Searching for exoplanets using artificial intelligence

Abstract In the last decade, over a million stars were monitored to detect transiting planets. Manual interpretation of potential exoplanet candidates is labour intensive and subject to human error, the results of which are difficult to quantify. Here we present a new method of detecting exoplanet c...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 474; no. 1; pp. 478 - 491
Main Authors Pearson, Kyle A., Palafox, Leon, Griffith, Caitlin A.
Format Journal Article
LanguageEnglish
Published London Oxford University Press 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract In the last decade, over a million stars were monitored to detect transiting planets. Manual interpretation of potential exoplanet candidates is labour intensive and subject to human error, the results of which are difficult to quantify. Here we present a new method of detecting exoplanet candidates in large planetary search projects that, unlike current methods, uses a neural network. Neural networks, also called ‘deep learning’ or ‘deep nets’, are designed to give a computer perception into a specific problem by training it to recognize patterns. Unlike past transit detection algorithms, deep nets learn to recognize planet features instead of relying on hand-coded metrics that humans perceive as the most representative. Our convolutional neural network is capable of detecting Earth-like exoplanets in noisy time series data with a greater accuracy than a least-squares method. Deep nets are highly generalizable allowing data to be evaluated from different time series after interpolation without compromising performance. As validated by our deep net analysis of Kepler light curves, we detect periodic transits consistent with the true period without any model fitting. Our study indicates that machine learning will facilitate the characterization of exoplanets in future analysis of large astronomy data sets.
AbstractList AbstractIn the last decade, over a million stars were monitored to detect transiting planets. Manual interpretation of potential exoplanet candidates is labour intensive and subject to human error, the results of which are difficult to quantify. Here we present a new method of detecting exoplanet candidates in large planetary search projects that, unlike current methods, uses a neural network. Neural networks, also called 'deep learning' or 'deep nets', are designed to give a computer perception into a specific problem by training it to recognize patterns. Unlike past transit detection algorithms, deep nets learn to recognize planet features instead of relying on hand-coded metrics that humans perceive as the most representative. Our convolutional neural network is capable of detecting Earth-like exoplanets in noisy time series data with a greater accuracy than a least-squares method. Deep nets are highly generalizable allowing data to be evaluated from different time series after interpolation without compromising performance. As validated by our deep net analysis of Kepler light curves, we detect periodic transits consistent with the true period without any model fitting. Our study indicates that machine learning will facilitate the characterization of exoplanets in future analysis of large astronomy data sets.
Abstract In the last decade, over a million stars were monitored to detect transiting planets. Manual interpretation of potential exoplanet candidates is labour intensive and subject to human error, the results of which are difficult to quantify. Here we present a new method of detecting exoplanet candidates in large planetary search projects that, unlike current methods, uses a neural network. Neural networks, also called ‘deep learning’ or ‘deep nets’, are designed to give a computer perception into a specific problem by training it to recognize patterns. Unlike past transit detection algorithms, deep nets learn to recognize planet features instead of relying on hand-coded metrics that humans perceive as the most representative. Our convolutional neural network is capable of detecting Earth-like exoplanets in noisy time series data with a greater accuracy than a least-squares method. Deep nets are highly generalizable allowing data to be evaluated from different time series after interpolation without compromising performance. As validated by our deep net analysis of Kepler light curves, we detect periodic transits consistent with the true period without any model fitting. Our study indicates that machine learning will facilitate the characterization of exoplanets in future analysis of large astronomy data sets.
Author Pearson, Kyle A.
Palafox, Leon
Griffith, Caitlin A.
Author_xml – sequence: 1
  givenname: Kyle A.
  surname: Pearson
  fullname: Pearson, Kyle A.
  email: pearsonk@email.arizona.edu
  organization: Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721, USA
– sequence: 2
  givenname: Leon
  surname: Palafox
  fullname: Palafox, Leon
  organization: Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721, USA
– sequence: 3
  givenname: Caitlin A.
  surname: Griffith
  fullname: Griffith, Caitlin A.
