 4D printing: from emergence to innovation over 3D printing publication-title: Eur. Polym. J. – volume: 18 start-page: 4201 year: 2022 end-page: 4215 ident: b0065 article-title: Assessment of controllable shape transformation, potential applications, and tensile shape memory properties of 3D printed PETG publication-title: J. Mater. Res. Technol. – volume: 361 year: 2024 ident: b0010 article-title: 3D printing super stretchable propylene-based elastomer publication-title: Mater. Lett. – volume: 11 start-page: 6218 year: 2021 ident: b0105 article-title: Thermal and Mechanical Assessment of PLA-SEBS and PLA-SEBS-CNT Biopolymer Blends for 3D Printing publication-title: Appl. Sci. – volume: 11 start-page: 1049 year: 2019 ident: b0085 article-title: A brief review of the shape memory phenomena in polymers and their typical sensor applications publication-title: Polym – volume: 15 start-page: 936 year: 2021 end-page: 949 ident: b0150 article-title: Direct extrusion 3D printing for a softer PLA-based bio-polymer composite in pellet form publication-title: J. Mater. Res. Technol. – volume: 194 year: 2020 ident: b0040 article-title: 4D printed electro-induced continuous carbon fiber reinforced shape memory polymer composites with excellent bending resistance publication-title: Compos. B Eng. – volume: 8 start-page: 6576 year: 2020 end-page: 6589 ident: b0165 article-title: Development of toughened blends of poly(lactic acid) and poly(butylene adipate- co-terephthalate) for 3D printing applications: compatibilization methods and material performance evaluation publication-title: ACS Sustain. Chem. Eng. – volume: 14 start-page: 3305 year: 2022 ident: b0100 article-title: The effect of PCL addition on 3D-Printable PLA/HA composite filaments for the treatment of bone Defects publication-title: Polymers (Basel) – volume: 141 year: 2023 ident: b0110 article-title: Effect of poly (ethylene glycol) on 3D printed PLA/PEG blend: A study of physical, mechanical characterization and printability assessment publication-title: J. Mech. Behav. Biomed. Mater. – volume: 63 start-page: 3743 year: 2023 end-page: 3761 ident: b0095 article-title: Taguchi design and optimization of the PLA/PCL composite filament with plasticizer and compatibilizer additives for optimal 3D printing publication-title: Polym. Eng. Sci. – volume: 173 year: 2020 ident: b0060 article-title: Reversible energy absorbing meta-sandwiches by FDM 4D printing publication-title: Int. J. Mech. Sci. – volume: 4 start-page: 1 year: 2019 end-page: 7 ident: b0030 article-title: Multistable thermal actuators via multimaterial 4D printing publication-title: Adv. Mater. Technol. – start-page: 1 year: 2014 end-page: 2 ident: b0180 article-title: Immobilizing polymer chains in chlorobutyl rubber nanocomposites publication-title: Soc. Plast Eng. Plast Res. Online – volume: 168 year: 2022 ident: b0025 article-title: Toward enabling manufacturing paradigm of 4D printing of shape memory materials: open literature review publication-title: Eur. Polym. J. – volume: 52 start-page: 5429 year: 2019 end-page: 5441 ident: b0190 article-title: Why Is crystalline poly(lactic acid) brittle at room temperature? publication-title: Macromolecules – year: 2024 ident: b0210 article-title: Influence of LLDPE on the mechanical properties improvement of 3D printed POE/LLDPE blends publication-title: J. Vinyl Add. Tech. – volume: 21 start-page: 55022 year: 2012 ident: b0245 article-title: Thermomechanical properties of shape-memory hydro-epoxy resin publication-title: Smart Mater. Struct. – volume: 10 start-page: 1 year: 2020 ident: 10.1016/j.eurpolymj.2024.113289_b0055 article-title: Multicolor 4D printing of shape-memory polymers for light-induced selective heating and remote actuation publication-title: Sci. Rep. doi: 10.1038/s41598-020-63020-9 – volume: 141 year: 2023 ident: 10.1016/j.eurpolymj.2024.113289_b0110 article-title: Effect of poly (ethylene glycol) on 3D printed PLA/PEG blend: A study of physical, mechanical characterization and printability assessment publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2023.105813 – volume: 184 year: 2019 ident: 10.1016/j.eurpolymj.2024.113289_b0045 article-title: Personalized 4D printing of bioinspired tracheal scaffold concept based on magnetic stimulated shape memory composites publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.107866 – volume: 15 start-page: 4305 year: 2023 ident: 10.1016/j.eurpolymj.2024.113289_b0125 article-title: FDM 3D Printing and Properties of PBS/PLA Blends publication-title: Polym doi: 10.3390/polym15214305 – volume: 8 start-page: 6576 year: 2020 ident: 10.1016/j.eurpolymj.2024.113289_b0165 article-title: Development of toughened blends of poly(lactic acid) and poly(butylene adipate- co-terephthalate) for 3D printing applications: compatibilization methods and material performance evaluation publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b04925 – volume: 7 start-page: 14460 year: 2019 ident: 10.1016/j.eurpolymj.2024.113289_b0215 article-title: Experimental design of sustainable 3D-printed poly(lactic acid)/biobased poly(butylene succinate) blends via fused deposition modeling publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b01830 – volume: 59 start-page: 1231 year: 2011 ident: 10.1016/j.eurpolymj.2024.113289_b0075 article-title: Thermomechanical behavior of thermoset shape memory polymer programmed by cold-compression: testing and constitutive modeling publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2011.03.001 – volume: 14 start-page: 3305 year: 2022 ident: 10.1016/j.eurpolymj.2024.113289_b0100 article-title: The effect of PCL addition on 3D-Printable PLA/HA composite filaments for the treatment of bone Defects publication-title: Polymers (Basel) doi: 10.3390/polym14163305 – volume: 6 start-page: 170 year: 2004 ident: 10.1016/j.eurpolymj.2024.113289_b0220 article-title: Modeling of bond formation between polymer filaments in the fused deposition modeling process publication-title: J. Manuf. Process. doi: 10.1016/S1526-6125(04)70071-7 – volume: 2023 start-page: 1 year: 2023 ident: 10.1016/j.eurpolymj.2024.113289_b0140 article-title: 4D printing of PLA-TPU blends: effect of PLA concentration, loading mode, and programming temperature on the shape memory effect publication-title: J. Mater. Sci. – volume: 63 start-page: 3743 year: 2023 ident: 10.1016/j.eurpolymj.2024.113289_b0095 article-title: Taguchi design and optimization of the PLA/PCL composite filament with plasticizer and compatibilizer additives for optimal 3D printing publication-title: Polym. Eng. Sci. doi: 10.1002/pen.26481 – volume: 101 start-page: 8406 year: 2010 ident: 10.1016/j.eurpolymj.2024.113289_b0155 article-title: Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.05.075 – volume: 173 year: 2020 ident: 10.1016/j.eurpolymj.2024.113289_b0060 article-title: Reversible energy absorbing meta-sandwiches by FDM 4D printing publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2020.105451 – volume: 115 year: 2022 ident: 10.1016/j.eurpolymj.2024.113289_b0070 article-title: Dual and triple shape memory properties of poly(ε-caprolactone)-based cross-linked polymer elastomers publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2022.107738 – volume: 200 year: 2020 ident: 10.1016/j.eurpolymj.2024.113289_b0130 article-title: Manipulating phase structure of biodegradable PLA/PBAT system: Effects on dynamic rheological responses and 3D printing publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2020.108399 – volume: 26 start-page: 3802 year: 2018 ident: 10.1016/j.eurpolymj.2024.113289_b0240 article-title: Optimising ductility of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends through co-continuous phase morphology publication-title: J. Polym. Environ. doi: 10.1007/s10924-018-1256-x – volume: 25 start-page: 2201309 year: 2023 ident: 10.1016/j.eurpolymj.2024.113289_b0255 article-title: 4D printing-encapsulated polycaprolactone-thermoplastic polyurethane with high shape memory performances publication-title: Adv. Eng. Mater. doi: 10.1002/adem.202201309 – volume: 24 year: 2021 ident: 10.1016/j.eurpolymj.2024.113289_b0080 article-title: Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries publication-title: Appl. Mater. Today – volume: 21 start-page: 55022 year: 2012 ident: 10.1016/j.eurpolymj.2024.113289_b0245 article-title: Thermomechanical properties of shape-memory hydro-epoxy resin publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/21/5/055022 – start-page: 1 year: 2023 ident: 10.1016/j.eurpolymj.2024.113289_b0050 article-title: Sustainable 4D printing of magneto-electroactive shape memory polymer composites publication-title: Int. J. Adv. Manuf. Technol. – volume: 197 year: 2023 ident: 10.1016/j.eurpolymj.2024.113289_b0020 article-title: 4D printing: from emergence to innovation over 3D printing publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2023.112356 – volume: 9 start-page: 169 year: 1998 ident: 10.1016/j.eurpolymj.2024.113289_b0205 article-title: Increased glass transition temperature in motionally constrained semicrystalline polymers publication-title: Polym. Adv. Technol. doi: 10.1002/(SICI)1099-1581(199803)9:3<169::AID-PAT740>3.0.CO;2-Z – volume: 99 year: 2024 ident: 10.1016/j.eurpolymj.2024.113289_b0090 article-title: 4D printing of porous PLA-TPU structures: effect of applied deformation, loading mode and infill pattern on the shape memory performance publication-title: Phys. Scr. doi: 10.1088/1402-4896/ad1957 – volume: 99 year: 2021 ident: 10.1016/j.eurpolymj.2024.113289_b0115 article-title: Highly toughened blends of poly(lactic acid) (PLA) and natural rubber (NR) for FDM-based 3D printing applications: the effect of composition and infill pattern publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2021.107205 – volume: 15 start-page: 936 year: 2021 ident: 10.1016/j.eurpolymj.2024.113289_b0150 article-title: Direct extrusion 3D printing for a softer PLA-based bio-polymer composite in pellet form publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2021.08.044 – volume: 11 start-page: 1049 year: 2019 ident: 10.1016/j.eurpolymj.2024.113289_b0085 article-title: A brief review of the shape memory phenomena in polymers and their typical sensor applications publication-title: Polym doi: 10.3390/polym11061049 – volume: 180 year: 2021 ident: 10.1016/j.eurpolymj.2024.113289_b0175 article-title: The degradation investigation of biodegradable PLA/PBAT blend: thermal stability, mechanical properties and PALS analysis publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2020.109239 – start-page: 1 year: 2014 ident: 10.1016/j.eurpolymj.2024.113289_b0180 article-title: Immobilizing polymer chains in chlorobutyl rubber nanocomposites publication-title: Soc. Plast Eng. Plast Res. Online – volume: 361 year: 2024 ident: 10.1016/j.eurpolymj.2024.113289_b0010 article-title: 3D printing super stretchable propylene-based elastomer publication-title: Mater. Lett. doi: 10.1016/j.matlet.2024.136075 – volume: 210 year: 2024 ident: 10.1016/j.eurpolymj.2024.113289_b0015 article-title: 4D printing and programming of continuous fibre-reinforced shape memory polymer composites publication-title: Eur. Polym. J. – volume: 21 start-page: 3970 year: 2022 ident: 10.1016/j.eurpolymj.2024.113289_b0135 article-title: 3D printing of PLA-TPU with different component ratios: Fracture toughness, mechanical properties, and morphology publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2022.11.024 – volume: 43 start-page: 4370 year: 2008 ident: 10.1016/j.eurpolymj.2024.113289_b0185 article-title: Energy dissipation in carbon nanotube composites: a review publication-title: J. Mater. Sci. doi: 10.1007/s10853-007-2440-x – volume: 4 start-page: 1 year: 2019 ident: 10.1016/j.eurpolymj.2024.113289_b0030 article-title: Multistable thermal actuators via multimaterial 4D printing publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800495 – volume: 18 start-page: 4201 year: 2022 ident: 10.1016/j.eurpolymj.2024.113289_b0065 article-title: Assessment of controllable shape transformation, potential applications, and tensile shape memory properties of 3D printed PETG publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2022.04.076 – volume: 116 start-page: 680 year: 2010 ident: 10.1016/j.eurpolymj.2024.113289_b0230 article-title: Compatible and crystallization properties of poly(lactic acid)/poly(butylene adipate- co -terephthalate) blends publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.30907 – volume: 168 year: 2022 ident: 10.1016/j.eurpolymj.2024.113289_b0025 article-title: Toward enabling manufacturing paradigm of 4D printing of shape memory materials: open literature review publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2022.111106 – volume: 18 start-page: 95031 year: 2009 ident: 10.1016/j.eurpolymj.2024.113289_b0250 article-title: Effect of a linear monomer on the thermomechanical properties of epoxy shape-memory polymer publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/18/9/095031 – volume: 15 start-page: 881 year: 2023 ident: 10.1016/j.eurpolymj.2024.113289_b0160 article-title: Evaluation of the Physical and Shape Memory Properties of Fully Biodegradable Poly(lactic acid) (PLA)/Poly(butylene adipate terephthalate) (PBAT) Blends publication-title: Polymers (basel) doi: 10.3390/polym15040881 – volume: 173 year: 2019 ident: 10.1016/j.eurpolymj.2024.113289_b0145 article-title: Mechanical properties, rheological behaviors, and phase morphologies of high-toughness PLA/PBAT blends by in-situ reactive compatibilization publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2019.107028 – volume: 194 year: 2020 ident: 10.1016/j.eurpolymj.2024.113289_b0040 article-title: 4D printed electro-induced continuous carbon fiber reinforced shape memory polymer composites with excellent bending resistance publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2020.108034 – volume: 394 year: 2020 ident: 10.1016/j.eurpolymj.2024.113289_b0170 article-title: Evaluation of Printing Parameters on Porosity and Mechanical Properties of 3D Printed PLA/PBAT Blend Parts publication-title: Macromol. Symp. doi: 10.1002/masy.202000157 – volume: 127 start-page: 935 year: 2023 ident: 10.1016/j.eurpolymj.2024.113289_b0035 article-title: Shape memory performance assessment of FDM 3D printed PLA-TPU composites by Box-Behnken response surface methodology publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-023-11571-2 – volume: 16 start-page: 831 year: 2024 ident: 10.1016/j.eurpolymj.2024.113289_b0005 article-title: Various FDM mechanisms used in the fabrication of continuous-fiber reinforced composites: a review publication-title: Polymers (Basel) doi: 10.3390/polym16060831 – volume: 11 start-page: 6218 year: 2021 ident: 10.1016/j.eurpolymj.2024.113289_b0105 article-title: Thermal and Mechanical Assessment of PLA-SEBS and PLA-SEBS-CNT Biopolymer Blends for 3D Printing publication-title: Appl. Sci. doi: 10.3390/app11136218 – volume: 13 start-page: 1 year: 2020 ident: 10.1016/j.eurpolymj.2024.113289_b0225 article-title: Uncompatibilized pbat/pla blends: Manufacturability, miscibility and properties publication-title: Materials (Basel) doi: 10.3390/ma13214897 – volume: 3 start-page: 14309 year: 2018 ident: 10.1016/j.eurpolymj.2024.113289_b0120 article-title: Preparation and Characterization of Poly(butylene succinate)/Polylactide Blends for Fused Deposition Modeling 3D Printing publication-title: ACS Omega doi: 10.1021/acsomega.8b02549 – volume: 31 start-page: 4662 year: 2023 ident: 10.1016/j.eurpolymj.2024.113289_b0235 article-title: PLA, PBAT, cellulose nanocrystals (CNCs), and their blends: biodegradation, compatibilization, and nanoparticle interactions publication-title: J. Polym. Environ. doi: 10.1007/s10924-023-02899-7 – volume: 3 start-page: 19 year: 2020 ident: 10.1016/j.eurpolymj.2024.113289_b0195 article-title: An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)–PBAT publication-title: Adv. Ind. Eng. Polym. Res. – year: 2024 ident: 10.1016/j.eurpolymj.2024.113289_b0210 article-title: Influence of LLDPE on the mechanical properties improvement of 3D printed POE/LLDPE blends publication-title: J. Vinyl Add. Tech. doi: 10.1002/vnl.22099 – volume: 52 start-page: 5429 year: 2019 ident: 10.1016/j.eurpolymj.2024.113289_b0190 article-title: Why Is crystalline poly(lactic acid) brittle at room temperature? publication-title: Macromolecules doi: 10.1021/acs.macromol.9b00595 – volume: 40 start-page: 1682 year: 2002 ident: 10.1016/j.eurpolymj.2024.113289_b0200 article-title: Poly(vinylidene fluoride)/clay nanocomposites prepared by melt intercalation: crystallization and dynamic mechanical behavior studies publication-title: J. Polym. Sci. B doi: 10.1002/polb.10223 |
SSID | ssj0007363 |
Score | 2.6551707 |
Snippet | [Display omitted]
•3D/4D printing of novel biodegradable PLA-PBAT blends.•Direct printing by Granule-based FDM printer with low cost.•Achieving fast shape... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 113289 |
SubjectTerms | 3D/4D Printing Polybutylene Adipate Terephthalate Polylactic Acid Shape Memory Polymers Shape Recovery |
Title | Advancing sustainable shape memory polymers through 4D printing of polylactic acid-polybutylene adipate terephthalate blends |
URI | https://dx.doi.org/10.1016/j.eurpolymj.2024.113289 |
Volume | 216 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4QPOjF-Iz4IHvwWmn30aXeCEpQIydJuDXb7jZAeDRSDiTG3-5MaUESEw4et81k29npzsz2m_kIuZdoCNw0Hd5MmCNsUzrNWDMH8lsvUSZSbt5L773nd_vidSAHFdIua2EQVlns_es9Pd-tiyuNQpuNdDTCGl8P-1UpREFCnI15uxAKrfzhewvzULxgU_PwD4BUOxgvCy8zn6ymY0gUmUB-E4Z87395qF9ep3NCjotwkbbWT3RKKnZ2Rg7bJUvbOfnKaZFjcEB0sa2FoouhTi2dIox2RfPJIcyjBSkPFU8Uz_MQ8UznSX5_khdLUR2PjIPjaJmtwCFZqg2Cri0F_dt0mA31BEcwx8wsLki_8_zR7joFo4ITc19kDsPTiwC-YmksOGsVaJcFrlYes1YY14s150EssCMLt1YGGvJjK2QiI2lUAncvSXU2n9krQrm2hmudKKbByycs4sYPEh4bqT0N614jfqnFMC7ajSPrxSQscWXjcKP-ENUfrtVfI-5GMF133Ngv8lguU7hjPCH4hX3C1_8RviFHOMoRgeqWVLPPpb2DKCWL6rkZ1slB6-Wt2_sBWRbrKg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwELYQHehS9anSp4euKYkfmHSraBFtgQkktsiJHQHipRIGpKq_vXchgSJVYujoWCcn58fdOd_dR8iDxIXATc3htZg5wtakU4s0cyC-9WJlQuWmtfTanWqzJ977sl8g9TwXBmGV2dm_PtPT0zp7Usm0WZkPh5jj62G9KoUoSPCzIW4_ELB9kcbg8XuL81A8o1Pz8BeAVDsgLwtfMxuvJiOIFJlAghOGhO9_mahfZqdxTI4yf5E-r1_phBTs9JSU6jlN2xn5SnmRI7BAdLFNhqKLgZ5bOkEc7Yqmg4OfRzNWHipeKF7oIeSZzuK0f5xmS1EdDY2D7XCZrMAiWaoNoq4thQmw80Ey0GNswRhTszgnvcZrt950MkoFJ-JVkTgMry982MbSWLDWytcu812tPGatMK4Xac79SGBJFm6t9DUEyFbIWIbSqBh6L0hxOpvaS0K5toZrHSumwczHLOSm6sc8MlJ7Gia-TKq5FoMoqzeOtBfjIAeWjYKN-gNUf7BWf5m4G8H5uuTGfpGnfJqCndUTgGHYJ3z1H-F7Ump2262g9db5uCaH2JPCA9UNKSafS3sLLksS3qVL8gfATey4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancing+sustainable+shape+memory+polymers+through+4D+printing+of+polylactic+acid-polybutylene+adipate+terephthalate+blends&rft.jtitle=European+polymer+journal&rft.au=Rahmatabadi%2C+Davood&rft.au=Khajepour%2C+Mahdi&rft.au=Bayati%2C+Abbas&rft.au=Mirasadi%2C+Kiandokht&rft.date=2024-08-07&rft.pub=Elsevier+Ltd&rft.issn=0014-3057&rft.eissn=1873-1945&rft.volume=216&rft_id=info:doi/10.1016%2Fj.eurpolymj.2024.113289&rft.externalDocID=S0014305724005500 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-3057&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-3057&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-3057&client=summon |