Searching for exoplanets using artificial intelligence
Abstract In the last decade, over a million stars were monitored to detect transiting planets. Manual interpretation of potential exoplanet candidates is labour intensive and subject to human error, the results of which are difficult to quantify. Here we present a new method of detecting exoplanet c...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 474; no. 1; pp. 478 - 491 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Oxford University Press
01.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
In the last decade, over a million stars were monitored to detect transiting planets. Manual interpretation of potential exoplanet candidates is labour intensive and subject to human error, the results of which are difficult to quantify. Here we present a new method of detecting exoplanet candidates in large planetary search projects that, unlike current methods, uses a neural network. Neural networks, also called ‘deep learning’ or ‘deep nets’, are designed to give a computer perception into a specific problem by training it to recognize patterns. Unlike past transit detection algorithms, deep nets learn to recognize planet features instead of relying on hand-coded metrics that humans perceive as the most representative. Our convolutional neural network is capable of detecting Earth-like exoplanets in noisy time series data with a greater accuracy than a least-squares method. Deep nets are highly generalizable allowing data to be evaluated from different time series after interpolation without compromising performance. As validated by our deep net analysis of Kepler light curves, we detect periodic transits consistent with the true period without any model fitting. Our study indicates that machine learning will facilitate the characterization of exoplanets in future analysis of large astronomy data sets. |
---|---|
AbstractList | AbstractIn the last decade, over a million stars were monitored to detect transiting planets. Manual interpretation of potential exoplanet candidates is labour intensive and subject to human error, the results of which are difficult to quantify. Here we present a new method of detecting exoplanet candidates in large planetary search projects that, unlike current methods, uses a neural network. Neural networks, also called 'deep learning' or 'deep nets', are designed to give a computer perception into a specific problem by training it to recognize patterns. Unlike past transit detection algorithms, deep nets learn to recognize planet features instead of relying on hand-coded metrics that humans perceive as the most representative. Our convolutional neural network is capable of detecting Earth-like exoplanets in noisy time series data with a greater accuracy than a least-squares method. Deep nets are highly generalizable allowing data to be evaluated from different time series after interpolation without compromising performance. As validated by our deep net analysis of Kepler light curves, we detect periodic transits consistent with the true period without any model fitting. Our study indicates that machine learning will facilitate the characterization of exoplanets in future analysis of large astronomy data sets. Abstract In the last decade, over a million stars were monitored to detect transiting planets. Manual interpretation of potential exoplanet candidates is labour intensive and subject to human error, the results of which are difficult to quantify. Here we present a new method of detecting exoplanet candidates in large planetary search projects that, unlike current methods, uses a neural network. Neural networks, also called ‘deep learning’ or ‘deep nets’, are designed to give a computer perception into a specific problem by training it to recognize patterns. Unlike past transit detection algorithms, deep nets learn to recognize planet features instead of relying on hand-coded metrics that humans perceive as the most representative. Our convolutional neural network is capable of detecting Earth-like exoplanets in noisy time series data with a greater accuracy than a least-squares method. Deep nets are highly generalizable allowing data to be evaluated from different time series after interpolation without compromising performance. As validated by our deep net analysis of Kepler light curves, we detect periodic transits consistent with the true period without any model fitting. Our study indicates that machine learning will facilitate the characterization of exoplanets in future analysis of large astronomy data sets. |
Author | Pearson, Kyle A. Palafox, Leon Griffith, Caitlin A. |
Author_xml | – sequence: 1 givenname: Kyle A. surname: Pearson fullname: Pearson, Kyle A. email: pearsonk@email.arizona.edu organization: Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721, USA – sequence: 2 givenname: Leon surname: Palafox fullname: Palafox, Leon organization: Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721, USA – sequence: 3 givenname: Caitlin A. surname: Griffith fullname: Griffith, Caitlin A. organization: Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721, USA |
BookMark | eNqFkE1LAzEQhoNUsK0evS948bI2mWyy3aMUv0DwoJ7DkE1qyjZZkyzUf-_W9iSIp3kZnncGnhmZ-OANIZeM3jDa8MXWR0yLlHdQS3ZCpoxLUUIj5YRMKeWiXNaMnZFZShtKacVBTol8NRj1h_PrwoZYmF3oO_Qmp2JI-yXG7KzTDrvC-Wy6zq2N1-acnFrskrk4zjl5v797Wz2Wzy8PT6vb51JzWeWSLZtat6auEGBZtSApt1rQxjZ122IlGgCpGYyZNpIzjdyAMFKgRsEALJ-Tq8PdPobPwaSsNmGIfnypgAGVrKI1jBQ_UDqGlKKxSruM2QWfI7pOMar2gtSPIHUUNLbKX60-ui3Grz_56wMfhv4f9BuTZXpJ |
CitedBy_id | crossref_primary_10_1007_s12145_020_00464_7 crossref_primary_10_3390_aerospace10090752 crossref_primary_10_3390_axioms13020083 crossref_primary_10_3847_2041_8213_ac4b5e crossref_primary_10_1016_j_ascom_2021_100461 crossref_primary_10_1016_j_newast_2022_101997 crossref_primary_10_1016_j_newast_2020_101517 crossref_primary_10_1029_2018SW002061 crossref_primary_10_1051_0004_6361_202346417 crossref_primary_10_3847_1538_3881_abac0a crossref_primary_10_3847_1538_3881_ad7fe6 crossref_primary_10_1007_s10509_018_3418_7 crossref_primary_10_1051_0004_6361_201834942 crossref_primary_10_1051_0004_6361_202141640 crossref_primary_10_3847_1538_3881_ab0e12 crossref_primary_10_1016_j_chinastron_2021_05_005 crossref_primary_10_1051_0004_6361_202449150 crossref_primary_10_1093_mnras_staa138 crossref_primary_10_1093_mnras_stab1650 crossref_primary_10_1093_mnras_stab1253 crossref_primary_10_1051_0004_6361_201935600 crossref_primary_10_1093_mnras_stad1643 crossref_primary_10_3847_1538_3881_acad85 crossref_primary_10_1007_s42484_024_00229_1 crossref_primary_10_1093_mnras_stz775 crossref_primary_10_3847_1538_3881_ab26ba crossref_primary_10_1063_5_0017902 crossref_primary_10_1088_1538_3873_abbb24 crossref_primary_10_3390_electronics13193950 crossref_primary_10_1051_0004_6361_202141471 crossref_primary_10_1051_0004_6361_202140369 crossref_primary_10_1093_mnras_stz2058 crossref_primary_10_1016_j_engappai_2022_104886 crossref_primary_10_1093_mnras_stz3100 crossref_primary_10_1093_mnras_stab2694 crossref_primary_10_1371_journal_pone_0268199 crossref_primary_10_1093_mnras_stae245 crossref_primary_10_3847_1538_4357_aca66c crossref_primary_10_1093_mnras_stad1173 crossref_primary_10_1002_widm_1425 crossref_primary_10_3847_1538_3881_aae77c crossref_primary_10_1093_mnras_sty3146 crossref_primary_10_1002_widm_1349 crossref_primary_10_3847_1538_4357_ac77ec crossref_primary_10_1088_1538_3873_ab13d3 crossref_primary_10_1007_s12145_021_00579_5 crossref_primary_10_3390_signals2040042 crossref_primary_10_1002_widm_1476 crossref_primary_10_3847_1538_3881_ac7b29 crossref_primary_10_1093_mnras_staa2247 crossref_primary_10_3847_1538_3881_ab3984 crossref_primary_10_1186_s40668_019_0031_2 crossref_primary_10_1051_0004_6361_202140375 crossref_primary_10_3847_1538_4357_ab3b60 crossref_primary_10_3847_1538_3881_ab5b9e crossref_primary_10_1038_s41550_018_0504_2 crossref_primary_10_1080_14685248_2020_1757685 crossref_primary_10_1088_1538_3873_abe6e8 crossref_primary_10_3847_1538_3881_ab26b8 crossref_primary_10_3847_1538_3881_ac738e crossref_primary_10_1093_mnras_stz1197 crossref_primary_10_3847_1538_3881_ab21d6 crossref_primary_10_3390_axioms12040348 crossref_primary_10_3847_1538_3881_aafb79 crossref_primary_10_1093_mnras_stab203 crossref_primary_10_3847_2041_8213_aaf23b crossref_primary_10_1016_j_procs_2021_09_215 crossref_primary_10_3847_1538_3881_ac3482 crossref_primary_10_1051_0004_6361_201834672 crossref_primary_10_1093_mnras_stad3603 crossref_primary_10_1093_mnras_sty1313 crossref_primary_10_1111_phc3_12830 crossref_primary_10_1155_2020_8825825 crossref_primary_10_1093_mnras_sty2646 crossref_primary_10_1051_0004_6361_201834237 crossref_primary_10_3847_1538_3881_ada353 crossref_primary_10_1007_s10509_023_04232_z crossref_primary_10_1088_1674_4527_21_7_159 crossref_primary_10_3847_1538_3881_aaae05 crossref_primary_10_3847_1538_3881_ab4e1c crossref_primary_10_3847_1538_3881_ac1744 crossref_primary_10_1093_jigpal_jzae106 crossref_primary_10_1093_mnras_staa916 crossref_primary_10_1051_0004_6361_202243886 crossref_primary_10_1093_rasti_rzad050 crossref_primary_10_3847_1538_4357_ab5d32 |
Cites_doi | 10.1126/science.165.3895.780 10.1088/0004-637X/770/1/69 10.1088/0004-637X/802/2/117 10.1086/521836 10.1148/radiology.143.1.7063747 10.1007/s10686-014-9383-4 10.1051/0004-6361:20030093 10.1088/0004-637X/806/1/6 10.1088/0067-0049/211/2/24 10.1126/science.1185402 10.1093/mnras/stv2333 10.1111/j.1365-2966.2011.19915.x 10.1093/comjnl/7.4.308 10.1093/mnras/stw2881 10.1086/324143 10.3847/0067-0049/224/1/12 10.1093/mnras/stv853 10.1086/345520 10.1088/0004-637X/796/1/48 10.1088/0004-637X/766/2/81 10.1088/0004-637X/704/1/51 10.1051/0004-6361/200810860 10.1088/0004-637X/806/2/215 10.3847/0004-637X/820/2/107 10.1117/12.2063489 10.1093/mnras/stx1422 10.1088/0004-637X/804/1/10 10.1086/676406 10.1088/0004-637X/812/1/46 10.1086/508556 10.1093/mnras/stw2974 10.1086/382735 10.1037/h0042519 10.1051/0004-6361:20020802 10.1088/0004-637X/766/1/7 10.1088/0067-0049/210/2/19 10.1088/0067-0049/217/1/16 |
ContentType | Journal Article |
Copyright | 2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2018 2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society |
Copyright_xml | – notice: 2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2018 – notice: 2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1093/mnras/stx2761 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Astronomy & Astrophysics |
EISSN | 1365-2966 |
EndPage | 491 |
ExternalDocumentID | 10_1093_mnras_stx2761 10.1093/mnras/stx2761 |
GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 2WC 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAHTB AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP ABCQN ABCQX ABEML ABEUO ABFSI ABIXL ABJNI ABNKS ABPEJ ABPTD ABQLI ABSAR ABSMQ ABTAH ABXVV ABZBJ ACBNA ACBWZ ACCFJ ACFRR ACGFO ACGFS ACGOD ACNCT ACSCC ACUFI ACUTJ ACXQS ACYRX ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AETEA AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFXEN AFZJQ AGINJ AGMDO AGSYK AHXPO AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT ASAOO ASPBG ATDFG AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE CO8 COF CXTWN D-E D-F DAKXR DCZOG DFGAJ DILTD DR2 DU5 D~K E.L E3Z EAD EAP EBS EE~ EJD ESX F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MBTAY MK4 NGC NMDNZ NOMLY O0~ O9- OCL ODMLO OHT OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RHF RNP RNS ROL ROX ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 UQL V8K VOH W8V W99 WH7 WQJ WRC WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX ZY4 AAYXX ABAZT ABEJV ABGNP ABVLG ACUXJ ALXQX AMNDL ANAKG CITATION JXSIZ 8FD H8D L7M |
ID | FETCH-LOGICAL-c364t-1897cde74a2284d2603fc509f97dda459226c12dda09631ca3e25e65aca5122f3 |
IEDL.DBID | TOX |
ISSN | 0035-8711 |
IngestDate | Fri Jul 25 20:03:49 EDT 2025 Thu Apr 24 23:04:49 EDT 2025 Tue Jul 01 03:35:40 EDT 2025 Wed Aug 28 03:20:51 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | planets and satellites: detection techniques: photometric methods: data analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-1897cde74a2284d2603fc509f97dda459226c12dda09631ca3e25e65aca5122f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2120614072 |
PQPubID | 42411 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2120614072 crossref_citationtrail_10_1093_mnras_stx2761 crossref_primary_10_1093_mnras_stx2761 oup_primary_10_1093_mnras_stx2761 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Monthly notices of the Royal Astronomical Society |
PublicationYear | 2018 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | ( key 20171201174810_bib26) 2017; 465 ( key 20171201174810_bib36) 1965; 7 ( key 20171201174810_bib18) 2013; 766 ( key 20171201174810_bib13) 2009; 704 ( key 20171201174810_bib23) 2014; 126 ( key 20171201174810_bib50) 2016; 820 ( key 20171201174810_bib41) 2006; 118 ( key 20171201174810_bib12) 2003; 401 ( key 20171201174810_bib10) 2010 ( key 20171201174810_bib38) 1969; 165 ( key 20171201174810_bib28) 2012 ( key 20171201174810_bib52) 1974 ( key 20171201174810_bib40) 2013; 770 ( key 20171201174810_bib45) 2015; 217 ( key 20171201174810_bib30) 2015; 806 ( key 20171201174810_bib16) 1992 ( key 20171201174810_bib3) 2017; 471 ( key 20171201174810_bib39) 2007; 119 ( key 20171201174810_bib24) 2015 ( key 20171201174810_bib17) 2015; 806 ( key 20171201174810_bib51) 2013; 766 ( key 20171201174810_bib46) 2014; 15 ( key 20171201174810_bib9) 1991 ( key 20171201174810_bib47) 2015; 812 ( key 20171201174810_bib14) 2016; 224 ( key 20171201174810_bib19) 2017 ( key 20171201174810_bib22) 2015 ( key 20171201174810_bib31) 2014; 211 ( key 20171201174810_bib49) 2013 ( key 20171201174810_bib20) 2012; 419 ( key 20171201174810_bib44) 1958; 65 ( key 20171201174810_bib5) 2017; 465 ( key 20171201174810_bib2) 2015; 450 ( key 20171201174810_bib21) 1982; 143 ( key 20171201174810_bib35) 2010 ( key 20171201174810_bib37) 1983; 27 ( key 20171201174810_bib15) 2015; 804 ( key 20171201174810_bib11) 2014; 210 ( key 20171201174810_bib43) 2014; 9143 ( key 20171201174810_bib6) 2009; 506 ( key 20171201174810_bib4) 2014 ( key 20171201174810_bib7) 2004; 116 ( key 20171201174810_bib34) 2015; 802 ( key 20171201174810_bib48) 1963; 24 ( key 20171201174810_bib53) 2014; 796 ( key 20171201174810_bib27) 2002; 391 ( key 20171201174810_bib42) 2014; 38 LSST Science Collaboration ( key 20171201174810_bib29) 2009 ( key 20171201174810_bib33) 2016; 455 ( key 20171201174810_bib25) 2002; 564 ( key 20171201174810_bib32) 2002; 580 ( key 20171201174810_bib8) 2010; 327 ( key 20171201174810_bib1) 2015 |
References_xml | – start-page: 177 volume-title: Proc. of the 19th International Conference on Computational Statistics (COMPSTAT’2010) year: 2010 ident: key 20171201174810_bib10 – volume: 27 start-page: 372 year: 1983 ident: key 20171201174810_bib37 publication-title: Sov. Math. Dokl. – volume: 165 start-page: 780 year: 1969 ident: key 20171201174810_bib38 publication-title: Science doi: 10.1126/science.165.3895.780 – volume-title: Proc. of Neuro-Nîmes 91. EC2 year: 1991 ident: key 20171201174810_bib9 – volume: 770 start-page: 69 year: 2013 ident: key 20171201174810_bib40 publication-title: ApJ doi: 10.1088/0004-637X/770/1/69 – volume: 802 start-page: 117 year: 2015 ident: key 20171201174810_bib34 publication-title: ApJ doi: 10.1088/0004-637X/802/2/117 – volume: 119 start-page: 923 year: 2007 ident: key 20171201174810_bib39 publication-title: PASP doi: 10.1086/521836 – volume-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems year: 2015 ident: key 20171201174810_bib1 – volume: 143 start-page: 29 year: 1982 ident: key 20171201174810_bib21 publication-title: Radiology doi: 10.1148/radiology.143.1.7063747 – volume: 38 start-page: 249 year: 2014 ident: key 20171201174810_bib42 publication-title: Exp. Astron. doi: 10.1007/s10686-014-9383-4 – volume: 401 start-page: 743 year: 2003 ident: key 20171201174810_bib12 publication-title: A&A doi: 10.1051/0004-6361:20030093 – volume: 806 start-page: 6 year: 2015 ident: key 20171201174810_bib30 publication-title: ApJ doi: 10.1088/0004-637X/806/1/6 – volume: 211 start-page: 24 year: 2014 ident: key 20171201174810_bib31 publication-title: ApJS doi: 10.1088/0067-0049/211/2/24 – volume: 327 start-page: 977 year: 2010 ident: key 20171201174810_bib8 publication-title: Science doi: 10.1126/science.1185402 – volume: 455 start-page: 626 year: 2016 ident: key 20171201174810_bib33 publication-title: MNRAS doi: 10.1093/mnras/stv2333 – volume: 419 start-page: 2683 year: 2012 ident: key 20171201174810_bib20 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.19915.x – volume: 7 start-page: 308 year: 1965 ident: key 20171201174810_bib36 publication-title: Comput. J. doi: 10.1093/comjnl/7.4.308 – volume: 465 start-page: 2634 year: 2017 ident: key 20171201174810_bib5 publication-title: MNRAS doi: 10.1093/mnras/stw2881 – volume: 564 start-page: 495 year: 2002 ident: key 20171201174810_bib25 publication-title: ApJ doi: 10.1086/324143 – volume: 224 start-page: 12 year: 2016 ident: key 20171201174810_bib14 publication-title: ApJS doi: 10.3847/0067-0049/224/1/12 – volume: 450 start-page: 3211 year: 2015 ident: key 20171201174810_bib2 publication-title: MNRAS doi: 10.1093/mnras/stv853 – year: 2014 ident: key 20171201174810_bib4 – volume: 580 start-page: L171 year: 2002 ident: key 20171201174810_bib32 publication-title: ApJ doi: 10.1086/345520 – volume: 796 start-page: 48 year: 2014 ident: key 20171201174810_bib53 publication-title: ApJ doi: 10.1088/0004-637X/796/1/48 – volume: 766 start-page: 81 year: 2013 ident: key 20171201174810_bib18 publication-title: ApJ doi: 10.1088/0004-637X/766/2/81 – volume: 704 start-page: 51 year: 2009 ident: key 20171201174810_bib13 publication-title: ApJ doi: 10.1088/0004-637X/704/1/51 – volume: 506 start-page: 411 year: 2009 ident: key 20171201174810_bib6 publication-title: A&A doi: 10.1051/0004-6361/200810860 – year: 2015 ident: key 20171201174810_bib24 – volume: 15 start-page: 1929 year: 2014 ident: key 20171201174810_bib46 publication-title: J. Mach. Learn. Res. – volume: 806 start-page: 215 year: 2015 ident: key 20171201174810_bib17 publication-title: ApJ doi: 10.1088/0004-637X/806/2/215 – volume-title: PRD year: 2017 ident: key 20171201174810_bib19 – start-page: 1097 volume-title: Advances in Neural Information Processing Systems 25 year: 2012 ident: key 20171201174810_bib28 – volume: 820 start-page: 107 year: 2016 ident: key 20171201174810_bib50 publication-title: ApJ doi: 10.3847/0004-637X/820/2/107 – volume: 9143 start-page: 914320 year: 2014 ident: key 20171201174810_bib43 publication-title: Proc. SPIE doi: 10.1117/12.2063489 – volume-title: PhD thesis year: 1974 ident: key 20171201174810_bib52 – volume: 471 start-page: 759 year: 2017 ident: key 20171201174810_bib3 publication-title: MNRAS doi: 10.1093/mnras/stx1422 – year: 2009 ident: key 20171201174810_bib29 – year: 2015 ident: key 20171201174810_bib22 – volume: 24 start-page: 774 year: 1963 ident: key 20171201174810_bib48 publication-title: Autom. Remote Control – volume: 804 start-page: 10 year: 2015 ident: key 20171201174810_bib15 publication-title: ApJ doi: 10.1088/0004-637X/804/1/10 – volume: 126 start-page: 398 year: 2014 ident: key 20171201174810_bib23 publication-title: PASP doi: 10.1086/676406 – volume: 812 start-page: 46 year: 2015 ident: key 20171201174810_bib47 publication-title: ApJ doi: 10.1088/0004-637X/812/1/46 – volume-title: Ten Lectures on Wavelets year: 1992 ident: key 20171201174810_bib16 – start-page: 807 volume-title: Proc. of the 27th International Conference on Machine Learning (ICML-10) year: 2010 ident: key 20171201174810_bib35 – volume: 118 start-page: 1407 year: 2006 ident: key 20171201174810_bib41 publication-title: PASP doi: 10.1086/508556 – volume: 465 start-page: 3495 year: 2017 ident: key 20171201174810_bib26 publication-title: MNRAS doi: 10.1093/mnras/stw2974 – volume: 116 start-page: 266 year: 2004 ident: key 20171201174810_bib7 publication-title: PASP doi: 10.1086/382735 – volume: 65 start-page: 386 year: 1958 ident: key 20171201174810_bib44 publication-title: Psychol. Rev. doi: 10.1037/h0042519 – volume: 391 start-page: 369 year: 2002 ident: key 20171201174810_bib27 publication-title: A&A doi: 10.1051/0004-6361:20020802 – volume: 766 start-page: 7 year: 2013 ident: key 20171201174810_bib51 publication-title: ApJ doi: 10.1088/0004-637X/766/1/7 – year: 2013 ident: key 20171201174810_bib49 – volume: 210 start-page: 19 year: 2014 ident: key 20171201174810_bib11 publication-title: ApJS doi: 10.1088/0067-0049/210/2/19 – volume: 217 start-page: 16 year: 2015 ident: key 20171201174810_bib45 publication-title: ApJS doi: 10.1088/0067-0049/217/1/16 |
SSID | ssj0004326 |
Score | 2.5961583 |
Snippet | Abstract
In the last decade, over a million stars were monitored to detect transiting planets. Manual interpretation of potential exoplanet candidates is... AbstractIn the last decade, over a million stars were monitored to detect transiting planets. Manual interpretation of potential exoplanet candidates is labour... |
SourceID | proquest crossref oup |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 478 |
SubjectTerms | Artificial intelligence Artificial neural networks Astronomy Extrasolar planets Feature recognition Human error Interpolation Least squares method Machine learning Neural networks Planet detection Time series Transits |
Title | Searching for exoplanets using artificial intelligence |
URI | https://www.proquest.com/docview/2120614072 |
Volume | 474 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7iyYvoVDadEkF2sqxN0qY5juEYwvSywW4lTVIZbO1YK8z_3pe0U4eK3lL62sPLj-97Ly9fELojKfWNzpgXKyE8Zgz3hK9TmPGMMK4zkwX2cPLkKRrP2OM8nDf5jvKHLXxB-6t8I8t-WW0Jd3EOALAVyZ8-zz8PQFJ3r5rTX4QIIGjENL99vQc-ewfadiuwg5XRCTpu-CAe1B14ig5M3kLtQWkz1MXqDfewa9cJiLKFOhNgucXGJcPh5XC5AMrpns5QVNcOAxhhoKLYbIu1LWWtSmyr21-wHSW1YARefFHiPEez0cN0OPaaexE8RSNWeUEsuNKGM0kAXDREJDRTAPyZ4FpLFgqgVCog0Ib4hAZKUkNCE4VSSYB3ktELdJgXuWkjHGe-CYgKOI9TFsZGMl9CXCkB1WWkU91B9zuHJaoRDbd3VyyTevOaJs6_SePfDup9mK9rtYzfDG_B-3_ZdHd9kzQTq0wAaW0M63Ny-Y9fXKEjIDhxXWXdRYfV5tVcA4mo0hs3gN4BorzHZg |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Searching+for+exoplanets+using+artificial+intelligence&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Pearson%2C+Kyle+A.&rft.au=Palafox%2C+Leon&rft.au=Griffith%2C+Caitlin+A.&rft.date=2018-02-01&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=474&rft.issue=1&rft.spage=478&rft.epage=491&rft_id=info:doi/10.1093%2Fmnras%2Fstx2761&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_mnras_stx2761 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |