Developing a Data Quality Evaluation Framework for Sewer Inspection Data
The increasing amount of data and the growing use of them in the information era have raised questions about the quality of data and its impact on the decision-making process. Currently, the importance of high-quality data is widely recognized by researchers and decision-makers. Sewer inspection dat...
Saved in:
Published in | Water (Basel) Vol. 15; no. 11; p. 2043 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
27.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The increasing amount of data and the growing use of them in the information era have raised questions about the quality of data and its impact on the decision-making process. Currently, the importance of high-quality data is widely recognized by researchers and decision-makers. Sewer inspection data have been collected for over three decades, but the reliability of the data was questionable. It was estimated that between 25% and 50% of sewer inspection data is not usable due to data quality problems. In order to address reliability problems, a data quality evaluation framework is developed. Data quality evaluation is a multi-dimensional concept that includes both subjective perceptions and objective measurements. Five data quality metrics were defined to assess different quality dimensions of the sewer inspection data, including Accuracy, Consistency, Completeness, Uniqueness, and Validity. These data quality metrics were calculated for the collected sewer inspection data, and it was found that consistency and uniqueness are the major problems based on the current practices with sewer pipeline inspection. This paper contributes to the overall body of knowledge by providing a robust data quality evaluation framework for sewer system data for the first time, which will result in quality data for sewer asset management. |
---|---|
AbstractList | The increasing amount of data and the growing use of them in the information era have raised questions about the quality of data and its impact on the decision-making process. Currently, the importance of high-quality data is widely recognized by researchers and decision-makers. Sewer inspection data have been collected for over three decades, but the reliability of the data was questionable. It was estimated that between 25% and 50% of sewer inspection data is not usable due to data quality problems. In order to address reliability problems, a data quality evaluation framework is developed. Data quality evaluation is a multi-dimensional concept that includes both subjective perceptions and objective measurements. Five data quality metrics were defined to assess different quality dimensions of the sewer inspection data, including Accuracy, Consistency, Completeness, Uniqueness, and Validity. These data quality metrics were calculated for the collected sewer inspection data, and it was found that consistency and uniqueness are the major problems based on the current practices with sewer pipeline inspection. This paper contributes to the overall body of knowledge by providing a robust data quality evaluation framework for sewer system data for the first time, which will result in quality data for sewer asset management. |
Audience | Academic |
Author | Khaleghian, Hossein Shan, Yongwei |
Author_xml | – sequence: 1 givenname: Hossein surname: Khaleghian fullname: Khaleghian, Hossein – sequence: 2 givenname: Yongwei surname: Shan fullname: Shan, Yongwei |
BookMark | eNptkUtLAzEUhYMo-OrCfzDgRhdt85zHstTWFgQRdT3cZm5K6nRSkxlL_72xFRExWSTcfOfkcu45OW5cg4RcMToQoqDDLVOMcSrFETnjNBN9KSU7_nU_Jb0QVjQuWeS5omdkdocfWLuNbZYJJHfQQvLUQW3bXTL5gLqD1rommXpY49b5t8Q4nzzjFn0yb8IG9f75S3ZJTgzUAXvf5wV5nU5exrP-w-P9fDx66GuRyrbPKqMkZ8ALkyrBIJdpDqkWQueqQgFUVItC6AyF5kakwHOkRi5YplUO1QLFBbk5-G68e-8wtOXaBo11DQ26LpSCRdtCyYJH9PoPunKdb2J3Jc-5jBlkhYjU4EAtocbSNsa1HnTcFa6tjgEbG-ujTPHoSrmKgtuDQHsXgkdTbrxdg9-VjJZfcyh_5hDZ4R9W23afafzE1v8oPgG5WolZ |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3475577 |
Cites_doi | 10.1061/9780784479957.048 10.1016/j.proeng.2016.04.177 10.1145/1541880.1541883 10.1007/978-3-030-19143-6_1 10.5334/egems.218 10.1061/(ASCE)PS.1949-1204.0000081 10.1007/s12525-017-0245-6 10.2166/wpt.2007.025 10.1016/j.future.2018.07.014 10.1061/(ASCE)CF.1943-5509.0000081 10.1061/(ASCE)ME.1943-5479.0000202 10.1080/15732479.2010.541265 10.29173/istl1542 10.1061/40934(252)25 10.1007/978-3-319-06966-1_55 10.1145/505248.506010 10.1080/1573062X.2015.1011667 10.1061/(ASCE)PS.1949-1204.0000100 10.2166/wst.2020.604 10.1061/(ASCE)CF.1943-5509.0000349 10.1007/978-3-540-88875-8_99 10.1016/j.watres.2011.07.008 10.3390/infrastructures4040064 10.1061/(ASCE)1076-0342(2001)7:4(160) 10.1080/15732479.2017.1356858 10.1061/9780784480885.033 10.1145/269012.269022 10.1016/j.compbiomed.2019.03.001 10.1061/(ASCE)0887-3828(2008)22:5(333) 10.1145/2992786 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 |
DOI | 10.3390/w15112043 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2073-4441 |
ExternalDocumentID | A752954025 10_3390_w15112043 |
GroupedDBID | 2XV 5VS 7XC 8CJ 8FE 8FH A8Z AADQD AAFWJ AAHBH AAYXX ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION D1J E3Z ECGQY EDH GX1 IAO ITC KQ8 MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 |
ID | FETCH-LOGICAL-c364t-1df5421a29f6531a8468a6c33c85de3a03db93c7e3c2f36a28e0f4b17c58adbe3 |
IEDL.DBID | BENPR |
ISSN | 2073-4441 |
IngestDate | Fri Jul 11 16:37:46 EDT 2025 Mon Jun 30 07:30:24 EDT 2025 Tue Jun 10 20:35:04 EDT 2025 Tue Jul 01 02:40:32 EDT 2025 Thu Apr 24 23:07:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-1df5421a29f6531a8468a6c33c85de3a03db93c7e3c2f36a28e0f4b17c58adbe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2824049793?pq-origsite=%requestingapplication% |
PQID | 2824049793 |
PQPubID | 2032318 |
ParticipantIDs | proquest_miscellaneous_3153195492 proquest_journals_2824049793 gale_infotracacademiconefile_A752954025 crossref_primary_10_3390_w15112043 crossref_citationtrail_10_3390_w15112043 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-27 |
PublicationDateYYYYMMDD | 2023-05-27 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Water (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_14 ref_35 Langeveld (ref_21) 2016; 13 Scheidegger (ref_13) 2011; 45 ref_30 Westin (ref_20) 2013; 30 ref_19 ref_18 ref_39 Salman (ref_16) 2012; 3 ref_38 ref_37 Weiskopf (ref_34) 2017; 5 Opila (ref_12) 2011; 2 Pipino (ref_23) 2002; 45 Khan (ref_10) 2010; 24 Pezoulas (ref_33) 2019; 107 Dirksen (ref_26) 2013; 9 Ardagna (ref_32) 2018; 89 ref_25 ref_24 Chughtai (ref_8) 2008; 22 Debattista (ref_31) 2016; 8 Caradot (ref_5) 2021; 83 ref_43 ref_42 ref_41 Lewis (ref_22) 2016; 145 ref_40 ref_1 ref_3 ref_2 Ariaratnam (ref_7) 2001; 7 Syachrani (ref_11) 2013; 27 Caradot (ref_17) 2018; 14 ref_28 ref_27 Wang (ref_29) 1998; 41 ref_9 Batini (ref_36) 2009; 41 ref_4 Kleindienst (ref_15) 2017; 27 ref_6 |
References_xml | – ident: ref_28 – ident: ref_30 – ident: ref_2 doi: 10.1061/9780784479957.048 – volume: 145 start-page: 1410 year: 2016 ident: ref_22 article-title: Development of a Sustainable National Sewer Inventory publication-title: Procedia Eng. doi: 10.1016/j.proeng.2016.04.177 – ident: ref_24 – volume: 41 start-page: 1 year: 2009 ident: ref_36 article-title: Methodologies for data quality assessment and improvement publication-title: ACM Comput. Surv. doi: 10.1145/1541880.1541883 – ident: ref_40 doi: 10.1007/978-3-030-19143-6_1 – volume: 5 start-page: 14 year: 2017 ident: ref_34 article-title: A data quality assessment guideline for electronic health record data reuse publication-title: Egems doi: 10.5334/egems.218 – volume: 2 start-page: 82 year: 2011 ident: ref_12 article-title: Novel approach in pipe condition scoring publication-title: J. Pipeline Syst. Eng. Pract. doi: 10.1061/(ASCE)PS.1949-1204.0000081 – volume: 27 start-page: 387 year: 2017 ident: ref_15 article-title: The data quality improvement plan: Deciding on choice and sequence of data quality improvements publication-title: Electron. Mark. doi: 10.1007/s12525-017-0245-6 – ident: ref_39 – ident: ref_14 – ident: ref_42 – ident: ref_1 – ident: ref_18 – ident: ref_25 doi: 10.2166/wpt.2007.025 – volume: 89 start-page: 548 year: 2018 ident: ref_32 article-title: Context-aware data quality assessment for big data publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.07.014 – volume: 24 start-page: 170 year: 2010 ident: ref_10 article-title: Structural condition assessment of sewer pipelines publication-title: J. Perform. Constr. Facil. doi: 10.1061/(ASCE)CF.1943-5509.0000081 – volume: 30 start-page: 05014003 year: 2013 ident: ref_20 article-title: Improving data quality in construction engineering projects: An action design research approach publication-title: J. Manag. Eng. doi: 10.1061/(ASCE)ME.1943-5479.0000202 – volume: 9 start-page: 214 year: 2013 ident: ref_26 article-title: The consistency of visual sewer inspection data publication-title: Struct. Infrastruct. Eng. doi: 10.1080/15732479.2010.541265 – ident: ref_35 doi: 10.29173/istl1542 – ident: ref_6 – ident: ref_9 doi: 10.1061/40934(252)25 – ident: ref_43 doi: 10.1007/978-3-319-06966-1_55 – volume: 45 start-page: 211 year: 2002 ident: ref_23 article-title: Data quality assessment publication-title: Commun. ACM doi: 10.1145/505248.506010 – ident: ref_27 – volume: 13 start-page: 57 year: 2016 ident: ref_21 article-title: Decision-making for sewer asset management: Theory and practice publication-title: Urban Water J. doi: 10.1080/1573062X.2015.1011667 – volume: 3 start-page: 68 year: 2012 ident: ref_16 article-title: Risk Assessment of Wastewater Collection Lines Using Failure Models and Criticality Ratings publication-title: J. Pipeline Syst. Eng. Pract. doi: 10.1061/(ASCE)PS.1949-1204.0000100 – volume: 83 start-page: 631 year: 2021 ident: ref_5 article-title: Using deterioration modelling to simulate sewer rehabilitation strategy with low data availability publication-title: Water Sci. Technol. doi: 10.2166/wst.2020.604 – volume: 27 start-page: 633 year: 2013 ident: ref_11 article-title: Decision tree–based deterioration model for buried wastewater pipelines publication-title: J. Perform. Constr. Facil. doi: 10.1061/(ASCE)CF.1943-5509.0000349 – ident: ref_37 doi: 10.1007/978-3-540-88875-8_99 – volume: 45 start-page: 4983 year: 2011 ident: ref_13 article-title: Network condition simulator for benchmarking sewer deterioration models publication-title: Water Res. doi: 10.1016/j.watres.2011.07.008 – ident: ref_41 – ident: ref_4 doi: 10.3390/infrastructures4040064 – ident: ref_38 – volume: 7 start-page: 160 year: 2001 ident: ref_7 article-title: Assessment of infrastructure inspection needs using logistic models publication-title: J. Infrastruct. Syst. doi: 10.1061/(ASCE)1076-0342(2001)7:4(160) – ident: ref_19 – volume: 14 start-page: 264 year: 2018 ident: ref_17 article-title: Evaluation of uncertainties in sewer condition assessment publication-title: Struct. Infrastruct. Eng. doi: 10.1080/15732479.2017.1356858 – ident: ref_3 doi: 10.1061/9780784480885.033 – volume: 41 start-page: 58 year: 1998 ident: ref_29 article-title: A product perspective on total data quality management publication-title: Commun. ACM doi: 10.1145/269012.269022 – volume: 107 start-page: 270 year: 2019 ident: ref_33 article-title: Medical data quality assessment: On the development of an automated framework for medical data curation publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.03.001 – volume: 22 start-page: 333 year: 2008 ident: ref_8 article-title: Infrastructure condition prediction models for sustainable sewer pipelines publication-title: J. Perform. Constr. Facil. doi: 10.1061/(ASCE)0887-3828(2008)22:5(333) – volume: 8 start-page: 1 year: 2016 ident: ref_31 article-title: Luzzu—A methodology and framework for linked data quality assessment publication-title: J. Data Inf. Qual. doi: 10.1145/2992786 |
SSID | ssj0000498850 |
Score | 2.2843966 |
Snippet | The increasing amount of data and the growing use of them in the information era have raised questions about the quality of data and its impact on the... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 2043 |
SubjectTerms | Algorithms Artificial intelligence Asset management assets Data analysis Data collection data quality Data science Decision making Information management Infrastructure Inspection Inspections Machine learning Quality control equipment Quality management Sewer systems water |
Title | Developing a Data Quality Evaluation Framework for Sewer Inspection Data |
URI | https://www.proquest.com/docview/2824049793 https://www.proquest.com/docview/3153195492 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB5svehBfGJ9lCiCXpbu7mST9CQ-WqugiFrobclmsyfZqq2I_95JN10VxHMehElm8k0y8w3AUSFkJkwuAyMzHnAtu4EmEBd0w8SgzWNVoMtGvr0TgyG_GSUj_-A28WGVc5s4M9T52Lg38g65BpzQLB2n05fXwFWNcr-rvoRGAxbJBCvVhMXz3t39Q_3KQiOUSsKKUgjJv-98RA5ihBx_XUR_m-PZHdNfhRUPDtlZtZtrsGDLdVj-QRm4AYPLOsuJaXapp5pVNBifrFcTd7P-POSKESZlj_bDvrHrssqqpGY3bBOG_d7TxSDw1RACg4JPgygvEh5HOu4WghRHE3BQWhhEo5Lcog4xz7popEUTFyh0rGxY8CySJlE6zyxuQbMcl3YbWKbJDTORJPgVc5pdY4ZFJEIlURihkhaczEWTGk8V7ipWPKfkMjgpprUUW3BYd32p-DH-6nTs5Js6naF5jPah_7Qaxz6VnsnZdyPBrxbszbcg9co0Sb-3vgUHdTOpgfvb0KUdv09SjJwxcXRzO_9PsQtLrmK8CwCI5R40p2_vdp9wxTRr-8PThsbVKPoCAl3NeA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7RcGg5VH2qobR1EVV7WbHr8dreQ1VRkigpEFUtSNxcr9d7QhsgQRF_it_IOPtokVBvnG2PrPF4_I3t-QZgp5Qql65QkVO5iIRVWWQJxEVZnDr0Bdclhmzko6kcn4gfp-npGty0uTDhW2XrE1eOupi5cEe-S6GBIDRL5vTt_CIKVaPC62pbQqM2iwN_vaSQbf51MqD1_cT5aHi8P46aqgKRQykWUVKUqeCJ5VkpyQAtHcDaSofodFp4tDEWeYZOeXS8RGm59nEp8kS5VNsi90hyH8G6QBnzHqx_H05__upudWiGWqdxTWGEmMW7yyRAmljgnYPvfve_OtNGz-BpA0bZXm09z2HNVy9g4x-KwpcwHnRZVcyygV1YVtNuXLNhRxTORu0XL0YYmP32S3_JJlWdxUnNYdgrOHkQPb2GXjWr_BtguaWwzyWK4B4XJN1ijmUiY61QOqnTPnxpVWNcQ00eKmScGQpRghZNp8U-bHddz2s-jvs6fQ76NWGPkhxnm1QDmk1guzJ7avW8SXCvD1vtEphm887NX1Prw8eumbZdeEuxlZ9dzQ0mwXkFervN_4v4AI_Hx0eH5nAyPXgLT0K1-vD5gKst6C0ur_w7wjSL_H1jSAz-PLTt3gJA4gnn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQDxFSgGDQHBZZdeza3sPCBWSKKEQVUCl3ozX6z2hTdukivrX-HXMZB-AVHHreb0ja_zZM2PPfAPwqlK6UL7UkddFGqVO55EjJy7K48xjKKWpkKuRvyzU7Dj9dJKd7MCvrhaG0yq7M3F7UJdLz3fkIwoNUvJmCU6jqk2LOBpP35-eRdxBil9au3YaDUQOw-WGwrfVu_mY1vq1lNPJ94-zqO0wEHlU6TpKyipLZeJkXikCoyNjbJzyiN5kZUAXY1nk6HVALytUTpoQV2mRaJ8ZVxYBSe4N2NUcFQ1g98NkcfS1v-Gh2RqTxQ2dEWIejzYJuzdxiv8YwatNwda-Te_CndYxFQcNku7BTqjvw-2_6AofwGzcV1gJJ8Zu7URDwXEpJj1puJh26V6C_GHxLWzCuZjXTUUnfebfHsLxtejpEQzqZR0egygchYA-0eT6yZSkOyywSlRsNCqvTDaEt51qrG9pyrlbxk9L4Qpr0fZaHMLLfuhpw81x1aA3rF_L-5XkeNeWHdBsmPnKHujtUye5fkPY75bAtht5Zf_Abggv-s-0BfldxdVhebGymPBBxlR3e_8X8RxuEmbt5_ni8Anc4sb1nIcg9T4M1ucX4Sm5N-viWYsjAT-uG7q_AWY0Dhw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+a+Data+Quality+Evaluation+Framework+for+Sewer+Inspection+Data&rft.jtitle=Water+%28Basel%29&rft.au=Khaleghian%2C+Hossein&rft.au=Shan%2C+Yongwei&rft.date=2023-05-27&rft.pub=MDPI+AG&rft.issn=2073-4441&rft.eissn=2073-4441&rft.volume=15&rft.issue=11&rft_id=info:doi/10.3390%2Fw15112043&rft.externalDocID=A752954025 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon |