Untying the antimicrobial and antioxidant potential of silver nanoparticles fabricated from Typhonium trilobatum (L.) Schott

Understanding the properties of silver nanoparticles (AgNPs) is noteworthy for the development of novel antimicrobial agents. Here AgNPs were procured through a sustainable, effortless, simple and lucrative process by using natural reducing agents from aqueous leaf extract of Typhonium trilobatum (L...

Full description

Saved in:
Bibliographic Details
Published inPlant Nano Biology Vol. 10; p. 100113
Main Authors Ghosh, Sushree, Sinha, Sankar Narayan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Understanding the properties of silver nanoparticles (AgNPs) is noteworthy for the development of novel antimicrobial agents. Here AgNPs were procured through a sustainable, effortless, simple and lucrative process by using natural reducing agents from aqueous leaf extract of Typhonium trilobatum (L.) Schott. The study mainly aims at the determination of antibacterial and antioxidant activity of the bio-fabricated AgNPs. The synthesis of nanoparticles (NPs) was initially confirmed by UV–vis spectroscopy. The AgNPs were spherical with diameter ranges between 30 and 90 nm, negatively charged at −29.6 mV, crystalline in nature and surrounded by different active functional groups as evident by FTIR spectra analysis. The presence of phenolic compounds such as gallic acid and catechin were confirmed through HPLC analysis, providing insights into the bio-reduction mechanism which facilitate the conversion of Ag+ to AgNPs. Antimicrobial properties of the synthesized AgNPs were assessed against four Gram-negative and two Gram-positive bacteria with maximum zone of inhibition against Staphylococcus aureus (20±3.00 mm) and Micrococcus luteus (20±1.73 mm). The antibacterial potential of AgNPs is primarily linked with the increased cell membrane permeability of AgNPs treated bacterial cells (E. coli, S. aureus and M. luteus) as evident by measuring increased conductivity and elevated extracellular DNA concentration due to the disruption of bacterial cell membrane. Synthesized AgNPs exhibited antioxidant properties with IC50 value of 239.50 mg/L in free radical scavenging activity and IC50 value of 213.23 mg/L in superoxide scavenging activity. To the best of our knowledge, this is the earliest report of biosynthesis and physico-chemical characterization of AgNPs using T. trilobatum leaf extract having efficient antioxidant and antibacterial activity against some bacteria. These plant-mediated AgNPs might offer a promising solution in antibiotic resistance—a growing global health threat. [Display omitted] •First report of synthesizing AgNPs using T. trilobatum leaf extract as reducing agent through a steady, eco-friendly method.•AgNPs were characterized by UV–vis spectroscopy, SEM, TEM, HPLC, XRD, FTIR, zeta potential analysis and DLS.•Synthesized AgNPs showed potential antioxidant and antibacterial activity.•AgNPs affected bacterial cell membrane and played a key role in membrane permeability change.
AbstractList Understanding the properties of silver nanoparticles (AgNPs) is noteworthy for the development of novel antimicrobial agents. Here AgNPs were procured through a sustainable, effortless, simple and lucrative process by using natural reducing agents from aqueous leaf extract of Typhonium trilobatum (L.) Schott. The study mainly aims at the determination of antibacterial and antioxidant activity of the bio-fabricated AgNPs. The synthesis of nanoparticles (NPs) was initially confirmed by UV–vis spectroscopy. The AgNPs were spherical with diameter ranges between 30 and 90 nm, negatively charged at −29.6 mV, crystalline in nature and surrounded by different active functional groups as evident by FTIR spectra analysis. The presence of phenolic compounds such as gallic acid and catechin were confirmed through HPLC analysis, providing insights into the bio-reduction mechanism which facilitate the conversion of Ag+ to AgNPs. Antimicrobial properties of the synthesized AgNPs were assessed against four Gram-negative and two Gram-positive bacteria with maximum zone of inhibition against Staphylococcus aureus (20±3.00 mm) and Micrococcus luteus (20±1.73 mm). The antibacterial potential of AgNPs is primarily linked with the increased cell membrane permeability of AgNPs treated bacterial cells (E. coli, S. aureus and M. luteus) as evident by measuring increased conductivity and elevated extracellular DNA concentration due to the disruption of bacterial cell membrane. Synthesized AgNPs exhibited antioxidant properties with IC50 value of 239.50 mg/L in free radical scavenging activity and IC50 value of 213.23 mg/L in superoxide scavenging activity. To the best of our knowledge, this is the earliest report of biosynthesis and physico-chemical characterization of AgNPs using T. trilobatum leaf extract having efficient antioxidant and antibacterial activity against some bacteria. These plant-mediated AgNPs might offer a promising solution in antibiotic resistance—a growing global health threat.
Understanding the properties of silver nanoparticles (AgNPs) is noteworthy for the development of novel antimicrobial agents. Here AgNPs were procured through a sustainable, effortless, simple and lucrative process by using natural reducing agents from aqueous leaf extract of Typhonium trilobatum (L.) Schott. The study mainly aims at the determination of antibacterial and antioxidant activity of the bio-fabricated AgNPs. The synthesis of nanoparticles (NPs) was initially confirmed by UV–vis spectroscopy. The AgNPs were spherical with diameter ranges between 30 and 90 nm, negatively charged at −29.6 mV, crystalline in nature and surrounded by different active functional groups as evident by FTIR spectra analysis. The presence of phenolic compounds such as gallic acid and catechin were confirmed through HPLC analysis, providing insights into the bio-reduction mechanism which facilitate the conversion of Ag+ to AgNPs. Antimicrobial properties of the synthesized AgNPs were assessed against four Gram-negative and two Gram-positive bacteria with maximum zone of inhibition against Staphylococcus aureus (20±3.00 mm) and Micrococcus luteus (20±1.73 mm). The antibacterial potential of AgNPs is primarily linked with the increased cell membrane permeability of AgNPs treated bacterial cells (E. coli, S. aureus and M. luteus) as evident by measuring increased conductivity and elevated extracellular DNA concentration due to the disruption of bacterial cell membrane. Synthesized AgNPs exhibited antioxidant properties with IC50 value of 239.50 mg/L in free radical scavenging activity and IC50 value of 213.23 mg/L in superoxide scavenging activity. To the best of our knowledge, this is the earliest report of biosynthesis and physico-chemical characterization of AgNPs using T. trilobatum leaf extract having efficient antioxidant and antibacterial activity against some bacteria. These plant-mediated AgNPs might offer a promising solution in antibiotic resistance—a growing global health threat. [Display omitted] •First report of synthesizing AgNPs using T. trilobatum leaf extract as reducing agent through a steady, eco-friendly method.•AgNPs were characterized by UV–vis spectroscopy, SEM, TEM, HPLC, XRD, FTIR, zeta potential analysis and DLS.•Synthesized AgNPs showed potential antioxidant and antibacterial activity.•AgNPs affected bacterial cell membrane and played a key role in membrane permeability change.
ArticleNumber 100113
Author Ghosh, Sushree
Sinha, Sankar Narayan
Author_xml – sequence: 1
  givenname: Sushree
  surname: Ghosh
  fullname: Ghosh, Sushree
– sequence: 2
  givenname: Sankar Narayan
  surname: Sinha
  fullname: Sinha, Sankar Narayan
  email: sinhasn62@yahoo.co.in
BookMark eNp9UU1vGyEQRVUiNR_-Bb1wbA52gV2W3UMPlZUmliz10PiMBhZsrDWsWBLVUn98x3ZU9VQuM_PQe8Pj3ZKrmKIj5BNnC85482W_GAeIsBBM1IgwzqsP5EYoVc05nqt_-o9kNk17xpjoRKUqdkN-b2I5hrilZecoxBIOweZkAgw49Wck_Qo9Vjqm4nDEm-TpFIY3l2mEmEbIJdjBTdSDycFCcT31OR3oy3HcpRheD7TkMCQDBdvP68UD_Wl3qZR7cu1hmNzsvd6RzffHl-XzfP3jabX8tp7bqqnLnKtOGGFkI1hllLJWSgOtklB30Ne8Bwmskd63vYTOMlsrRDoJnnvVNej0jqwuun2CvR5zOEA-6gRBn4GUt_rdg25b6ZmsGoZyqMON7VjtOEKiFaYxqFVdtPCbpik7_1ePM33KQ-OGUx76lIe-5IGsrxeWQ5tvwWU92eCidX3IzhZ8R_gv_w8IGJeu
Cites_doi 10.1016/j.colsurfb.2020.111533
10.1016/j.lwt.2022.113990
10.1080/17518253.2019.1707883
10.1080/15287394.2017.1376727
10.1016/j.chemosphere.2020.127346
10.1016/j.heliyon.2024.e33603
10.14302/issn.2576-6694.jbbs-19-2791
10.7717/peerj.2589
10.1016/j.tvjl.2015.10.032
10.1007/s40097-018-0291-4
10.1016/j.jksus.2022.102327
10.1016/j.cobme.2019.12.005
10.1007/s10529-015-2026-7
10.3390/molecules28020661
10.3390/mi14050928
10.1529/biophysj.104.048975
10.1007/s00284-017-1235-9
10.1016/j.watres.2016.05.019
10.1016/j.matlet.2011.09.038
10.1007/s13204-021-01952-y
10.1007/s13204-015-0449-z
10.1021/cm048292g
10.1007/s12602-022-09961-1
10.3390/horticulturae9020162
10.1016/j.jare.2015.02.007
10.1038/s41598-022-19440-w
10.3389/fmicb.2016.01831
10.1021/acsabm.9b00590
10.1021/acsomega.3c00440
10.1016/j.ijpharm.2020.119472
10.1016/j.jphotobiol.2017.03.013
10.1007/s13204-014-0366-6
10.1016/j.colsurfb.2009.05.018
10.1021/nn4044047
10.1016/j.foodchem.2022.133960
10.3390/ijms21041510
10.1016/j.microc.2019.104296
10.4155/fsoa-2017-0086
10.1038/s41598-023-29412-3
10.1186/s40543-018-0163-z
10.1049/iet-nbt.2015.0091
10.1016/j.colsurfb.2009.10.008
10.3390/nano12142402
10.1016/j.matchemphys.2021.124323
10.1016/j.ijleo.2021.167851
10.1016/j.jsps.2017.10.012
10.1080/00387010.2014.938756
10.1038/s41598-021-00520-2
10.1016/j.scitotenv.2018.08.136
10.1016/j.jscs.2024.101863
10.3906/kim-2007-1
10.1007/s40097-016-0207-0
10.1038/s41598-020-76726-7
10.1016/j.plana.2023.100033
10.1177/1177390118782877
10.1016/j.bcab.2022.102399
10.1021/acsomega.0c00155
10.1007/s13204-017-0546-2
10.1016/j.plana.2023.100052
10.1016/S0378-5173(98)00092-1
10.1038/s41598-022-21649-8
10.1016/j.procbio.2015.01.002
10.1016/j.jphotobiol.2016.06.029
10.1515/gps-2021-0061
10.3390/molecules25143191
10.1016/j.saa.2011.03.040
10.1049/iet-nbt.2018.5141
10.1016/j.enzmictec.2016.02.005
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.plana.2024.100113
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2773-1111
ExternalDocumentID oai_doaj_org_article_885f05360ff847a1bc904e1053282b6b
10_1016_j_plana_2024_100113
S2773111124000561
GroupedDBID 6I.
AAFTH
AALRI
AAXUO
ADVLN
AEXQZ
AFJKZ
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
M~E
ROL
0R~
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c364t-1792b2b56203b77cc55ba875a49ad41da5a065ff8d5a9c0c47a5a95af1f796923
IEDL.DBID DOA
ISSN 2773-1111
IngestDate Wed Aug 27 01:33:59 EDT 2025
Tue Jul 01 02:06:29 EDT 2025
Sat Dec 28 15:51:18 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Typhonium trilobatum
Antibacterial activity
Antioxidant potentiality
Plant-mediated AgNPs
Cell membrane permeability
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-1792b2b56203b77cc55ba875a49ad41da5a065ff8d5a9c0c47a5a95af1f796923
OpenAccessLink https://doaj.org/article/885f05360ff847a1bc904e1053282b6b
ParticipantIDs doaj_primary_oai_doaj_org_article_885f05360ff847a1bc904e1053282b6b
crossref_primary_10_1016_j_plana_2024_100113
elsevier_sciencedirect_doi_10_1016_j_plana_2024_100113
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationTitle Plant Nano Biology
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Jin, Lin, Sathiyaseelan, Zhang, Wang (bib39) 2024; 92
Calvo, Thon, Saad, Salvador-Matar, Manso-Silván, Ahumada, Pini (bib21) 2022; 12
Rezazadeh, Buazar, Matroodi (bib68) 2020; 10
Molina-Hernández, Scroccarello, Della Pelle, De Flaviis, Compagnone, Del Carlo, Paparella, Lόpez (bib58) 2022; 169
Balasubramanian, Kala, Pushparaj (bib16) 2020; 57
Hemlata, Meena, Singh, Tejavath (bib33) 2020; 5
Pavlin, Kandušer, Reberšek, Pucihar, Hart, Magjarevićcacute, Miklavčič (bib63) 2005; 88
Gudikandula, Vadapally, Charya (bib26) 2017; 2
Saka, Shifera, Jule, Badassa, Nagaprasad, Shanmugam, Priyanka Dwarampudi, Seenivasan, Ramaswamy (bib70) 2022; 12
Ahmed, Ahmad, Swami, Ikram (bib3) 2016; 7
Urnukhsaikhan, Bold, Gunbileg, Sukhbaatar, Mishig-Ochir (bib86) 2021; 11
Mogole, Omwoyo, Viljoen, Moloto (bib55) 2021; 10
Selvaraj, Pai, Murugesan, Pandey, Bhole, Gonsalves, Varadavenkatesan, Vinayagam (bib75) 2021; 11
Xiang, Ma, Shi, Ma, Tian, Chen, Chen, Chen, Luo, Cai, Wang, Xue, Huang, Sun (bib90) 2019; 2
Li, Liu, Yuan, Liu, Niu (bib52) 2015; 50
Anandalakshmi, Venugobal, Ramasamy (bib13) 2016; 6
Phuyal, Lamichhane, Gupta, Khadayat, Adhikari, Marahatha, Khadka, Parajuli (bib64) 2022; 1
Qayyum, Khan (bib66) 2016; 10
Jayaprakash, Vijaya, Kaviyarasu, Kombaiah, Kennedy, Ramalingam, Munusamy, Al-Lohedan (bib37) 2017; 169
Lalhminghlui, Jagetia (bib48) 2018; 4
Wang, Xue, Wang, Zhang, Liu, Zhou (bib88) 2021; 11
Çalhan, GÜndoĞan (bib20) 2020; 44
Vinayagam, Zhou, Pai, Varadavenkatesan, Narasimhan, Narayanasamy, Selvaraj (bib87) 2021; 262
Harborne (bib30) 1998
Sinha, Paul, Halder, Sengupta, Patra (bib82) 2015; 5
Parashar, Parashar, Sharma, Pandey (bib62) 2009; 4
Alphandéry (bib10) 2020; 586
Rizvi, Saleh (bib69) 2018; 26
Kaweeteerawat, Na Ubol, Sangmuang, Aueviriyavit, Maniratanachote (bib44) 2017; 80
Saxena, Tripathi, Zafar, Singh (bib73) 2012; 67
Tippayawat, Phromviyo, Boueroy, Chompoosor (bib85) 2016; 4
Alam (bib6) 2022; 34
Smekalova, Aragon, Panacek, Prucek, Zboril, Kvitek (bib83) 2016; 209
Kandiah, Chandrasekaran (bib42) 2021; 1
Ivask, ElBadawy, Kaweeteerawat, Boren, Fischer, Ji, Chang, Liu, Tolaymat, Telesca, Zink (bib36) 2014; 8
Manik, Nande, Raut, Dhoble (bib54) 2020; 6
Bedlovičová, Strapáč, Baláž, Salayová (bib18) 2020; 25
Ahmed, Ahmad, Swami, Ikram (bib4) 2016; 9
Singh, Sahu, Thangaraj (bib80) 2014; 1
Ahmed, Uddin, Quddus, Samad, Hossain, Haque (bib2) 2023; 9
Ameh, Gibb, Stevens, Pradhan, Braswell, Sayes (bib12) 2022; 12
Abishad, Vergis, Unni, Ram, Niveditha, Yasur, Juliet, John, Byrappa, Nambiar, Kurkure (bib1) 2022; 14
Hameed, Waheed, Sharif, Saleem, Afreen, Tariq, Kamal, Al-Onazi, Al Farraj, Ahmad, Mahmoud (bib29) 2023; 14
Jha, Prasad, Prasad, Kulkarni (bib38) 2009; 73
Lee, Lim, Velmurugan, Park, Park, Bang, Oh (bib50) 2016; 162
Shankar, Rai, Ahmad, Sastry (bib77) 2005; 17
Amargeetha, Velavan (bib11) 2018; 5
Khoshnamvand, Hao, Fadare, Hanachi, Chen, Liu (bib46) 2020; 258
Mohammed, Mohamed, El-Naggar, Mahrous, Nasr, Abdella, Ahmed, Irmak, Elsayed, Selim, Elkelish (bib56) 2022; 1
Scroccarello, Junior, Della Pelle, Ciancetta, Ferraro, Fratini, Valbonetti, Copez, Compagnone (bib74) 2021; 199
Sinha, Paul (bib81) 2015; 48
Solaimuthu, Vijayan, Murali, Korrapati (bib84) 2020; 13
Huq (bib34) 2020; 21
Singh, Singh, Kim, Mathiyalagan, Wang, Yang (bib79) 2016; 86
Bazrgaran, Mahmoodabadi, Ghasempour, Shafaie, Sahebkar, Eghbali (bib17) 2023; 6
Sasidharan, Namitha, Johnson, Jose, Mathew (bib72) 2020; 16
Malik, Muhammad, Waheed (bib53) 2023; 28
Bhusal, Pathak, Bhadel, Shrestha, Sharma (bib19) 2024; 10
Rautela, Rani (bib67) 2019; 10
Ali, Mahmoud, Abdalla, Hamouda, Aloufi, Almubaddil, Modafer, Hassan, Eissa, Zhu (bib8) 2024; 28
Shanmugam, Kalaiselvan, Selvakumar, Suresh, Rajendran (bib78) 2011; 2
Gupta, Rayeen, Mishra, Tripathi, Pathak (bib28) 2023; 4
Chiu, Che Mood, Mohamad Zain, Ramachandran, Yahaya, Nik Mohamed Kamal, Tung, Yong, Lee, Lim (bib22) 2021; 1
Mohammed Rahmatullah, Lutfor Rahman, Fatema Rehana, Marjina Akter Kalpana, Mst, Afsana Khatun, Jahan, Taufiq-ur-Rahman, Bashar, Azad (bib57) 2010; 4
Krishnaraj, Jagan, Rajasekar, Selvakumar, Kalaichelvan, Mohan (bib47) 2010; 76
Kandhasamy, Arunachalam (bib41) 2008; 3
Freitas, Müller (bib25) 1998; 168
Kharabi Masooleh, Ahmadikhah, Saidi (bib45) 2019; 13
Ali, Ahmed, Al-Ahmed (bib7) 2023; 13
Munyai, Tetana, Mathipa, Ntsendwana, Hintsho-Mbita (bib59) 2021; 247
Firoozi, Jamzad, Yari (bib24) 2016; 6
Seong, Lee (bib76) 2017; 74
Ali, Yahya, Sekaran, Puteh (bib9) 2016; 2016
He, Wang, Zhou (bib32) 2019; 648
Hussain, Singh, Singh, Singh, Singh (bib35) 2016; 38
Olabemiwo, Akintelu, Waheed, Okunlola, Akinwale, Adeyinka, Adeniji, Adebisi (bib61) 2021; 4
Pirtarighat, Ghannadnia, Baghshahi (bib65) 2019; 9
Arif, Uddin (bib14) 2021; 4
Dakal, Kumar, Majumdar, Yadav (bib23) 2016; 7
Kalimuthu, Cha, Kim, Park (bib40) 2020; 152
Kaviya, Santhanalakshmi, Viswanathan, Muthumary, Srinivasan (bib43) 2011; 79
Zhao, Liu, Cai, Han, Qian, Zhao (bib91) 2016; 100
Hazarika, Yadav, Yadav, Yadav (bib31) 2022; 43
Lee, Seung, Kwon, Choi, Kim, Choi (bib51) 2023; 8
Azeez, Lateef, Adebisi (bib15) 2017; 7
Guntur, Kumar, Hegde, Dirisala (bib27) 2018; 13
Lawal, Abdullahi, Ibrahim, Kurfi, Khalid, Nuhu (bib49) 2019; 2
Niluxsshun, Masilamani, Mathiventhan (bib60) 2021; 1
Wasilewska, Klekotka, Zambrzycka, Zambrowski, Święcicka, Kalska-Szostko (bib89) 2023; 400
Salmen, Alharbi (bib71) 2020; 13
Alahdal, Qashqoosh, Manea, Mohammed, Naqvi (bib5) 2023; 35
Azeez (10.1016/j.plana.2024.100113_bib15) 2017; 7
Kandiah (10.1016/j.plana.2024.100113_bib42) 2021; 1
Rautela (10.1016/j.plana.2024.100113_bib67) 2019; 10
Ahmed (10.1016/j.plana.2024.100113_bib3) 2016; 7
Ahmed (10.1016/j.plana.2024.100113_bib2) 2023; 9
Jayaprakash (10.1016/j.plana.2024.100113_bib37) 2017; 169
Ali (10.1016/j.plana.2024.100113_bib9) 2016; 2016
Saxena (10.1016/j.plana.2024.100113_bib73) 2012; 67
Qayyum (10.1016/j.plana.2024.100113_bib66) 2016; 10
Rizvi (10.1016/j.plana.2024.100113_bib69) 2018; 26
Manik (10.1016/j.plana.2024.100113_bib54) 2020; 6
Anandalakshmi (10.1016/j.plana.2024.100113_bib13) 2016; 6
Kharabi Masooleh (10.1016/j.plana.2024.100113_bib45) 2019; 13
Mohammed Rahmatullah (10.1016/j.plana.2024.100113_bib57) 2010; 4
Kandhasamy (10.1016/j.plana.2024.100113_bib41) 2008; 3
Urnukhsaikhan (10.1016/j.plana.2024.100113_bib86) 2021; 11
Pavlin (10.1016/j.plana.2024.100113_bib63) 2005; 88
Hussain (10.1016/j.plana.2024.100113_bib35) 2016; 38
Balasubramanian (10.1016/j.plana.2024.100113_bib16) 2020; 57
Alam (10.1016/j.plana.2024.100113_bib6) 2022; 34
Kalimuthu (10.1016/j.plana.2024.100113_bib40) 2020; 152
Shankar (10.1016/j.plana.2024.100113_bib77) 2005; 17
Sinha (10.1016/j.plana.2024.100113_bib82) 2015; 5
Lawal (10.1016/j.plana.2024.100113_bib49) 2019; 2
Alahdal (10.1016/j.plana.2024.100113_bib5) 2023; 35
Jin (10.1016/j.plana.2024.100113_bib39) 2024; 92
Shanmugam (10.1016/j.plana.2024.100113_bib78) 2011; 2
Vinayagam (10.1016/j.plana.2024.100113_bib87) 2021; 262
Guntur (10.1016/j.plana.2024.100113_bib27) 2018; 13
Harborne (10.1016/j.plana.2024.100113_bib30) 1998
Rezazadeh (10.1016/j.plana.2024.100113_bib68) 2020; 10
Malik (10.1016/j.plana.2024.100113_bib53) 2023; 28
Scroccarello (10.1016/j.plana.2024.100113_bib74) 2021; 199
Firoozi (10.1016/j.plana.2024.100113_bib24) 2016; 6
Bedlovičová (10.1016/j.plana.2024.100113_bib18) 2020; 25
Hemlata (10.1016/j.plana.2024.100113_bib33) 2020; 5
Huq (10.1016/j.plana.2024.100113_bib34) 2020; 21
Alphandéry (10.1016/j.plana.2024.100113_bib10) 2020; 586
Parashar (10.1016/j.plana.2024.100113_bib62) 2009; 4
Wang (10.1016/j.plana.2024.100113_bib88) 2021; 11
Munyai (10.1016/j.plana.2024.100113_bib59) 2021; 247
Pirtarighat (10.1016/j.plana.2024.100113_bib65) 2019; 9
Ahmed (10.1016/j.plana.2024.100113_bib4) 2016; 9
Lee (10.1016/j.plana.2024.100113_bib50) 2016; 162
Dakal (10.1016/j.plana.2024.100113_bib23) 2016; 7
Singh (10.1016/j.plana.2024.100113_bib80) 2014; 1
Amargeetha (10.1016/j.plana.2024.100113_bib11) 2018; 5
Hameed (10.1016/j.plana.2024.100113_bib29) 2023; 14
Mogole (10.1016/j.plana.2024.100113_bib55) 2021; 10
Çalhan (10.1016/j.plana.2024.100113_bib20) 2020; 44
Arif (10.1016/j.plana.2024.100113_bib14) 2021; 4
Ali (10.1016/j.plana.2024.100113_bib7) 2023; 13
Ivask (10.1016/j.plana.2024.100113_bib36) 2014; 8
Lalhminghlui (10.1016/j.plana.2024.100113_bib48) 2018; 4
Tippayawat (10.1016/j.plana.2024.100113_bib85) 2016; 4
Bhusal (10.1016/j.plana.2024.100113_bib19) 2024; 10
Jha (10.1016/j.plana.2024.100113_bib38) 2009; 73
Hazarika (10.1016/j.plana.2024.100113_bib31) 2022; 43
Bazrgaran (10.1016/j.plana.2024.100113_bib17) 2023; 6
Khoshnamvand (10.1016/j.plana.2024.100113_bib46) 2020; 258
Kaweeteerawat (10.1016/j.plana.2024.100113_bib44) 2017; 80
Saka (10.1016/j.plana.2024.100113_bib70) 2022; 12
Mohammed (10.1016/j.plana.2024.100113_bib56) 2022; 1
Salmen (10.1016/j.plana.2024.100113_bib71) 2020; 13
Ali (10.1016/j.plana.2024.100113_bib8) 2024; 28
Calvo (10.1016/j.plana.2024.100113_bib21) 2022; 12
Kaviya (10.1016/j.plana.2024.100113_bib43) 2011; 79
Niluxsshun (10.1016/j.plana.2024.100113_bib60) 2021; 1
Freitas (10.1016/j.plana.2024.100113_bib25) 1998; 168
Seong (10.1016/j.plana.2024.100113_bib76) 2017; 74
Abishad (10.1016/j.plana.2024.100113_bib1) 2022; 14
Li (10.1016/j.plana.2024.100113_bib52) 2015; 50
Solaimuthu (10.1016/j.plana.2024.100113_bib84) 2020; 13
Wasilewska (10.1016/j.plana.2024.100113_bib89) 2023; 400
Smekalova (10.1016/j.plana.2024.100113_bib83) 2016; 209
Olabemiwo (10.1016/j.plana.2024.100113_bib61) 2021; 4
Chiu (10.1016/j.plana.2024.100113_bib22) 2021; 1
Gupta (10.1016/j.plana.2024.100113_bib28) 2023; 4
Phuyal (10.1016/j.plana.2024.100113_bib64) 2022; 1
Sasidharan (10.1016/j.plana.2024.100113_bib72) 2020; 16
Xiang (10.1016/j.plana.2024.100113_bib90) 2019; 2
Selvaraj (10.1016/j.plana.2024.100113_bib75) 2021; 11
Sinha (10.1016/j.plana.2024.100113_bib81) 2015; 48
Molina-Hernández (10.1016/j.plana.2024.100113_bib58) 2022; 169
Singh (10.1016/j.plana.2024.100113_bib79) 2016; 86
Zhao (10.1016/j.plana.2024.100113_bib91) 2016; 100
Ameh (10.1016/j.plana.2024.100113_bib12) 2022; 12
Gudikandula (10.1016/j.plana.2024.100113_bib26) 2017; 2
He (10.1016/j.plana.2024.100113_bib32) 2019; 648
Krishnaraj (10.1016/j.plana.2024.100113_bib47) 2010; 76
Lee (10.1016/j.plana.2024.100113_bib51) 2023; 8
References_xml – volume: 88
  start-page: 4378
  year: 2005
  end-page: 4390
  ident: bib63
  article-title: Effect of cell electroporation on the conductivity of a cell suspension
  publication-title: Biophys. J.
– volume: 4
  year: 2016
  ident: bib85
  article-title: Green synthesis of silver nanoparticles in
  publication-title: Peer J.
– volume: 11
  start-page: 2227
  year: 2021
  end-page: 2234
  ident: bib75
  article-title: Green synthesis of magnetic α–Fe2O3 nanospheres using
  publication-title: Appl. Nanosci.
– volume: 2
  start-page: 4087
  year: 2019
  end-page: 4096
  ident: bib90
  article-title: Green synthesis of an alginate-coated silver nanoparticle shows high antifungal activity by enhancing its cell membrane penetrating ability
  publication-title: ACS Appl. Bio Mater.
– volume: 79
  start-page: 594
  year: 2011
  end-page: 598
  ident: bib43
  article-title: Biosynthesis of silver nanoparticles using
  publication-title: Spectrochim. Acta - A: Mol. Biomol.
– volume: 6
  start-page: 399
  year: 2016
  end-page: 408
  ident: bib13
  article-title: Characterization of silver nanoparticles by green synthesis method using
  publication-title: Appl. Nanosci.
– volume: 10
  year: 2024
  ident: bib19
  article-title: Synthesis of silver nanoparticles assisted by aqueous root and leaf extracts of
  publication-title: Heliyon
– volume: 76
  start-page: 50
  year: 2010
  end-page: 56
  ident: bib47
  article-title: Synthesis of silver nanoparticles using
  publication-title: Colloids Surf. B Biointerfaces
– volume: 73
  start-page: 219
  year: 2009
  end-page: 223
  ident: bib38
  article-title: Plant system: nature's nanofactory
  publication-title: Colloids Surf. B Biointerfaces
– volume: 11
  year: 2021
  ident: bib88
  article-title: Fungus-mediated green synthesis of nano-silver using
  publication-title: Sci. Rep.
– volume: 86
  start-page: 75
  year: 2016
  end-page: 83
  ident: bib79
  article-title: Extracellular synthesis of silver and gold nanoparticles by
  publication-title: Enzym. Microb. Technol.
– volume: 6
  year: 2020
  ident: bib54
  article-title: Green synthesis of silver nanoparticles using plant leaf extraction of
  publication-title: Results Mater.
– volume: 26
  start-page: 64
  year: 2018
  end-page: 70
  ident: bib69
  article-title: Applications of nanoparticle systems in drug delivery technology
  publication-title: Saudi Pharm. J.
– volume: 3
  start-page: 1
  year: 2008
  end-page: 7
  ident: bib41
  article-title: Efficacy of
  publication-title: Elect. J. Nat. Subs
– volume: 8
  start-page: 5209
  year: 2023
  end-page: 5224
  ident: bib51
  article-title: Nanomaterial-based synaptic optoelectronic devices for in-sensor preprocessing of image data
  publication-title: ACS Omega
– volume: 10
  start-page: 349
  year: 2016
  end-page: 357
  ident: bib66
  article-title: Biofabrication of broad range antibacterial and antibiofilm silver nanoparticles
  publication-title: IET Nanobiotechnol.
– volume: 48
  start-page: 600
  year: 2015
  end-page: 604
  ident: bib81
  article-title: Phytosynthesis of silver nanoparticles using
  publication-title: Spectrosc. Lett.
– volume: 2016
  start-page: 4102196
  year: 2016
  ident: bib9
  article-title: Green synthesis of silver nanoparticles using apple extract and its antibacterial properties
  publication-title: Adv. Mater. Sci. Eng.
– volume: 648
  start-page: 102
  year: 2019
  end-page: 108
  ident: bib32
  article-title: Transport and retention of silver nanoparticles in soil: Effects of input concentration, particle size and surface coating
  publication-title: Sci. Total Environ.
– volume: 13
  start-page: 183
  year: 2019
  end-page: 188
  ident: bib45
  article-title: Green synthesis of stable silver nanoparticles by the main reduction component of green tea
  publication-title: IET Nanobiotechnol.
– volume: 6
  year: 2023
  ident: bib17
  article-title: Facile bio-genic synthesis of
  publication-title: Plant Nano Biol.
– volume: 34
  year: 2022
  ident: bib6
  article-title: Analyses of biosynthesized silver nanoparticles produced from strawberry fruit pomace extracts in terms of biocompatibility, cytotoxicity, antioxidant ability, photodegradation, and in-silico studies
  publication-title: J. King Saud. Univ. Sci.
– volume: 4
  start-page: 45
  year: 2009
  end-page: 50
  ident: bib62
  article-title: leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization
  publication-title: Dig. J. Nanomater. Biostruct.
– volume: 262
  year: 2021
  ident: bib87
  article-title: Structural characterization of green synthesized magnetic mesoporous Fe
  publication-title: Mater. Chem. Phys.
– volume: 11
  year: 2021
  ident: bib86
  article-title: Antibacterial activity and characteristics of silver nanoparticles biosynthesized from
  publication-title: Sci. Rep.
– volume: 4
  start-page: 55
  year: 2010
  end-page: 64
  ident: bib57
  article-title: A scientific evaluation of medicinal plants used in the folk medicinal system of five villages in Narsinghdi district, Bangladesh
  publication-title: J. Sustain. Agric.
– volume: 162
  start-page: 93
  year: 2016
  end-page: 99
  ident: bib50
  article-title: Photobiologic-mediated fabrication of silver nanoparticles with antibacterial activity
  publication-title: J. Photochem. Photobiol. B
– volume: 1
  year: 2021
  ident: bib60
  article-title: Green synthesis of silver nanoparticles from the extracts of fruit peel of
  publication-title: Bioinorg. Chem. Appl.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 9
  ident: bib65
  article-title: Green synthesis of silver nanoparticles using the plant extract of
  publication-title: J. Nanostruct. Chem.
– volume: 5
  start-page: 5520
  year: 2020
  end-page: 5528
  ident: bib33
  article-title: Biosynthesis of silver nanoparticles using
  publication-title: ACS Omega
– volume: 400
  start-page: 33960
  year: 2023
  ident: bib89
  article-title: Physico-chemical properties and antimicrobial activity of silver nanoparticles fabricated by green synthesis
  publication-title: Food Chem.
– volume: 199
  year: 2021
  ident: bib74
  article-title: Effect of phenolic compounds-capped AgNPs on growth inhibition of
  publication-title: Colloids Surf. B Biointerfaces
– volume: 169
  start-page: 178
  year: 2017
  end-page: 185
  ident: bib37
  article-title: Green synthesis of Ag nanoparticles using Tamarind fruit extract for the antibacterial studies
  publication-title: J. Photochem. Photobiol. B.
– volume: 25
  start-page: 3191
  year: 2020
  ident: bib18
  article-title: A brief overview on antioxidant activity determination of silver nanoparticles
  publication-title: Molecules
– volume: 43
  year: 2022
  ident: bib31
  article-title: An overview of the role of nanoparticles in sustainable agriculture
  publication-title: Biocatal. Agric. Biotechnol.
– volume: 44
  start-page: 1587
  year: 2020
  end-page: 1600
  ident: bib20
  article-title: Biosynthesis of silver nanoparticles using
  publication-title: Turk. J. Chem.
– volume: 74
  start-page: 661
  year: 2017
  end-page: 670
  ident: bib76
  article-title: Silver nanoparticles against Salmonella enterica serotype typhimurium: role of inner membrane dysfunction
  publication-title: Curr. Microbiol.
– volume: 2
  start-page: 991
  year: 2011
  end-page: 994
  ident: bib78
  article-title: Ethnomedicinal plants used to cure diarrhoea and dysentery in Sivagangai district of Tamil Nadu, India
  publication-title: Int. J. Res. Ayurveda Pharm.
– volume: 13
  start-page: 2256
  year: 2023
  ident: bib7
  article-title: Green synthesis and characterization of silver nanoparticles for reducing the damage to sperm parameters in diabetic compared to metformin
  publication-title: Sci. Rep.
– volume: 209
  start-page: 174
  year: 2016
  end-page: 179
  ident: bib83
  article-title: Enhanced antibacterial effect of antibiotics in combination with silver nanoparticles against animal pathogens
  publication-title: Vet. J.
– volume: 4
  year: 2021
  ident: bib61
  article-title: Green synthesis of silver nanoparticles using stem bark extract of
  publication-title: CRGSC
– volume: 17
  start-page: 566
  year: 2005
  end-page: 572
  ident: bib77
  article-title: Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings
  publication-title: Chem. Mat.
– volume: 12
  year: 2022
  ident: bib21
  article-title: Size characterization of plasmonic nanoparticles with dark-field single particle spectrophotometry
  publication-title: Sci. Rep.
– volume: 16
  year: 2020
  ident: bib72
  article-title: Synthesis of silver and copper oxide nanoparticles using
  publication-title: Sustain. Chem. Pharm.
– volume: 1
  year: 2021
  ident: bib22
  article-title: Biogenic silver nanoparticles of
  publication-title: Bioinorg. Chem. Appl.
– volume: 57
  year: 2020
  ident: bib16
  article-title: Biogenic synthesis of gold nanoparticles using
  publication-title: J. Drug Del. Sci. Tech.
– volume: 100
  start-page: 245
  year: 2016
  end-page: 266
  ident: bib91
  article-title: An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation
  publication-title: Water Res.
– volume: 9
  start-page: 162
  year: 2023
  ident: bib2
  article-title: Impact of foliar application of zinc and zinc oxide nanoparticles on growth, yield, nutrient uptake and quality of tomato
  publication-title: Horticulture
– volume: 258
  year: 2020
  ident: bib46
  article-title: Toxicity of biosynthesized silver nanoparticles to aquatic organisms of different trophic levels
  publication-title: Chemosphere
– volume: 2
  start-page: 12
  year: 2019
  end-page: 21
  ident: bib49
  article-title: Phytochemical analysis and thin layer chromatography profiling of crude extracts from
  publication-title: JBBS
– volume: 12
  year: 2022
  ident: bib70
  article-title: Biosynthesis of TiO
  publication-title: Sci. Rep.
– volume: 13
  start-page: 84
  year: 2020
  end-page: 93
  ident: bib84
  article-title: Nano-biosensors and their relevance in tissue engineering
  publication-title: Curr. Opin. Biomed. Eng.
– volume: 7
  start-page: 1831
  year: 2016
  ident: bib23
  article-title: Mechanistic basis of antimicrobial actions of silver nanoparticles
  publication-title: Front. Microbiol.
– volume: 80
  start-page: 1276
  year: 2017
  end-page: 1289
  ident: bib44
  article-title: Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles
  publication-title: J. Toxicol. Environ. Health
– volume: 4
  year: 2018
  ident: bib48
  article-title: Evaluation of the free-radical scavenging and antioxidant activities of Chilauni,
  publication-title: Future Sci. OA
– volume: 168
  start-page: 221
  year: 1998
  end-page: 229
  ident: bib25
  article-title: Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLNTM) dispersions
  publication-title: Int. J. Pharm.
– volume: 586
  year: 2020
  ident: bib10
  article-title: Bio-synthesized iron oxide nanoparticles for cancer treatment
  publication-title: Int. J. Pharm.
– volume: 1
  year: 2022
  ident: bib56
  article-title: Antioxidant and antibacterial activities of silver nanoparticles biosynthesized by
  publication-title: J. Nanomater.
– volume: 169
  year: 2022
  ident: bib58
  article-title: Synergistic antifungal activity of catechin and silver nanoparticles on
  publication-title: Lwt
– volume: 38
  start-page: 545
  year: 2016
  end-page: 560
  ident: bib35
  article-title: Green synthesis of nanoparticles and its potential application
  publication-title: Biotechnol. Lett.
– volume: 28
  start-page: 661
  year: 2023
  ident: bib53
  article-title: Nanotechnology: A revolution in modern industry
  publication-title: Molecules
– volume: 21
  start-page: 1510
  year: 2020
  ident: bib34
  article-title: Green synthesis of silver nanoparticles using
  publication-title: Int. J. Mol. Sci.
– volume: 247
  year: 2021
  ident: bib59
  article-title: Green synthesis of Cadmium Sulphide nanoparticles for the photodegradation of Malachite green dye, Sulfisoxazole and removal of bacteria
  publication-title: Optik
– volume: 4
  year: 2023
  ident: bib28
  article-title: Nanotechnology applications in sustainable agriculture: An emerging eco-friendly approach
  publication-title: Plant Nano Biol.
– volume: 14
  start-page: 928
  year: 2023
  ident: bib29
  article-title: Green synthesis of zinc oxide (ZnO) nanoparticles from green algae and their assessment in various biological applications
  publication-title: Micromachines
– volume: 8
  start-page: 374
  year: 2014
  end-page: 386
  ident: bib36
  article-title: Toxicity mechanisms in
  publication-title: ACS Nano
– volume: 5
  start-page: 703
  year: 2015
  end-page: 709
  ident: bib82
  article-title: Green synthesis of silver nanoparticles using fresh water green alga
  publication-title: Appl. Nanosci.
– volume: 1
  year: 2021
  ident: bib42
  article-title: Green synthesis of silver nanoparticles using
  publication-title: J. Nanotechnol.
– volume: 50
  start-page: 357
  year: 2015
  end-page: 366
  ident: bib52
  article-title: Green synthesis of gallic acid-coated silver nanoparticles with high antimicrobial activity and low cytotoxicity to normal cells
  publication-title: Process Biochem.
– volume: 4
  year: 2021
  ident: bib14
  article-title: A review on recent developments in the biosynthesis of silver nanoparticles and its biomedical applications
  publication-title: MDS
– volume: 28
  year: 2024
  ident: bib8
  article-title: Green synthesis of bio-mediated silver nanoparticles from
  publication-title: J. Saudi Chem. Soc.
– volume: 10
  year: 2020
  ident: bib68
  article-title: Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalized silver nanoparticles
  publication-title: Sci. Rep.
– volume: 92
  year: 2024
  ident: bib39
  article-title: Comparative studies on antibacterial, antibiofilm, antioxidant, and cytotoxicity properties of chemically and
  publication-title: J. Drug Del. Sci. Tech.
– volume: 1
  year: 2022
  ident: bib64
  article-title: Biosynthesis of silver nanoparticles from
  publication-title: J. Nanomater.
– volume: 13
  year: 2018
  ident: bib27
  article-title: In vitro studies of the antimicrobial and free-radical scavenging potentials of silver nanoparticles biosynthesized from the extract of
  publication-title: Anal. Chem. Insights
– volume: 9
  start-page: 1
  year: 2016
  end-page: 7
  ident: bib4
  article-title: Green synthesis of silver nanoparticles using
  publication-title: J. Rad. Res. Appl. Sci.
– volume: 152
  year: 2020
  ident: bib40
  article-title: Eco-friendly synthesis and biomedical applications of gold nanoparticles: a review
  publication-title: Microchem. J.
– volume: 7
  start-page: 17
  year: 2016
  end-page: 28
  ident: bib3
  article-title: A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise
  publication-title: J. Adv. Res.
– volume: 2
  start-page: 64
  year: 2017
  end-page: 78
  ident: bib26
  article-title: Biogenic synthesis of silver nanoparticles from white rot fungi: Their characterization and antibacterial studies
  publication-title: Open Nano
– volume: 13
  start-page: 1
  year: 2020
  end-page: 5
  ident: bib71
  article-title: Silver nanoparticles synthesized biogenically from
  publication-title: Green. Chem. Lett. Rev.
– volume: 10
  start-page: 851
  year: 2021
  end-page: 859
  ident: bib55
  article-title: Green synthesis of silver nanoparticles using aqueous extract of
  publication-title: Green. Process. Synth.
– volume: 5
  start-page: 1
  year: 2018
  end-page: 5
  ident: bib11
  article-title: X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis of silver nanoparticles synthesized from
  publication-title: Nanosci. Technol.
– year: 1998
  ident: bib30
  article-title: Phytochemical methods a guide to modern techniques of plant analysis
– volume: 1
  year: 2014
  ident: bib80
  article-title: Biosynthesis of silver nanoparticles by marine invertebrate (polychaete) and assessment of its efficacy against human pathogens
  publication-title: J. Nanopart.
– volume: 7
  start-page: 59
  year: 2017
  end-page: 66
  ident: bib15
  article-title: Silver nanoparticles (AgNPs) biosynthesized using pod extract of
  publication-title: Appl. Nanosci.
– volume: 10
  start-page: 5
  year: 2019
  ident: bib67
  article-title: Green synthesis of silver nanoparticles from
  publication-title: J. Anal. Sci. Technol.
– volume: 14
  start-page: 904
  year: 2022
  end-page: 914
  ident: bib1
  article-title: Green synthesized silver nanoparticles using
  publication-title: Probiotics Antimicro
– volume: 12
  start-page: 2402
  year: 2022
  ident: bib12
  article-title: Silver and copper nanoparticles induce oxidative stress in bacteria and mammalian cells
  publication-title: Nanomater
– volume: 35
  year: 2023
  ident: bib5
  article-title: Green synthesis and characterization of copper nanoparticles using
  publication-title: SMT
– volume: 6
  start-page: 357
  year: 2016
  end-page: 364
  ident: bib24
  article-title: Biologically synthesized silver nanoparticles by aqueous extract of
  publication-title: J. Nanostruct. Chem.
– volume: 67
  start-page: 91
  year: 2012
  end-page: 94
  ident: bib73
  article-title: Green synthesis of silver nanoparticles using aqueous solution of
  publication-title: Mater. Lett.
– volume: 1
  year: 2022
  ident: 10.1016/j.plana.2024.100113_bib64
  article-title: Biosynthesis of silver nanoparticles from Rhododendron arboreum for metal sensing, antibacterial assessment, and photocatalytic degradation
  publication-title: J. Nanomater.
– volume: 199
  year: 2021
  ident: 10.1016/j.plana.2024.100113_bib74
  article-title: Effect of phenolic compounds-capped AgNPs on growth inhibition of Aspergillus niger
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2020.111533
– volume: 169
  year: 2022
  ident: 10.1016/j.plana.2024.100113_bib58
  article-title: Synergistic antifungal activity of catechin and silver nanoparticles on Aspergillus niger isolated from coffee seeds
  publication-title: Lwt
  doi: 10.1016/j.lwt.2022.113990
– volume: 13
  start-page: 1
  year: 2020
  ident: 10.1016/j.plana.2024.100113_bib71
  article-title: Silver nanoparticles synthesized biogenically from Aloe fleurentiniorum extract: characterization and antibacterial activity
  publication-title: Green. Chem. Lett. Rev.
  doi: 10.1080/17518253.2019.1707883
– volume: 16
  year: 2020
  ident: 10.1016/j.plana.2024.100113_bib72
  article-title: Synthesis of silver and copper oxide nanoparticles using Myristica fragrans fruit extract: Antimicrobial and catalytic applications
  publication-title: Sustain. Chem. Pharm.
– volume: 80
  start-page: 1276
  issue: 23-24
  year: 2017
  ident: 10.1016/j.plana.2024.100113_bib44
  article-title: Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles
  publication-title: J. Toxicol. Environ. Health
  doi: 10.1080/15287394.2017.1376727
– volume: 258
  year: 2020
  ident: 10.1016/j.plana.2024.100113_bib46
  article-title: Toxicity of biosynthesized silver nanoparticles to aquatic organisms of different trophic levels
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.127346
– volume: 10
  issue: 13
  year: 2024
  ident: 10.1016/j.plana.2024.100113_bib19
  article-title: Synthesis of silver nanoparticles assisted by aqueous root and leaf extracts of Rhus chinensis Mill and its antibacterial activity
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e33603
– volume: 2
  start-page: 12
  issue: 1
  year: 2019
  ident: 10.1016/j.plana.2024.100113_bib49
  article-title: Phytochemical analysis and thin layer chromatography profiling of crude extracts from Senna occidentalis (leaves)
  publication-title: JBBS
  doi: 10.14302/issn.2576-6694.jbbs-19-2791
– volume: 4
  year: 2016
  ident: 10.1016/j.plana.2024.100113_bib85
  article-title: Green synthesis of silver nanoparticles in Aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity
  publication-title: Peer J.
  doi: 10.7717/peerj.2589
– volume: 5
  start-page: 1
  year: 2018
  ident: 10.1016/j.plana.2024.100113_bib11
  article-title: X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis of silver nanoparticles synthesized from Erythrina indica flowers
  publication-title: Nanosci. Technol.
– volume: 1
  year: 2014
  ident: 10.1016/j.plana.2024.100113_bib80
  article-title: Biosynthesis of silver nanoparticles by marine invertebrate (polychaete) and assessment of its efficacy against human pathogens
  publication-title: J. Nanopart.
– volume: 209
  start-page: 174
  year: 2016
  ident: 10.1016/j.plana.2024.100113_bib83
  article-title: Enhanced antibacterial effect of antibiotics in combination with silver nanoparticles against animal pathogens
  publication-title: Vet. J.
  doi: 10.1016/j.tvjl.2015.10.032
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.plana.2024.100113_bib65
  article-title: Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment
  publication-title: J. Nanostruct. Chem.
  doi: 10.1007/s40097-018-0291-4
– volume: 34
  issue: 8
  year: 2022
  ident: 10.1016/j.plana.2024.100113_bib6
  article-title: Analyses of biosynthesized silver nanoparticles produced from strawberry fruit pomace extracts in terms of biocompatibility, cytotoxicity, antioxidant ability, photodegradation, and in-silico studies
  publication-title: J. King Saud. Univ. Sci.
  doi: 10.1016/j.jksus.2022.102327
– volume: 1
  year: 2021
  ident: 10.1016/j.plana.2024.100113_bib42
  article-title: Green synthesis of silver nanoparticles using Catharanthus roseus flower extracts and the determination of their antioxidant, antimicrobial, and photocatalytic activity
  publication-title: J. Nanotechnol.
– volume: 13
  start-page: 84
  year: 2020
  ident: 10.1016/j.plana.2024.100113_bib84
  article-title: Nano-biosensors and their relevance in tissue engineering
  publication-title: Curr. Opin. Biomed. Eng..
  doi: 10.1016/j.cobme.2019.12.005
– volume: 38
  start-page: 545
  year: 2016
  ident: 10.1016/j.plana.2024.100113_bib35
  article-title: Green synthesis of nanoparticles and its potential application
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-015-2026-7
– volume: 28
  start-page: 661
  issue: 2
  year: 2023
  ident: 10.1016/j.plana.2024.100113_bib53
  article-title: Nanotechnology: A revolution in modern industry
  publication-title: Molecules
  doi: 10.3390/molecules28020661
– volume: 4
  start-page: 45
  issue: 1
  year: 2009
  ident: 10.1016/j.plana.2024.100113_bib62
  article-title: Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization
  publication-title: Dig. J. Nanomater. Biostruct.
– volume: 14
  start-page: 928
  issue: 5
  year: 2023
  ident: 10.1016/j.plana.2024.100113_bib29
  article-title: Green synthesis of zinc oxide (ZnO) nanoparticles from green algae and their assessment in various biological applications
  publication-title: Micromachines
  doi: 10.3390/mi14050928
– volume: 88
  start-page: 4378
  issue: 6
  year: 2005
  ident: 10.1016/j.plana.2024.100113_bib63
  article-title: Effect of cell electroporation on the conductivity of a cell suspension
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.104.048975
– volume: 74
  start-page: 661
  year: 2017
  ident: 10.1016/j.plana.2024.100113_bib76
  article-title: Silver nanoparticles against Salmonella enterica serotype typhimurium: role of inner membrane dysfunction
  publication-title: Curr. Microbiol.
  doi: 10.1007/s00284-017-1235-9
– volume: 100
  start-page: 245
  year: 2016
  ident: 10.1016/j.plana.2024.100113_bib91
  article-title: An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.05.019
– volume: 67
  start-page: 91
  year: 2012
  ident: 10.1016/j.plana.2024.100113_bib73
  article-title: Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2011.09.038
– volume: 11
  start-page: 2227
  issue: 8
  year: 2021
  ident: 10.1016/j.plana.2024.100113_bib75
  article-title: Green synthesis of magnetic α–Fe2O3 nanospheres using Bridelia retusa leaf extract for Fenton-like degradation of crystal violet dye
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-021-01952-y
– volume: 6
  start-page: 399
  year: 2016
  ident: 10.1016/j.plana.2024.100113_bib13
  article-title: Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-015-0449-z
– volume: 2
  start-page: 64
  year: 2017
  ident: 10.1016/j.plana.2024.100113_bib26
  article-title: Biogenic synthesis of silver nanoparticles from white rot fungi: Their characterization and antibacterial studies
  publication-title: Open Nano
– volume: 3
  start-page: 1
  year: 2008
  ident: 10.1016/j.plana.2024.100113_bib41
  article-title: Efficacy of Typhonium trilobatum (L.) Schott tuber extracts on pathogenic bacteria
  publication-title: Elect. J. Nat. Subs
– year: 1998
  ident: 10.1016/j.plana.2024.100113_bib30
– volume: 35
  year: 2023
  ident: 10.1016/j.plana.2024.100113_bib5
  article-title: Green synthesis and characterization of copper nanoparticles using Phragmanthera austroarabica extract and their biological/environmental applications
  publication-title: SMT
– volume: 17
  start-page: 566
  issue: 3
  year: 2005
  ident: 10.1016/j.plana.2024.100113_bib77
  article-title: Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings
  publication-title: Chem. Mat.
  doi: 10.1021/cm048292g
– volume: 14
  start-page: 904
  issue: 5
  year: 2022
  ident: 10.1016/j.plana.2024.100113_bib1
  article-title: Green synthesized silver nanoparticles using Lactobacillus acidophilus as an antioxidant, antimicrobial, and antibiofilm agent against multi-drug resistant enteroaggregative Escherichia coli
  publication-title: Probiotics Antimicro
  doi: 10.1007/s12602-022-09961-1
– volume: 9
  start-page: 162
  issue: 2
  year: 2023
  ident: 10.1016/j.plana.2024.100113_bib2
  article-title: Impact of foliar application of zinc and zinc oxide nanoparticles on growth, yield, nutrient uptake and quality of tomato
  publication-title: Horticulture
  doi: 10.3390/horticulturae9020162
– volume: 7
  start-page: 17
  issue: 1
  year: 2016
  ident: 10.1016/j.plana.2024.100113_bib3
  article-title: A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2015.02.007
– volume: 12
  year: 2022
  ident: 10.1016/j.plana.2024.100113_bib70
  article-title: Biosynthesis of TiO2 nanoparticles by Caricaceae (Papaya) shell extracts for antifungal application
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-19440-w
– volume: 11
  issue: 1
  year: 2021
  ident: 10.1016/j.plana.2024.100113_bib88
  article-title: Fungus-mediated green synthesis of nano-silver using Aspergillus sydowii and its antifungal/antiproliferative activities
  publication-title: Sci. Rep.
– volume: 7
  start-page: 1831
  year: 2016
  ident: 10.1016/j.plana.2024.100113_bib23
  article-title: Mechanistic basis of antimicrobial actions of silver nanoparticles
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.01831
– volume: 92
  year: 2024
  ident: 10.1016/j.plana.2024.100113_bib39
  article-title: Comparative studies on antibacterial, antibiofilm, antioxidant, and cytotoxicity properties of chemically and Paeonia lactiflora extract-assisted synthesized silver nitroprusside nanoparticles
  publication-title: J. Drug Del. Sci. Tech.
– volume: 2
  start-page: 4087
  year: 2019
  ident: 10.1016/j.plana.2024.100113_bib90
  article-title: Green synthesis of an alginate-coated silver nanoparticle shows high antifungal activity by enhancing its cell membrane penetrating ability
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.9b00590
– volume: 2
  start-page: 991
  year: 2011
  ident: 10.1016/j.plana.2024.100113_bib78
  article-title: Ethnomedicinal plants used to cure diarrhoea and dysentery in Sivagangai district of Tamil Nadu, India
  publication-title: Int. J. Res. Ayurveda Pharm.
– volume: 8
  start-page: 5209
  issue: 6
  year: 2023
  ident: 10.1016/j.plana.2024.100113_bib51
  article-title: Nanomaterial-based synaptic optoelectronic devices for in-sensor preprocessing of image data
  publication-title: ACS Omega
  doi: 10.1021/acsomega.3c00440
– volume: 586
  year: 2020
  ident: 10.1016/j.plana.2024.100113_bib10
  article-title: Bio-synthesized iron oxide nanoparticles for cancer treatment
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2020.119472
– volume: 1
  year: 2022
  ident: 10.1016/j.plana.2024.100113_bib56
  article-title: Antioxidant and antibacterial activities of silver nanoparticles biosynthesized by Moringa oleifera through response surface methodology
  publication-title: J. Nanomater.
– volume: 169
  start-page: 178
  year: 2017
  ident: 10.1016/j.plana.2024.100113_bib37
  article-title: Green synthesis of Ag nanoparticles using Tamarind fruit extract for the antibacterial studies
  publication-title: J. Photochem. Photobiol. B.
  doi: 10.1016/j.jphotobiol.2017.03.013
– volume: 5
  start-page: 703
  year: 2015
  ident: 10.1016/j.plana.2024.100113_bib82
  article-title: Green synthesis of silver nanoparticles using fresh water green alga Pithophora oedogonia (Mont.) Wittrock and evaluation of their antibacterial activity
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-014-0366-6
– volume: 73
  start-page: 219
  issue: 2
  year: 2009
  ident: 10.1016/j.plana.2024.100113_bib38
  article-title: Plant system: nature's nanofactory
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2009.05.018
– volume: 8
  start-page: 374
  issue: 1
  year: 2014
  ident: 10.1016/j.plana.2024.100113_bib36
  article-title: Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver
  publication-title: ACS Nano
  doi: 10.1021/nn4044047
– volume: 400
  start-page: 33960
  year: 2023
  ident: 10.1016/j.plana.2024.100113_bib89
  article-title: Physico-chemical properties and antimicrobial activity of silver nanoparticles fabricated by green synthesis
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2022.133960
– volume: 21
  start-page: 1510
  issue: 4
  year: 2020
  ident: 10.1016/j.plana.2024.100113_bib34
  article-title: Green synthesis of silver nanoparticles using Pseudoduganella eburnea MAHUQ-39 and their antimicrobial mechanisms investigation against drug resistant human pathogens
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21041510
– volume: 152
  year: 2020
  ident: 10.1016/j.plana.2024.100113_bib40
  article-title: Eco-friendly synthesis and biomedical applications of gold nanoparticles: a review
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2019.104296
– volume: 4
  issue: 2
  year: 2018
  ident: 10.1016/j.plana.2024.100113_bib48
  article-title: Evaluation of the free-radical scavenging and antioxidant activities of Chilauni, Schima wallichii Korth in vitro
  publication-title: Future Sci. OA
  doi: 10.4155/fsoa-2017-0086
– volume: 1
  year: 2021
  ident: 10.1016/j.plana.2024.100113_bib60
  article-title: Green synthesis of silver nanoparticles from the extracts of fruit peel of Citrus tangerina, Citrus sinensis, and Citrus limon for antibacterial activities
  publication-title: Bioinorg. Chem. Appl.
– volume: 13
  start-page: 2256
  issue: 1
  year: 2023
  ident: 10.1016/j.plana.2024.100113_bib7
  article-title: Green synthesis and characterization of silver nanoparticles for reducing the damage to sperm parameters in diabetic compared to metformin
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-29412-3
– volume: 4
  start-page: 55
  year: 2010
  ident: 10.1016/j.plana.2024.100113_bib57
  article-title: A scientific evaluation of medicinal plants used in the folk medicinal system of five villages in Narsinghdi district, Bangladesh
  publication-title: J. Sustain. Agric.
– volume: 10
  start-page: 5
  year: 2019
  ident: 10.1016/j.plana.2024.100113_bib67
  article-title: Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms
  publication-title: J. Anal. Sci. Technol.
  doi: 10.1186/s40543-018-0163-z
– volume: 10
  start-page: 349
  issue: 5
  year: 2016
  ident: 10.1016/j.plana.2024.100113_bib66
  article-title: Biofabrication of broad range antibacterial and antibiofilm silver nanoparticles
  publication-title: IET Nanobiotechnol.
  doi: 10.1049/iet-nbt.2015.0091
– volume: 76
  start-page: 50
  year: 2010
  ident: 10.1016/j.plana.2024.100113_bib47
  article-title: Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2009.10.008
– volume: 12
  start-page: 2402
  issue: 14
  year: 2022
  ident: 10.1016/j.plana.2024.100113_bib12
  article-title: Silver and copper nanoparticles induce oxidative stress in bacteria and mammalian cells
  publication-title: Nanomater
  doi: 10.3390/nano12142402
– volume: 262
  year: 2021
  ident: 10.1016/j.plana.2024.100113_bib87
  article-title: Structural characterization of green synthesized magnetic mesoporous Fe3O4NPs@ ME
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2021.124323
– volume: 9
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.plana.2024.100113_bib4
  article-title: Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract
  publication-title: J. Rad. Res. Appl. Sci.
– volume: 247
  year: 2021
  ident: 10.1016/j.plana.2024.100113_bib59
  article-title: Green synthesis of Cadmium Sulphide nanoparticles for the photodegradation of Malachite green dye, Sulfisoxazole and removal of bacteria
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.167851
– volume: 26
  start-page: 64
  issue: 1
  year: 2018
  ident: 10.1016/j.plana.2024.100113_bib69
  article-title: Applications of nanoparticle systems in drug delivery technology
  publication-title: Saudi Pharm. J.
  doi: 10.1016/j.jsps.2017.10.012
– volume: 48
  start-page: 600
  issue: 8
  year: 2015
  ident: 10.1016/j.plana.2024.100113_bib81
  article-title: Phytosynthesis of silver nanoparticles using Andrographis paniculata leaf extract and evaluation of their antibacterial activities
  publication-title: Spectrosc. Lett.
  doi: 10.1080/00387010.2014.938756
– volume: 1
  year: 2021
  ident: 10.1016/j.plana.2024.100113_bib22
  article-title: Biogenic silver nanoparticles of Clinacanthus nutans as antioxidant with antimicrobial and cytotoxic effects
  publication-title: Bioinorg. Chem. Appl.
– volume: 2016
  start-page: 4102196
  issue: 1
  year: 2016
  ident: 10.1016/j.plana.2024.100113_bib9
  article-title: Green synthesis of silver nanoparticles using apple extract and its antibacterial properties
  publication-title: Adv. Mater. Sci. Eng.
– volume: 4
  issue: 1
  year: 2021
  ident: 10.1016/j.plana.2024.100113_bib14
  article-title: A review on recent developments in the biosynthesis of silver nanoparticles and its biomedical applications
  publication-title: MDS
– volume: 11
  issue: 1
  year: 2021
  ident: 10.1016/j.plana.2024.100113_bib86
  article-title: Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-00520-2
– volume: 648
  start-page: 102
  year: 2019
  ident: 10.1016/j.plana.2024.100113_bib32
  article-title: Transport and retention of silver nanoparticles in soil: Effects of input concentration, particle size and surface coating
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.08.136
– volume: 28
  issue: 3
  year: 2024
  ident: 10.1016/j.plana.2024.100113_bib8
  article-title: Green synthesis of bio-mediated silver nanoparticles from Persea americana peels extract and evaluation of their biological activities: In vitro and in silico insights
  publication-title: J. Saudi Chem. Soc.
  doi: 10.1016/j.jscs.2024.101863
– volume: 44
  start-page: 1587
  issue: 6
  year: 2020
  ident: 10.1016/j.plana.2024.100113_bib20
  article-title: Biosynthesis of silver nanoparticles using Onosma sericeum Willd. and evaluation of their catalytic properties and antibacterial and cytotoxic activity
  publication-title: Turk. J. Chem.
  doi: 10.3906/kim-2007-1
– volume: 4
  year: 2021
  ident: 10.1016/j.plana.2024.100113_bib61
  article-title: Green synthesis of silver nanoparticles using stem bark extract of Annona senegalensis: characterization and its antibacterial potency
  publication-title: CRGSC
– volume: 6
  start-page: 357
  year: 2016
  ident: 10.1016/j.plana.2024.100113_bib24
  article-title: Biologically synthesized silver nanoparticles by aqueous extract of Satureja intermedia CA Mey and the evaluation of total phenolic and flavonoid contents and antioxidant activity
  publication-title: J. Nanostruct. Chem.
  doi: 10.1007/s40097-016-0207-0
– volume: 10
  year: 2020
  ident: 10.1016/j.plana.2024.100113_bib68
  article-title: Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalized silver nanoparticles
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-76726-7
– volume: 4
  year: 2023
  ident: 10.1016/j.plana.2024.100113_bib28
  article-title: Nanotechnology applications in sustainable agriculture: An emerging eco-friendly approach
  publication-title: Plant Nano Biol.
  doi: 10.1016/j.plana.2023.100033
– volume: 13
  year: 2018
  ident: 10.1016/j.plana.2024.100113_bib27
  article-title: In vitro studies of the antimicrobial and free-radical scavenging potentials of silver nanoparticles biosynthesized from the extract of Desmostachya bipinnata
  publication-title: Anal. Chem. Insights
  doi: 10.1177/1177390118782877
– volume: 43
  year: 2022
  ident: 10.1016/j.plana.2024.100113_bib31
  article-title: An overview of the role of nanoparticles in sustainable agriculture
  publication-title: Biocatal. Agric. Biotechnol.
  doi: 10.1016/j.bcab.2022.102399
– volume: 5
  start-page: 5520
  issue: 10
  year: 2020
  ident: 10.1016/j.plana.2024.100113_bib33
  article-title: Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c00155
– volume: 7
  start-page: 59
  year: 2017
  ident: 10.1016/j.plana.2024.100113_bib15
  article-title: Silver nanoparticles (AgNPs) biosynthesized using pod extract of Cola nitida enhances antioxidant activity and phytochemical composition of Amaranthus caudatus Linn
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-017-0546-2
– volume: 6
  year: 2023
  ident: 10.1016/j.plana.2024.100113_bib17
  article-title: Facile bio-genic synthesis of Astragalus sarcocolla (Anzaroot) gum extract mediated silver nanoparticles: characterizations, antimicrobial and antioxidant activities
  publication-title: Plant Nano Biol.
  doi: 10.1016/j.plana.2023.100052
– volume: 168
  start-page: 221
  year: 1998
  ident: 10.1016/j.plana.2024.100113_bib25
  article-title: Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLNTM) dispersions
  publication-title: Int. J. Pharm.
  doi: 10.1016/S0378-5173(98)00092-1
– volume: 12
  issue: 1
  year: 2022
  ident: 10.1016/j.plana.2024.100113_bib21
  article-title: Size characterization of plasmonic nanoparticles with dark-field single particle spectrophotometry
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-21649-8
– volume: 50
  start-page: 357
  year: 2015
  ident: 10.1016/j.plana.2024.100113_bib52
  article-title: Green synthesis of gallic acid-coated silver nanoparticles with high antimicrobial activity and low cytotoxicity to normal cells
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2015.01.002
– volume: 162
  start-page: 93
  year: 2016
  ident: 10.1016/j.plana.2024.100113_bib50
  article-title: Photobiologic-mediated fabrication of silver nanoparticles with antibacterial activity
  publication-title: J. Photochem. Photobiol. B
  doi: 10.1016/j.jphotobiol.2016.06.029
– volume: 10
  start-page: 851
  issue: 1
  year: 2021
  ident: 10.1016/j.plana.2024.100113_bib55
  article-title: Green synthesis of silver nanoparticles using aqueous extract of Citrus sinensis peels and evaluation of their antibacterial efficacy
  publication-title: Green. Process. Synth.
  doi: 10.1515/gps-2021-0061
– volume: 57
  year: 2020
  ident: 10.1016/j.plana.2024.100113_bib16
  article-title: Biogenic synthesis of gold nanoparticles using Jasminum auriculatum leaf extract and their catalytic, antimicrobial and anticancer activities
  publication-title: J. Drug Del. Sci. Tech.
– volume: 25
  start-page: 3191
  issue: 14
  year: 2020
  ident: 10.1016/j.plana.2024.100113_bib18
  article-title: A brief overview on antioxidant activity determination of silver nanoparticles
  publication-title: Molecules
  doi: 10.3390/molecules25143191
– volume: 6
  year: 2020
  ident: 10.1016/j.plana.2024.100113_bib54
  article-title: Green synthesis of silver nanoparticles using plant leaf extraction of Artocarpus heterophylus and Azadirachta indica
  publication-title: Results Mater.
– volume: 79
  start-page: 594
  year: 2011
  ident: 10.1016/j.plana.2024.100113_bib43
  article-title: Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity
  publication-title: Spectrochim. Acta - A: Mol. Biomol.
  doi: 10.1016/j.saa.2011.03.040
– volume: 13
  start-page: 183
  year: 2019
  ident: 10.1016/j.plana.2024.100113_bib45
  article-title: Green synthesis of stable silver nanoparticles by the main reduction component of green tea (Camellia sinensis L.)
  publication-title: IET Nanobiotechnol.
  doi: 10.1049/iet-nbt.2018.5141
– volume: 86
  start-page: 75
  year: 2016
  ident: 10.1016/j.plana.2024.100113_bib79
  article-title: Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications
  publication-title: Enzym. Microb. Technol.
  doi: 10.1016/j.enzmictec.2016.02.005
SSID ssj0002923730
Score 2.2728534
Snippet Understanding the properties of silver nanoparticles (AgNPs) is noteworthy for the development of novel antimicrobial agents. Here AgNPs were procured through...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 100113
SubjectTerms Antibacterial activity
Antioxidant potentiality
Cell membrane permeability
Plant-mediated AgNPs
Typhonium trilobatum
Title Untying the antimicrobial and antioxidant potential of silver nanoparticles fabricated from Typhonium trilobatum (L.) Schott
URI https://dx.doi.org/10.1016/j.plana.2024.100113
https://doaj.org/article/885f05360ff847a1bc904e1053282b6b
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJy-iqLi-yMGDgtU-k_aosssiricX9lbyKlbcdlmz4EH87c6krdSLXry0IU2T8k2amYGZbwg5Y4lMRJYVXqB57IE-Dj1pMuaJCCvdBlJpV6Zz-sgms_h-nsx7pb4wJqyhB26Au07TpICNwvyigINUwNuZH5sACxqkoWQST1_QeT1nCs_gEOwW2LsdzZAL6Fq-igqZhsLYEQ8F0Q9V5Bj7exqpp2XG22SrNQ_pTfNZO2TDVLvkY1ZZzEaiYKxRQKJclI4-CQaKSrue-r3UcKfL2mL4DzypC_pWYtgzrUQFnnEbAEcLIV1lIKMpppZQcESf4b9eL6hdlcgOYqF5_nB1QZGg09o9MhuPnu4mXls1wVMRiy3yjYYylGDX-JHkXKkkkQK8EhFnQseBFokAswPQ1CAk5SsAFRqJKIKCZwxw2yeDqq7MAaFRahiPZKgCJmOVmpQbowLDuQGRpJoNyWUHYL5syDHyLmrsJXd454h33uA9JLcI8vdQZLZ2HSDvvIUh_0veQ8I6EeWtkdAof5iq_G31w_9Y_Yhs4pRNMuIxGdjV2pyAVWLlqduAcJ1-jr4Ai9zhYA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Untying+the+antimicrobial+and+antioxidant+potential+of+silver+nanoparticles+fabricated+from+Typhonium+trilobatum+%28L.%29+Schott&rft.jtitle=Plant+Nano+Biology&rft.au=Sushree+Ghosh&rft.au=Sankar+Narayan+Sinha&rft.date=2024-11-01&rft.pub=Elsevier&rft.eissn=2773-1111&rft.volume=10&rft.spage=100113&rft_id=info:doi/10.1016%2Fj.plana.2024.100113&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_885f05360ff847a1bc904e1053282b6b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2773-1111&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2773-1111&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2773-1111&client=summon