  organization: Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721, USA
BookMark eNqFkE1LAzEQhoNUsK0evS948bI2mWyy3aMUv0DwoJ7DkE1qyjZZkyzUf-_W9iSIp3kZnncGnhmZ-OANIZeM3jDa8MXWR0yLlHdQS3ZCpoxLUUIj5YRMKeWiXNaMnZFZShtKacVBTol8NRj1h_PrwoZYmF3oO_Qmp2JI-yXG7KzTDrvC-Wy6zq2N1-acnFrskrk4zjl5v797Wz2Wzy8PT6vb51JzWeWSLZtat6auEGBZtSApt1rQxjZ122IlGgCpGYyZNpIzjdyAMFKgRsEALJ-Tq8PdPobPwaSsNmGIfnypgAGVrKI1jBQ_UDqGlKKxSruM2QWfI7pOMar2gtSPIHUUNLbKX60-ui3Grz_56wMfhv4f9BuTZXpJ
CitedBy_id crossref_primary_10_1007_s12145_020_00464_7
crossref_primary_10_3390_aerospace10090752
crossref_primary_10_3390_axioms13020083
crossref_primary_10_3847_2041_8213_ac4b5e
crossref_primary_10_1016_j_ascom_2021_100461
crossref_primary_10_1016_j_newast_2022_101997
crossref_primary_10_1016_j_newast_2020_101517
crossref_primary_10_1029_2018SW002061
crossref_primary_10_1051_0004_6361_202346417
crossref_primary_10_3847_1538_3881_abac0a
crossref_primary_10_3847_1538_3881_ad7fe6
crossref_primary_10_1007_s10509_018_3418_7
crossref_primary_10_1051_0004_6361_201834942
crossref_primary_10_1051_0004_6361_202141640
crossref_primary_10_3847_1538_3881_ab0e12
crossref_primary_10_1016_j_chinastron_2021_05_005
crossref_primary_10_1051_0004_6361_202449150
crossref_primary_10_1093_mnras_staa138
crossref_primary_10_1093_mnras_stab1650
crossref_primary_10_1093_mnras_stab1253
crossref_primary_10_1051_0004_6361_201935600
crossref_primary_10_1093_mnras_stad1643
crossref_primary_10_3847_1538_3881_acad85
crossref_primary_10_1007_s42484_024_00229_1
crossref_primary_10_1093_mnras_stz775
crossref_primary_10_3847_1538_3881_ab26ba
crossref_primary_10_1063_5_0017902
crossref_primary_10_1088_1538_3873_abbb24
crossref_primary_10_3390_electronics13193950
crossref_primary_10_1051_0004_6361_202141471
crossref_primary_10_1051_0004_6361_202140369
crossref_primary_10_1093_mnras_stz2058
crossref_primary_10_1016_j_engappai_2022_104886
crossref_primary_10_1093_mnras_stz3100
crossref_primary_10_1093_mnras_stab2694
crossref_primary_10_1371_journal_pone_0268199
crossref_primary_10_1093_mnras_stae245
crossref_primary_10_3847_1538_4357_aca66c
crossref_primary_10_1093_mnras_stad1173
crossref_primary_10_1002_widm_1425
crossref_primary_10_3847_1538_3881_aae77c
crossref_primary_10_1093_mnras_sty3146
crossref_primary_10_1002_widm_1349
crossref_primary_10_3847_1538_4357_ac77ec
crossref_primary_10_1088_1538_3873_ab13d3
crossref_primary_10_1007_s12145_021_00579_5
crossref_primary_10_3390_signals2040042
crossref_primary_10_1002_widm_1476
crossref_primary_10_3847_1538_3881_ac7b29
crossref_primary_10_1093_mnras_staa2247
crossref_primary_10_3847_1538_3881_ab3984
crossref_primary_10_1186_s40668_019_0031_2
crossref_primary_10_1051_0004_6361_202140375
crossref_primary_10_3847_1538_4357_ab3b60
crossref_primary_10_3847_1538_3881_ab5b9e
crossref_primary_10_1038_s41550_018_0504_2
crossref_primary_10_1080_14685248_2020_1757685
crossref_primary_10_1088_1538_3873_abe6e8
crossref_primary_10_3847_1538_3881_ab26b8
crossref_primary_10_3847_1538_3881_ac738e
crossref_primary_10_1093_mnras_stz1197
crossref_primary_10_3847_1538_3881_ab21d6
crossref_primary_10_3390_axioms12040348
crossref_primary_10_3847_1538_3881_aafb79
crossref_primary_10_1093_mnras_stab203
crossref_primary_10_3847_2041_8213_aaf23b
crossref_primary_10_1016_j_procs_2021_09_215
crossref_primary_10_3847_1538_3881_ac3482
crossref_primary_10_1051_0004_6361_201834672
crossref_primary_10_1093_mnras_stad3603
crossref_primary_10_1093_mnras_sty1313
crossref_primary_10_1111_phc3_12830
crossref_primary_10_1155_2020_8825825
crossref_primary_10_1093_mnras_sty2646
crossref_primary_10_1051_0004_6361_201834237
crossref_primary_10_3847_1538_3881_ada353
crossref_primary_10_1007_s10509_023_04232_z
crossref_primary_10_1088_1674_4527_21_7_159
crossref_primary_10_3847_1538_3881_aaae05
crossref_primary_10_3847_1538_3881_ab4e1c
crossref_primary_10_3847_1538_3881_ac1744
crossref_primary_10_1093_jigpal_jzae106
crossref_primary_10_1093_mnras_staa916
crossref_primary_10_1051_0004_6361_202243886
crossref_primary_10_1093_rasti_rzad050
crossref_primary_10_3847_1538_4357_ab5d32
Cites_doi 10.1126/science.165.3895.780
10.1088/0004-637X/770/1/69
10.1088/0004-637X/802/2/117
10.1086/521836
10.1148/radiology.143.1.7063747
10.1007/s10686-014-9383-4
10.1051/0004-6361:20030093
10.1088/0004-637X/806/1/6
10.1088/0067-0049/211/2/24
10.1126/science.1185402
10.1093/mnras/stv2333
10.1111/j.1365-2966.2011.19915.x
10.1093/comjnl/7.4.308
10.1093/mnras/stw2881
10.1086/324143
10.3847/0067-0049/224/1/12
10.1093/mnras/stv853
10.1086/345520
10.1088/0004-637X/796/1/48
10.1088/0004-637X/766/2/81
10.1088/0004-637X/704/1/51
10.1051/0004-6361/200810860
10.1088/0004-637X/806/2/215
10.3847/0004-637X/820/2/107
10.1117/12.2063489
10.1093/mnras/stx1422
10.1088/0004-637X/804/1/10
10.1086/676406
10.1088/0004-637X/812/1/46
10.1086/508556
10.1093/mnras/stw2974
10.1086/382735
10.1037/h0042519
10.1051/0004-6361:20020802
10.1088/0004-637X/766/1/7
10.1088/0067-0049/210/2/19
10.1088/0067-0049/217/1/16
ContentType Journal Article
Copyright 2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2018
2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society
Copyright_xml – notice: 2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2018
– notice: 2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1093/mnras/stx2761
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 491
ExternalDocumentID 10_1093_mnras_stx2761
10.1093/mnras/stx2761
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
ABCQN
ABCQX
ABEML
ABEUO
ABFSI
ABIXL
ABJNI
ABNKS
ABPEJ
ABPTD
ABQLI
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACSCC
ACUFI
ACUTJ
ACXQS
ACYRX
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGMDO
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EAD
EAP
EBS
EE~
EJD
ESX
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RHF
RNP
RNS
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WRC
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
ABAZT
ABEJV
ABGNP
ABVLG
ACUXJ
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
8FD
H8D
L7M
ID FETCH-LOGICAL-c364t-1897cde74a2284d2603fc509f97dda459226c12dda09631ca3e25e65aca5122f3
IEDL.DBID TOX
ISSN 0035-8711
IngestDate Fri Jul 25 20:03:49 EDT 2025
Thu Apr 24 23:04:49 EDT 2025
Tue Jul 01 03:35:40 EDT 2025
Wed Aug 28 03:20:51 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords planets and satellites: detection
techniques: photometric
methods: data analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-1897cde74a2284d2603fc509f97dda459226c12dda09631ca3e25e65aca5122f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2120614072
PQPubID 42411
PageCount 14
ParticipantIDs proquest_journals_2120614072
crossref_citationtrail_10_1093_mnras_stx2761
crossref_primary_10_1093_mnras_stx2761
oup_primary_10_1093_mnras_stx2761
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References ( key 20171201174810_bib26) 2017; 465
( key 20171201174810_bib36) 1965; 7
( key 20171201174810_bib18) 2013; 766
( key 20171201174810_bib13) 2009; 704
( key 20171201174810_bib23) 2014; 126
( key 20171201174810_bib50) 2016; 820
( key 20171201174810_bib41) 2006; 118
( key 20171201174810_bib12) 2003; 401
( key 20171201174810_bib10) 2010
( key 20171201174810_bib38) 1969; 165
( key 20171201174810_bib28) 2012
( key 20171201174810_bib52) 1974
( key 20171201174810_bib40) 2013; 770
( key 20171201174810_bib45) 2015; 217
( key 20171201174810_bib30) 2015; 806
( key 20171201174810_bib16) 1992
( key 20171201174810_bib3) 2017; 471
( key 20171201174810_bib39) 2007; 119
( key 20171201174810_bib24) 2015
( key 20171201174810_bib17) 2015; 806
( key 20171201174810_bib51) 2013; 766
( key 20171201174810_bib46) 2014; 15
( key 20171201174810_bib9) 1991
( key 20171201174810_bib47) 2015; 812
( key 20171201174810_bib14) 2016; 224
( key 20171201174810_bib19) 2017
( key 20171201174810_bib22) 2015
( key 20171201174810_bib31) 2014; 211
( key 20171201174810_bib49) 2013
( key 20171201174810_bib20) 2012; 419
( key 20171201174810_bib44) 1958; 65
( key 20171201174810_bib5) 2017; 465
( key 20171201174810_bib2) 2015; 450
( key 20171201174810_bib21) 1982; 143
( key 20171201174810_bib35) 2010
( key 20171201174810_bib37) 1983; 27
( key 20171201174810_bib15) 2015; 804
( key 20171201174810_bib11) 2014; 210
( key 20171201174810_bib43) 2014; 9143
( key 20171201174810_bib6) 2009; 506
( key 20171201174810_bib4) 2014
( key 20171201174810_bib7) 2004; 116
( key 20171201174810_bib34) 2015; 802
( key 20171201174810_bib48) 1963; 24
( key 20171201174810_bib53) 2014; 796
( key 20171201174810_bib27) 2002; 391
( key 20171201174810_bib42) 2014; 38
LSST Science Collaboration ( key 20171201174810_bib29) 2009
( key 20171201174810_bib33) 2016; 455
( key 20171201174810_bib25) 2002; 564
( key 20171201174810_bib32) 2002; 580
( key 20171201174810_bib8) 2010; 327
( key 20171201174810_bib1) 2015
References_xml – start-page: 177
  volume-title: Proc. of the 19th International Conference on Computational Statistics (COMPSTAT’2010)
  year: 2010
  ident: key 20171201174810_bib10
– volume: 27
  start-page: 372
  year: 1983
  ident: key 20171201174810_bib37
  publication-title: Sov. Math. Dokl.
– volume: 165
  start-page: 780
  year: 1969
  ident: key 20171201174810_bib38
  publication-title: Science
  doi: 10.1126/science.165.3895.780
– volume-title: Proc. of Neuro-Nîmes 91. EC2
  year: 1991
  ident: key 20171201174810_bib9
– volume: 770
  start-page: 69
  year: 2013
  ident: key 20171201174810_bib40
  publication-title: ApJ
  doi: 10.1088/0004-637X/770/1/69
– volume: 802
  start-page: 117
  year: 2015
  ident: key 20171201174810_bib34
  publication-title: ApJ
  doi: 10.1088/0004-637X/802/2/117
– volume: 119
  start-page: 923
  year: 2007
  ident: key 20171201174810_bib39
  publication-title: PASP
  doi: 10.1086/521836
– volume-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
  year: 2015
  ident: key 20171201174810_bib1
– volume: 143
  start-page: 29
  year: 1982
  ident: key 20171201174810_bib21
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
– volume: 38
  start-page: 249
  year: 2014
  ident: key 20171201174810_bib42
  publication-title: Exp. Astron.
  doi: 10.1007/s10686-014-9383-4
– volume: 401
  start-page: 743
  year: 2003
  ident: key 20171201174810_bib12
  publication-title: A&A
  doi: 10.1051/0004-6361:20030093
– volume: 806
  start-page: 6
  year: 2015
  ident: key 20171201174810_bib30
  publication-title: ApJ
  doi: 10.1088/0004-637X/806/1/6
– volume: 211
  start-page: 24
  year: 2014
  ident: key 20171201174810_bib31
  publication-title: ApJS
  doi: 10.1088/0067-0049/211/2/24
– volume: 327
  start-page: 977
  year: 2010
  ident: key 20171201174810_bib8
  publication-title: Science
  doi: 10.1126/science.1185402
– volume: 455
  start-page: 626
  year: 2016
  ident: key 20171201174810_bib33
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2333
– volume: 419
  start-page: 2683
  year: 2012
  ident: key 20171201174810_bib20
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.19915.x
– volume: 7
  start-page: 308
  year: 1965
  ident: key 20171201174810_bib36
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.4.308
– volume: 465
  start-page: 2634
  year: 2017
  ident: key 20171201174810_bib5
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2881
– volume: 564
  start-page: 495
  year: 2002
  ident: key 20171201174810_bib25
  publication-title: ApJ
  doi: 10.1086/324143
– volume: 224
  start-page: 12
  year: 2016
  ident: key 20171201174810_bib14
  publication-title: ApJS
  doi: 10.3847/0067-0049/224/1/12
– volume: 450
  start-page: 3211
  year: 2015
  ident: key 20171201174810_bib2
  publication-title: MNRAS
  doi: 10.1093/mnras/stv853
– year: 2014
  ident: key 20171201174810_bib4
– volume: 580
  start-page: L171
  year: 2002
  ident: key 20171201174810_bib32
  publication-title: ApJ
  doi: 10.1086/345520
– volume: 796
  start-page: 48
  year: 2014
  ident: key 20171201174810_bib53
  publication-title: ApJ
  doi: 10.1088/0004-637X/796/1/48
– volume: 766
  start-page: 81
  year: 2013
  ident: key 20171201174810_bib18
  publication-title: ApJ
  doi: 10.1088/0004-637X/766/2/81
– volume: 704
  start-page: 51
  year: 2009
  ident: key 20171201174810_bib13
  publication-title: ApJ
  doi: 10.1088/0004-637X/704/1/51
– volume: 506
  start-page: 411
  year: 2009
  ident: key 20171201174810_bib6
  publication-title: A&A
  doi: 10.1051/0004-6361/200810860
– year: 2015
  ident: key 20171201174810_bib24
– volume: 15
  start-page: 1929
  year: 2014
  ident: key 20171201174810_bib46
  publication-title: J. Mach. Learn. Res.
– volume: 806
  start-page: 215
  year: 2015
  ident: key 20171201174810_bib17
  publication-title: ApJ
  doi: 10.1088/0004-637X/806/2/215
– volume-title: PRD
  year: 2017
  ident: key 20171201174810_bib19
– start-page: 1097
  volume-title: Advances in Neural Information Processing Systems 25
  year: 2012
  ident: key 20171201174810_bib28
– volume: 820
  start-page: 107
  year: 2016
  ident: key 20171201174810_bib50
  publication-title: ApJ
  doi: 10.3847/0004-637X/820/2/107
– volume: 9143
  start-page: 914320
  year: 2014
  ident: key 20171201174810_bib43
  publication-title: Proc. SPIE
  doi: 10.1117/12.2063489
– volume-title: PhD thesis
  year: 1974
  ident: key 20171201174810_bib52
– volume: 471
  start-page: 759
  year: 2017
  ident: key 20171201174810_bib3
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1422
– year: 2009
  ident: key 20171201174810_bib29
– year: 2015
  ident: key 20171201174810_bib22
– volume: 24
  start-page: 774
  year: 1963
  ident: key 20171201174810_bib48
  publication-title: Autom. Remote Control
– volume: 804
  start-page: 10
  year: 2015
  ident: key 20171201174810_bib15
  publication-title: ApJ
  doi: 10.1088/0004-637X/804/1/10
– volume: 126
  start-page: 398
  year: 2014
  ident: key 20171201174810_bib23
  publication-title: PASP
  doi: 10.1086/676406
– volume: 812
  start-page: 46
  year: 2015
  ident: key 20171201174810_bib47
  publication-title: ApJ
  doi: 10.1088/0004-637X/812/1/46
– volume-title: Ten Lectures on Wavelets
  year: 1992
  ident: key 20171201174810_bib16
– start-page: 807
  volume-title: Proc. of the 27th International Conference on Machine Learning (ICML-10)
  year: 2010
  ident: key 20171201174810_bib35
– volume: 118
  start-page: 1407
  year: 2006
  ident: key 20171201174810_bib41
  publication-title: PASP
  doi: 10.1086/508556
– volume: 465
  start-page: 3495
  year: 2017
  ident: key 20171201174810_bib26
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2974
– volume: 116
  start-page: 266
  year: 2004
  ident: key 20171201174810_bib7
  publication-title: PASP
  doi: 10.1086/382735
– volume: 65
  start-page: 386
  year: 1958
  ident: key 20171201174810_bib44
  publication-title: Psychol. Rev.
  doi: 10.1037/h0042519
– volume: 391
  start-page: 369
  year: 2002
  ident: key 20171201174810_bib27
  publication-title: A&A
  doi: 10.1051/0004-6361:20020802
– volume: 766
  start-page: 7
  year: 2013
  ident: key 20171201174810_bib51
  publication-title: ApJ
  doi: 10.1088/0004-637X/766/1/7
– year: 2013
  ident: key 20171201174810_bib49
– volume: 210
  start-page: 19
  year: 2014
  ident: key 20171201174810_bib11
  publication-title: ApJS
  doi: 10.1088/0067-0049/210/2/19
– volume: 217
  start-page: 16
  year: 2015
  ident: key 20171201174810_bib45
  publication-title: ApJS
  doi: 10.1088/0067-0049/217/1/16
SSID ssj0004326
Score 2.5961583
Snippet Abstract In the last decade, over a million stars were monitored to detect transiting planets. Manual interpretation of potential exoplanet candidates is...
AbstractIn the last decade, over a million stars were monitored to detect transiting planets. Manual interpretation of potential exoplanet candidates is labour...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 478
SubjectTerms Artificial intelligence
Artificial neural networks
Astronomy
Extrasolar planets
Feature recognition
Human error
Interpolation
Least squares method
Machine learning
Neural networks
Planet detection
Time series
Transits
Title Searching for exoplanets using artificial intelligence
URI https://www.proquest.com/docview/2120614072
Volume 474
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7iyYvoVDadEkF2sqxN0qY5juEYwvSywW4lTVIZbO1YK8z_3pe0U4eK3lL62sPLj-97Ly9fELojKfWNzpgXKyE8Zgz3hK9TmPGMMK4zkwX2cPLkKRrP2OM8nDf5jvKHLXxB-6t8I8t-WW0Jd3EOALAVyZ8-zz8PQFJ3r5rTX4QIIGjENL99vQc-ewfadiuwg5XRCTpu-CAe1B14ig5M3kLtQWkz1MXqDfewa9cJiLKFOhNgucXGJcPh5XC5AMrpns5QVNcOAxhhoKLYbIu1LWWtSmyr21-wHSW1YARefFHiPEez0cN0OPaaexE8RSNWeUEsuNKGM0kAXDREJDRTAPyZ4FpLFgqgVCog0Ib4hAZKUkNCE4VSSYB3ktELdJgXuWkjHGe-CYgKOI9TFsZGMl9CXCkB1WWkU91B9zuHJaoRDbd3VyyTevOaJs6_SePfDup9mK9rtYzfDG_B-3_ZdHd9kzQTq0wAaW0M63Ny-Y9fXKEjIDhxXWXdRYfV5tVcA4mo0hs3gN4BorzHZg
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Searching+for+exoplanets+using+artificial+intelligence&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Pearson%2C+Kyle+A.&rft.au=Palafox%2C+Leon&rft.au=Griffith%2C+Caitlin+A.&rft.date=2018-02-01&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=474&rft.issue=1&rft.spage=478&rft.epage=491&rft_id=info:doi/10.1093%2Fmnras%2Fstx2761&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_mnras_stx2761
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon