Electrical Energy Prediction in Residential Buildings for Short-Term Horizons Using Hybrid Deep Learning Strategy
Smart grid technology based on renewable energy and energy storage systems are attracting considerable attention towards energy crises. Accurate and reliable model for electricity prediction is considered a key factor for a suitable energy management policy. Currently, electricity consumption is rap...
Saved in:
Published in | Applied sciences Vol. 10; no. 23; p. 8634 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Smart grid technology based on renewable energy and energy storage systems are attracting considerable attention towards energy crises. Accurate and reliable model for electricity prediction is considered a key factor for a suitable energy management policy. Currently, electricity consumption is rapidly increasing due to the rise in human population and technology development. Therefore, in this study, we established a two-step methodology for residential building load prediction, which comprises two stages: in the first stage, the raw data of electricity consumption are refined for effective training; and the second step includes a hybrid model with the integration of convolutional neural network (CNN) and multilayer bidirectional gated recurrent unit (MB-GRU). The CNN layers are incorporated into the model as a feature extractor, while MB-GRU learns the sequences between electricity consumption data. The proposed model is evaluated using the root mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE) metrics. Finally, our model is assessed over benchmark datasets that exhibited an extensive drop in the error rate in comparison to other techniques. The results indicated that the proposed model reduced errors over the individual household electricity consumption prediction (IHEPC) dataset (i.e., RMSE (5%), MSE (4%), and MAE (4%)), and for the appliances load prediction (AEP) dataset (i.e., RMSE (2%), and MAE (1%)). |
---|---|
AbstractList | Smart grid technology based on renewable energy and energy storage systems are attracting considerable attention towards energy crises. Accurate and reliable model for electricity prediction is considered a key factor for a suitable energy management policy. Currently, electricity consumption is rapidly increasing due to the rise in human population and technology development. Therefore, in this study, we established a two-step methodology for residential building load prediction, which comprises two stages: in the first stage, the raw data of electricity consumption are refined for effective training; and the second step includes a hybrid model with the integration of convolutional neural network (CNN) and multilayer bidirectional gated recurrent unit (MB-GRU). The CNN layers are incorporated into the model as a feature extractor, while MB-GRU learns the sequences between electricity consumption data. The proposed model is evaluated using the root mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE) metrics. Finally, our model is assessed over benchmark datasets that exhibited an extensive drop in the error rate in comparison to other techniques. The results indicated that the proposed model reduced errors over the individual household electricity consumption prediction (IHEPC) dataset (i.e., RMSE (5%), MSE (4%), and MAE (4%)), and for the appliances load prediction (AEP) dataset (i.e., RMSE (2%), and MAE (1%)). |
Author | Khan, Zulfiqar Ahmad Ullah, Waseem Ullah, Amin Rho, Seungmin Lee, Miyoung Baik, Sung Wook |
Author_xml | – sequence: 1 givenname: Zulfiqar Ahmad orcidid: 0000-0003-3797-9649 surname: Khan fullname: Khan, Zulfiqar Ahmad – sequence: 2 givenname: Amin orcidid: 0000-0001-7538-2689 surname: Ullah fullname: Ullah, Amin – sequence: 3 givenname: Waseem surname: Ullah fullname: Ullah, Waseem – sequence: 4 givenname: Seungmin surname: Rho fullname: Rho, Seungmin – sequence: 5 givenname: Miyoung orcidid: 0000-0002-8139-7091 surname: Lee fullname: Lee, Miyoung – sequence: 6 givenname: Sung Wook surname: Baik fullname: Baik, Sung Wook |
BookMark | eNptUUtvEzEQtlCRKKUn_oAljmjBj_Vjj1ACqRQJRNuz5bXHwdHW3trOIfz6bgiqKsRcZjTzzffN4zU6SzkBQm8p-cD5QD7aeaaEcS15_wKdM6Jkx3uqzp7Fr9BlrTuy2EC5puQcPawmcK1EZye8SlC2B_yjgI-uxZxwTPgn1OghtbgAPu_j5GPaVhxywTe_cmndLZR7vM4l_s6p4ru6lPH6MJbo8ReAGW_AlnRM3rRiG2wPb9DLYKcKl3_9Bbr7urq9Wneb79-urz5tOsdl3zrGNJWajSrYIIhjjEvqhYCgiQ_EK6G9WFboQTnvBtlrJkUYtR2c41yJnl-g6xOvz3Zn5hLvbTmYbKP5k8hla2xp0U1gRqU9V554TWkfhsFKQcELSwc_BifHhevdiWsu-WEPtZld3pe0jG9YL5UcNKdHxfcnlCu51gLhSZUSc3yRefaiBU3_QbvY7PHsy6Hi9N-eR5sAlhI |
CitedBy_id | crossref_primary_10_1016_j_apenergy_2023_120916 crossref_primary_10_3390_su13063335 crossref_primary_10_1016_j_energy_2023_127321 crossref_primary_10_1016_j_ijepes_2021_107627 crossref_primary_10_3390_s22166105 crossref_primary_10_1016_j_apenergy_2024_124564 crossref_primary_10_1016_j_enbuild_2024_113950 crossref_primary_10_1016_j_segan_2021_100543 crossref_primary_10_1007_s10462_023_10660_8 crossref_primary_10_3390_en16114504 crossref_primary_10_3390_s22186913 crossref_primary_10_1016_j_ijepes_2021_107023 crossref_primary_10_7717_peerj_cs_2680 crossref_primary_10_1016_j_egyr_2022_08_009 crossref_primary_10_1016_j_enbuild_2023_113829 crossref_primary_10_1186_s42162_025_00483_y crossref_primary_10_1016_j_enbuild_2025_115529 crossref_primary_10_1371_journal_pone_0307654 crossref_primary_10_1016_j_watres_2023_120733 crossref_primary_10_1016_j_jksuci_2022_04_016 crossref_primary_10_1007_s12053_023_10160_2 crossref_primary_10_3390_su16177805 crossref_primary_10_3389_fenrg_2023_1209290 crossref_primary_10_3390_en14185852 crossref_primary_10_3390_en15249438 crossref_primary_10_1016_j_jksus_2021_101815 crossref_primary_10_3390_su152416885 crossref_primary_10_1016_j_energy_2024_131720 crossref_primary_10_3390_app132312941 crossref_primary_10_1016_j_enconman_2024_118795 crossref_primary_10_1155_2022_7040601 crossref_primary_10_3390_en15155742 crossref_primary_10_3390_math9060605 crossref_primary_10_1007_s11227_024_06811_5 crossref_primary_10_3390_buildings14020397 crossref_primary_10_3390_electronics10091026 crossref_primary_10_3390_s22114008 crossref_primary_10_1016_j_compeleceng_2023_109059 crossref_primary_10_1007_s10462_022_10286_2 crossref_primary_10_3390_app112311263 crossref_primary_10_3390_s23042358 crossref_primary_10_1049_tje2_12356 crossref_primary_10_3390_s23020945 crossref_primary_10_1016_j_engappai_2022_105403 crossref_primary_10_3390_a15110395 crossref_primary_10_1016_j_engappai_2022_105287 crossref_primary_10_1007_s00521_022_08120_5 crossref_primary_10_1016_j_enbuild_2023_113204 crossref_primary_10_3390_app132011408 crossref_primary_10_1016_j_seta_2022_102337 crossref_primary_10_1109_TII_2023_3335453 crossref_primary_10_3390_en17174277 crossref_primary_10_3390_s22249749 crossref_primary_10_1016_j_enbuild_2023_113642 crossref_primary_10_1016_j_apenergy_2023_122339 crossref_primary_10_32604_csse_2023_039407 crossref_primary_10_1016_j_jobe_2021_103848 crossref_primary_10_3389_fenrg_2021_709708 crossref_primary_10_3390_s21144932 |
Cites_doi | 10.1016/j.epsr.2019.106080 10.3390/s20030873 10.1049/iet-gtd.2018.6687 10.1109/TSG.2018.2844307 10.1109/IECON.2015.7392953 10.1109/ICRCCS.2009.12 10.1109/TPWRS.2009.2030426 10.1109/MCI.2018.2840738 10.1007/978-3-030-03766-6_16 10.1177/0037549717706171 10.1016/j.segan.2016.02.005 10.1016/j.enconman.2015.07.041 10.1109/ISIE.2017.8001465 10.1109/TII.2019.2929228 10.1016/j.knosys.2015.02.017 10.1016/j.energy.2020.117197 10.1016/B978-0-12-813970-7.00004-2 10.1016/j.apenergy.2017.12.051 10.1109/78.650093 10.1155/2019/3581419 10.1201/9781351003827-5 10.1007/s11042-020-09406-3 10.1109/ACCESS.2019.2963045 10.1051/e3sconf/202017216010 10.3390/s20051399 10.1016/j.rser.2014.11.066 10.1016/j.buildenv.2017.11.009 10.1007/978-3-030-15035-8_107 10.1016/j.eswa.2020.114177 10.1109/TSG.2020.2972513 10.1016/j.apenergy.2020.115503 10.1007/978-3-030-02574-8_13 10.1016/j.eswa.2019.113082 10.1016/j.knosys.2018.08.027 10.1109/PTC.2019.8810899 10.1109/TPWRS.2005.860926 10.1007/s11554-020-01020-8 10.1016/j.jobe.2019.100769 10.1007/s11036-019-01366-9 10.1109/ACCESS.2020.3009537 10.21437/Interspeech.2020-1557 10.1016/j.rser.2017.07.046 10.1109/ACCESS.2019.2930069 10.1049/ip-gtd:20050088 10.1016/j.energy.2019.05.230 10.1016/j.neucom.2019.12.151 10.1109/TPWRS.2010.2052638 10.1109/TPWRS.2015.2438322 10.1109/5.823996 10.1016/j.enbuild.2020.110301 10.1016/j.enconman.2017.10.008 10.1145/1541880.1541882 10.3390/en12040739 10.1016/j.enbuild.2019.02.014 10.1109/SIU.2018.8404313 10.1109/59.801894 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app10238634 |
DatabaseName | CrossRef ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_b78d37d0d8114f99a651ed5a19dbfc6b 10_3390_app10238634 |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c364t-2281682b7faf50c22361d55ef80df0d758d53814e7cdc9648265fb8a9cc337543 |
IEDL.DBID | BENPR |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:04:22 EDT 2025 Mon Jun 30 10:59:07 EDT 2025 Tue Jul 01 03:14:51 EDT 2025 Thu Apr 24 23:01:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-2281682b7faf50c22361d55ef80df0d758d53814e7cdc9648265fb8a9cc337543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3797-9649 0000-0001-7538-2689 0000-0002-8139-7091 |
OpenAccessLink | https://www.proquest.com/docview/2467698314?pq-origsite=%requestingapplication% |
PQID | 2467698314 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b78d37d0d8114f99a651ed5a19dbfc6b proquest_journals_2467698314 crossref_primary_10_3390_app10238634 crossref_citationtrail_10_3390_app10238634 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Sajjad (ref_35) 2020; 8 ref_58 ref_12 Afrasiabi (ref_36) 2020; 11 ref_56 ref_54 ref_53 Chen (ref_44) 2018; 10 ref_52 ref_51 ref_19 ref_18 ref_17 ref_59 Han (ref_16) 2020; 99 Mocanu (ref_1) 2016; 6 Lahouar (ref_23) 2015; 103 Yang (ref_6) 2019; 163 Ullah (ref_34) 2020; 8 ref_61 ref_60 Chandola (ref_39) 2009; 41 ref_21 Wang (ref_31) 2020; 197 Liu (ref_49) 2020; 143 ref_63 ref_62 Khwaja (ref_8) 2020; 179 ref_29 ref_28 Bunn (ref_37) 2000; 88 Guo (ref_2) 2018; 81 MunkhDalai (ref_64) 2019; 7 Lu (ref_22) 2019; 190 Koprinska (ref_7) 2015; 82 Young (ref_42) 2018; 13 Bot (ref_15) 2019; 24 Tsekouras (ref_26) 2006; 21 Chen (ref_24) 2009; 25 Schuster (ref_55) 1997; 45 ref_30 Haq (ref_41) 2019; 2019 Wang (ref_45) 2017; 153 Li (ref_27) 2015; 31 Rahman (ref_32) 2018; 212 Soliman (ref_20) 2006; 153 Pereira (ref_14) 2020; Volume 172 Kim (ref_33) 2019; 182 Nejat (ref_4) 2015; 43 ref_47 ref_46 ref_43 Hobbs (ref_38) 1999; 14 Wang (ref_25) 2011; 26 Heydari (ref_9) 2020; 277 Sajjad (ref_40) 2019; 25 Zhang (ref_10) 2020; 225 ref_3 Rupp (ref_13) 2017; 93 Tang (ref_57) 2019; 13 ref_48 Naspi (ref_11) 2018; 127 ref_5 |
References_xml | – volume: 179 start-page: 106080 year: 2020 ident: ref_8 article-title: Joint Bagged-Boosted Artificial Neural Networks: Using Ensemble Machine Learning to Improve Short-Term Electricity Load Forecasting publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2019.106080 – ident: ref_21 doi: 10.3390/s20030873 – volume: 13 start-page: 3847 year: 2019 ident: ref_57 article-title: Short-Term Power Load Forecasting Based on Multi-Layer Bidirectional Recurrent Neural Network publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2018.6687 – volume: 10 start-page: 3943 year: 2018 ident: ref_44 article-title: Short-Term Load Forecasting with Deep Residual Networks publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2018.2844307 – ident: ref_5 doi: 10.1109/IECON.2015.7392953 – ident: ref_18 doi: 10.1109/ICRCCS.2009.12 – volume: 25 start-page: 322 year: 2009 ident: ref_24 article-title: Short-Term Load Forecasting: Similar Day-Based Wavelet Neural networks publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2009.2030426 – volume: 13 start-page: 55 year: 2018 ident: ref_42 article-title: Recent Trends in Deep Learning Based Natural Language Processing [Review Article] publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2018.2840738 – ident: ref_62 doi: 10.1007/978-3-030-03766-6_16 – volume: 93 start-page: 935 year: 2017 ident: ref_13 article-title: Assessing Window Area and Potential for Electricity Savings by Using Daylighting and Hybrid Ventilation in Office Buildings in Southern Brazil publication-title: Simulation doi: 10.1177/0037549717706171 – volume: 6 start-page: 91 year: 2016 ident: ref_1 article-title: Deep Learning for Estimating Building Energy Consumption publication-title: Sustain. Energy Grids Netw. doi: 10.1016/j.segan.2016.02.005 – volume: 103 start-page: 1040 year: 2015 ident: ref_23 article-title: Day-Ahead Load Forecast Using Random Forest and Expert Input Selection publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.07.041 – ident: ref_28 doi: 10.1109/ISIE.2017.8001465 – ident: ref_56 doi: 10.1109/TII.2019.2929228 – volume: 82 start-page: 29 year: 2015 ident: ref_7 article-title: Correlation and Instance Based Feature Selection for Electricity Load Forecasting publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2015.02.017 – volume: 197 start-page: 117197 year: 2020 ident: ref_31 article-title: LSTM Based Long-Term Energy Consumption Prediction with Periodicity publication-title: Energy doi: 10.1016/j.energy.2020.117197 – ident: ref_12 doi: 10.1016/B978-0-12-813970-7.00004-2 – volume: 212 start-page: 372 year: 2018 ident: ref_32 article-title: Predicting Electricity Consumption for Commercial and Residential Buildings Using Deep Recurrent Neural Networks publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.12.051 – volume: 99 start-page: 1 year: 2020 ident: ref_16 article-title: An Efficient Deep Learning Framework for Intelligent Energy Management in IoT Networks publication-title: IEEE Internet Things J. – volume: 45 start-page: 2673 year: 1997 ident: ref_55 article-title: Bidirectional Recurrent Neural Networks publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.650093 – volume: 2019 start-page: 1 year: 2019 ident: ref_41 article-title: Personalized Movie Summarization Using Deep CNN-Assisted Facial Expression Recognition publication-title: Complexity doi: 10.1155/2019/3581419 – ident: ref_52 doi: 10.1201/9781351003827-5 – ident: ref_53 doi: 10.1007/s11042-020-09406-3 – ident: ref_58 – volume: 8 start-page: 123369 year: 2020 ident: ref_34 article-title: Short-Term Prediction of Residential Power Energy Consumption via CNN and Multi-Layer Bi-Directional LSTM Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2963045 – volume: Volume 172 start-page: 16010 year: 2020 ident: ref_14 article-title: Influence of Occupant Behaviour on the State of Charge of a Storage Battery in a Nearly-Zero Energy Building publication-title: E3S Web of Conferences doi: 10.1051/e3sconf/202017216010 – ident: ref_17 doi: 10.3390/s20051399 – volume: 43 start-page: 843 year: 2015 ident: ref_4 article-title: A Global Review of Energy Consumption, CO 2 Emissions and Policy in the Residential Sector (with an Overview of the Top Ten CO 2 Emitting Countries) publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.11.066 – volume: 127 start-page: 221 year: 2018 ident: ref_11 article-title: Experimental Study on occupants’ Interaction with Windows and Lights in Mediterranean Offices during the Non-Heating Season publication-title: Build. Environ. doi: 10.1016/j.buildenv.2017.11.009 – ident: ref_29 doi: 10.1007/978-3-030-15035-8_107 – ident: ref_43 doi: 10.1016/j.eswa.2020.114177 – volume: 11 start-page: 3646 year: 2020 ident: ref_36 article-title: Deep-Based Conditional Probability Density Function Forecasting of Residential Loads publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2020.2972513 – ident: ref_48 – volume: 277 start-page: 115503 year: 2020 ident: ref_9 article-title: Short-Term Electricity Price and Load Forecasting in Isolated Power Grids Based on Composite Neural Network and Gravitational Search Optimization Algorithm publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115503 – ident: ref_63 doi: 10.1007/978-3-030-02574-8_13 – volume: 143 start-page: 113082 year: 2020 ident: ref_49 article-title: DSTP-RNN: A Dual-Stage Two-Phase Attention-Based Recurrent Neural Network for Long-Term and Multivariate Time Series Prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.113082 – volume: 163 start-page: 159 year: 2019 ident: ref_6 article-title: Short-Term Electricity Load Forecasting Based on Feature Selection and Least Squares Support Vector Machines publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2018.08.027 – ident: ref_60 doi: 10.1109/PTC.2019.8810899 – ident: ref_59 – volume: 21 start-page: 385 year: 2006 ident: ref_26 article-title: An Optimized Adaptive Neural Network for Annual Midterm Energy Forecasting publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2005.860926 – ident: ref_46 doi: 10.1007/s11554-020-01020-8 – volume: 24 start-page: 100769 year: 2019 ident: ref_15 article-title: Energy Performance of Buildings With on-site Energy Generation and Storage—An Integrated Assessment Using Dynamic Simulation publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2019.100769 – volume: 25 start-page: 1611 year: 2019 ident: ref_40 article-title: Human Behavior Understanding in Big Multimedia Data Using CNN Based Facial Expression Recognition publication-title: Mob. Netw. Appl. doi: 10.1007/s11036-019-01366-9 – ident: ref_3 – ident: ref_47 – volume: 8 start-page: 143759 year: 2020 ident: ref_35 article-title: A Novel CNN-GRU-Based Hybrid Approach for Short-Term Residential Load Forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3009537 – ident: ref_50 doi: 10.21437/Interspeech.2020-1557 – volume: 81 start-page: 399 year: 2018 ident: ref_2 article-title: Residential Electricity Consumption Behavior: Influencing Factors, Related Theories and Intervention Strategies publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.07.046 – volume: 7 start-page: 99099 year: 2019 ident: ref_64 article-title: An End-to-End Adaptive Input Selection with Dynamic Weights for Forecasting Multivariate Time Series publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2930069 – volume: 153 start-page: 217 year: 2006 ident: ref_20 article-title: Fuzzy Short-Term Electric Load Forecasting Using Kalman Filter publication-title: IEE Proc. Gener. Transm. Distrib. doi: 10.1049/ip-gtd:20050088 – volume: 182 start-page: 72 year: 2019 ident: ref_33 article-title: Predicting Residential Energy Consumption Using CNN-LSTM Neural Networks publication-title: Energy doi: 10.1016/j.energy.2019.05.230 – ident: ref_51 doi: 10.1016/j.neucom.2019.12.151 – volume: 26 start-page: 500 year: 2011 ident: ref_25 article-title: Secondary Forecasting Based on Deviation Analysis for Short-Term Load Forecasting publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2010.2052638 – volume: 31 start-page: 1788 year: 2015 ident: ref_27 article-title: A Novel Wavelet-Based Ensemble Method for Short-Term Load Forecasting With Hybrid Neural Networks and Feature Selection publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2015.2438322 – ident: ref_54 – volume: 88 start-page: 163 year: 2000 ident: ref_37 article-title: Forecasting Loads and Prices in Competitive Power Markets publication-title: Proc. IEEE doi: 10.1109/5.823996 – volume: 225 start-page: 110301 year: 2020 ident: ref_10 article-title: A Hybrid Deep Learning-Based Method for Short-Term Building Energy Load Prediction Combined with an Interpretation Process publication-title: Energy Build. doi: 10.1016/j.enbuild.2020.110301 – volume: 153 start-page: 409 year: 2017 ident: ref_45 article-title: Deterministic and Probabilistic Forecasting of Photovoltaic Power Based on Deep Convolutional Neural Network publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.10.008 – volume: 41 start-page: 1 year: 2009 ident: ref_39 article-title: Anomaly Detection: A survey publication-title: ACM Comput. Surv. doi: 10.1145/1541880.1541882 – ident: ref_61 doi: 10.3390/en12040739 – ident: ref_19 – volume: 190 start-page: 49 year: 2019 ident: ref_22 article-title: GMM Clustering for Heating Load Patterns in-depth Identification and Prediction Model Accuracy Improvement of District Heating System publication-title: Energy Build. doi: 10.1016/j.enbuild.2019.02.014 – ident: ref_30 doi: 10.1109/SIU.2018.8404313 – volume: 14 start-page: 1342 year: 1999 ident: ref_38 article-title: Analysis of the Value for Unit Commitment of Improved Load Forecasts publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.801894 |
SSID | ssj0000913810 |
Score | 2.4276736 |
Snippet | Smart grid technology based on renewable energy and energy storage systems are attracting considerable attention towards energy crises. Accurate and reliable... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 8634 |
SubjectTerms | Accuracy Artificial intelligence bidirectional gated recurrent unit convolutional neural networks Datasets Electricity electricity consumption prediction Electricity distribution Energy consumption Forecasting hybrid deep learning model Mean square errors Methods Neural networks Power supply residential load prediction Sensors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IrYrVKnvoQYVgsrvZZI9WW4qgiLbQW8g-ogVJa1sP9de7s9mWioIXr2EhYWZ2HpmZ70OozfIwlAp-gSlGA5YyEwgpRaBNFPHcEJujwr7z_QPvD9ndKB5tUH3BTFgFD1wJ7komqaaJDnVqM_dCiJzHkdFxHgktC8UleF8b8zaKKeeDRQTQVdVCHrV1PfSDAaUg5ZR9C0EOqf-HI3bRpbeHdn1aiK-rz6mjLVM20M4GWGAD1f01nONzjxV9sY_eu47GBiSNu26NDz_OoPcC8sbjEj8Z4OMs7T1-wx1PgT3HNlPFz6828w4G1jPj_mQ2_rTmh90AAe4vYY0L3xozxR5_9QV7GNvlARr2uoObfuBZFAJFOVsEhAC1BpFJkRdxqAigreg4NkUa6iLUtl7Q1ulFzCRKK8GZrTfiQqa5UIoCPy49RLVyUpojhEORKsVFpKD3SkyccyYNk1QmQieSkya6XAk2Ux5iHJgu3jJbaoAWsg0tNFF7fXhaIWv8fqwDGlofAThs98AaSeaNJPvLSJqotdJv5u_oPCMMxntTGrHj_3jHCdomUIu7UZcWqi1mH-bUJiwLeeZs8wuBi-m8 priority: 102 providerName: Directory of Open Access Journals |
Title | Electrical Energy Prediction in Residential Buildings for Short-Term Horizons Using Hybrid Deep Learning Strategy |
URI | https://www.proquest.com/docview/2467698314 https://doaj.org/article/b78d37d0d8114f99a651ed5a19dbfc6b |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxEB0VuNBDBQHUFBr5kAMgrdi1vV77hBqaNKpUhCCRuK3WH0sroU1IwgF-PR7HCaBWve76sh7P7LwZz3sAXV6lqTZYAjOcJVxylyitVWJdlonKUZ-j4rzzr0sxHPOft_ltLLjN47XKVUwMgdpODNbIzyjHy5iSZfx8-pCgahR2V6OExgZs-RAsPfja6vUvr67XVRZkvZRZuhzMYx7fY18Y2QqkYPzdrygw9v8VkMNfZrADn2J6SL4t7bkLH1zTgo9vSANbsBvdcU6OI2f0yR489IOcDe446YdxPnI1wx4M7jv505Brh7qcjffne9KLUthz4jNWcvPbZ-DJyEdoMvQf_OyPIQkXCcjwCce5yHfnpiTysN6RSGf7tA_jQX90MUyimkJimOCLhFKU2KC6qKs6Tw1F1hWb566Wqa1T63GD9cEv464w1ijBPe7Iay0rZQxDnVx2AJvNpHGfgaRKGiNUZrAHS11eCa4d10wXyhZa0Dacrja2NJFqHBUv7ksPOdAK5RsrtKG7XjxdMmz8e1kPLbRegrTY4cFkdldGLyt1IS0rbGqlh3m1UpXIM2fzKlNW10boNhyt7FtGX52Xryfry_9fH8I2RbQdLrMcweZi9ui--pRkoTuwIQc_OvH0dQKwfwGXR-Ok |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOqC0gFkrxoUiAFJHYjmMfEGrpLil9CMFW6i2NHylIVXa7uwgtP4rfWI_XWYpA3HqNrRw8D894Zr4PYJvXaaoNPoEZzhIuuUuU1iqxLstE7aiPUXHe-ehYlCf842l-ugK_ulkYbKvsfGJw1HZk8I38DeXYjClZxt-NLxNkjcLqakehsVCLAzf_4VO26dv9PS_fF5QO-sP3ZRJZBRLDBJ8llCLVBNVFUzd5aiiij9g8d41MbZNaHz9b7wQy7gpjjRLcx995o2WtjGHIF8v8f2_Bbc6YQouSgw_LNx3E2JRZuhgD9OspVqERG0EKxv-4-AI_wF_uP9xpgzW4H4NRsrPQnnVYce0G3LsGUbgB69H4p-RlRKh-9QAu-4E8B-VL-mF4kHyaYMUHpUy-teSzQxbQ1nuPC7IbibenxMfH5MtXH-8nQ38fkNIf70-v9CS0LZByjsNjZM-5MYmor-ckgufOH8LJjZzyI1htR617DCRV0hihMoMVX-ryWnDtuGa6ULbQgvbgdXewlYnA5sivcVH5BAelUF2TQg-2l5vHCzyPf2_bRQkttyAId_gwmpxX0aYrXUjLCpta6ZPKRqla5JmzeZ0pqxsjdA82O_lW0TNMq996_OT_y8_hTjk8OqwO948PnsJdinl-aKPZhNXZ5Lt75oOhmd4KGkjg7KZV_gpBchwo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQLSACBTwoUiAtKrX9nrtA0KEJEopRFFppd6W9WMLUrVJkyAUfhq_Ds_GG4pA3HrdtXzwjOfhmfk-gH1RUmosPoFZwROhhE-0MTpxPk1l6VmIUXHe-eNYjk7F-7PsbAt-trMw2FbZ2sTGULupxTfyAyawGVPxVBxUsS1i0h--mV0myCCFldaWTmOtIkd-9T2kb4vXh_0g6-eMDQcn70ZJZBhILJdimTCGtBPM5FVZZdQyRCJxWeYrRV1FXYilXTAIqfC5dVZLEWLxrDKq1NZy5I7lYd8bsJ2HrIh2YLs3GE-ONy88iLipUroeCuRcU6xJI1KCklz84QYbtoC_nEHj4YZ34U4MTcnbtS7twJavd-H2FcDCXdiJpmBBXkS86pf34HLQUOmgtMmgGSUkkznWf1Dm5GtNjj1ygtbBllyQXqThXpAQLZNPX0L0n5wE70BG4YB_hCtAmiYGMlrhKBnpez8jEQP2nEQo3dV9OL2Wc34AnXpa-4dAqFbWSp1arP8yn5VSGC8MN7l2uZGsC6_agy1shDlHto2LIqQ7KIXiihS6sL9ZPFuje_x7WQ8ltFmCkNzNh-n8vIg3vDC5cjx31KmQYlZalzJLvcvKVDtTWWm6sNfKt4h2YlH81upH___9DG4GdS8-HI6PHsMthkl_01OzB53l_Jt_EiKjpXkaVZDA5-vW-l8cySG6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrical+Energy+Prediction+in+Residential+Buildings+for+Short-Term+Horizons+Using+Hybrid+Deep+Learning+Strategy&rft.jtitle=Applied+sciences&rft.au=Khan%2C+Zulfiqar+Ahmad&rft.au=Ullah%2C+Amin&rft.au=Ullah%2C+Waseem&rft.au=Rho%2C+Seungmin&rft.date=2020-12-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=10&rft.issue=23&rft.spage=8634&rft_id=info:doi/10.3390%2Fapp10238634&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app10238634 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |