Study on the Influence of Temperature on the Temporal and Spatial Distribution Characteristics of Natural Cavitating Flow around a Vehicle

Cavitation involves complex multiphase turbulence and has important research significance. In this study, the Schnerr–Sauer cavitation model was used to model cavitation, and the detached-eddy simulation (DES) method was used to calculate the unsteady natural cavitating flow. The predicted results a...

Full description

Saved in:
Bibliographic Details
Published inJournal of marine science and engineering Vol. 9; no. 1; p. 24
Main Authors Sun, Tiezhi, Zhang, Jianyu, Zhang, Xiaoshi, Jiang, Yichen
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cavitation involves complex multiphase turbulence and has important research significance. In this study, the Schnerr–Sauer cavitation model was used to model cavitation, and the detached-eddy simulation (DES) method was used to calculate the unsteady natural cavitating flow. The predicted results are in good agreement with experimentally measured cavity evolution and pressure values, demonstrating the effectiveness of this numerical method. Low temperature causes changes in the properties of water. The density of water at 0° is 999.84 kg/m3 and the density of water at 25° is 997.04. Cavitation evolution and shedding are analyzed at temperatures of 0 °C and 25 °C. The results showed that lower temperature increased the frequency of cavitation and enhanced pressure pulsation. At the same time, low temperature also increases the frequency of cavity shedding and shortens the cycle. In addition, based on the Ω method, the difference between vortex dynamics at various temperatures was studied, and it was found that different cavity stages showed different vortex structure characteristics, and lower temperature would aggravate the change of wake vortex structure. At the same time, the analysis of the turbulence characteristics in the downstream of the cavity shows that the lower temperature reduces the velocity pulsation and reduces the turbulence integral scale. At the end of the model, large-scale pulsations are transformed into small-scale pulsations.
AbstractList Cavitation involves complex multiphase turbulence and has important research significance. In this study, the Schnerr–Sauer cavitation model was used to model cavitation, and the detached-eddy simulation (DES) method was used to calculate the unsteady natural cavitating flow. The predicted results are in good agreement with experimentally measured cavity evolution and pressure values, demonstrating the effectiveness of this numerical method. Low temperature causes changes in the properties of water. The density of water at 0° is 999.84 kg/m3 and the density of water at 25° is 997.04. Cavitation evolution and shedding are analyzed at temperatures of 0 °C and 25 °C. The results showed that lower temperature increased the frequency of cavitation and enhanced pressure pulsation. At the same time, low temperature also increases the frequency of cavity shedding and shortens the cycle. In addition, based on the Ω method, the difference between vortex dynamics at various temperatures was studied, and it was found that different cavity stages showed different vortex structure characteristics, and lower temperature would aggravate the change of wake vortex structure. At the same time, the analysis of the turbulence characteristics in the downstream of the cavity shows that the lower temperature reduces the velocity pulsation and reduces the turbulence integral scale. At the end of the model, large-scale pulsations are transformed into small-scale pulsations.
Author Jiang, Yichen
Zhang, Jianyu
Sun, Tiezhi
Zhang, Xiaoshi
Author_xml – sequence: 1
  givenname: Tiezhi
  surname: Sun
  fullname: Sun, Tiezhi
– sequence: 2
  givenname: Jianyu
  surname: Zhang
  fullname: Zhang, Jianyu
– sequence: 3
  givenname: Xiaoshi
  surname: Zhang
  fullname: Zhang, Xiaoshi
– sequence: 4
  givenname: Yichen
  surname: Jiang
  fullname: Jiang, Yichen
BookMark eNpNkc9u1DAQxi1UJErbU1_AEke04L9xfEQLpStV9NDSqzVJxl2vsvFiO6C-Ak-N0wVUXzz6vs8_j2bekpMpTkjIJWcfpLTs426f0TLOmFCvyKlgxqy45OLkRf2GXOS8Y_W0ouGsOSW_78o8PNE40bJFupn8OOPUI42e3uP-gAnKnPCfv0gxwUhhGujdAUqo9eeQSwrdXEJNrbeQoC-Yqhj6vHC-LYiaW8PPUOqT6ZFejfEXhRTnigH6gNvQj3hOXnsYM178vc_I96sv9-vr1c3t1836082ql40qK8FN0wO2oK1n2Ag7yI6rQXedrAZD1BaZbrjWphOtGDiTXttWmLb6bSPkGdkcuUOEnTuksIf05CIE9yzE9OgglaUjV2dkDYC1neIKPbfMg1e8aY2pk9ZYWe-OrEOKP2bMxe3inKbavhPKKKOZallNvT-m-hRzTuj__8qZW3bnXuxO_gHDK426
CitedBy_id crossref_primary_10_1063_5_0147279
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123338
crossref_primary_10_1016_j_heliyon_2024_e30697
Cites_doi 10.1146/annurev.fluid.34.082301.114957
10.1007/s42241-020-0060-y
10.1017/S0022112098008738
10.1177/1687814016678198
10.1007/s40430-020-02727-2
10.3390/jmse8050341
10.1016/j.ijheatmasstransfer.2017.04.023
10.1016/j.compfluid.2018.12.011
10.1007/s11433-016-0022-6
10.1007/s11431-015-5969-y
10.1016/j.ijheatmasstransfer.2016.05.107
10.1016/j.ijmultiphaseflow.2018.11.014
10.1115/1.2169808
10.1017/S0022112097007830
10.1016/j.ijmultiphaseflow.2014.10.008
10.1115/1.4040502
10.1115/1.4009975
10.1016/j.ijnaoe.2016.07.003
10.1115/1.1792278
10.1017/CBO9781107338760
10.1016/j.oceaneng.2019.106831
10.1016/S1001-6058(16)60813-2
10.1080/14786440808635681
10.1017/CBO9780511800955
10.1016/j.ijmultiphaseflow.2017.08.013
10.1088/1742-6596/656/1/012179
10.4028/www.scientific.net/AMM.152-154.1187
10.1115/1.4023650
10.1007/s00773-019-00697-2
10.1016/j.oceaneng.2014.05.005
10.1115/1.3448095
10.1017/jfm.2016.425
10.1103/PhysRevFluids.2.084303
10.1016/j.ijmultiphaseflow.2019.03.025
10.1016/j.oceaneng.2018.04.064
10.1016/j.ijheatmasstransfer.2019.03.096
10.1016/j.oceaneng.2015.11.019
10.1016/j.oceaneng.2019.106140
10.1063/1.857432
10.1080/10618560701733657
10.1016/j.ijmultiphaseflow.2020.103357
10.1016/j.ijmultiphaseflow.2017.12.002
10.1115/1.2151207
10.1016/j.ijheatfluidflow.2020.108646
10.1016/j.oceaneng.2020.107726
10.1002/fld.530
10.1007/s42241-018-0058-x
10.1002/fld.1047
10.1007/s42241-019-0050-0
10.1016/j.ijmultiphaseflow.2018.10.012
10.1016/j.ijheatmasstransfer.2019.06.105
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7ST
7TN
8FE
8FG
ABJCF
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
L.G
L6V
M7S
PATMY
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
SOI
DOA
DOI 10.3390/jmse9010024
DatabaseName CrossRef
Environment Abstracts
Oceanic Abstracts
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Agricultural & Environmental Science
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
ProQuest Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Access via ProQuest (Open Access)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
Environment Abstracts
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
EISSN 2077-1312
ExternalDocumentID oai_doaj_org_article_61097aa99b414ef190faf4168779015e
10_3390_jmse9010024
GroupedDBID 5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
D1J
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
PATMY
PCBAR
PIMPY
PROAC
PTHSS
PYCSY
7ST
7TN
ABUWG
AZQEC
C1K
DWQXO
F1W
GNUQQ
H96
L.G
PQEST
PQQKQ
PQUKI
PRINS
SOI
ID FETCH-LOGICAL-c364t-2176cae8a59f0e629d3b14d5bb376c0ee59e0561557b282d103f5982783768623
IEDL.DBID DOA
ISSN 2077-1312
IngestDate Tue Oct 22 15:00:28 EDT 2024
Thu Oct 10 15:46:36 EDT 2024
Thu Sep 26 21:24:59 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-2176cae8a59f0e629d3b14d5bb376c0ee59e0561557b282d103f5982783768623
OpenAccessLink https://doaj.org/article/61097aa99b414ef190faf4168779015e
PQID 2474750480
PQPubID 2032377
ParticipantIDs doaj_primary_oai_doaj_org_article_61097aa99b414ef190faf4168779015e
proquest_journals_2474750480
crossref_primary_10_3390_jmse9010024
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Journal of marine science and engineering
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Reisman (ref_12) 1998; 355
Liu (ref_6) 2018; 141
Piomelli (ref_56) 1989; 1
Franc (ref_27) 2004; 126
Rayleigh (ref_50) 1917; 34
ref_54
ref_53
ref_52
Cervone (ref_26) 2005; 128
Ji (ref_19) 2014; 87
Menter (ref_49) 2003; 4
Dular (ref_28) 2015; 656
Peng (ref_2) 2019; 137
Chen (ref_24) 2016; 101
Zahiri (ref_34) 2018; 180
Huang (ref_37) 2013; 135
Knapp (ref_11) 1958; 1
Sun (ref_39) 2019; 187
Girimaji (ref_45) 2006; 73
Arndt (ref_16) 2002; 34
Akbari (ref_9) 2021; 43
Yuan (ref_17) 2019; 141
Kadivar (ref_21) 2020; 25
Sun (ref_30) 2019; 111
Philipp (ref_15) 1998; 361
Wang (ref_4) 2017; 2
Lidtke (ref_43) 2016; 120
Plesset (ref_51) 1949; 16
Gao (ref_46) 2012; 152
Yang (ref_8) 2017; 9
Ganesh (ref_14) 2016; 802
Wang (ref_18) 2018; 30
Sun (ref_40) 2020; 197
Pendar (ref_5) 2018; 98
Chen (ref_35) 2019; 112
An (ref_36) 2020; 214
Liu (ref_55) 2016; 59
Roohi (ref_13) 2008; 22
Huang (ref_10) 2019; 31
Ji (ref_42) 2015; 68
Reboud (ref_32) 2003; 42
Long (ref_38) 2018; 100
Usta (ref_47) 2018; 160
Holl (ref_25) 1975; 97
Timoshevskiy (ref_22) 2020; 85
ref_44
Wang (ref_31) 2020; 130
ref_1
Chen (ref_29) 2017; 112
Sun (ref_3) 2017; 29
Fontanarosa (ref_20) 2019; 115
Wu (ref_33) 2005; 49
ref_48
Huang (ref_41) 2020; 32
Sun (ref_23) 2016; 59
ref_7
References_xml – volume: 34
  start-page: 143
  year: 2002
  ident: ref_16
  article-title: Cavitation in vortical flows
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.34.082301.114957
  contributor:
    fullname: Arndt
– volume: 32
  start-page: 865
  year: 2020
  ident: ref_41
  article-title: Numerical investigations of the transient cavitating vortical flow structures over a flexible NACA66 hydrofoil
  publication-title: J. Hydrodyn.
  doi: 10.1007/s42241-020-0060-y
  contributor:
    fullname: Huang
– volume: 361
  start-page: 75
  year: 1998
  ident: ref_15
  article-title: Cavitation erosion by single laser-produced bubbles
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112098008738
  contributor:
    fullname: Philipp
– ident: ref_54
  doi: 10.1177/1687814016678198
– volume: 4
  start-page: 625
  year: 2003
  ident: ref_49
  article-title: Ten years of industrial experience with the SST turbulence model
  publication-title: Turbulence Heat Mass Transf.
  contributor:
    fullname: Menter
– volume: 43
  start-page: 1
  year: 2021
  ident: ref_9
  article-title: A dynamic study of the high-speed oblique water entry of a stepped cylindrical-cone projectile
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-020-02727-2
  contributor:
    fullname: Akbari
– ident: ref_7
  doi: 10.3390/jmse8050341
– volume: 112
  start-page: 125
  year: 2017
  ident: ref_29
  article-title: Numerical investigation of thermo-sensitive cavitating flows in a wide range of free-stream temperatures and velocities in fluoroketone
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.04.023
  contributor:
    fullname: Chen
– volume: 180
  start-page: 190
  year: 2018
  ident: ref_34
  article-title: Anisotropic minimum-dissipation (amd) subgrid-scale model implemented in openfoam: Verification and assessment in single-phase and multi-phase flows
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2018.12.011
  contributor:
    fullname: Zahiri
– volume: 59
  start-page: 1
  year: 2016
  ident: ref_55
  article-title: New omega vortex identification method
  publication-title: Sci. China Ser. G: Physics, Mech. Astron.
  doi: 10.1007/s11433-016-0022-6
  contributor:
    fullname: Liu
– volume: 59
  start-page: 337
  year: 2016
  ident: ref_23
  article-title: Computational modeling of cavitating flows in liquid nitrogen by an extended transport-based cavitation model
  publication-title: Sci. China Ser. E: Technol. Sci.
  doi: 10.1007/s11431-015-5969-y
  contributor:
    fullname: Sun
– volume: 101
  start-page: 886
  year: 2016
  ident: ref_24
  article-title: Numerical study of cavitating flows in a wide range of water temperatures with special emphasis on two typical cavitation dynamics
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.05.107
  contributor:
    fullname: Chen
– volume: 1
  start-page: 455
  year: 1958
  ident: ref_11
  article-title: Recent investigations of the mechanics of cavitation and cavitation damage
  publication-title: Wear
  contributor:
    fullname: Knapp
– volume: 111
  start-page: 82
  year: 2019
  ident: ref_30
  article-title: Numerical investigation on the unsteady cavitation shedding dynamics over a hydrofoil in thermo-sensitive fluid
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2018.11.014
  contributor:
    fullname: Sun
– volume: 128
  start-page: 326
  year: 2005
  ident: ref_26
  article-title: Thermal Cavitation Experiments on a NACA 0015 Hydrofoil
  publication-title: J. Fluids Eng.
  doi: 10.1115/1.2169808
  contributor:
    fullname: Cervone
– ident: ref_52
– ident: ref_48
– volume: 355
  start-page: 255
  year: 1998
  ident: ref_12
  article-title: Observations of shock waves in cloud cavitation
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112097007830
  contributor:
    fullname: Reisman
– volume: 68
  start-page: 121
  year: 2015
  ident: ref_42
  article-title: Large Eddy Simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2014.10.008
  contributor:
    fullname: Ji
– volume: 141
  start-page: 021103
  year: 2018
  ident: ref_6
  article-title: Cavitation–Vortex–Turbulence Interaction and One-Dimensional Model Prediction of Pressure for Hydrofoil ALE15 by Large Eddy Simulation
  publication-title: J. Fluids Eng.
  doi: 10.1115/1.4040502
  contributor:
    fullname: Liu
– volume: 16
  start-page: 277
  year: 1949
  ident: ref_51
  article-title: The Dynamics of Cavitation Bubbles
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4009975
  contributor:
    fullname: Plesset
– volume: 9
  start-page: 35
  year: 2017
  ident: ref_8
  article-title: Drag reduction of a rapid vehicle in supercavitating flow
  publication-title: Int. J. Nav. Arch. Ocean Eng.
  doi: 10.1016/j.ijnaoe.2016.07.003
  contributor:
    fullname: Yang
– volume: 126
  start-page: 716
  year: 2004
  ident: ref_27
  article-title: An Experimental Investigation of Thermal Effects in a Cavitating Inducer
  publication-title: J. Fluids Eng.
  doi: 10.1115/1.1792278
  contributor:
    fullname: Franc
– ident: ref_53
  doi: 10.1017/CBO9781107338760
– volume: 197
  start-page: 106831
  year: 2020
  ident: ref_40
  article-title: Numerical investigation of positive effects of ventilated cavitation around a NACA66 hydrofoil
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.106831
  contributor:
    fullname: Sun
– volume: 29
  start-page: 987
  year: 2017
  ident: ref_3
  article-title: Numerical investigation of unsteady sheet/cloud cavitation over a hydrofoil in thermo-sensitive fluid
  publication-title: J. Hydrodyn.
  doi: 10.1016/S1001-6058(16)60813-2
  contributor:
    fullname: Sun
– volume: 34
  start-page: 94
  year: 1917
  ident: ref_50
  article-title: VIII. On the pressure developed in a liquid during the collapse of a spherical cavity
  publication-title: Lond. Edinb. Dublin Philos. Mag. J. Sci.
  doi: 10.1080/14786440808635681
  contributor:
    fullname: Rayleigh
– ident: ref_1
  doi: 10.1017/CBO9780511800955
– volume: 98
  start-page: 1
  year: 2018
  ident: ref_5
  article-title: Cavitation characteristics around a sphere: An LES investigation
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2017.08.013
  contributor:
    fullname: Pendar
– volume: 656
  start-page: 012179
  year: 2015
  ident: ref_28
  article-title: Experimental study of the thermodynamic effect in a cavitating flow on a simple Venturi geometry
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/656/1/012179
  contributor:
    fullname: Dular
– volume: 152
  start-page: 1187
  year: 2012
  ident: ref_46
  article-title: Hybrid RANS–LES Modeling for Unsteady Cavitating Flow Simulation
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.152-154.1187
  contributor:
    fullname: Gao
– volume: 135
  start-page: 071301
  year: 2013
  ident: ref_37
  article-title: Combined Experimental and Computational Investigation of Unsteady Structure of Sheet/Cloud Cavitation
  publication-title: J. Fluids Eng.
  doi: 10.1115/1.4023650
  contributor:
    fullname: Huang
– volume: 25
  start-page: 1010
  year: 2020
  ident: ref_21
  article-title: Experimental and numerical study of the cavitation surge passive control around a semi-circular leading-edge flat plate
  publication-title: J. Mar. Sci. Technol.
  doi: 10.1007/s00773-019-00697-2
  contributor:
    fullname: Kadivar
– volume: 87
  start-page: 64
  year: 2014
  ident: ref_19
  article-title: Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation–vortex interaction
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2014.05.005
  contributor:
    fullname: Ji
– volume: 97
  start-page: 507
  year: 1975
  ident: ref_25
  article-title: Thermodynamic effects on developed cavitation
  publication-title: J. Fluids Eng.
  doi: 10.1115/1.3448095
  contributor:
    fullname: Holl
– volume: 802
  start-page: 37
  year: 2016
  ident: ref_14
  article-title: Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.425
  contributor:
    fullname: Ganesh
– volume: 2
  start-page: 084303
  year: 2017
  ident: ref_4
  article-title: Ventilated cloud cavitating flow around a blunt body close to the free surface
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.2.084303
  contributor:
    fullname: Wang
– volume: 115
  start-page: 158
  year: 2019
  ident: ref_20
  article-title: Characterization of unsteady cavitating flow regimes around a hydrofoil, based on an extended schnerr–sauer model coupled with a nucleation model—sciencedirect
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2019.03.025
  contributor:
    fullname: Fontanarosa
– volume: 160
  start-page: 397
  year: 2018
  ident: ref_47
  article-title: study for cavitating flow analysis using DES model
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2018.04.064
  contributor:
    fullname: Usta
– ident: ref_44
– volume: 137
  start-page: 301
  year: 2019
  ident: ref_2
  article-title: Simulation of multiple cavitation bubbles interaction with single-component multiphase Lattice Boltzmann method
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.03.096
  contributor:
    fullname: Peng
– volume: 120
  start-page: 152
  year: 2016
  ident: ref_43
  article-title: Feasibility study into a computational approach for marine propeller noise and cavitation modelling
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2015.11.019
  contributor:
    fullname: Lidtke
– volume: 187
  start-page: 106140
  year: 2019
  ident: ref_39
  article-title: Experimental investigation on the cavity evolution and dynamics with special emphasis on the development stage of ventilated partial cavitating flow
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.106140
  contributor:
    fullname: Sun
– volume: 1
  start-page: 609
  year: 1989
  ident: ref_56
  article-title: On the validity of Taylor’s hypothesis for wall-bounded flows
  publication-title: Phys. Fluids A: Fluid Dyn.
  doi: 10.1063/1.857432
  contributor:
    fullname: Piomelli
– volume: 22
  start-page: 97
  year: 2008
  ident: ref_13
  article-title: Transient simulations of cavitating flows using a modified volume-of-fluid (VOF) technique
  publication-title: Int. J. Comput. Fluid Dyn.
  doi: 10.1080/10618560701733657
  contributor:
    fullname: Roohi
– volume: 130
  start-page: 103357
  year: 2020
  ident: ref_31
  article-title: Characteristics and dynamics of compressible cavitating flows with special emphasis on com-pressibility effects
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2020.103357
  contributor:
    fullname: Wang
– volume: 100
  start-page: 41
  year: 2018
  ident: ref_38
  article-title: Large eddy simulation and Euler–Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2017.12.002
  contributor:
    fullname: Long
– volume: 73
  start-page: 413
  year: 2006
  ident: ref_45
  article-title: Partially-Averaged Navier-Stokes Model for Turbulence: A Reynolds-Averaged Navier-Stokes to Direct Numerical Simulation Bridging Method
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.2151207
  contributor:
    fullname: Girimaji
– volume: 85
  start-page: 108646
  year: 2020
  ident: ref_22
  article-title: Statistical structure of the velocity field in cavitating flow around a 2D hydrofoil
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2020.108646
  contributor:
    fullname: Timoshevskiy
– volume: 214
  start-page: 107726
  year: 2020
  ident: ref_36
  article-title: CFD-based numerical study on the ventilated supercavitating flow of the surface vehicle
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107726
  contributor:
    fullname: An
– volume: 42
  start-page: 527
  year: 2003
  ident: ref_32
  article-title: Numerical simulation of the unsteady behaviour of cavitating flows
  publication-title: Int. J. Numer. Methods Fluids.
  doi: 10.1002/fld.530
  contributor:
    fullname: Reboud
– volume: 30
  start-page: 573
  year: 2018
  ident: ref_18
  article-title: Numerical simulation of transient turbulent cavitating flows with special emphasis on shock wave dynamics considering the water/vapor compressibility
  publication-title: J. Hydrodyn.
  doi: 10.1007/s42241-018-0058-x
  contributor:
    fullname: Wang
– volume: 49
  start-page: 739
  year: 2005
  ident: ref_33
  article-title: Time-dependent turbulent cavitating flow computations with interfacial transport and filter-based models
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.1047
  contributor:
    fullname: Wu
– volume: 31
  start-page: 429
  year: 2019
  ident: ref_10
  article-title: A review of transient flow structure and unsteady mechanism of cavitating flow
  publication-title: J. Hydrodyn.
  doi: 10.1007/s42241-019-0050-0
  contributor:
    fullname: Huang
– volume: 112
  start-page: 300
  year: 2019
  ident: ref_35
  article-title: Large eddy simulation and investigation on the laminar-turbulent transition and turbulence-cavitation interaction in the cavitating flow around hydrofoil
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2018.10.012
  contributor:
    fullname: Chen
– volume: 141
  start-page: 1009
  year: 2019
  ident: ref_17
  article-title: Numerical investigation on cavitating jet inside a poppet valve with special emphasis on cavitation-vortex interaction
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.06.105
  contributor:
    fullname: Yuan
SSID ssj0000826106
Score 2.1933455
Snippet Cavitation involves complex multiphase turbulence and has important research significance. In this study, the Schnerr–Sauer cavitation model was used to model...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 24
SubjectTerms Cavitation
Computational fluid dynamics
Detached eddy simulation
Evolution
Flow control
Fluid flow
Low temperature
Mathematical models
natural cavitating flow
Numerical analysis
Numerical methods
Pulsation
Shedding
Spatial distribution
temperature
Turbulence
Velocity
vortex structure
Vortices
Water density
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA66XkQQn7i-yGGvxTZJ2-1J3NVFPawiq3greSqire6uin_BX-1Mm66K4KnQlLZkksk3k8n3EdLJnNUI84MQIrVAaK0ClQoZcM61Si3TcMFqi2Fyei3Ob-Nbn3Cb-LLKxidWjtqUGnPkB0wA8I3xBPTh80uAqlG4u-olNObJAosEbtMu9E6Gl1ezLAsscIAPkvpgHof4_uDhaWKxJCFk4tdSVDH2_3HI1SozWCHLHh7So9qeq2TOFmtk6UJbWXhu6XXyibV_H7QsKIA3etaojNDS0ZEFFFyzJDfto5p76pHKwlAUIIYBR4-RLtcrXdH-b85mfM9QVnQctC_fKg7v4o4OHst3KseowkQlvbH3-IMb5HpwMuqfBl5SIdA8EdMAApBES9uVceZCm7DMcBUJEysFjkaH1saZxZgijlMFwZiJQu6Q4i-FOBbPkvBN0irKwm4R6hIurDMpUwpVq3XXRQAldQrT2hjJWJt0mt7Nn2vmjBwiDjRC_sMIbdLDnp89gnTX1Y1yfJf72ZMjJ3wqZZYpEcFHAcQ46cDeXWRLjGLbJruN3XI_Byf594jZ_r95hywyrFSpEiu7pDUdv9o9gBpTte_H0xeBrdX5
  priority: 102
  providerName: ProQuest
Title Study on the Influence of Temperature on the Temporal and Spatial Distribution Characteristics of Natural Cavitating Flow around a Vehicle
URI https://www.proquest.com/docview/2474750480
https://doaj.org/article/61097aa99b414ef190faf4168779015e
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8IwFG4UL8bE-DOiSHrgurCt7caOgiB6QGPAcFvartUYHAZQ47_gX-173TAQD148LdmWrenXvn5f8_o9QhqJNRppvueDUvO41spTMZceY0yr2IQaLphtMYj6I34zFuOVUl-YE1bYAxcd10Q78FjKJFE84MbC-mWlBRbRQqO8QBgXfQOxIqZcDAbWDGKnOJDHQNc3n1_mBlMR_JCvLUHOqf9XIHarS2-P7Ja0kF4UzdknGyY_IDu32si89JQ-JF-Y8_dJpzkF0kavl9VF6NTSoQH2W7gjL58PC8-pCZV5RrHwMAw0eok2uWWFK9pZ92rG7wyks-GgHfnuvLvzR9qbTD-onGH1JSrpg3nCBh6RUa877PS9spSCp1nEFx4Ij0hL05Iisb6JwiRjKuCZUAoCjPaNEYlBLSFErECEZYHPLFr7xaBf8QwJOyaVfJqbE0JtxACHLA6VwmrVumUDoJA6humcZTIMq6Sx7N30tXDMSEFpIAjpCghV0sae_3kFba7dDQA_LcFP_wK_SmpL3NJy7s3TkINEEnhW_vQ__nFGtkPMY3HbLjVSWczezDkQkYWqk81W76pOttrdwd193Y3Ab9i33qc
link.rule.ids 315,786,790,870,2115,12792,21416,27955,27956,33406,33777,43633,43838,74390,74657
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT4NAEN1oPWhMjJ-xWnUPXkmBXaCcjFZr60e9VNMb2V12a4yCtlXjX_BXOwOL2ph4IgECZGd29s0w-x4hh7HRCmG-40Km5nClpCMjLhzGmJKR9hUcsNuiH3Zv-cUwGNqC28S2VVYxsQjUaa6wRt70OQDfAHdAHz2_OKgahX9XrYTGPFngLGTo563O-XeNBZY3QAdhuS2PQXbffHiaaGxIcH0-sxAVfP1_wnGxxnRWyYoFh_S4tOYamdPZOlm-UVpklll6g3xi598HzTMK0I32Ko0Rmhs60ICBS47k6vqgZJ56pCJLKcoPg7vRUyTLtTpXtD3L2IzP6YuCjIO2xVvB4J2NaOcxf6dijBpMVNA7fY8fuEluO2eDdtexggqOYiGfOpB-hErolghi4-rQj1MmPZ4GUkKYUa7WQawxowiCSEIqlnouM0jwF0EWiztJ2BapZXmmtwk1IePapJEvJWpWq5bxAEiqCCZ1mgrfr5PDanST55I3I4F8A42Q_DJCnZzgyH_fgmTXxYl8PErs3EmQET4SIo4l9-ClAGGMMAAkW8iV6AW6ThqV3RI7AyfJj7_s_H_5gCx2B9dXyVWvf7lLlnzsWSlKLA1Sm45f9R6AjqncLzzrCxCD14A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA5eQEQQrzivedhrWduk7fokOq1Xpg9TfCtJmkxktnObin_BX-05baoOwadCU9qSc3LyneTk-whpxkYrhPmOC5maw5WSjoy4cBhjSkbaV3DBaotueH7HLx-CB1v_NLZllXVMLAN1VihcI2_5HIBvgCegW8aWRdyeJIfDFwcVpHCn1cppzJJ5BNko49BOzr7XW2CqA6QQVkf0GLS3np7HGosTXJ9PTUold_-f0FzON8kKWbZAkR5Vll0lMzpfI0s3Sovcskyvk0-sAvygRU4BxtGLWm-EFob2NODhii-5bu9VLFQDKvKMohQxuB49QeJcq3lFO9PszfieriiJOWhHvJVs3nmfJoPinYoR6jFRQe_1I_7gBrlLTnudc8eKKziKhXziQCoSKqHbIoiNq0M_zpj0eBZICSFHuVoHscbsIggiCWlZ5rnMINlfBBktniphm2QuL3K9RagJGdcmi3wpUb9atY0HoFJFMMCzTPh-gzTr3k2HFYdGCrkHGiH9ZYQGOcae_34Eia_LG8Won9pxlCI7fCREHEvuwUcBzhhhAFS2kTfRC3SD7NZ2S-1oHKc_vrP9f_MBWQCnSq8vulc7ZNHH8pVytWWXzE1Gr3oP8MdE7peO9QXzStu1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+the+Influence+of+Temperature+on+the+Temporal+and+Spatial+Distribution+Characteristics+of+Natural+Cavitating+Flow+around+a+Vehicle&rft.jtitle=Journal+of+marine+science+and+engineering&rft.au=Tiezhi+Sun&rft.au=Jianyu+Zhang&rft.au=Xiaoshi+Zhang&rft.au=Yichen+Jiang&rft.date=2021-01-01&rft.pub=MDPI+AG&rft.eissn=2077-1312&rft.volume=9&rft.issue=1&rft.spage=24&rft_id=info:doi/10.3390%2Fjmse9010024&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_61097aa99b414ef190faf4168779015e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-1312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-1312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-1312&client=summon