Untying the antimicrobial and antioxidant potential of silver nanoparticles fabricated from Typhonium trilobatum (L.) Schott
Understanding the properties of silver nanoparticles (AgNPs) is noteworthy for the development of novel antimicrobial agents. Here AgNPs were procured through a sustainable, effortless, simple and lucrative process by using natural reducing agents from aqueous leaf extract of Typhonium trilobatum (L...
Saved in:
Published in | Plant Nano Biology Vol. 10; p. 100113 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Understanding the properties of silver nanoparticles (AgNPs) is noteworthy for the development of novel antimicrobial agents. Here AgNPs were procured through a sustainable, effortless, simple and lucrative process by using natural reducing agents from aqueous leaf extract of Typhonium trilobatum (L.) Schott. The study mainly aims at the determination of antibacterial and antioxidant activity of the bio-fabricated AgNPs. The synthesis of nanoparticles (NPs) was initially confirmed by UV–vis spectroscopy. The AgNPs were spherical with diameter ranges between 30 and 90 nm, negatively charged at −29.6 mV, crystalline in nature and surrounded by different active functional groups as evident by FTIR spectra analysis. The presence of phenolic compounds such as gallic acid and catechin were confirmed through HPLC analysis, providing insights into the bio-reduction mechanism which facilitate the conversion of Ag+ to AgNPs. Antimicrobial properties of the synthesized AgNPs were assessed against four Gram-negative and two Gram-positive bacteria with maximum zone of inhibition against Staphylococcus aureus (20±3.00 mm) and Micrococcus luteus (20±1.73 mm). The antibacterial potential of AgNPs is primarily linked with the increased cell membrane permeability of AgNPs treated bacterial cells (E. coli, S. aureus and M. luteus) as evident by measuring increased conductivity and elevated extracellular DNA concentration due to the disruption of bacterial cell membrane. Synthesized AgNPs exhibited antioxidant properties with IC50 value of 239.50 mg/L in free radical scavenging activity and IC50 value of 213.23 mg/L in superoxide scavenging activity. To the best of our knowledge, this is the earliest report of biosynthesis and physico-chemical characterization of AgNPs using T. trilobatum leaf extract having efficient antioxidant and antibacterial activity against some bacteria. These plant-mediated AgNPs might offer a promising solution in antibiotic resistance—a growing global health threat.
[Display omitted]
•First report of synthesizing AgNPs using T. trilobatum leaf extract as reducing agent through a steady, eco-friendly method.•AgNPs were characterized by UV–vis spectroscopy, SEM, TEM, HPLC, XRD, FTIR, zeta potential analysis and DLS.•Synthesized AgNPs showed potential antioxidant and antibacterial activity.•AgNPs affected bacterial cell membrane and played a key role in membrane permeability change. |
---|---|
AbstractList | Understanding the properties of silver nanoparticles (AgNPs) is noteworthy for the development of novel antimicrobial agents. Here AgNPs were procured through a sustainable, effortless, simple and lucrative process by using natural reducing agents from aqueous leaf extract of Typhonium trilobatum (L.) Schott. The study mainly aims at the determination of antibacterial and antioxidant activity of the bio-fabricated AgNPs. The synthesis of nanoparticles (NPs) was initially confirmed by UV–vis spectroscopy. The AgNPs were spherical with diameter ranges between 30 and 90 nm, negatively charged at −29.6 mV, crystalline in nature and surrounded by different active functional groups as evident by FTIR spectra analysis. The presence of phenolic compounds such as gallic acid and catechin were confirmed through HPLC analysis, providing insights into the bio-reduction mechanism which facilitate the conversion of Ag+ to AgNPs. Antimicrobial properties of the synthesized AgNPs were assessed against four Gram-negative and two Gram-positive bacteria with maximum zone of inhibition against Staphylococcus aureus (20±3.00 mm) and Micrococcus luteus (20±1.73 mm). The antibacterial potential of AgNPs is primarily linked with the increased cell membrane permeability of AgNPs treated bacterial cells (E. coli, S. aureus and M. luteus) as evident by measuring increased conductivity and elevated extracellular DNA concentration due to the disruption of bacterial cell membrane. Synthesized AgNPs exhibited antioxidant properties with IC50 value of 239.50 mg/L in free radical scavenging activity and IC50 value of 213.23 mg/L in superoxide scavenging activity. To the best of our knowledge, this is the earliest report of biosynthesis and physico-chemical characterization of AgNPs using T. trilobatum leaf extract having efficient antioxidant and antibacterial activity against some bacteria. These plant-mediated AgNPs might offer a promising solution in antibiotic resistance—a growing global health threat. Understanding the properties of silver nanoparticles (AgNPs) is noteworthy for the development of novel antimicrobial agents. Here AgNPs were procured through a sustainable, effortless, simple and lucrative process by using natural reducing agents from aqueous leaf extract of Typhonium trilobatum (L.) Schott. The study mainly aims at the determination of antibacterial and antioxidant activity of the bio-fabricated AgNPs. The synthesis of nanoparticles (NPs) was initially confirmed by UV–vis spectroscopy. The AgNPs were spherical with diameter ranges between 30 and 90 nm, negatively charged at −29.6 mV, crystalline in nature and surrounded by different active functional groups as evident by FTIR spectra analysis. The presence of phenolic compounds such as gallic acid and catechin were confirmed through HPLC analysis, providing insights into the bio-reduction mechanism which facilitate the conversion of Ag+ to AgNPs. Antimicrobial properties of the synthesized AgNPs were assessed against four Gram-negative and two Gram-positive bacteria with maximum zone of inhibition against Staphylococcus aureus (20±3.00 mm) and Micrococcus luteus (20±1.73 mm). The antibacterial potential of AgNPs is primarily linked with the increased cell membrane permeability of AgNPs treated bacterial cells (E. coli, S. aureus and M. luteus) as evident by measuring increased conductivity and elevated extracellular DNA concentration due to the disruption of bacterial cell membrane. Synthesized AgNPs exhibited antioxidant properties with IC50 value of 239.50 mg/L in free radical scavenging activity and IC50 value of 213.23 mg/L in superoxide scavenging activity. To the best of our knowledge, this is the earliest report of biosynthesis and physico-chemical characterization of AgNPs using T. trilobatum leaf extract having efficient antioxidant and antibacterial activity against some bacteria. These plant-mediated AgNPs might offer a promising solution in antibiotic resistance—a growing global health threat. [Display omitted] •First report of synthesizing AgNPs using T. trilobatum leaf extract as reducing agent through a steady, eco-friendly method.•AgNPs were characterized by UV–vis spectroscopy, SEM, TEM, HPLC, XRD, FTIR, zeta potential analysis and DLS.•Synthesized AgNPs showed potential antioxidant and antibacterial activity.•AgNPs affected bacterial cell membrane and played a key role in membrane permeability change. |
ArticleNumber | 100113 |
Author | Ghosh, Sushree Sinha, Sankar Narayan |
Author_xml | – sequence: 1 givenname: Sushree surname: Ghosh fullname: Ghosh, Sushree – sequence: 2 givenname: Sankar Narayan surname: Sinha fullname: Sinha, Sankar Narayan email: sinhasn62@yahoo.co.in |
BookMark | eNp9UU1vGyEQRVUiNR_-Bb1wbA52gV2W3UMPlZUmliz10PiMBhZsrDWsWBLVUn98x3ZU9VQuM_PQe8Pj3ZKrmKIj5BNnC85482W_GAeIsBBM1IgwzqsP5EYoVc05nqt_-o9kNk17xpjoRKUqdkN-b2I5hrilZecoxBIOweZkAgw49Wck_Qo9Vjqm4nDEm-TpFIY3l2mEmEbIJdjBTdSDycFCcT31OR3oy3HcpRheD7TkMCQDBdvP68UD_Wl3qZR7cu1hmNzsvd6RzffHl-XzfP3jabX8tp7bqqnLnKtOGGFkI1hllLJWSgOtklB30Ne8Bwmskd63vYTOMlsrRDoJnnvVNej0jqwuun2CvR5zOEA-6gRBn4GUt_rdg25b6ZmsGoZyqMON7VjtOEKiFaYxqFVdtPCbpik7_1ePM33KQ-OGUx76lIe-5IGsrxeWQ5tvwWU92eCidX3IzhZ8R_gv_w8IGJeu |
Cites_doi | 10.1016/j.colsurfb.2020.111533 10.1016/j.lwt.2022.113990 10.1080/17518253.2019.1707883 10.1080/15287394.2017.1376727 10.1016/j.chemosphere.2020.127346 10.1016/j.heliyon.2024.e33603 10.14302/issn.2576-6694.jbbs-19-2791 10.7717/peerj.2589 10.1016/j.tvjl.2015.10.032 10.1007/s40097-018-0291-4 10.1016/j.jksus.2022.102327 10.1016/j.cobme.2019.12.005 10.1007/s10529-015-2026-7 10.3390/molecules28020661 10.3390/mi14050928 10.1529/biophysj.104.048975 10.1007/s00284-017-1235-9 10.1016/j.watres.2016.05.019 10.1016/j.matlet.2011.09.038 10.1007/s13204-021-01952-y 10.1007/s13204-015-0449-z 10.1021/cm048292g 10.1007/s12602-022-09961-1 10.3390/horticulturae9020162 10.1016/j.jare.2015.02.007 10.1038/s41598-022-19440-w 10.3389/fmicb.2016.01831 10.1021/acsabm.9b00590 10.1021/acsomega.3c00440 10.1016/j.ijpharm.2020.119472 10.1016/j.jphotobiol.2017.03.013 10.1007/s13204-014-0366-6 10.1016/j.colsurfb.2009.05.018 10.1021/nn4044047 10.1016/j.foodchem.2022.133960 10.3390/ijms21041510 10.1016/j.microc.2019.104296 10.4155/fsoa-2017-0086 10.1038/s41598-023-29412-3 10.1186/s40543-018-0163-z 10.1049/iet-nbt.2015.0091 10.1016/j.colsurfb.2009.10.008 10.3390/nano12142402 10.1016/j.matchemphys.2021.124323 10.1016/j.ijleo.2021.167851 10.1016/j.jsps.2017.10.012 10.1080/00387010.2014.938756 10.1038/s41598-021-00520-2 10.1016/j.scitotenv.2018.08.136 10.1016/j.jscs.2024.101863 10.3906/kim-2007-1 10.1007/s40097-016-0207-0 10.1038/s41598-020-76726-7 10.1016/j.plana.2023.100033 10.1177/1177390118782877 10.1016/j.bcab.2022.102399 10.1021/acsomega.0c00155 10.1007/s13204-017-0546-2 10.1016/j.plana.2023.100052 10.1016/S0378-5173(98)00092-1 10.1038/s41598-022-21649-8 10.1016/j.procbio.2015.01.002 10.1016/j.jphotobiol.2016.06.029 10.1515/gps-2021-0061 10.3390/molecules25143191 10.1016/j.saa.2011.03.040 10.1049/iet-nbt.2018.5141 10.1016/j.enzmictec.2016.02.005 |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.plana.2024.100113 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2773-1111 |
ExternalDocumentID | oai_doaj_org_article_885f05360ff847a1bc904e1053282b6b 10_1016_j_plana_2024_100113 S2773111124000561 |
GroupedDBID | 6I. AAFTH AALRI AAXUO ADVLN AEXQZ AFJKZ AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M41 M~E ROL 0R~ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c364t-1792b2b56203b77cc55ba875a49ad41da5a065ff8d5a9c0c47a5a95af1f796923 |
IEDL.DBID | DOA |
ISSN | 2773-1111 |
IngestDate | Wed Aug 27 01:33:59 EDT 2025 Tue Jul 01 02:06:29 EDT 2025 Sat Dec 28 15:51:18 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Typhonium trilobatum Antibacterial activity Antioxidant potentiality Plant-mediated AgNPs Cell membrane permeability |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-1792b2b56203b77cc55ba875a49ad41da5a065ff8d5a9c0c47a5a95af1f796923 |
OpenAccessLink | https://doaj.org/article/885f05360ff847a1bc904e1053282b6b |
ParticipantIDs | doaj_primary_oai_doaj_org_article_885f05360ff847a1bc904e1053282b6b crossref_primary_10_1016_j_plana_2024_100113 elsevier_sciencedirect_doi_10_1016_j_plana_2024_100113 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationTitle | Plant Nano Biology |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Jin, Lin, Sathiyaseelan, Zhang, Wang (bib39) 2024; 92 Calvo, Thon, Saad, Salvador-Matar, Manso-Silván, Ahumada, Pini (bib21) 2022; 12 Rezazadeh, Buazar, Matroodi (bib68) 2020; 10 Molina-Hernández, Scroccarello, Della Pelle, De Flaviis, Compagnone, Del Carlo, Paparella, Lόpez (bib58) 2022; 169 Balasubramanian, Kala, Pushparaj (bib16) 2020; 57 Hemlata, Meena, Singh, Tejavath (bib33) 2020; 5 Pavlin, Kandušer, Reberšek, Pucihar, Hart, Magjarevićcacute, Miklavčič (bib63) 2005; 88 Gudikandula, Vadapally, Charya (bib26) 2017; 2 Saka, Shifera, Jule, Badassa, Nagaprasad, Shanmugam, Priyanka Dwarampudi, Seenivasan, Ramaswamy (bib70) 2022; 12 Ahmed, Ahmad, Swami, Ikram (bib3) 2016; 7 Urnukhsaikhan, Bold, Gunbileg, Sukhbaatar, Mishig-Ochir (bib86) 2021; 11 Mogole, Omwoyo, Viljoen, Moloto (bib55) 2021; 10 Selvaraj, Pai, Murugesan, Pandey, Bhole, Gonsalves, Varadavenkatesan, Vinayagam (bib75) 2021; 11 Xiang, Ma, Shi, Ma, Tian, Chen, Chen, Chen, Luo, Cai, Wang, Xue, Huang, Sun (bib90) 2019; 2 Li, Liu, Yuan, Liu, Niu (bib52) 2015; 50 Anandalakshmi, Venugobal, Ramasamy (bib13) 2016; 6 Phuyal, Lamichhane, Gupta, Khadayat, Adhikari, Marahatha, Khadka, Parajuli (bib64) 2022; 1 Qayyum, Khan (bib66) 2016; 10 Jayaprakash, Vijaya, Kaviyarasu, Kombaiah, Kennedy, Ramalingam, Munusamy, Al-Lohedan (bib37) 2017; 169 Lalhminghlui, Jagetia (bib48) 2018; 4 Wang, Xue, Wang, Zhang, Liu, Zhou (bib88) 2021; 11 Çalhan, GÜndoĞan (bib20) 2020; 44 Vinayagam, Zhou, Pai, Varadavenkatesan, Narasimhan, Narayanasamy, Selvaraj (bib87) 2021; 262 Harborne (bib30) 1998 Sinha, Paul, Halder, Sengupta, Patra (bib82) 2015; 5 Parashar, Parashar, Sharma, Pandey (bib62) 2009; 4 Alphandéry (bib10) 2020; 586 Rizvi, Saleh (bib69) 2018; 26 Kaweeteerawat, Na Ubol, Sangmuang, Aueviriyavit, Maniratanachote (bib44) 2017; 80 Saxena, Tripathi, Zafar, Singh (bib73) 2012; 67 Tippayawat, Phromviyo, Boueroy, Chompoosor (bib85) 2016; 4 Alam (bib6) 2022; 34 Smekalova, Aragon, Panacek, Prucek, Zboril, Kvitek (bib83) 2016; 209 Kandiah, Chandrasekaran (bib42) 2021; 1 Ivask, ElBadawy, Kaweeteerawat, Boren, Fischer, Ji, Chang, Liu, Tolaymat, Telesca, Zink (bib36) 2014; 8 Manik, Nande, Raut, Dhoble (bib54) 2020; 6 Bedlovičová, Strapáč, Baláž, Salayová (bib18) 2020; 25 Ahmed, Ahmad, Swami, Ikram (bib4) 2016; 9 Singh, Sahu, Thangaraj (bib80) 2014; 1 Ahmed, Uddin, Quddus, Samad, Hossain, Haque (bib2) 2023; 9 Ameh, Gibb, Stevens, Pradhan, Braswell, Sayes (bib12) 2022; 12 Abishad, Vergis, Unni, Ram, Niveditha, Yasur, Juliet, John, Byrappa, Nambiar, Kurkure (bib1) 2022; 14 Hameed, Waheed, Sharif, Saleem, Afreen, Tariq, Kamal, Al-Onazi, Al Farraj, Ahmad, Mahmoud (bib29) 2023; 14 Jha, Prasad, Prasad, Kulkarni (bib38) 2009; 73 Lee, Lim, Velmurugan, Park, Park, Bang, Oh (bib50) 2016; 162 Shankar, Rai, Ahmad, Sastry (bib77) 2005; 17 Amargeetha, Velavan (bib11) 2018; 5 Khoshnamvand, Hao, Fadare, Hanachi, Chen, Liu (bib46) 2020; 258 Mohammed, Mohamed, El-Naggar, Mahrous, Nasr, Abdella, Ahmed, Irmak, Elsayed, Selim, Elkelish (bib56) 2022; 1 Scroccarello, Junior, Della Pelle, Ciancetta, Ferraro, Fratini, Valbonetti, Copez, Compagnone (bib74) 2021; 199 Sinha, Paul (bib81) 2015; 48 Solaimuthu, Vijayan, Murali, Korrapati (bib84) 2020; 13 Huq (bib34) 2020; 21 Singh, Singh, Kim, Mathiyalagan, Wang, Yang (bib79) 2016; 86 Bazrgaran, Mahmoodabadi, Ghasempour, Shafaie, Sahebkar, Eghbali (bib17) 2023; 6 Sasidharan, Namitha, Johnson, Jose, Mathew (bib72) 2020; 16 Malik, Muhammad, Waheed (bib53) 2023; 28 Bhusal, Pathak, Bhadel, Shrestha, Sharma (bib19) 2024; 10 Rautela, Rani (bib67) 2019; 10 Ali, Mahmoud, Abdalla, Hamouda, Aloufi, Almubaddil, Modafer, Hassan, Eissa, Zhu (bib8) 2024; 28 Shanmugam, Kalaiselvan, Selvakumar, Suresh, Rajendran (bib78) 2011; 2 Gupta, Rayeen, Mishra, Tripathi, Pathak (bib28) 2023; 4 Chiu, Che Mood, Mohamad Zain, Ramachandran, Yahaya, Nik Mohamed Kamal, Tung, Yong, Lee, Lim (bib22) 2021; 1 Mohammed Rahmatullah, Lutfor Rahman, Fatema Rehana, Marjina Akter Kalpana, Mst, Afsana Khatun, Jahan, Taufiq-ur-Rahman, Bashar, Azad (bib57) 2010; 4 Krishnaraj, Jagan, Rajasekar, Selvakumar, Kalaichelvan, Mohan (bib47) 2010; 76 Kandhasamy, Arunachalam (bib41) 2008; 3 Freitas, Müller (bib25) 1998; 168 Kharabi Masooleh, Ahmadikhah, Saidi (bib45) 2019; 13 Ali, Ahmed, Al-Ahmed (bib7) 2023; 13 Munyai, Tetana, Mathipa, Ntsendwana, Hintsho-Mbita (bib59) 2021; 247 Firoozi, Jamzad, Yari (bib24) 2016; 6 Seong, Lee (bib76) 2017; 74 Ali, Yahya, Sekaran, Puteh (bib9) 2016; 2016 He, Wang, Zhou (bib32) 2019; 648 Hussain, Singh, Singh, Singh, Singh (bib35) 2016; 38 Olabemiwo, Akintelu, Waheed, Okunlola, Akinwale, Adeyinka, Adeniji, Adebisi (bib61) 2021; 4 Pirtarighat, Ghannadnia, Baghshahi (bib65) 2019; 9 Arif, Uddin (bib14) 2021; 4 Dakal, Kumar, Majumdar, Yadav (bib23) 2016; 7 Kalimuthu, Cha, Kim, Park (bib40) 2020; 152 Kaviya, Santhanalakshmi, Viswanathan, Muthumary, Srinivasan (bib43) 2011; 79 Zhao, Liu, Cai, Han, Qian, Zhao (bib91) 2016; 100 Hazarika, Yadav, Yadav, Yadav (bib31) 2022; 43 Lee, Seung, Kwon, Choi, Kim, Choi (bib51) 2023; 8 Azeez, Lateef, Adebisi (bib15) 2017; 7 Guntur, Kumar, Hegde, Dirisala (bib27) 2018; 13 Lawal, Abdullahi, Ibrahim, Kurfi, Khalid, Nuhu (bib49) 2019; 2 Niluxsshun, Masilamani, Mathiventhan (bib60) 2021; 1 Wasilewska, Klekotka, Zambrzycka, Zambrowski, Święcicka, Kalska-Szostko (bib89) 2023; 400 Salmen, Alharbi (bib71) 2020; 13 Alahdal, Qashqoosh, Manea, Mohammed, Naqvi (bib5) 2023; 35 Azeez (10.1016/j.plana.2024.100113_bib15) 2017; 7 Kandiah (10.1016/j.plana.2024.100113_bib42) 2021; 1 Rautela (10.1016/j.plana.2024.100113_bib67) 2019; 10 Ahmed (10.1016/j.plana.2024.100113_bib3) 2016; 7 Ahmed (10.1016/j.plana.2024.100113_bib2) 2023; 9 Jayaprakash (10.1016/j.plana.2024.100113_bib37) 2017; 169 Ali (10.1016/j.plana.2024.100113_bib9) 2016; 2016 Saxena (10.1016/j.plana.2024.100113_bib73) 2012; 67 Qayyum (10.1016/j.plana.2024.100113_bib66) 2016; 10 Rizvi (10.1016/j.plana.2024.100113_bib69) 2018; 26 Manik (10.1016/j.plana.2024.100113_bib54) 2020; 6 Anandalakshmi (10.1016/j.plana.2024.100113_bib13) 2016; 6 Kharabi Masooleh (10.1016/j.plana.2024.100113_bib45) 2019; 13 Mohammed Rahmatullah (10.1016/j.plana.2024.100113_bib57) 2010; 4 Kandhasamy (10.1016/j.plana.2024.100113_bib41) 2008; 3 Urnukhsaikhan (10.1016/j.plana.2024.100113_bib86) 2021; 11 Pavlin (10.1016/j.plana.2024.100113_bib63) 2005; 88 Hussain (10.1016/j.plana.2024.100113_bib35) 2016; 38 Balasubramanian (10.1016/j.plana.2024.100113_bib16) 2020; 57 Alam (10.1016/j.plana.2024.100113_bib6) 2022; 34 Kalimuthu (10.1016/j.plana.2024.100113_bib40) 2020; 152 Shankar (10.1016/j.plana.2024.100113_bib77) 2005; 17 Sinha (10.1016/j.plana.2024.100113_bib82) 2015; 5 Lawal (10.1016/j.plana.2024.100113_bib49) 2019; 2 Alahdal (10.1016/j.plana.2024.100113_bib5) 2023; 35 Jin (10.1016/j.plana.2024.100113_bib39) 2024; 92 Shanmugam (10.1016/j.plana.2024.100113_bib78) 2011; 2 Vinayagam (10.1016/j.plana.2024.100113_bib87) 2021; 262 Guntur (10.1016/j.plana.2024.100113_bib27) 2018; 13 Harborne (10.1016/j.plana.2024.100113_bib30) 1998 Rezazadeh (10.1016/j.plana.2024.100113_bib68) 2020; 10 Malik (10.1016/j.plana.2024.100113_bib53) 2023; 28 Scroccarello (10.1016/j.plana.2024.100113_bib74) 2021; 199 Firoozi (10.1016/j.plana.2024.100113_bib24) 2016; 6 Bedlovičová (10.1016/j.plana.2024.100113_bib18) 2020; 25 Hemlata (10.1016/j.plana.2024.100113_bib33) 2020; 5 Huq (10.1016/j.plana.2024.100113_bib34) 2020; 21 Alphandéry (10.1016/j.plana.2024.100113_bib10) 2020; 586 Parashar (10.1016/j.plana.2024.100113_bib62) 2009; 4 Wang (10.1016/j.plana.2024.100113_bib88) 2021; 11 Munyai (10.1016/j.plana.2024.100113_bib59) 2021; 247 Pirtarighat (10.1016/j.plana.2024.100113_bib65) 2019; 9 Ahmed (10.1016/j.plana.2024.100113_bib4) 2016; 9 Lee (10.1016/j.plana.2024.100113_bib50) 2016; 162 Dakal (10.1016/j.plana.2024.100113_bib23) 2016; 7 Singh (10.1016/j.plana.2024.100113_bib80) 2014; 1 Amargeetha (10.1016/j.plana.2024.100113_bib11) 2018; 5 Hameed (10.1016/j.plana.2024.100113_bib29) 2023; 14 Mogole (10.1016/j.plana.2024.100113_bib55) 2021; 10 Çalhan (10.1016/j.plana.2024.100113_bib20) 2020; 44 Arif (10.1016/j.plana.2024.100113_bib14) 2021; 4 Ali (10.1016/j.plana.2024.100113_bib7) 2023; 13 Ivask (10.1016/j.plana.2024.100113_bib36) 2014; 8 Lalhminghlui (10.1016/j.plana.2024.100113_bib48) 2018; 4 Tippayawat (10.1016/j.plana.2024.100113_bib85) 2016; 4 Bhusal (10.1016/j.plana.2024.100113_bib19) 2024; 10 Jha (10.1016/j.plana.2024.100113_bib38) 2009; 73 Hazarika (10.1016/j.plana.2024.100113_bib31) 2022; 43 Bazrgaran (10.1016/j.plana.2024.100113_bib17) 2023; 6 Khoshnamvand (10.1016/j.plana.2024.100113_bib46) 2020; 258 Kaweeteerawat (10.1016/j.plana.2024.100113_bib44) 2017; 80 Saka (10.1016/j.plana.2024.100113_bib70) 2022; 12 Mohammed (10.1016/j.plana.2024.100113_bib56) 2022; 1 Salmen (10.1016/j.plana.2024.100113_bib71) 2020; 13 Ali (10.1016/j.plana.2024.100113_bib8) 2024; 28 Calvo (10.1016/j.plana.2024.100113_bib21) 2022; 12 Kaviya (10.1016/j.plana.2024.100113_bib43) 2011; 79 Niluxsshun (10.1016/j.plana.2024.100113_bib60) 2021; 1 Freitas (10.1016/j.plana.2024.100113_bib25) 1998; 168 Seong (10.1016/j.plana.2024.100113_bib76) 2017; 74 Abishad (10.1016/j.plana.2024.100113_bib1) 2022; 14 Li (10.1016/j.plana.2024.100113_bib52) 2015; 50 Solaimuthu (10.1016/j.plana.2024.100113_bib84) 2020; 13 Wasilewska (10.1016/j.plana.2024.100113_bib89) 2023; 400 Smekalova (10.1016/j.plana.2024.100113_bib83) 2016; 209 Olabemiwo (10.1016/j.plana.2024.100113_bib61) 2021; 4 Chiu (10.1016/j.plana.2024.100113_bib22) 2021; 1 Gupta (10.1016/j.plana.2024.100113_bib28) 2023; 4 Phuyal (10.1016/j.plana.2024.100113_bib64) 2022; 1 Sasidharan (10.1016/j.plana.2024.100113_bib72) 2020; 16 Xiang (10.1016/j.plana.2024.100113_bib90) 2019; 2 Selvaraj (10.1016/j.plana.2024.100113_bib75) 2021; 11 Sinha (10.1016/j.plana.2024.100113_bib81) 2015; 48 Molina-Hernández (10.1016/j.plana.2024.100113_bib58) 2022; 169 Singh (10.1016/j.plana.2024.100113_bib79) 2016; 86 Zhao (10.1016/j.plana.2024.100113_bib91) 2016; 100 Ameh (10.1016/j.plana.2024.100113_bib12) 2022; 12 Gudikandula (10.1016/j.plana.2024.100113_bib26) 2017; 2 He (10.1016/j.plana.2024.100113_bib32) 2019; 648 Krishnaraj (10.1016/j.plana.2024.100113_bib47) 2010; 76 Lee (10.1016/j.plana.2024.100113_bib51) 2023; 8 |
References_xml | – volume: 88 start-page: 4378 year: 2005 end-page: 4390 ident: bib63 article-title: Effect of cell electroporation on the conductivity of a cell suspension publication-title: Biophys. J. – volume: 4 year: 2016 ident: bib85 article-title: Green synthesis of silver nanoparticles in publication-title: Peer J. – volume: 11 start-page: 2227 year: 2021 end-page: 2234 ident: bib75 article-title: Green synthesis of magnetic α–Fe2O3 nanospheres using publication-title: Appl. Nanosci. – volume: 2 start-page: 4087 year: 2019 end-page: 4096 ident: bib90 article-title: Green synthesis of an alginate-coated silver nanoparticle shows high antifungal activity by enhancing its cell membrane penetrating ability publication-title: ACS Appl. Bio Mater. – volume: 79 start-page: 594 year: 2011 end-page: 598 ident: bib43 article-title: Biosynthesis of silver nanoparticles using publication-title: Spectrochim. Acta - A: Mol. Biomol. – volume: 6 start-page: 399 year: 2016 end-page: 408 ident: bib13 article-title: Characterization of silver nanoparticles by green synthesis method using publication-title: Appl. Nanosci. – volume: 10 year: 2024 ident: bib19 article-title: Synthesis of silver nanoparticles assisted by aqueous root and leaf extracts of publication-title: Heliyon – volume: 76 start-page: 50 year: 2010 end-page: 56 ident: bib47 article-title: Synthesis of silver nanoparticles using publication-title: Colloids Surf. B Biointerfaces – volume: 73 start-page: 219 year: 2009 end-page: 223 ident: bib38 article-title: Plant system: nature's nanofactory publication-title: Colloids Surf. B Biointerfaces – volume: 11 year: 2021 ident: bib88 article-title: Fungus-mediated green synthesis of nano-silver using publication-title: Sci. Rep. – volume: 86 start-page: 75 year: 2016 end-page: 83 ident: bib79 article-title: Extracellular synthesis of silver and gold nanoparticles by publication-title: Enzym. Microb. Technol. – volume: 6 year: 2020 ident: bib54 article-title: Green synthesis of silver nanoparticles using plant leaf extraction of publication-title: Results Mater. – volume: 26 start-page: 64 year: 2018 end-page: 70 ident: bib69 article-title: Applications of nanoparticle systems in drug delivery technology publication-title: Saudi Pharm. J. – volume: 3 start-page: 1 year: 2008 end-page: 7 ident: bib41 article-title: Efficacy of publication-title: Elect. J. Nat. Subs – volume: 8 start-page: 5209 year: 2023 end-page: 5224 ident: bib51 article-title: Nanomaterial-based synaptic optoelectronic devices for in-sensor preprocessing of image data publication-title: ACS Omega – volume: 10 start-page: 349 year: 2016 end-page: 357 ident: bib66 article-title: Biofabrication of broad range antibacterial and antibiofilm silver nanoparticles publication-title: IET Nanobiotechnol. – volume: 48 start-page: 600 year: 2015 end-page: 604 ident: bib81 article-title: Phytosynthesis of silver nanoparticles using publication-title: Spectrosc. Lett. – volume: 2016 start-page: 4102196 year: 2016 ident: bib9 article-title: Green synthesis of silver nanoparticles using apple extract and its antibacterial properties publication-title: Adv. Mater. Sci. Eng. – volume: 648 start-page: 102 year: 2019 end-page: 108 ident: bib32 article-title: Transport and retention of silver nanoparticles in soil: Effects of input concentration, particle size and surface coating publication-title: Sci. Total Environ. – volume: 13 start-page: 183 year: 2019 end-page: 188 ident: bib45 article-title: Green synthesis of stable silver nanoparticles by the main reduction component of green tea publication-title: IET Nanobiotechnol. – volume: 6 year: 2023 ident: bib17 article-title: Facile bio-genic synthesis of publication-title: Plant Nano Biol. – volume: 34 year: 2022 ident: bib6 article-title: Analyses of biosynthesized silver nanoparticles produced from strawberry fruit pomace extracts in terms of biocompatibility, cytotoxicity, antioxidant ability, photodegradation, and in-silico studies publication-title: J. King Saud. Univ. Sci. – volume: 4 start-page: 45 year: 2009 end-page: 50 ident: bib62 article-title: leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization publication-title: Dig. J. Nanomater. Biostruct. – volume: 262 year: 2021 ident: bib87 article-title: Structural characterization of green synthesized magnetic mesoporous Fe publication-title: Mater. Chem. Phys. – volume: 11 year: 2021 ident: bib86 article-title: Antibacterial activity and characteristics of silver nanoparticles biosynthesized from publication-title: Sci. Rep. – volume: 4 start-page: 55 year: 2010 end-page: 64 ident: bib57 article-title: A scientific evaluation of medicinal plants used in the folk medicinal system of five villages in Narsinghdi district, Bangladesh publication-title: J. Sustain. Agric. – volume: 162 start-page: 93 year: 2016 end-page: 99 ident: bib50 article-title: Photobiologic-mediated fabrication of silver nanoparticles with antibacterial activity publication-title: J. Photochem. Photobiol. B – volume: 1 year: 2021 ident: bib60 article-title: Green synthesis of silver nanoparticles from the extracts of fruit peel of publication-title: Bioinorg. Chem. Appl. – volume: 9 start-page: 1 year: 2019 end-page: 9 ident: bib65 article-title: Green synthesis of silver nanoparticles using the plant extract of publication-title: J. Nanostruct. Chem. – volume: 5 start-page: 5520 year: 2020 end-page: 5528 ident: bib33 article-title: Biosynthesis of silver nanoparticles using publication-title: ACS Omega – volume: 400 start-page: 33960 year: 2023 ident: bib89 article-title: Physico-chemical properties and antimicrobial activity of silver nanoparticles fabricated by green synthesis publication-title: Food Chem. – volume: 199 year: 2021 ident: bib74 article-title: Effect of phenolic compounds-capped AgNPs on growth inhibition of publication-title: Colloids Surf. B Biointerfaces – volume: 169 start-page: 178 year: 2017 end-page: 185 ident: bib37 article-title: Green synthesis of Ag nanoparticles using Tamarind fruit extract for the antibacterial studies publication-title: J. Photochem. Photobiol. B. – volume: 25 start-page: 3191 year: 2020 ident: bib18 article-title: A brief overview on antioxidant activity determination of silver nanoparticles publication-title: Molecules – volume: 43 year: 2022 ident: bib31 article-title: An overview of the role of nanoparticles in sustainable agriculture publication-title: Biocatal. Agric. Biotechnol. – volume: 44 start-page: 1587 year: 2020 end-page: 1600 ident: bib20 article-title: Biosynthesis of silver nanoparticles using publication-title: Turk. J. Chem. – volume: 74 start-page: 661 year: 2017 end-page: 670 ident: bib76 article-title: Silver nanoparticles against Salmonella enterica serotype typhimurium: role of inner membrane dysfunction publication-title: Curr. Microbiol. – volume: 2 start-page: 991 year: 2011 end-page: 994 ident: bib78 article-title: Ethnomedicinal plants used to cure diarrhoea and dysentery in Sivagangai district of Tamil Nadu, India publication-title: Int. J. Res. Ayurveda Pharm. – volume: 13 start-page: 2256 year: 2023 ident: bib7 article-title: Green synthesis and characterization of silver nanoparticles for reducing the damage to sperm parameters in diabetic compared to metformin publication-title: Sci. Rep. – volume: 209 start-page: 174 year: 2016 end-page: 179 ident: bib83 article-title: Enhanced antibacterial effect of antibiotics in combination with silver nanoparticles against animal pathogens publication-title: Vet. J. – volume: 4 year: 2021 ident: bib61 article-title: Green synthesis of silver nanoparticles using stem bark extract of publication-title: CRGSC – volume: 17 start-page: 566 year: 2005 end-page: 572 ident: bib77 article-title: Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings publication-title: Chem. Mat. – volume: 12 year: 2022 ident: bib21 article-title: Size characterization of plasmonic nanoparticles with dark-field single particle spectrophotometry publication-title: Sci. Rep. – volume: 16 year: 2020 ident: bib72 article-title: Synthesis of silver and copper oxide nanoparticles using publication-title: Sustain. Chem. Pharm. – volume: 1 year: 2021 ident: bib22 article-title: Biogenic silver nanoparticles of publication-title: Bioinorg. Chem. Appl. – volume: 57 year: 2020 ident: bib16 article-title: Biogenic synthesis of gold nanoparticles using publication-title: J. Drug Del. Sci. Tech. – volume: 100 start-page: 245 year: 2016 end-page: 266 ident: bib91 article-title: An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation publication-title: Water Res. – volume: 9 start-page: 162 year: 2023 ident: bib2 article-title: Impact of foliar application of zinc and zinc oxide nanoparticles on growth, yield, nutrient uptake and quality of tomato publication-title: Horticulture – volume: 258 year: 2020 ident: bib46 article-title: Toxicity of biosynthesized silver nanoparticles to aquatic organisms of different trophic levels publication-title: Chemosphere – volume: 2 start-page: 12 year: 2019 end-page: 21 ident: bib49 article-title: Phytochemical analysis and thin layer chromatography profiling of crude extracts from publication-title: JBBS – volume: 12 year: 2022 ident: bib70 article-title: Biosynthesis of TiO publication-title: Sci. Rep. – volume: 13 start-page: 84 year: 2020 end-page: 93 ident: bib84 article-title: Nano-biosensors and their relevance in tissue engineering publication-title: Curr. Opin. Biomed. Eng. – volume: 7 start-page: 1831 year: 2016 ident: bib23 article-title: Mechanistic basis of antimicrobial actions of silver nanoparticles publication-title: Front. Microbiol. – volume: 80 start-page: 1276 year: 2017 end-page: 1289 ident: bib44 article-title: Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles publication-title: J. Toxicol. Environ. Health – volume: 4 year: 2018 ident: bib48 article-title: Evaluation of the free-radical scavenging and antioxidant activities of Chilauni, publication-title: Future Sci. OA – volume: 168 start-page: 221 year: 1998 end-page: 229 ident: bib25 article-title: Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLNTM) dispersions publication-title: Int. J. Pharm. – volume: 586 year: 2020 ident: bib10 article-title: Bio-synthesized iron oxide nanoparticles for cancer treatment publication-title: Int. J. Pharm. – volume: 1 year: 2022 ident: bib56 article-title: Antioxidant and antibacterial activities of silver nanoparticles biosynthesized by publication-title: J. Nanomater. – volume: 169 year: 2022 ident: bib58 article-title: Synergistic antifungal activity of catechin and silver nanoparticles on publication-title: Lwt – volume: 38 start-page: 545 year: 2016 end-page: 560 ident: bib35 article-title: Green synthesis of nanoparticles and its potential application publication-title: Biotechnol. Lett. – volume: 28 start-page: 661 year: 2023 ident: bib53 article-title: Nanotechnology: A revolution in modern industry publication-title: Molecules – volume: 21 start-page: 1510 year: 2020 ident: bib34 article-title: Green synthesis of silver nanoparticles using publication-title: Int. J. Mol. Sci. – volume: 247 year: 2021 ident: bib59 article-title: Green synthesis of Cadmium Sulphide nanoparticles for the photodegradation of Malachite green dye, Sulfisoxazole and removal of bacteria publication-title: Optik – volume: 4 year: 2023 ident: bib28 article-title: Nanotechnology applications in sustainable agriculture: An emerging eco-friendly approach publication-title: Plant Nano Biol. – volume: 14 start-page: 928 year: 2023 ident: bib29 article-title: Green synthesis of zinc oxide (ZnO) nanoparticles from green algae and their assessment in various biological applications publication-title: Micromachines – volume: 8 start-page: 374 year: 2014 end-page: 386 ident: bib36 article-title: Toxicity mechanisms in publication-title: ACS Nano – volume: 5 start-page: 703 year: 2015 end-page: 709 ident: bib82 article-title: Green synthesis of silver nanoparticles using fresh water green alga publication-title: Appl. Nanosci. – volume: 1 year: 2021 ident: bib42 article-title: Green synthesis of silver nanoparticles using publication-title: J. Nanotechnol. – volume: 50 start-page: 357 year: 2015 end-page: 366 ident: bib52 article-title: Green synthesis of gallic acid-coated silver nanoparticles with high antimicrobial activity and low cytotoxicity to normal cells publication-title: Process Biochem. – volume: 4 year: 2021 ident: bib14 article-title: A review on recent developments in the biosynthesis of silver nanoparticles and its biomedical applications publication-title: MDS – volume: 28 year: 2024 ident: bib8 article-title: Green synthesis of bio-mediated silver nanoparticles from publication-title: J. Saudi Chem. Soc. – volume: 10 year: 2020 ident: bib68 article-title: Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalized silver nanoparticles publication-title: Sci. Rep. – volume: 92 year: 2024 ident: bib39 article-title: Comparative studies on antibacterial, antibiofilm, antioxidant, and cytotoxicity properties of chemically and publication-title: J. Drug Del. Sci. Tech. – volume: 1 year: 2022 ident: bib64 article-title: Biosynthesis of silver nanoparticles from publication-title: J. Nanomater. – volume: 13 year: 2018 ident: bib27 article-title: In vitro studies of the antimicrobial and free-radical scavenging potentials of silver nanoparticles biosynthesized from the extract of publication-title: Anal. Chem. Insights – volume: 9 start-page: 1 year: 2016 end-page: 7 ident: bib4 article-title: Green synthesis of silver nanoparticles using publication-title: J. Rad. Res. Appl. Sci. – volume: 152 year: 2020 ident: bib40 article-title: Eco-friendly synthesis and biomedical applications of gold nanoparticles: a review publication-title: Microchem. J. – volume: 7 start-page: 17 year: 2016 end-page: 28 ident: bib3 article-title: A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise publication-title: J. Adv. Res. – volume: 2 start-page: 64 year: 2017 end-page: 78 ident: bib26 article-title: Biogenic synthesis of silver nanoparticles from white rot fungi: Their characterization and antibacterial studies publication-title: Open Nano – volume: 13 start-page: 1 year: 2020 end-page: 5 ident: bib71 article-title: Silver nanoparticles synthesized biogenically from publication-title: Green. Chem. Lett. Rev. – volume: 10 start-page: 851 year: 2021 end-page: 859 ident: bib55 article-title: Green synthesis of silver nanoparticles using aqueous extract of publication-title: Green. Process. Synth. – volume: 5 start-page: 1 year: 2018 end-page: 5 ident: bib11 article-title: X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis of silver nanoparticles synthesized from publication-title: Nanosci. Technol. – year: 1998 ident: bib30 article-title: Phytochemical methods a guide to modern techniques of plant analysis – volume: 1 year: 2014 ident: bib80 article-title: Biosynthesis of silver nanoparticles by marine invertebrate (polychaete) and assessment of its efficacy against human pathogens publication-title: J. Nanopart. – volume: 7 start-page: 59 year: 2017 end-page: 66 ident: bib15 article-title: Silver nanoparticles (AgNPs) biosynthesized using pod extract of publication-title: Appl. Nanosci. – volume: 10 start-page: 5 year: 2019 ident: bib67 article-title: Green synthesis of silver nanoparticles from publication-title: J. Anal. Sci. Technol. – volume: 14 start-page: 904 year: 2022 end-page: 914 ident: bib1 article-title: Green synthesized silver nanoparticles using publication-title: Probiotics Antimicro – volume: 12 start-page: 2402 year: 2022 ident: bib12 article-title: Silver and copper nanoparticles induce oxidative stress in bacteria and mammalian cells publication-title: Nanomater – volume: 35 year: 2023 ident: bib5 article-title: Green synthesis and characterization of copper nanoparticles using publication-title: SMT – volume: 6 start-page: 357 year: 2016 end-page: 364 ident: bib24 article-title: Biologically synthesized silver nanoparticles by aqueous extract of publication-title: J. Nanostruct. Chem. – volume: 67 start-page: 91 year: 2012 end-page: 94 ident: bib73 article-title: Green synthesis of silver nanoparticles using aqueous solution of publication-title: Mater. Lett. – volume: 1 year: 2022 ident: 10.1016/j.plana.2024.100113_bib64 article-title: Biosynthesis of silver nanoparticles from Rhododendron arboreum for metal sensing, antibacterial assessment, and photocatalytic degradation publication-title: J. Nanomater. – volume: 199 year: 2021 ident: 10.1016/j.plana.2024.100113_bib74 article-title: Effect of phenolic compounds-capped AgNPs on growth inhibition of Aspergillus niger publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2020.111533 – volume: 169 year: 2022 ident: 10.1016/j.plana.2024.100113_bib58 article-title: Synergistic antifungal activity of catechin and silver nanoparticles on Aspergillus niger isolated from coffee seeds publication-title: Lwt doi: 10.1016/j.lwt.2022.113990 – volume: 13 start-page: 1 year: 2020 ident: 10.1016/j.plana.2024.100113_bib71 article-title: Silver nanoparticles synthesized biogenically from Aloe fleurentiniorum extract: characterization and antibacterial activity publication-title: Green. Chem. Lett. Rev. doi: 10.1080/17518253.2019.1707883 – volume: 16 year: 2020 ident: 10.1016/j.plana.2024.100113_bib72 article-title: Synthesis of silver and copper oxide nanoparticles using Myristica fragrans fruit extract: Antimicrobial and catalytic applications publication-title: Sustain. Chem. Pharm. – volume: 80 start-page: 1276 issue: 23-24 year: 2017 ident: 10.1016/j.plana.2024.100113_bib44 article-title: Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles publication-title: J. Toxicol. Environ. Health doi: 10.1080/15287394.2017.1376727 – volume: 258 year: 2020 ident: 10.1016/j.plana.2024.100113_bib46 article-title: Toxicity of biosynthesized silver nanoparticles to aquatic organisms of different trophic levels publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.127346 – volume: 10 issue: 13 year: 2024 ident: 10.1016/j.plana.2024.100113_bib19 article-title: Synthesis of silver nanoparticles assisted by aqueous root and leaf extracts of Rhus chinensis Mill and its antibacterial activity publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e33603 – volume: 2 start-page: 12 issue: 1 year: 2019 ident: 10.1016/j.plana.2024.100113_bib49 article-title: Phytochemical analysis and thin layer chromatography profiling of crude extracts from Senna occidentalis (leaves) publication-title: JBBS doi: 10.14302/issn.2576-6694.jbbs-19-2791 – volume: 4 year: 2016 ident: 10.1016/j.plana.2024.100113_bib85 article-title: Green synthesis of silver nanoparticles in Aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity publication-title: Peer J. doi: 10.7717/peerj.2589 – volume: 5 start-page: 1 year: 2018 ident: 10.1016/j.plana.2024.100113_bib11 article-title: X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis of silver nanoparticles synthesized from Erythrina indica flowers publication-title: Nanosci. Technol. – volume: 1 year: 2014 ident: 10.1016/j.plana.2024.100113_bib80 article-title: Biosynthesis of silver nanoparticles by marine invertebrate (polychaete) and assessment of its efficacy against human pathogens publication-title: J. Nanopart. – volume: 209 start-page: 174 year: 2016 ident: 10.1016/j.plana.2024.100113_bib83 article-title: Enhanced antibacterial effect of antibiotics in combination with silver nanoparticles against animal pathogens publication-title: Vet. J. doi: 10.1016/j.tvjl.2015.10.032 – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.plana.2024.100113_bib65 article-title: Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment publication-title: J. Nanostruct. Chem. doi: 10.1007/s40097-018-0291-4 – volume: 34 issue: 8 year: 2022 ident: 10.1016/j.plana.2024.100113_bib6 article-title: Analyses of biosynthesized silver nanoparticles produced from strawberry fruit pomace extracts in terms of biocompatibility, cytotoxicity, antioxidant ability, photodegradation, and in-silico studies publication-title: J. King Saud. Univ. Sci. doi: 10.1016/j.jksus.2022.102327 – volume: 1 year: 2021 ident: 10.1016/j.plana.2024.100113_bib42 article-title: Green synthesis of silver nanoparticles using Catharanthus roseus flower extracts and the determination of their antioxidant, antimicrobial, and photocatalytic activity publication-title: J. Nanotechnol. – volume: 13 start-page: 84 year: 2020 ident: 10.1016/j.plana.2024.100113_bib84 article-title: Nano-biosensors and their relevance in tissue engineering publication-title: Curr. Opin. Biomed. Eng.. doi: 10.1016/j.cobme.2019.12.005 – volume: 38 start-page: 545 year: 2016 ident: 10.1016/j.plana.2024.100113_bib35 article-title: Green synthesis of nanoparticles and its potential application publication-title: Biotechnol. Lett. doi: 10.1007/s10529-015-2026-7 – volume: 28 start-page: 661 issue: 2 year: 2023 ident: 10.1016/j.plana.2024.100113_bib53 article-title: Nanotechnology: A revolution in modern industry publication-title: Molecules doi: 10.3390/molecules28020661 – volume: 4 start-page: 45 issue: 1 year: 2009 ident: 10.1016/j.plana.2024.100113_bib62 article-title: Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization publication-title: Dig. J. Nanomater. Biostruct. – volume: 14 start-page: 928 issue: 5 year: 2023 ident: 10.1016/j.plana.2024.100113_bib29 article-title: Green synthesis of zinc oxide (ZnO) nanoparticles from green algae and their assessment in various biological applications publication-title: Micromachines doi: 10.3390/mi14050928 – volume: 88 start-page: 4378 issue: 6 year: 2005 ident: 10.1016/j.plana.2024.100113_bib63 article-title: Effect of cell electroporation on the conductivity of a cell suspension publication-title: Biophys. J. doi: 10.1529/biophysj.104.048975 – volume: 74 start-page: 661 year: 2017 ident: 10.1016/j.plana.2024.100113_bib76 article-title: Silver nanoparticles against Salmonella enterica serotype typhimurium: role of inner membrane dysfunction publication-title: Curr. Microbiol. doi: 10.1007/s00284-017-1235-9 – volume: 100 start-page: 245 year: 2016 ident: 10.1016/j.plana.2024.100113_bib91 article-title: An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation publication-title: Water Res. doi: 10.1016/j.watres.2016.05.019 – volume: 67 start-page: 91 year: 2012 ident: 10.1016/j.plana.2024.100113_bib73 article-title: Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity publication-title: Mater. Lett. doi: 10.1016/j.matlet.2011.09.038 – volume: 11 start-page: 2227 issue: 8 year: 2021 ident: 10.1016/j.plana.2024.100113_bib75 article-title: Green synthesis of magnetic α–Fe2O3 nanospheres using Bridelia retusa leaf extract for Fenton-like degradation of crystal violet dye publication-title: Appl. Nanosci. doi: 10.1007/s13204-021-01952-y – volume: 6 start-page: 399 year: 2016 ident: 10.1016/j.plana.2024.100113_bib13 article-title: Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity publication-title: Appl. Nanosci. doi: 10.1007/s13204-015-0449-z – volume: 2 start-page: 64 year: 2017 ident: 10.1016/j.plana.2024.100113_bib26 article-title: Biogenic synthesis of silver nanoparticles from white rot fungi: Their characterization and antibacterial studies publication-title: Open Nano – volume: 3 start-page: 1 year: 2008 ident: 10.1016/j.plana.2024.100113_bib41 article-title: Efficacy of Typhonium trilobatum (L.) Schott tuber extracts on pathogenic bacteria publication-title: Elect. J. Nat. Subs – year: 1998 ident: 10.1016/j.plana.2024.100113_bib30 – volume: 35 year: 2023 ident: 10.1016/j.plana.2024.100113_bib5 article-title: Green synthesis and characterization of copper nanoparticles using Phragmanthera austroarabica extract and their biological/environmental applications publication-title: SMT – volume: 17 start-page: 566 issue: 3 year: 2005 ident: 10.1016/j.plana.2024.100113_bib77 article-title: Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings publication-title: Chem. Mat. doi: 10.1021/cm048292g – volume: 14 start-page: 904 issue: 5 year: 2022 ident: 10.1016/j.plana.2024.100113_bib1 article-title: Green synthesized silver nanoparticles using Lactobacillus acidophilus as an antioxidant, antimicrobial, and antibiofilm agent against multi-drug resistant enteroaggregative Escherichia coli publication-title: Probiotics Antimicro doi: 10.1007/s12602-022-09961-1 – volume: 9 start-page: 162 issue: 2 year: 2023 ident: 10.1016/j.plana.2024.100113_bib2 article-title: Impact of foliar application of zinc and zinc oxide nanoparticles on growth, yield, nutrient uptake and quality of tomato publication-title: Horticulture doi: 10.3390/horticulturae9020162 – volume: 7 start-page: 17 issue: 1 year: 2016 ident: 10.1016/j.plana.2024.100113_bib3 article-title: A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise publication-title: J. Adv. Res. doi: 10.1016/j.jare.2015.02.007 – volume: 12 year: 2022 ident: 10.1016/j.plana.2024.100113_bib70 article-title: Biosynthesis of TiO2 nanoparticles by Caricaceae (Papaya) shell extracts for antifungal application publication-title: Sci. Rep. doi: 10.1038/s41598-022-19440-w – volume: 11 issue: 1 year: 2021 ident: 10.1016/j.plana.2024.100113_bib88 article-title: Fungus-mediated green synthesis of nano-silver using Aspergillus sydowii and its antifungal/antiproliferative activities publication-title: Sci. Rep. – volume: 7 start-page: 1831 year: 2016 ident: 10.1016/j.plana.2024.100113_bib23 article-title: Mechanistic basis of antimicrobial actions of silver nanoparticles publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.01831 – volume: 92 year: 2024 ident: 10.1016/j.plana.2024.100113_bib39 article-title: Comparative studies on antibacterial, antibiofilm, antioxidant, and cytotoxicity properties of chemically and Paeonia lactiflora extract-assisted synthesized silver nitroprusside nanoparticles publication-title: J. Drug Del. Sci. Tech. – volume: 2 start-page: 4087 year: 2019 ident: 10.1016/j.plana.2024.100113_bib90 article-title: Green synthesis of an alginate-coated silver nanoparticle shows high antifungal activity by enhancing its cell membrane penetrating ability publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.9b00590 – volume: 2 start-page: 991 year: 2011 ident: 10.1016/j.plana.2024.100113_bib78 article-title: Ethnomedicinal plants used to cure diarrhoea and dysentery in Sivagangai district of Tamil Nadu, India publication-title: Int. J. Res. Ayurveda Pharm. – volume: 8 start-page: 5209 issue: 6 year: 2023 ident: 10.1016/j.plana.2024.100113_bib51 article-title: Nanomaterial-based synaptic optoelectronic devices for in-sensor preprocessing of image data publication-title: ACS Omega doi: 10.1021/acsomega.3c00440 – volume: 586 year: 2020 ident: 10.1016/j.plana.2024.100113_bib10 article-title: Bio-synthesized iron oxide nanoparticles for cancer treatment publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2020.119472 – volume: 1 year: 2022 ident: 10.1016/j.plana.2024.100113_bib56 article-title: Antioxidant and antibacterial activities of silver nanoparticles biosynthesized by Moringa oleifera through response surface methodology publication-title: J. Nanomater. – volume: 169 start-page: 178 year: 2017 ident: 10.1016/j.plana.2024.100113_bib37 article-title: Green synthesis of Ag nanoparticles using Tamarind fruit extract for the antibacterial studies publication-title: J. Photochem. Photobiol. B. doi: 10.1016/j.jphotobiol.2017.03.013 – volume: 5 start-page: 703 year: 2015 ident: 10.1016/j.plana.2024.100113_bib82 article-title: Green synthesis of silver nanoparticles using fresh water green alga Pithophora oedogonia (Mont.) Wittrock and evaluation of their antibacterial activity publication-title: Appl. Nanosci. doi: 10.1007/s13204-014-0366-6 – volume: 73 start-page: 219 issue: 2 year: 2009 ident: 10.1016/j.plana.2024.100113_bib38 article-title: Plant system: nature's nanofactory publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2009.05.018 – volume: 8 start-page: 374 issue: 1 year: 2014 ident: 10.1016/j.plana.2024.100113_bib36 article-title: Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver publication-title: ACS Nano doi: 10.1021/nn4044047 – volume: 400 start-page: 33960 year: 2023 ident: 10.1016/j.plana.2024.100113_bib89 article-title: Physico-chemical properties and antimicrobial activity of silver nanoparticles fabricated by green synthesis publication-title: Food Chem. doi: 10.1016/j.foodchem.2022.133960 – volume: 21 start-page: 1510 issue: 4 year: 2020 ident: 10.1016/j.plana.2024.100113_bib34 article-title: Green synthesis of silver nanoparticles using Pseudoduganella eburnea MAHUQ-39 and their antimicrobial mechanisms investigation against drug resistant human pathogens publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21041510 – volume: 152 year: 2020 ident: 10.1016/j.plana.2024.100113_bib40 article-title: Eco-friendly synthesis and biomedical applications of gold nanoparticles: a review publication-title: Microchem. J. doi: 10.1016/j.microc.2019.104296 – volume: 4 issue: 2 year: 2018 ident: 10.1016/j.plana.2024.100113_bib48 article-title: Evaluation of the free-radical scavenging and antioxidant activities of Chilauni, Schima wallichii Korth in vitro publication-title: Future Sci. OA doi: 10.4155/fsoa-2017-0086 – volume: 1 year: 2021 ident: 10.1016/j.plana.2024.100113_bib60 article-title: Green synthesis of silver nanoparticles from the extracts of fruit peel of Citrus tangerina, Citrus sinensis, and Citrus limon for antibacterial activities publication-title: Bioinorg. Chem. Appl. – volume: 13 start-page: 2256 issue: 1 year: 2023 ident: 10.1016/j.plana.2024.100113_bib7 article-title: Green synthesis and characterization of silver nanoparticles for reducing the damage to sperm parameters in diabetic compared to metformin publication-title: Sci. Rep. doi: 10.1038/s41598-023-29412-3 – volume: 4 start-page: 55 year: 2010 ident: 10.1016/j.plana.2024.100113_bib57 article-title: A scientific evaluation of medicinal plants used in the folk medicinal system of five villages in Narsinghdi district, Bangladesh publication-title: J. Sustain. Agric. – volume: 10 start-page: 5 year: 2019 ident: 10.1016/j.plana.2024.100113_bib67 article-title: Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms publication-title: J. Anal. Sci. Technol. doi: 10.1186/s40543-018-0163-z – volume: 10 start-page: 349 issue: 5 year: 2016 ident: 10.1016/j.plana.2024.100113_bib66 article-title: Biofabrication of broad range antibacterial and antibiofilm silver nanoparticles publication-title: IET Nanobiotechnol. doi: 10.1049/iet-nbt.2015.0091 – volume: 76 start-page: 50 year: 2010 ident: 10.1016/j.plana.2024.100113_bib47 article-title: Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2009.10.008 – volume: 12 start-page: 2402 issue: 14 year: 2022 ident: 10.1016/j.plana.2024.100113_bib12 article-title: Silver and copper nanoparticles induce oxidative stress in bacteria and mammalian cells publication-title: Nanomater doi: 10.3390/nano12142402 – volume: 262 year: 2021 ident: 10.1016/j.plana.2024.100113_bib87 article-title: Structural characterization of green synthesized magnetic mesoporous Fe3O4NPs@ ME publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2021.124323 – volume: 9 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.plana.2024.100113_bib4 article-title: Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract publication-title: J. Rad. Res. Appl. Sci. – volume: 247 year: 2021 ident: 10.1016/j.plana.2024.100113_bib59 article-title: Green synthesis of Cadmium Sulphide nanoparticles for the photodegradation of Malachite green dye, Sulfisoxazole and removal of bacteria publication-title: Optik doi: 10.1016/j.ijleo.2021.167851 – volume: 26 start-page: 64 issue: 1 year: 2018 ident: 10.1016/j.plana.2024.100113_bib69 article-title: Applications of nanoparticle systems in drug delivery technology publication-title: Saudi Pharm. J. doi: 10.1016/j.jsps.2017.10.012 – volume: 48 start-page: 600 issue: 8 year: 2015 ident: 10.1016/j.plana.2024.100113_bib81 article-title: Phytosynthesis of silver nanoparticles using Andrographis paniculata leaf extract and evaluation of their antibacterial activities publication-title: Spectrosc. Lett. doi: 10.1080/00387010.2014.938756 – volume: 1 year: 2021 ident: 10.1016/j.plana.2024.100113_bib22 article-title: Biogenic silver nanoparticles of Clinacanthus nutans as antioxidant with antimicrobial and cytotoxic effects publication-title: Bioinorg. Chem. Appl. – volume: 2016 start-page: 4102196 issue: 1 year: 2016 ident: 10.1016/j.plana.2024.100113_bib9 article-title: Green synthesis of silver nanoparticles using apple extract and its antibacterial properties publication-title: Adv. Mater. Sci. Eng. – volume: 4 issue: 1 year: 2021 ident: 10.1016/j.plana.2024.100113_bib14 article-title: A review on recent developments in the biosynthesis of silver nanoparticles and its biomedical applications publication-title: MDS – volume: 11 issue: 1 year: 2021 ident: 10.1016/j.plana.2024.100113_bib86 article-title: Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus publication-title: Sci. Rep. doi: 10.1038/s41598-021-00520-2 – volume: 648 start-page: 102 year: 2019 ident: 10.1016/j.plana.2024.100113_bib32 article-title: Transport and retention of silver nanoparticles in soil: Effects of input concentration, particle size and surface coating publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.08.136 – volume: 28 issue: 3 year: 2024 ident: 10.1016/j.plana.2024.100113_bib8 article-title: Green synthesis of bio-mediated silver nanoparticles from Persea americana peels extract and evaluation of their biological activities: In vitro and in silico insights publication-title: J. Saudi Chem. Soc. doi: 10.1016/j.jscs.2024.101863 – volume: 44 start-page: 1587 issue: 6 year: 2020 ident: 10.1016/j.plana.2024.100113_bib20 article-title: Biosynthesis of silver nanoparticles using Onosma sericeum Willd. and evaluation of their catalytic properties and antibacterial and cytotoxic activity publication-title: Turk. J. Chem. doi: 10.3906/kim-2007-1 – volume: 4 year: 2021 ident: 10.1016/j.plana.2024.100113_bib61 article-title: Green synthesis of silver nanoparticles using stem bark extract of Annona senegalensis: characterization and its antibacterial potency publication-title: CRGSC – volume: 6 start-page: 357 year: 2016 ident: 10.1016/j.plana.2024.100113_bib24 article-title: Biologically synthesized silver nanoparticles by aqueous extract of Satureja intermedia CA Mey and the evaluation of total phenolic and flavonoid contents and antioxidant activity publication-title: J. Nanostruct. Chem. doi: 10.1007/s40097-016-0207-0 – volume: 10 year: 2020 ident: 10.1016/j.plana.2024.100113_bib68 article-title: Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalized silver nanoparticles publication-title: Sci. Rep. doi: 10.1038/s41598-020-76726-7 – volume: 4 year: 2023 ident: 10.1016/j.plana.2024.100113_bib28 article-title: Nanotechnology applications in sustainable agriculture: An emerging eco-friendly approach publication-title: Plant Nano Biol. doi: 10.1016/j.plana.2023.100033 – volume: 13 year: 2018 ident: 10.1016/j.plana.2024.100113_bib27 article-title: In vitro studies of the antimicrobial and free-radical scavenging potentials of silver nanoparticles biosynthesized from the extract of Desmostachya bipinnata publication-title: Anal. Chem. Insights doi: 10.1177/1177390118782877 – volume: 43 year: 2022 ident: 10.1016/j.plana.2024.100113_bib31 article-title: An overview of the role of nanoparticles in sustainable agriculture publication-title: Biocatal. Agric. Biotechnol. doi: 10.1016/j.bcab.2022.102399 – volume: 5 start-page: 5520 issue: 10 year: 2020 ident: 10.1016/j.plana.2024.100113_bib33 article-title: Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines publication-title: ACS Omega doi: 10.1021/acsomega.0c00155 – volume: 7 start-page: 59 year: 2017 ident: 10.1016/j.plana.2024.100113_bib15 article-title: Silver nanoparticles (AgNPs) biosynthesized using pod extract of Cola nitida enhances antioxidant activity and phytochemical composition of Amaranthus caudatus Linn publication-title: Appl. Nanosci. doi: 10.1007/s13204-017-0546-2 – volume: 6 year: 2023 ident: 10.1016/j.plana.2024.100113_bib17 article-title: Facile bio-genic synthesis of Astragalus sarcocolla (Anzaroot) gum extract mediated silver nanoparticles: characterizations, antimicrobial and antioxidant activities publication-title: Plant Nano Biol. doi: 10.1016/j.plana.2023.100052 – volume: 168 start-page: 221 year: 1998 ident: 10.1016/j.plana.2024.100113_bib25 article-title: Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLNTM) dispersions publication-title: Int. J. Pharm. doi: 10.1016/S0378-5173(98)00092-1 – volume: 12 issue: 1 year: 2022 ident: 10.1016/j.plana.2024.100113_bib21 article-title: Size characterization of plasmonic nanoparticles with dark-field single particle spectrophotometry publication-title: Sci. Rep. doi: 10.1038/s41598-022-21649-8 – volume: 50 start-page: 357 year: 2015 ident: 10.1016/j.plana.2024.100113_bib52 article-title: Green synthesis of gallic acid-coated silver nanoparticles with high antimicrobial activity and low cytotoxicity to normal cells publication-title: Process Biochem. doi: 10.1016/j.procbio.2015.01.002 – volume: 162 start-page: 93 year: 2016 ident: 10.1016/j.plana.2024.100113_bib50 article-title: Photobiologic-mediated fabrication of silver nanoparticles with antibacterial activity publication-title: J. Photochem. Photobiol. B doi: 10.1016/j.jphotobiol.2016.06.029 – volume: 10 start-page: 851 issue: 1 year: 2021 ident: 10.1016/j.plana.2024.100113_bib55 article-title: Green synthesis of silver nanoparticles using aqueous extract of Citrus sinensis peels and evaluation of their antibacterial efficacy publication-title: Green. Process. Synth. doi: 10.1515/gps-2021-0061 – volume: 57 year: 2020 ident: 10.1016/j.plana.2024.100113_bib16 article-title: Biogenic synthesis of gold nanoparticles using Jasminum auriculatum leaf extract and their catalytic, antimicrobial and anticancer activities publication-title: J. Drug Del. Sci. Tech. – volume: 25 start-page: 3191 issue: 14 year: 2020 ident: 10.1016/j.plana.2024.100113_bib18 article-title: A brief overview on antioxidant activity determination of silver nanoparticles publication-title: Molecules doi: 10.3390/molecules25143191 – volume: 6 year: 2020 ident: 10.1016/j.plana.2024.100113_bib54 article-title: Green synthesis of silver nanoparticles using plant leaf extraction of Artocarpus heterophylus and Azadirachta indica publication-title: Results Mater. – volume: 79 start-page: 594 year: 2011 ident: 10.1016/j.plana.2024.100113_bib43 article-title: Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity publication-title: Spectrochim. Acta - A: Mol. Biomol. doi: 10.1016/j.saa.2011.03.040 – volume: 13 start-page: 183 year: 2019 ident: 10.1016/j.plana.2024.100113_bib45 article-title: Green synthesis of stable silver nanoparticles by the main reduction component of green tea (Camellia sinensis L.) publication-title: IET Nanobiotechnol. doi: 10.1049/iet-nbt.2018.5141 – volume: 86 start-page: 75 year: 2016 ident: 10.1016/j.plana.2024.100113_bib79 article-title: Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications publication-title: Enzym. Microb. Technol. doi: 10.1016/j.enzmictec.2016.02.005 |
SSID | ssj0002923730 |
Score | 2.2728534 |
Snippet | Understanding the properties of silver nanoparticles (AgNPs) is noteworthy for the development of novel antimicrobial agents. Here AgNPs were procured through... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 100113 |
SubjectTerms | Antibacterial activity Antioxidant potentiality Cell membrane permeability Plant-mediated AgNPs Typhonium trilobatum |
Title | Untying the antimicrobial and antioxidant potential of silver nanoparticles fabricated from Typhonium trilobatum (L.) Schott |
URI | https://dx.doi.org/10.1016/j.plana.2024.100113 https://doaj.org/article/885f05360ff847a1bc904e1053282b6b |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJy-iqLi-yMGDgtU-k_aosssiricX9lbyKlbcdlmz4EH87c6krdSLXry0IU2T8k2amYGZbwg5Y4lMRJYVXqB57IE-Dj1pMuaJCCvdBlJpV6Zz-sgms_h-nsx7pb4wJqyhB26Au07TpICNwvyigINUwNuZH5sACxqkoWQST1_QeT1nCs_gEOwW2LsdzZAL6Fq-igqZhsLYEQ8F0Q9V5Bj7exqpp2XG22SrNQ_pTfNZO2TDVLvkY1ZZzEaiYKxRQKJclI4-CQaKSrue-r3UcKfL2mL4DzypC_pWYtgzrUQFnnEbAEcLIV1lIKMpppZQcESf4b9eL6hdlcgOYqF5_nB1QZGg09o9MhuPnu4mXls1wVMRiy3yjYYylGDX-JHkXKkkkQK8EhFnQseBFokAswPQ1CAk5SsAFRqJKIKCZwxw2yeDqq7MAaFRahiPZKgCJmOVmpQbowLDuQGRpJoNyWUHYL5syDHyLmrsJXd454h33uA9JLcI8vdQZLZ2HSDvvIUh_0veQ8I6EeWtkdAof5iq_G31w_9Y_Yhs4pRNMuIxGdjV2pyAVWLlqduAcJ1-jr4Ai9zhYA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Untying+the+antimicrobial+and+antioxidant+potential+of+silver+nanoparticles+fabricated+from+Typhonium+trilobatum+%28L.%29+Schott&rft.jtitle=Plant+Nano+Biology&rft.au=Sushree+Ghosh&rft.au=Sankar+Narayan+Sinha&rft.date=2024-11-01&rft.pub=Elsevier&rft.eissn=2773-1111&rft.volume=10&rft.spage=100113&rft_id=info:doi/10.1016%2Fj.plana.2024.100113&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_885f05360ff847a1bc904e1053282b6b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2773-1111&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2773-1111&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2773-1111&client=summon |