Developing a Data Quality Evaluation Framework for Sewer Inspection Data

The increasing amount of data and the growing use of them in the information era have raised questions about the quality of data and its impact on the decision-making process. Currently, the importance of high-quality data is widely recognized by researchers and decision-makers. Sewer inspection dat...

Full description

Saved in:
Bibliographic Details
Published inWater (Basel) Vol. 15; no. 11; p. 2043
Main Authors Khaleghian, Hossein, Shan, Yongwei
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 27.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The increasing amount of data and the growing use of them in the information era have raised questions about the quality of data and its impact on the decision-making process. Currently, the importance of high-quality data is widely recognized by researchers and decision-makers. Sewer inspection data have been collected for over three decades, but the reliability of the data was questionable. It was estimated that between 25% and 50% of sewer inspection data is not usable due to data quality problems. In order to address reliability problems, a data quality evaluation framework is developed. Data quality evaluation is a multi-dimensional concept that includes both subjective perceptions and objective measurements. Five data quality metrics were defined to assess different quality dimensions of the sewer inspection data, including Accuracy, Consistency, Completeness, Uniqueness, and Validity. These data quality metrics were calculated for the collected sewer inspection data, and it was found that consistency and uniqueness are the major problems based on the current practices with sewer pipeline inspection. This paper contributes to the overall body of knowledge by providing a robust data quality evaluation framework for sewer system data for the first time, which will result in quality data for sewer asset management.
AbstractList The increasing amount of data and the growing use of them in the information era have raised questions about the quality of data and its impact on the decision-making process. Currently, the importance of high-quality data is widely recognized by researchers and decision-makers. Sewer inspection data have been collected for over three decades, but the reliability of the data was questionable. It was estimated that between 25% and 50% of sewer inspection data is not usable due to data quality problems. In order to address reliability problems, a data quality evaluation framework is developed. Data quality evaluation is a multi-dimensional concept that includes both subjective perceptions and objective measurements. Five data quality metrics were defined to assess different quality dimensions of the sewer inspection data, including Accuracy, Consistency, Completeness, Uniqueness, and Validity. These data quality metrics were calculated for the collected sewer inspection data, and it was found that consistency and uniqueness are the major problems based on the current practices with sewer pipeline inspection. This paper contributes to the overall body of knowledge by providing a robust data quality evaluation framework for sewer system data for the first time, which will result in quality data for sewer asset management.
Audience Academic
Author Khaleghian, Hossein
Shan, Yongwei
Author_xml – sequence: 1
  givenname: Hossein
  surname: Khaleghian
  fullname: Khaleghian, Hossein
– sequence: 2
  givenname: Yongwei
  surname: Shan
  fullname: Shan, Yongwei
BookMark eNptkUtLAzEUhYMo-OrCfzDgRhdt85zHstTWFgQRdT3cZm5K6nRSkxlL_72xFRExWSTcfOfkcu45OW5cg4RcMToQoqDDLVOMcSrFETnjNBN9KSU7_nU_Jb0QVjQuWeS5omdkdocfWLuNbZYJJHfQQvLUQW3bXTL5gLqD1rommXpY49b5t8Q4nzzjFn0yb8IG9f75S3ZJTgzUAXvf5wV5nU5exrP-w-P9fDx66GuRyrbPKqMkZ8ALkyrBIJdpDqkWQueqQgFUVItC6AyF5kakwHOkRi5YplUO1QLFBbk5-G68e-8wtOXaBo11DQ26LpSCRdtCyYJH9PoPunKdb2J3Jc-5jBlkhYjU4EAtocbSNsa1HnTcFa6tjgEbG-ujTPHoSrmKgtuDQHsXgkdTbrxdg9-VjJZfcyh_5hDZ4R9W23afafzE1v8oPgG5WolZ
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3475577
Cites_doi 10.1061/9780784479957.048
10.1016/j.proeng.2016.04.177
10.1145/1541880.1541883
10.1007/978-3-030-19143-6_1
10.5334/egems.218
10.1061/(ASCE)PS.1949-1204.0000081
10.1007/s12525-017-0245-6
10.2166/wpt.2007.025
10.1016/j.future.2018.07.014
10.1061/(ASCE)CF.1943-5509.0000081
10.1061/(ASCE)ME.1943-5479.0000202
10.1080/15732479.2010.541265
10.29173/istl1542
10.1061/40934(252)25
10.1007/978-3-319-06966-1_55
10.1145/505248.506010
10.1080/1573062X.2015.1011667
10.1061/(ASCE)PS.1949-1204.0000100
10.2166/wst.2020.604
10.1061/(ASCE)CF.1943-5509.0000349
10.1007/978-3-540-88875-8_99
10.1016/j.watres.2011.07.008
10.3390/infrastructures4040064
10.1061/(ASCE)1076-0342(2001)7:4(160)
10.1080/15732479.2017.1356858
10.1061/9780784480885.033
10.1145/269012.269022
10.1016/j.compbiomed.2019.03.001
10.1061/(ASCE)0887-3828(2008)22:5(333)
10.1145/2992786
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
DOI 10.3390/w15112043
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2073-4441
ExternalDocumentID A752954025
10_3390_w15112043
GroupedDBID 2XV
5VS
7XC
8CJ
8FE
8FH
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
D1J
E3Z
ECGQY
EDH
GX1
IAO
ITC
KQ8
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
PROAC
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
ID FETCH-LOGICAL-c364t-1df5421a29f6531a8468a6c33c85de3a03db93c7e3c2f36a28e0f4b17c58adbe3
IEDL.DBID BENPR
ISSN 2073-4441
IngestDate Fri Jul 11 16:37:46 EDT 2025
Mon Jun 30 07:30:24 EDT 2025
Tue Jun 10 20:35:04 EDT 2025
Tue Jul 01 02:40:32 EDT 2025
Thu Apr 24 23:07:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-1df5421a29f6531a8468a6c33c85de3a03db93c7e3c2f36a28e0f4b17c58adbe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2824049793?pq-origsite=%requestingapplication%
PQID 2824049793
PQPubID 2032318
ParticipantIDs proquest_miscellaneous_3153195492
proquest_journals_2824049793
gale_infotracacademiconefile_A752954025
crossref_primary_10_3390_w15112043
crossref_citationtrail_10_3390_w15112043
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-27
PublicationDateYYYYMMDD 2023-05-27
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-27
  day: 27
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Water (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_14
ref_35
Langeveld (ref_21) 2016; 13
Scheidegger (ref_13) 2011; 45
ref_30
Westin (ref_20) 2013; 30
ref_19
ref_18
ref_39
Salman (ref_16) 2012; 3
ref_38
ref_37
Weiskopf (ref_34) 2017; 5
Opila (ref_12) 2011; 2
Pipino (ref_23) 2002; 45
Khan (ref_10) 2010; 24
Pezoulas (ref_33) 2019; 107
Dirksen (ref_26) 2013; 9
Ardagna (ref_32) 2018; 89
ref_25
ref_24
Chughtai (ref_8) 2008; 22
Debattista (ref_31) 2016; 8
Caradot (ref_5) 2021; 83
ref_43
ref_42
ref_41
Lewis (ref_22) 2016; 145
ref_40
ref_1
ref_3
ref_2
Ariaratnam (ref_7) 2001; 7
Syachrani (ref_11) 2013; 27
Caradot (ref_17) 2018; 14
ref_28
ref_27
Wang (ref_29) 1998; 41
ref_9
Batini (ref_36) 2009; 41
ref_4
Kleindienst (ref_15) 2017; 27
ref_6
References_xml – ident: ref_28
– ident: ref_30
– ident: ref_2
  doi: 10.1061/9780784479957.048
– volume: 145
  start-page: 1410
  year: 2016
  ident: ref_22
  article-title: Development of a Sustainable National Sewer Inventory
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2016.04.177
– ident: ref_24
– volume: 41
  start-page: 1
  year: 2009
  ident: ref_36
  article-title: Methodologies for data quality assessment and improvement
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1541880.1541883
– ident: ref_40
  doi: 10.1007/978-3-030-19143-6_1
– volume: 5
  start-page: 14
  year: 2017
  ident: ref_34
  article-title: A data quality assessment guideline for electronic health record data reuse
  publication-title: Egems
  doi: 10.5334/egems.218
– volume: 2
  start-page: 82
  year: 2011
  ident: ref_12
  article-title: Novel approach in pipe condition scoring
  publication-title: J. Pipeline Syst. Eng. Pract.
  doi: 10.1061/(ASCE)PS.1949-1204.0000081
– volume: 27
  start-page: 387
  year: 2017
  ident: ref_15
  article-title: The data quality improvement plan: Deciding on choice and sequence of data quality improvements
  publication-title: Electron. Mark.
  doi: 10.1007/s12525-017-0245-6
– ident: ref_39
– ident: ref_14
– ident: ref_42
– ident: ref_1
– ident: ref_18
– ident: ref_25
  doi: 10.2166/wpt.2007.025
– volume: 89
  start-page: 548
  year: 2018
  ident: ref_32
  article-title: Context-aware data quality assessment for big data
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.07.014
– volume: 24
  start-page: 170
  year: 2010
  ident: ref_10
  article-title: Structural condition assessment of sewer pipelines
  publication-title: J. Perform. Constr. Facil.
  doi: 10.1061/(ASCE)CF.1943-5509.0000081
– volume: 30
  start-page: 05014003
  year: 2013
  ident: ref_20
  article-title: Improving data quality in construction engineering projects: An action design research approach
  publication-title: J. Manag. Eng.
  doi: 10.1061/(ASCE)ME.1943-5479.0000202
– volume: 9
  start-page: 214
  year: 2013
  ident: ref_26
  article-title: The consistency of visual sewer inspection data
  publication-title: Struct. Infrastruct. Eng.
  doi: 10.1080/15732479.2010.541265
– ident: ref_35
  doi: 10.29173/istl1542
– ident: ref_6
– ident: ref_9
  doi: 10.1061/40934(252)25
– ident: ref_43
  doi: 10.1007/978-3-319-06966-1_55
– volume: 45
  start-page: 211
  year: 2002
  ident: ref_23
  article-title: Data quality assessment
  publication-title: Commun. ACM
  doi: 10.1145/505248.506010
– ident: ref_27
– volume: 13
  start-page: 57
  year: 2016
  ident: ref_21
  article-title: Decision-making for sewer asset management: Theory and practice
  publication-title: Urban Water J.
  doi: 10.1080/1573062X.2015.1011667
– volume: 3
  start-page: 68
  year: 2012
  ident: ref_16
  article-title: Risk Assessment of Wastewater Collection Lines Using Failure Models and Criticality Ratings
  publication-title: J. Pipeline Syst. Eng. Pract.
  doi: 10.1061/(ASCE)PS.1949-1204.0000100
– volume: 83
  start-page: 631
  year: 2021
  ident: ref_5
  article-title: Using deterioration modelling to simulate sewer rehabilitation strategy with low data availability
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2020.604
– volume: 27
  start-page: 633
  year: 2013
  ident: ref_11
  article-title: Decision tree–based deterioration model for buried wastewater pipelines
  publication-title: J. Perform. Constr. Facil.
  doi: 10.1061/(ASCE)CF.1943-5509.0000349
– ident: ref_37
  doi: 10.1007/978-3-540-88875-8_99
– volume: 45
  start-page: 4983
  year: 2011
  ident: ref_13
  article-title: Network condition simulator for benchmarking sewer deterioration models
  publication-title: Water Res.
  doi: 10.1016/j.watres.2011.07.008
– ident: ref_41
– ident: ref_4
  doi: 10.3390/infrastructures4040064
– ident: ref_38
– volume: 7
  start-page: 160
  year: 2001
  ident: ref_7
  article-title: Assessment of infrastructure inspection needs using logistic models
  publication-title: J. Infrastruct. Syst.
  doi: 10.1061/(ASCE)1076-0342(2001)7:4(160)
– ident: ref_19
– volume: 14
  start-page: 264
  year: 2018
  ident: ref_17
  article-title: Evaluation of uncertainties in sewer condition assessment
  publication-title: Struct. Infrastruct. Eng.
  doi: 10.1080/15732479.2017.1356858
– ident: ref_3
  doi: 10.1061/9780784480885.033
– volume: 41
  start-page: 58
  year: 1998
  ident: ref_29
  article-title: A product perspective on total data quality management
  publication-title: Commun. ACM
  doi: 10.1145/269012.269022
– volume: 107
  start-page: 270
  year: 2019
  ident: ref_33
  article-title: Medical data quality assessment: On the development of an automated framework for medical data curation
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.03.001
– volume: 22
  start-page: 333
  year: 2008
  ident: ref_8
  article-title: Infrastructure condition prediction models for sustainable sewer pipelines
  publication-title: J. Perform. Constr. Facil.
  doi: 10.1061/(ASCE)0887-3828(2008)22:5(333)
– volume: 8
  start-page: 1
  year: 2016
  ident: ref_31
  article-title: Luzzu—A methodology and framework for linked data quality assessment
  publication-title: J. Data Inf. Qual.
  doi: 10.1145/2992786
SSID ssj0000498850
Score 2.2843966
Snippet The increasing amount of data and the growing use of them in the information era have raised questions about the quality of data and its impact on the...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2043
SubjectTerms Algorithms
Artificial intelligence
Asset management
assets
Data analysis
Data collection
data quality
Data science
Decision making
Information management
Infrastructure
Inspection
Inspections
Machine learning
Quality control equipment
Quality management
Sewer systems
water
Title Developing a Data Quality Evaluation Framework for Sewer Inspection Data
URI https://www.proquest.com/docview/2824049793
https://www.proquest.com/docview/3153195492
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB5svehBfGJ9lCiCXpbu7mST9CQ-WqugiFrobclmsyfZqq2I_95JN10VxHMehElm8k0y8w3AUSFkJkwuAyMzHnAtu4EmEBd0w8SgzWNVoMtGvr0TgyG_GSUj_-A28WGVc5s4M9T52Lg38g65BpzQLB2n05fXwFWNcr-rvoRGAxbJBCvVhMXz3t39Q_3KQiOUSsKKUgjJv-98RA5ihBx_XUR_m-PZHdNfhRUPDtlZtZtrsGDLdVj-QRm4AYPLOsuJaXapp5pVNBifrFcTd7P-POSKESZlj_bDvrHrssqqpGY3bBOG_d7TxSDw1RACg4JPgygvEh5HOu4WghRHE3BQWhhEo5Lcog4xz7popEUTFyh0rGxY8CySJlE6zyxuQbMcl3YbWKbJDTORJPgVc5pdY4ZFJEIlURihkhaczEWTGk8V7ipWPKfkMjgpprUUW3BYd32p-DH-6nTs5Js6naF5jPah_7Qaxz6VnsnZdyPBrxbszbcg9co0Sb-3vgUHdTOpgfvb0KUdv09SjJwxcXRzO_9PsQtLrmK8CwCI5R40p2_vdp9wxTRr-8PThsbVKPoCAl3NeA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7RcGg5VH2qobR1EVV7WbHr8dreQ1VRkigpEFUtSNxcr9d7QhsgQRF_it_IOPtokVBvnG2PrPF4_I3t-QZgp5Qql65QkVO5iIRVWWQJxEVZnDr0Bdclhmzko6kcn4gfp-npGty0uTDhW2XrE1eOupi5cEe-S6GBIDRL5vTt_CIKVaPC62pbQqM2iwN_vaSQbf51MqD1_cT5aHi8P46aqgKRQykWUVKUqeCJ5VkpyQAtHcDaSofodFp4tDEWeYZOeXS8RGm59nEp8kS5VNsi90hyH8G6QBnzHqx_H05__upudWiGWqdxTWGEmMW7yyRAmljgnYPvfve_OtNGz-BpA0bZXm09z2HNVy9g4x-KwpcwHnRZVcyygV1YVtNuXLNhRxTORu0XL0YYmP32S3_JJlWdxUnNYdgrOHkQPb2GXjWr_BtguaWwzyWK4B4XJN1ijmUiY61QOqnTPnxpVWNcQ00eKmScGQpRghZNp8U-bHddz2s-jvs6fQ76NWGPkhxnm1QDmk1guzJ7avW8SXCvD1vtEphm887NX1Prw8eumbZdeEuxlZ9dzQ0mwXkFervN_4v4AI_Hx0eH5nAyPXgLT0K1-vD5gKst6C0ur_w7wjSL_H1jSAz-PLTt3gJA4gnn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQDxFSgGDQHBZZdeza3sPCBWSKKEQVUCl3ozX6z2hTdukivrX-HXMZB-AVHHreb0ja_zZM2PPfAPwqlK6UL7UkddFGqVO55EjJy7K48xjKKWpkKuRvyzU7Dj9dJKd7MCvrhaG0yq7M3F7UJdLz3fkIwoNUvJmCU6jqk2LOBpP35-eRdxBil9au3YaDUQOw-WGwrfVu_mY1vq1lNPJ94-zqO0wEHlU6TpKyipLZeJkXikCoyNjbJzyiN5kZUAXY1nk6HVALytUTpoQV2mRaJ8ZVxYBSe4N2NUcFQ1g98NkcfS1v-Gh2RqTxQ2dEWIejzYJuzdxiv8YwatNwda-Te_CndYxFQcNku7BTqjvw-2_6AofwGzcV1gJJ8Zu7URDwXEpJj1puJh26V6C_GHxLWzCuZjXTUUnfebfHsLxtejpEQzqZR0egygchYA-0eT6yZSkOyywSlRsNCqvTDaEt51qrG9pyrlbxk9L4Qpr0fZaHMLLfuhpw81x1aA3rF_L-5XkeNeWHdBsmPnKHujtUye5fkPY75bAtht5Zf_Abggv-s-0BfldxdVhebGymPBBxlR3e_8X8RxuEmbt5_ni8Anc4sb1nIcg9T4M1ucX4Sm5N-viWYsjAT-uG7q_AWY0Dhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+a+Data+Quality+Evaluation+Framework+for+Sewer+Inspection+Data&rft.jtitle=Water+%28Basel%29&rft.au=Khaleghian%2C+Hossein&rft.au=Shan%2C+Yongwei&rft.date=2023-05-27&rft.pub=MDPI+AG&rft.issn=2073-4441&rft.eissn=2073-4441&rft.volume=15&rft.issue=11&rft_id=info:doi/10.3390%2Fw15112043&rft.externalDocID=A752954025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon