Electrical Energy Prediction in Residential Buildings for Short-Term Horizons Using Hybrid Deep Learning Strategy

Smart grid technology based on renewable energy and energy storage systems are attracting considerable attention towards energy crises. Accurate and reliable model for electricity prediction is considered a key factor for a suitable energy management policy. Currently, electricity consumption is rap...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 10; no. 23; p. 8634
Main Authors Khan, Zulfiqar Ahmad, Ullah, Amin, Ullah, Waseem, Rho, Seungmin, Lee, Miyoung, Baik, Sung Wook
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Smart grid technology based on renewable energy and energy storage systems are attracting considerable attention towards energy crises. Accurate and reliable model for electricity prediction is considered a key factor for a suitable energy management policy. Currently, electricity consumption is rapidly increasing due to the rise in human population and technology development. Therefore, in this study, we established a two-step methodology for residential building load prediction, which comprises two stages: in the first stage, the raw data of electricity consumption are refined for effective training; and the second step includes a hybrid model with the integration of convolutional neural network (CNN) and multilayer bidirectional gated recurrent unit (MB-GRU). The CNN layers are incorporated into the model as a feature extractor, while MB-GRU learns the sequences between electricity consumption data. The proposed model is evaluated using the root mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE) metrics. Finally, our model is assessed over benchmark datasets that exhibited an extensive drop in the error rate in comparison to other techniques. The results indicated that the proposed model reduced errors over the individual household electricity consumption prediction (IHEPC) dataset (i.e., RMSE (5%), MSE (4%), and MAE (4%)), and for the appliances load prediction (AEP) dataset (i.e., RMSE (2%), and MAE (1%)).
AbstractList Smart grid technology based on renewable energy and energy storage systems are attracting considerable attention towards energy crises. Accurate and reliable model for electricity prediction is considered a key factor for a suitable energy management policy. Currently, electricity consumption is rapidly increasing due to the rise in human population and technology development. Therefore, in this study, we established a two-step methodology for residential building load prediction, which comprises two stages: in the first stage, the raw data of electricity consumption are refined for effective training; and the second step includes a hybrid model with the integration of convolutional neural network (CNN) and multilayer bidirectional gated recurrent unit (MB-GRU). The CNN layers are incorporated into the model as a feature extractor, while MB-GRU learns the sequences between electricity consumption data. The proposed model is evaluated using the root mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE) metrics. Finally, our model is assessed over benchmark datasets that exhibited an extensive drop in the error rate in comparison to other techniques. The results indicated that the proposed model reduced errors over the individual household electricity consumption prediction (IHEPC) dataset (i.e., RMSE (5%), MSE (4%), and MAE (4%)), and for the appliances load prediction (AEP) dataset (i.e., RMSE (2%), and MAE (1%)).
Author Khan, Zulfiqar Ahmad
Ullah, Waseem
Ullah, Amin
Rho, Seungmin
Lee, Miyoung
Baik, Sung Wook
Author_xml – sequence: 1
  givenname: Zulfiqar Ahmad
  orcidid: 0000-0003-3797-9649
  surname: Khan
  fullname: Khan, Zulfiqar Ahmad
– sequence: 2
  givenname: Amin
  orcidid: 0000-0001-7538-2689
  surname: Ullah
  fullname: Ullah, Amin
– sequence: 3
  givenname: Waseem
  surname: Ullah
  fullname: Ullah, Waseem
– sequence: 4
  givenname: Seungmin
  surname: Rho
  fullname: Rho, Seungmin
– sequence: 5
  givenname: Miyoung
  orcidid: 0000-0002-8139-7091
  surname: Lee
  fullname: Lee, Miyoung
– sequence: 6
  givenname: Sung Wook
  surname: Baik
  fullname: Baik, Sung Wook
BookMark eNptUUtvEzEQtlCRKKUn_oAljmjBj_Vjj1ACqRQJRNuz5bXHwdHW3trOIfz6bgiqKsRcZjTzzffN4zU6SzkBQm8p-cD5QD7aeaaEcS15_wKdM6Jkx3uqzp7Fr9BlrTuy2EC5puQcPawmcK1EZye8SlC2B_yjgI-uxZxwTPgn1OghtbgAPu_j5GPaVhxywTe_cmndLZR7vM4l_s6p4ru6lPH6MJbo8ReAGW_AlnRM3rRiG2wPb9DLYKcKl3_9Bbr7urq9Wneb79-urz5tOsdl3zrGNJWajSrYIIhjjEvqhYCgiQ_EK6G9WFboQTnvBtlrJkUYtR2c41yJnl-g6xOvz3Zn5hLvbTmYbKP5k8hla2xp0U1gRqU9V554TWkfhsFKQcELSwc_BifHhevdiWsu-WEPtZld3pe0jG9YL5UcNKdHxfcnlCu51gLhSZUSc3yRefaiBU3_QbvY7PHsy6Hi9N-eR5sAlhI
CitedBy_id crossref_primary_10_1016_j_apenergy_2023_120916
crossref_primary_10_3390_su13063335
crossref_primary_10_1016_j_energy_2023_127321
crossref_primary_10_1016_j_ijepes_2021_107627
crossref_primary_10_3390_s22166105
crossref_primary_10_1016_j_apenergy_2024_124564
crossref_primary_10_1016_j_enbuild_2024_113950
crossref_primary_10_1016_j_segan_2021_100543
crossref_primary_10_1007_s10462_023_10660_8
crossref_primary_10_3390_en16114504
crossref_primary_10_3390_s22186913
crossref_primary_10_1016_j_ijepes_2021_107023
crossref_primary_10_7717_peerj_cs_2680
crossref_primary_10_1016_j_egyr_2022_08_009
crossref_primary_10_1016_j_enbuild_2023_113829
crossref_primary_10_1186_s42162_025_00483_y
crossref_primary_10_1016_j_enbuild_2025_115529
crossref_primary_10_1371_journal_pone_0307654
crossref_primary_10_1016_j_watres_2023_120733
crossref_primary_10_1016_j_jksuci_2022_04_016
crossref_primary_10_1007_s12053_023_10160_2
crossref_primary_10_3390_su16177805
crossref_primary_10_3389_fenrg_2023_1209290
crossref_primary_10_3390_en14185852
crossref_primary_10_3390_en15249438
crossref_primary_10_1016_j_jksus_2021_101815
crossref_primary_10_3390_su152416885
crossref_primary_10_1016_j_energy_2024_131720
crossref_primary_10_3390_app132312941
crossref_primary_10_1016_j_enconman_2024_118795
crossref_primary_10_1155_2022_7040601
crossref_primary_10_3390_en15155742
crossref_primary_10_3390_math9060605
crossref_primary_10_1007_s11227_024_06811_5
crossref_primary_10_3390_buildings14020397
crossref_primary_10_3390_electronics10091026
crossref_primary_10_3390_s22114008
crossref_primary_10_1016_j_compeleceng_2023_109059
crossref_primary_10_1007_s10462_022_10286_2
crossref_primary_10_3390_app112311263
crossref_primary_10_3390_s23042358
crossref_primary_10_1049_tje2_12356
crossref_primary_10_3390_s23020945
crossref_primary_10_1016_j_engappai_2022_105403
crossref_primary_10_3390_a15110395
crossref_primary_10_1016_j_engappai_2022_105287
crossref_primary_10_1007_s00521_022_08120_5
crossref_primary_10_1016_j_enbuild_2023_113204
crossref_primary_10_3390_app132011408
crossref_primary_10_1016_j_seta_2022_102337
crossref_primary_10_1109_TII_2023_3335453
crossref_primary_10_3390_en17174277
crossref_primary_10_3390_s22249749
crossref_primary_10_1016_j_enbuild_2023_113642
crossref_primary_10_1016_j_apenergy_2023_122339
crossref_primary_10_32604_csse_2023_039407
crossref_primary_10_1016_j_jobe_2021_103848
crossref_primary_10_3389_fenrg_2021_709708
crossref_primary_10_3390_s21144932
Cites_doi 10.1016/j.epsr.2019.106080
10.3390/s20030873
10.1049/iet-gtd.2018.6687
10.1109/TSG.2018.2844307
10.1109/IECON.2015.7392953
10.1109/ICRCCS.2009.12
10.1109/TPWRS.2009.2030426
10.1109/MCI.2018.2840738
10.1007/978-3-030-03766-6_16
10.1177/0037549717706171
10.1016/j.segan.2016.02.005
10.1016/j.enconman.2015.07.041
10.1109/ISIE.2017.8001465
10.1109/TII.2019.2929228
10.1016/j.knosys.2015.02.017
10.1016/j.energy.2020.117197
10.1016/B978-0-12-813970-7.00004-2
10.1016/j.apenergy.2017.12.051
10.1109/78.650093
10.1155/2019/3581419
10.1201/9781351003827-5
10.1007/s11042-020-09406-3
10.1109/ACCESS.2019.2963045
10.1051/e3sconf/202017216010
10.3390/s20051399
10.1016/j.rser.2014.11.066
10.1016/j.buildenv.2017.11.009
10.1007/978-3-030-15035-8_107
10.1016/j.eswa.2020.114177
10.1109/TSG.2020.2972513
10.1016/j.apenergy.2020.115503
10.1007/978-3-030-02574-8_13
10.1016/j.eswa.2019.113082
10.1016/j.knosys.2018.08.027
10.1109/PTC.2019.8810899
10.1109/TPWRS.2005.860926
10.1007/s11554-020-01020-8
10.1016/j.jobe.2019.100769
10.1007/s11036-019-01366-9
10.1109/ACCESS.2020.3009537
10.21437/Interspeech.2020-1557
10.1016/j.rser.2017.07.046
10.1109/ACCESS.2019.2930069
10.1049/ip-gtd:20050088
10.1016/j.energy.2019.05.230
10.1016/j.neucom.2019.12.151
10.1109/TPWRS.2010.2052638
10.1109/TPWRS.2015.2438322
10.1109/5.823996
10.1016/j.enbuild.2020.110301
10.1016/j.enconman.2017.10.008
10.1145/1541880.1541882
10.3390/en12040739
10.1016/j.enbuild.2019.02.014
10.1109/SIU.2018.8404313
10.1109/59.801894
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app10238634
DatabaseName CrossRef
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_b78d37d0d8114f99a651ed5a19dbfc6b
10_3390_app10238634
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c364t-2281682b7faf50c22361d55ef80df0d758d53814e7cdc9648265fb8a9cc337543
IEDL.DBID BENPR
ISSN 2076-3417
IngestDate Wed Aug 27 01:04:22 EDT 2025
Mon Jun 30 10:59:07 EDT 2025
Tue Jul 01 03:14:51 EDT 2025
Thu Apr 24 23:01:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-2281682b7faf50c22361d55ef80df0d758d53814e7cdc9648265fb8a9cc337543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3797-9649
0000-0001-7538-2689
0000-0002-8139-7091
OpenAccessLink https://www.proquest.com/docview/2467698314?pq-origsite=%requestingapplication%
PQID 2467698314
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_b78d37d0d8114f99a651ed5a19dbfc6b
proquest_journals_2467698314
crossref_primary_10_3390_app10238634
crossref_citationtrail_10_3390_app10238634
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Sajjad (ref_35) 2020; 8
ref_58
ref_12
Afrasiabi (ref_36) 2020; 11
ref_56
ref_54
ref_53
Chen (ref_44) 2018; 10
ref_52
ref_51
ref_19
ref_18
ref_17
ref_59
Han (ref_16) 2020; 99
Mocanu (ref_1) 2016; 6
Lahouar (ref_23) 2015; 103
Yang (ref_6) 2019; 163
Ullah (ref_34) 2020; 8
ref_61
ref_60
Chandola (ref_39) 2009; 41
ref_21
Wang (ref_31) 2020; 197
Liu (ref_49) 2020; 143
ref_63
ref_62
Khwaja (ref_8) 2020; 179
ref_29
ref_28
Bunn (ref_37) 2000; 88
Guo (ref_2) 2018; 81
MunkhDalai (ref_64) 2019; 7
Lu (ref_22) 2019; 190
Koprinska (ref_7) 2015; 82
Young (ref_42) 2018; 13
Bot (ref_15) 2019; 24
Tsekouras (ref_26) 2006; 21
Chen (ref_24) 2009; 25
Schuster (ref_55) 1997; 45
ref_30
Haq (ref_41) 2019; 2019
Wang (ref_45) 2017; 153
Li (ref_27) 2015; 31
Rahman (ref_32) 2018; 212
Soliman (ref_20) 2006; 153
Pereira (ref_14) 2020; Volume 172
Kim (ref_33) 2019; 182
Nejat (ref_4) 2015; 43
ref_47
ref_46
ref_43
Hobbs (ref_38) 1999; 14
Wang (ref_25) 2011; 26
Heydari (ref_9) 2020; 277
Sajjad (ref_40) 2019; 25
Zhang (ref_10) 2020; 225
ref_3
Rupp (ref_13) 2017; 93
Tang (ref_57) 2019; 13
ref_48
Naspi (ref_11) 2018; 127
ref_5
References_xml – volume: 179
  start-page: 106080
  year: 2020
  ident: ref_8
  article-title: Joint Bagged-Boosted Artificial Neural Networks: Using Ensemble Machine Learning to Improve Short-Term Electricity Load Forecasting
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2019.106080
– ident: ref_21
  doi: 10.3390/s20030873
– volume: 13
  start-page: 3847
  year: 2019
  ident: ref_57
  article-title: Short-Term Power Load Forecasting Based on Multi-Layer Bidirectional Recurrent Neural Network
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2018.6687
– volume: 10
  start-page: 3943
  year: 2018
  ident: ref_44
  article-title: Short-Term Load Forecasting with Deep Residual Networks
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2018.2844307
– ident: ref_5
  doi: 10.1109/IECON.2015.7392953
– ident: ref_18
  doi: 10.1109/ICRCCS.2009.12
– volume: 25
  start-page: 322
  year: 2009
  ident: ref_24
  article-title: Short-Term Load Forecasting: Similar Day-Based Wavelet Neural networks
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2009.2030426
– volume: 13
  start-page: 55
  year: 2018
  ident: ref_42
  article-title: Recent Trends in Deep Learning Based Natural Language Processing [Review Article]
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2018.2840738
– ident: ref_62
  doi: 10.1007/978-3-030-03766-6_16
– volume: 93
  start-page: 935
  year: 2017
  ident: ref_13
  article-title: Assessing Window Area and Potential for Electricity Savings by Using Daylighting and Hybrid Ventilation in Office Buildings in Southern Brazil
  publication-title: Simulation
  doi: 10.1177/0037549717706171
– volume: 6
  start-page: 91
  year: 2016
  ident: ref_1
  article-title: Deep Learning for Estimating Building Energy Consumption
  publication-title: Sustain. Energy Grids Netw.
  doi: 10.1016/j.segan.2016.02.005
– volume: 103
  start-page: 1040
  year: 2015
  ident: ref_23
  article-title: Day-Ahead Load Forecast Using Random Forest and Expert Input Selection
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.07.041
– ident: ref_28
  doi: 10.1109/ISIE.2017.8001465
– ident: ref_56
  doi: 10.1109/TII.2019.2929228
– volume: 82
  start-page: 29
  year: 2015
  ident: ref_7
  article-title: Correlation and Instance Based Feature Selection for Electricity Load Forecasting
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2015.02.017
– volume: 197
  start-page: 117197
  year: 2020
  ident: ref_31
  article-title: LSTM Based Long-Term Energy Consumption Prediction with Periodicity
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117197
– ident: ref_12
  doi: 10.1016/B978-0-12-813970-7.00004-2
– volume: 212
  start-page: 372
  year: 2018
  ident: ref_32
  article-title: Predicting Electricity Consumption for Commercial and Residential Buildings Using Deep Recurrent Neural Networks
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.12.051
– volume: 99
  start-page: 1
  year: 2020
  ident: ref_16
  article-title: An Efficient Deep Learning Framework for Intelligent Energy Management in IoT Networks
  publication-title: IEEE Internet Things J.
– volume: 45
  start-page: 2673
  year: 1997
  ident: ref_55
  article-title: Bidirectional Recurrent Neural Networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.650093
– volume: 2019
  start-page: 1
  year: 2019
  ident: ref_41
  article-title: Personalized Movie Summarization Using Deep CNN-Assisted Facial Expression Recognition
  publication-title: Complexity
  doi: 10.1155/2019/3581419
– ident: ref_52
  doi: 10.1201/9781351003827-5
– ident: ref_53
  doi: 10.1007/s11042-020-09406-3
– ident: ref_58
– volume: 8
  start-page: 123369
  year: 2020
  ident: ref_34
  article-title: Short-Term Prediction of Residential Power Energy Consumption via CNN and Multi-Layer Bi-Directional LSTM Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2963045
– volume: Volume 172
  start-page: 16010
  year: 2020
  ident: ref_14
  article-title: Influence of Occupant Behaviour on the State of Charge of a Storage Battery in a Nearly-Zero Energy Building
  publication-title: E3S Web of Conferences
  doi: 10.1051/e3sconf/202017216010
– ident: ref_17
  doi: 10.3390/s20051399
– volume: 43
  start-page: 843
  year: 2015
  ident: ref_4
  article-title: A Global Review of Energy Consumption, CO 2 Emissions and Policy in the Residential Sector (with an Overview of the Top Ten CO 2 Emitting Countries)
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.11.066
– volume: 127
  start-page: 221
  year: 2018
  ident: ref_11
  article-title: Experimental Study on occupants’ Interaction with Windows and Lights in Mediterranean Offices during the Non-Heating Season
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.11.009
– ident: ref_29
  doi: 10.1007/978-3-030-15035-8_107
– ident: ref_43
  doi: 10.1016/j.eswa.2020.114177
– volume: 11
  start-page: 3646
  year: 2020
  ident: ref_36
  article-title: Deep-Based Conditional Probability Density Function Forecasting of Residential Loads
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2020.2972513
– ident: ref_48
– volume: 277
  start-page: 115503
  year: 2020
  ident: ref_9
  article-title: Short-Term Electricity Price and Load Forecasting in Isolated Power Grids Based on Composite Neural Network and Gravitational Search Optimization Algorithm
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115503
– ident: ref_63
  doi: 10.1007/978-3-030-02574-8_13
– volume: 143
  start-page: 113082
  year: 2020
  ident: ref_49
  article-title: DSTP-RNN: A Dual-Stage Two-Phase Attention-Based Recurrent Neural Network for Long-Term and Multivariate Time Series Prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.113082
– volume: 163
  start-page: 159
  year: 2019
  ident: ref_6
  article-title: Short-Term Electricity Load Forecasting Based on Feature Selection and Least Squares Support Vector Machines
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2018.08.027
– ident: ref_60
  doi: 10.1109/PTC.2019.8810899
– ident: ref_59
– volume: 21
  start-page: 385
  year: 2006
  ident: ref_26
  article-title: An Optimized Adaptive Neural Network for Annual Midterm Energy Forecasting
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2005.860926
– ident: ref_46
  doi: 10.1007/s11554-020-01020-8
– volume: 24
  start-page: 100769
  year: 2019
  ident: ref_15
  article-title: Energy Performance of Buildings With on-site Energy Generation and Storage—An Integrated Assessment Using Dynamic Simulation
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2019.100769
– volume: 25
  start-page: 1611
  year: 2019
  ident: ref_40
  article-title: Human Behavior Understanding in Big Multimedia Data Using CNN Based Facial Expression Recognition
  publication-title: Mob. Netw. Appl.
  doi: 10.1007/s11036-019-01366-9
– ident: ref_3
– ident: ref_47
– volume: 8
  start-page: 143759
  year: 2020
  ident: ref_35
  article-title: A Novel CNN-GRU-Based Hybrid Approach for Short-Term Residential Load Forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3009537
– ident: ref_50
  doi: 10.21437/Interspeech.2020-1557
– volume: 81
  start-page: 399
  year: 2018
  ident: ref_2
  article-title: Residential Electricity Consumption Behavior: Influencing Factors, Related Theories and Intervention Strategies
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.07.046
– volume: 7
  start-page: 99099
  year: 2019
  ident: ref_64
  article-title: An End-to-End Adaptive Input Selection with Dynamic Weights for Forecasting Multivariate Time Series
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2930069
– volume: 153
  start-page: 217
  year: 2006
  ident: ref_20
  article-title: Fuzzy Short-Term Electric Load Forecasting Using Kalman Filter
  publication-title: IEE Proc. Gener. Transm. Distrib.
  doi: 10.1049/ip-gtd:20050088
– volume: 182
  start-page: 72
  year: 2019
  ident: ref_33
  article-title: Predicting Residential Energy Consumption Using CNN-LSTM Neural Networks
  publication-title: Energy
  doi: 10.1016/j.energy.2019.05.230
– ident: ref_51
  doi: 10.1016/j.neucom.2019.12.151
– volume: 26
  start-page: 500
  year: 2011
  ident: ref_25
  article-title: Secondary Forecasting Based on Deviation Analysis for Short-Term Load Forecasting
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2010.2052638
– volume: 31
  start-page: 1788
  year: 2015
  ident: ref_27
  article-title: A Novel Wavelet-Based Ensemble Method for Short-Term Load Forecasting With Hybrid Neural Networks and Feature Selection
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2015.2438322
– ident: ref_54
– volume: 88
  start-page: 163
  year: 2000
  ident: ref_37
  article-title: Forecasting Loads and Prices in Competitive Power Markets
  publication-title: Proc. IEEE
  doi: 10.1109/5.823996
– volume: 225
  start-page: 110301
  year: 2020
  ident: ref_10
  article-title: A Hybrid Deep Learning-Based Method for Short-Term Building Energy Load Prediction Combined with an Interpretation Process
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.110301
– volume: 153
  start-page: 409
  year: 2017
  ident: ref_45
  article-title: Deterministic and Probabilistic Forecasting of Photovoltaic Power Based on Deep Convolutional Neural Network
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.10.008
– volume: 41
  start-page: 1
  year: 2009
  ident: ref_39
  article-title: Anomaly Detection: A survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1541880.1541882
– ident: ref_61
  doi: 10.3390/en12040739
– ident: ref_19
– volume: 190
  start-page: 49
  year: 2019
  ident: ref_22
  article-title: GMM Clustering for Heating Load Patterns in-depth Identification and Prediction Model Accuracy Improvement of District Heating System
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.02.014
– ident: ref_30
  doi: 10.1109/SIU.2018.8404313
– volume: 14
  start-page: 1342
  year: 1999
  ident: ref_38
  article-title: Analysis of the Value for Unit Commitment of Improved Load Forecasts
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.801894
SSID ssj0000913810
Score 2.4276736
Snippet Smart grid technology based on renewable energy and energy storage systems are attracting considerable attention towards energy crises. Accurate and reliable...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 8634
SubjectTerms Accuracy
Artificial intelligence
bidirectional gated recurrent unit
convolutional neural networks
Datasets
Electricity
electricity consumption prediction
Electricity distribution
Energy consumption
Forecasting
hybrid deep learning model
Mean square errors
Methods
Neural networks
Power supply
residential load prediction
Sensors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IrYrVKnvoQYVgsrvZZI9WW4qgiLbQW8g-ogVJa1sP9de7s9mWioIXr2EhYWZ2HpmZ70OozfIwlAp-gSlGA5YyEwgpRaBNFPHcEJujwr7z_QPvD9ndKB5tUH3BTFgFD1wJ7komqaaJDnVqM_dCiJzHkdFxHgktC8UleF8b8zaKKeeDRQTQVdVCHrV1PfSDAaUg5ZR9C0EOqf-HI3bRpbeHdn1aiK-rz6mjLVM20M4GWGAD1f01nONzjxV9sY_eu47GBiSNu26NDz_OoPcC8sbjEj8Z4OMs7T1-wx1PgT3HNlPFz6828w4G1jPj_mQ2_rTmh90AAe4vYY0L3xozxR5_9QV7GNvlARr2uoObfuBZFAJFOVsEhAC1BpFJkRdxqAigreg4NkUa6iLUtl7Q1ulFzCRKK8GZrTfiQqa5UIoCPy49RLVyUpojhEORKsVFpKD3SkyccyYNk1QmQieSkya6XAk2Ux5iHJgu3jJbaoAWsg0tNFF7fXhaIWv8fqwDGlofAThs98AaSeaNJPvLSJqotdJv5u_oPCMMxntTGrHj_3jHCdomUIu7UZcWqi1mH-bUJiwLeeZs8wuBi-m8
  priority: 102
  providerName: Directory of Open Access Journals
Title Electrical Energy Prediction in Residential Buildings for Short-Term Horizons Using Hybrid Deep Learning Strategy
URI https://www.proquest.com/docview/2467698314
https://doaj.org/article/b78d37d0d8114f99a651ed5a19dbfc6b
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxEB0VuNBDBQHUFBr5kAMgrdi1vV77hBqaNKpUhCCRuK3WH0sroU1IwgF-PR7HCaBWve76sh7P7LwZz3sAXV6lqTZYAjOcJVxylyitVWJdlonKUZ-j4rzzr0sxHPOft_ltLLjN47XKVUwMgdpODNbIzyjHy5iSZfx8-pCgahR2V6OExgZs-RAsPfja6vUvr67XVRZkvZRZuhzMYx7fY18Y2QqkYPzdrygw9v8VkMNfZrADn2J6SL4t7bkLH1zTgo9vSANbsBvdcU6OI2f0yR489IOcDe446YdxPnI1wx4M7jv505Brh7qcjffne9KLUthz4jNWcvPbZ-DJyEdoMvQf_OyPIQkXCcjwCce5yHfnpiTysN6RSGf7tA_jQX90MUyimkJimOCLhFKU2KC6qKs6Tw1F1hWb566Wqa1T63GD9cEv464w1ijBPe7Iay0rZQxDnVx2AJvNpHGfgaRKGiNUZrAHS11eCa4d10wXyhZa0Dacrja2NJFqHBUv7ksPOdAK5RsrtKG7XjxdMmz8e1kPLbRegrTY4cFkdldGLyt1IS0rbGqlh3m1UpXIM2fzKlNW10boNhyt7FtGX52Xryfry_9fH8I2RbQdLrMcweZi9ui--pRkoTuwIQc_OvH0dQKwfwGXR-Ok
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOqC0gFkrxoUiAFJHYjmMfEGrpLil9CMFW6i2NHylIVXa7uwgtP4rfWI_XWYpA3HqNrRw8D894Zr4PYJvXaaoNPoEZzhIuuUuU1iqxLstE7aiPUXHe-ehYlCf842l-ugK_ulkYbKvsfGJw1HZk8I38DeXYjClZxt-NLxNkjcLqakehsVCLAzf_4VO26dv9PS_fF5QO-sP3ZRJZBRLDBJ8llCLVBNVFUzd5aiiij9g8d41MbZNaHz9b7wQy7gpjjRLcx995o2WtjGHIF8v8f2_Bbc6YQouSgw_LNx3E2JRZuhgD9OspVqERG0EKxv-4-AI_wF_uP9xpgzW4H4NRsrPQnnVYce0G3LsGUbgB69H4p-RlRKh-9QAu-4E8B-VL-mF4kHyaYMUHpUy-teSzQxbQ1nuPC7IbibenxMfH5MtXH-8nQ38fkNIf70-v9CS0LZByjsNjZM-5MYmor-ckgufOH8LJjZzyI1htR617DCRV0hihMoMVX-ryWnDtuGa6ULbQgvbgdXewlYnA5sivcVH5BAelUF2TQg-2l5vHCzyPf2_bRQkttyAId_gwmpxX0aYrXUjLCpta6ZPKRqla5JmzeZ0pqxsjdA82O_lW0TNMq996_OT_y8_hTjk8OqwO948PnsJdinl-aKPZhNXZ5Lt75oOhmd4KGkjg7KZV_gpBchwo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQLSACBTwoUiAtKrX9nrtA0KEJEopRFFppd6W9WMLUrVJkyAUfhq_Ds_GG4pA3HrdtXzwjOfhmfk-gH1RUmosPoFZwROhhE-0MTpxPk1l6VmIUXHe-eNYjk7F-7PsbAt-trMw2FbZ2sTGULupxTfyAyawGVPxVBxUsS1i0h--mV0myCCFldaWTmOtIkd-9T2kb4vXh_0g6-eMDQcn70ZJZBhILJdimTCGtBPM5FVZZdQyRCJxWeYrRV1FXYilXTAIqfC5dVZLEWLxrDKq1NZy5I7lYd8bsJ2HrIh2YLs3GE-ONy88iLipUroeCuRcU6xJI1KCklz84QYbtoC_nEHj4YZ34U4MTcnbtS7twJavd-H2FcDCXdiJpmBBXkS86pf34HLQUOmgtMmgGSUkkznWf1Dm5GtNjj1ygtbBllyQXqThXpAQLZNPX0L0n5wE70BG4YB_hCtAmiYGMlrhKBnpez8jEQP2nEQo3dV9OL2Wc34AnXpa-4dAqFbWSp1arP8yn5VSGC8MN7l2uZGsC6_agy1shDlHto2LIqQ7KIXiihS6sL9ZPFuje_x7WQ8ltFmCkNzNh-n8vIg3vDC5cjx31KmQYlZalzJLvcvKVDtTWWm6sNfKt4h2YlH81upH___9DG4GdS8-HI6PHsMthkl_01OzB53l_Jt_EiKjpXkaVZDA5-vW-l8cySG6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrical+Energy+Prediction+in+Residential+Buildings+for+Short-Term+Horizons+Using+Hybrid+Deep+Learning+Strategy&rft.jtitle=Applied+sciences&rft.au=Khan%2C+Zulfiqar+Ahmad&rft.au=Ullah%2C+Amin&rft.au=Ullah%2C+Waseem&rft.au=Rho%2C+Seungmin&rft.date=2020-12-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=10&rft.issue=23&rft.spage=8634&rft_id=info:doi/10.3390%2Fapp10238634&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app10238634
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon