Comparison of foam core sandwich panel and through-thickness polymer pin-reinforced foam core sandwich panel subject to indentation and flatwise compression loadings
Through‐thickness polymer pin–reinforced foam core sandwich (FCS) panels are new type of composite sandwich structure as the foam core of this structure was reinforced with cylindrical polymer pins, which also rigidly connect the face sheets. These sandwich panels are made of glass fiber–reinforced...
Saved in:
Published in | Polymer composites Vol. 37; no. 2; pp. 612 - 619 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Newtown
Blackwell Publishing Ltd
01.02.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0272-8397 1548-0569 |
DOI | 10.1002/pc.23218 |
Cover
Loading…
Abstract | Through‐thickness polymer pin–reinforced foam core sandwich (FCS) panels are new type of composite sandwich structure as the foam core of this structure was reinforced with cylindrical polymer pins, which also rigidly connect the face sheets. These sandwich panels are made of glass fiber–reinforced polyester face sheets and closed‐cell polyurethane foam core with cylindrical polymer pins produced during fabrication process. The indentation and compression behavior of these sandwich panels were compared with common traditional sandwich panel, and it has been found that by reinforcing the foam core with cylindrical polymer pins, the indentation strength, energy absorption, and compression strength of the sandwich panels were improved significantly. The effect of diameter of polymer pins on indentation and compression behavior of both sandwich panels was studied and results showed that the diameter of polymer pins had a large influence on the compression and indentation behavior of through‐thickness polymer pin–reinforced FCS panel, and the effect of adding polymer pins to FCS panel on indentation behavior is similar to the effect of increasing the thickness of face sheet. The effect of strain rate on indentation behavior of FCS panel and through‐thickness polymer pin–reinforced FCS panel were studied, and results showed that both types of composite sandwich panels are strain rate dependent structure as by increasing strain rate, the indentation properties and energy absorption properties of these structures are increased. POLYM. COMPOS., 37:612–619, 2016. © 2014 Society of Plastics Engineers |
---|---|
AbstractList | Through‐thickness polymer pin–reinforced foam core sandwich (FCS) panels are new type of composite sandwich structure as the foam core of this structure was reinforced with cylindrical polymer pins, which also rigidly connect the face sheets. These sandwich panels are made of glass fiber–reinforced polyester face sheets and closed‐cell polyurethane foam core with cylindrical polymer pins produced during fabrication process. The indentation and compression behavior of these sandwich panels were compared with common traditional sandwich panel, and it has been found that by reinforcing the foam core with cylindrical polymer pins, the indentation strength, energy absorption, and compression strength of the sandwich panels were improved significantly. The effect of diameter of polymer pins on indentation and compression behavior of both sandwich panels was studied and results showed that the diameter of polymer pins had a large influence on the compression and indentation behavior of through‐thickness polymer pin–reinforced FCS panel, and the effect of adding polymer pins to FCS panel on indentation behavior is similar to the effect of increasing the thickness of face sheet. The effect of strain rate on indentation behavior of FCS panel and through‐thickness polymer pin–reinforced FCS panel were studied, and results showed that both types of composite sandwich panels are strain rate dependent structure as by increasing strain rate, the indentation properties and energy absorption properties of these structures are increased. POLYM. COMPOS., 37:612–619, 2016. © 2014 Society of Plastics Engineers Through-thickness polymer pin-reinforced foam core sandwich (FCS) panels are new type of composite sandwich structure as the foam core of this structure was reinforced with cylindrical polymer pins, which also rigidly connect the face sheets. These sandwich panels are made of glass fiber-reinforced polyester face sheets and closed-cell polyurethane foam core with cylindrical polymer pins produced during fabrication process. The indentation and compression behavior of these sandwich panels were compared with common traditional sandwich panel, and it has been found that by reinforcing the foam core with cylindrical polymer pins, the indentation strength, energy absorption, and compression strength of the sandwich panels were improved significantly. The effect of diameter of polymer pins on indentation and compression behavior of both sandwich panels was studied and results showed that the diameter of polymer pins had a large influence on the compression and indentation behavior of through-thickness polymer pin-reinforced FCS panel, and the effect of adding polymer pins to FCS panel on indentation behavior is similar to the effect of increasing the thickness of face sheet. The effect of strain rate on indentation behavior of FCS panel and through-thickness polymer pin-reinforced FCS panel were studied, and results showed that both types of composite sandwich panels are strain rate dependent structure as by increasing strain rate, the indentation properties and energy absorption properties of these structures are increased. POLYM. COMPOS., 37:612-619, 2016. copyright 2014 Society of Plastics Engineers |
Author | Abdi, B. Abdullah, M.R. Yahya, Yazid Azwan, S. Ayob, Amran |
Author_xml | – sequence: 1 givenname: B. surname: Abdi fullname: Abdi, B. email: behzad.abdi@gmail.com organization: Centre for Composites, Universiti Teknologi Malaysia, Johor, 81310, Johor Bahru, Malaysia – sequence: 2 givenname: S. surname: Azwan fullname: Azwan, S. organization: Centre for Composites, Universiti Teknologi Malaysia, Johor, 81310, Johor Bahru, Malaysia – sequence: 3 givenname: M.R. surname: Abdullah fullname: Abdullah, M.R. organization: Centre for Composites, Universiti Teknologi Malaysia, Johor, 81310, Johor Bahru, Malaysia – sequence: 4 givenname: Amran surname: Ayob fullname: Ayob, Amran organization: Centre for Composites, Universiti Teknologi Malaysia, Johor, 81310, Johor Bahru, Malaysia – sequence: 5 givenname: Yazid surname: Yahya fullname: Yahya, Yazid organization: Centre for Composites, Universiti Teknologi Malaysia, Johor, 81310, Johor Bahru, Malaysia |
BookMark | eNp10d1qFDEUB_AgFdxWwUcIeOPNbPMxycxcyqqtUKv4gZchm5zpZjuTjEmGdR_I92zWlQrFXoWQ3_nnHM4pOvHBA0IvKVlSQtj5ZJaMM9o-QQsq6rYiQnYnaEFYw6qWd80zdJrStkgqJV-g36swTjq6FDwOPe6DHrEJEXDS3u6c2eBJexhwueG8iWG-2VR548yth5TwFIb9CBFPzlcRnO9DNGAfT0nzegsm4xyw8xZ81tmVjw_h_aDzziUodeMUS_jhYQjaOn-TnqOnvR4SvPh7nqHv7999W11WV58uPqzeXFWGyzJrz2XbUdtbIXogQGxtBbBOd0QYQnhNZNO1kuu2YYR3oNfNmjAB1pKaEiYNP0Ovj7lTDD9nSFmNLhkYhtJ9mJOiLSF1K0UnC331gG7DHH3pTtFGNIXUjBe1PCoTQ0oRemXccegctRsUJeqwNTUZ9Wdr_zq4L5iiG3Xc_49WR7pzA-wfderz6oF3KcOve6_jrZINb4T6cX2h6q_y-uMXcane8jtw8blf |
CODEN | PCOMDI |
CitedBy_id | crossref_primary_10_1007_s40799_023_00694_6 crossref_primary_10_1002_pc_27307 crossref_primary_10_1177_1099636218792671 crossref_primary_10_3390_polym13213627 crossref_primary_10_1002_pc_26989 crossref_primary_10_1177_0021998319845428 crossref_primary_10_3390_jcs3020040 crossref_primary_10_1002_pc_24508 crossref_primary_10_1016_j_oceaneng_2017_08_039 crossref_primary_10_1177_1099636218792675 crossref_primary_10_1016_j_compscitech_2018_11_030 crossref_primary_10_1177_07316844221105287 crossref_primary_10_1007_s13369_025_10061_9 crossref_primary_10_1016_j_engfailanal_2020_104765 crossref_primary_10_1021_acsomega_2c04826 crossref_primary_10_1177_1099636220909752 crossref_primary_10_1002_pc_28981 crossref_primary_10_1016_j_compositesa_2020_106128 crossref_primary_10_1177_1099636221998180 crossref_primary_10_1177_09544089231189609 crossref_primary_10_1590_1679_78253688 crossref_primary_10_1002_pc_25662 crossref_primary_10_1002_pc_25543 crossref_primary_10_1177_0021998319874502 |
Cites_doi | 10.1016/j.compositesa.2009.04.004 10.1016/j.compositesa.2011.07.020 10.4028/www.scientific.net/AMM.229-231.303 10.1016/j.compstruct.2013.02.010 10.4028/www.scientific.net/AMM.229-231.766 10.1007/s11340-006-7103-3 10.1007/s10443-012-9285-4 10.1007/1-4020-3848-8_70 10.1016/j.matdes.2013.05.024 10.1016/j.compositesb.2012.01.002 10.1016/j.engstruct.2011.11.023 10.1016/j.compositesb.2011.02.013 10.1016/j.compstruct.2009.10.005 10.1016/j.ijsolstr.2010.03.025 10.1016/j.compstruct.2009.11.014 10.1016/j.compositesa.2013.04.010 10.1016/S0263-8223(02)00087-9 10.1201/9781420031683 10.1016/j.compstruct.2009.08.016 10.1016/j.compstruct.2009.11.005 10.1016/j.compstruct.2012.09.002 |
ContentType | Journal Article |
Copyright | 2014 Society of Plastics Engineers 2016 Society of Plastics Engineers |
Copyright_xml | – notice: 2014 Society of Plastics Engineers – notice: 2016 Society of Plastics Engineers |
DBID | BSCLL AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1002/pc.23218 |
DatabaseName | Istex CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | CrossRef Materials Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1548-0569 |
EndPage | 619 |
ExternalDocumentID | 3923836271 10_1002_pc_23218 PC23218 ark_67375_WNG_4S6NMR5H_D |
Genre | article |
GrantInformation_xml | – fundername: Research University grant (GUP) funderid: R.J130000.7824.4F131 |
GroupedDBID | .-4 .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 29O 31~ 33P 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 88I 8AF 8AO 8FE 8FG 8FW 8R4 8R5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABHFT ABIJN ABJCF ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 DWQXO EBS EJD F00 F01 F04 FEDTE FOJGT G-S G.N GNP GNUQQ GODZA H.T H.X HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IX1 J0M JPC KB. KC. KQQ KZ1 LATKE LAW LC2 LC3 LEEKS LH4 LITHE LMP LOXES LP6 LP7 LUTES LW6 LYRES M2P M2Q M6K MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D P62 PALCI PDBOC PQQKQ PROAC Q.N Q11 Q2X QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RWM RX1 RYL S0X SAMSI SUPJJ UB1 V2E V8K W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WRC WTY WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION PHGZM PHGZT 7SR 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c3648-f36891dfd55fe0e0d4d5e29a905c00340679863a872039eab7b025edd041026c3 |
IEDL.DBID | DR2 |
ISSN | 0272-8397 |
IngestDate | Fri Jul 11 11:52:40 EDT 2025 Fri Jul 25 09:52:09 EDT 2025 Tue Jul 01 00:42:36 EDT 2025 Thu Apr 24 22:51:10 EDT 2025 Wed Jan 22 16:23:15 EST 2025 Wed Oct 30 09:48:50 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3648-f36891dfd55fe0e0d4d5e29a905c00340679863a872039eab7b025edd041026c3 |
Notes | ark:/67375/WNG-4S6NMR5H-D ArticleID:PC23218 istex:2A31DEE01960A955BF12C32C4C130EACD79D02CD Research University grant (GUP) - No. R.J130000.7824.4F131 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1757596423 |
PQPubID | 37365 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1800486596 proquest_journals_1757596423 crossref_citationtrail_10_1002_pc_23218 crossref_primary_10_1002_pc_23218 wiley_primary_10_1002_pc_23218_PC23218 istex_primary_ark_67375_WNG_4S6NMR5H_D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02 February 2016 2016-02-00 20160201 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02 |
PublicationDecade | 2010 |
PublicationPlace | Newtown |
PublicationPlace_xml | – name: Newtown |
PublicationTitle | Polymer composites |
PublicationTitleAlternate | Polym. Compos |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | S. Zhu and G.B. Chai, Compos. Struct., 101, 204 (2013). E.A. Flores-Johnson and Q. Li, Compos. B Eng., 42(5), 1212 (2011). S.H. Yoon, K.J. Jang, S.H. Cho, B.J. Park, and J.M. Cho, in Proceedings of the Twelfth International Conference on Composite Materials, CD edition, Paris, France, Extended Abstracts, 373 (1999). L. Du and G. Jiao, Compos. A: Appl. Sci. Manufact., 40, 822 (2009). A. Nanayakkara, S. Feih, and A. Mouritz, Compos. A: Appl. Sci. Manufact., 42,1673 (2011). G.S. Landon, C.J. Von Klemperer, B.K. Rowland, and G.N. Nurick, Eng. Struct., 36, 104 (2012). P. Potluri, E. Kusak, and T.Y. Reddy, Compos. Struct., 59, 251 (2003). L.S. Sutherland and C. Guedes Soares, Compos. B, 43, 1459 (2012). D. Ruan, G. Lu, and Y.C. Wong, Compos. Struct., 92(9), 2039 (2010). D. Gay, S.V. Hoa, and S.W. Tsai, Composite Materials: Design and Applications, CRC Press (2002). N. Mitra, Compos. Struct., 92, 1065 (2010). G.L. Roy, C. Binetruy, and P. Krawczak, Sandwich Structures 7: Advancing with Sandwich Structures and Materials, 693 (2005). ASTM Standard D365, "Standard Test Method for Flatwise Compressive Properties of Sandwich Cores," ASTM International, West Conshohocken, PA (2006). D. Feng and F. Aymerich, Compos. A, 52, 12 (2013). S.S.R. Koloor, B. Abdi, M.R. Abdullah, A. Ayob, and M.Y. BinYahya, Appl. Mech. Mater., 229, 303 (2012). B. Abdi, S.S.R. Koloor, M.R. Abdullah, A. Ayob, M.Y. Bin Yahya, and M.N. Tamin, Appl. Mech. Mater., 229, 766 (2012). S. Abrate, Impact on Composite Structures, Cambridge University Press (2005). M. Rice, C. Fleischer, and M. Zupan, Exp. Mech., 46, 197 (2006). A. Henao, M. Carrera, A. Miravete, and L. Castejón, Compos. Struct., 92, 2052 (2010). J. Wang, A.M. Waas, and H. Wang, Compos. Struct., 96, 298 (2013). A. Aktas, P. Potluri, and I. Porat, Appl. Compos. Mater., 20(4), 553 (2013). E.S. Larry and O.A. Daniel, Development and Evaluation of Stitched Sandwich Panels (2001). A.T. Nettles and M.J. Douglas, ASTM Spec. Tech. Publ., 1416, 116 (2002). F. Xia and X.Q. Wu, Compos. Struct., 92, 412 (2010). A. Mostafa, K. Shankar, and E.V. Morozov, Mater. Des., 51, 1008 (2013). E.A. Flores-Johnson and Q.M. Li, Int. J. Solids Struct., 47, 1987 (2010). 2009; 40 2010; 47 2001 2002; 1416 2006; 46 2013; 51 2013; 20 2013; 96 2013; 52 2011; 42 2013; 101 2003; 59 2006 2005 2002 2010; 92 2012; 36 2012; 43 2012; 229 1999 e_1_2_6_10_1 Yoon S.H. (e_1_2_6_20_1) 1999 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 Nettles A.T. (e_1_2_6_8_1) 2002; 1416 Abrate S. (e_1_2_6_2_1) 2005 ASTM Standard D365 (e_1_2_6_24_1) 2006 e_1_2_6_9_1 Larry E.S. (e_1_2_6_22_1) 2001 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: J. Wang, A.M. Waas, and H. Wang, Compos. Struct., 96, 298 (2013). – reference: A. Mostafa, K. Shankar, and E.V. Morozov, Mater. Des., 51, 1008 (2013). – reference: D. Feng and F. Aymerich, Compos. A, 52, 12 (2013). – reference: E.S. Larry and O.A. Daniel, Development and Evaluation of Stitched Sandwich Panels (2001). – reference: A. Henao, M. Carrera, A. Miravete, and L. Castejón, Compos. Struct., 92, 2052 (2010). – reference: P. Potluri, E. Kusak, and T.Y. Reddy, Compos. Struct., 59, 251 (2003). – reference: L.S. Sutherland and C. Guedes Soares, Compos. B, 43, 1459 (2012). – reference: A.T. Nettles and M.J. Douglas, ASTM Spec. Tech. Publ., 1416, 116 (2002). – reference: S. Abrate, Impact on Composite Structures, Cambridge University Press (2005). – reference: A. Aktas, P. Potluri, and I. Porat, Appl. Compos. Mater., 20(4), 553 (2013). – reference: S. Zhu and G.B. Chai, Compos. Struct., 101, 204 (2013). – reference: F. Xia and X.Q. Wu, Compos. Struct., 92, 412 (2010). – reference: N. Mitra, Compos. Struct., 92, 1065 (2010). – reference: D. Gay, S.V. Hoa, and S.W. Tsai, Composite Materials: Design and Applications, CRC Press (2002). – reference: S.H. Yoon, K.J. Jang, S.H. Cho, B.J. Park, and J.M. Cho, in Proceedings of the Twelfth International Conference on Composite Materials, CD edition, Paris, France, Extended Abstracts, 373 (1999). – reference: G.L. Roy, C. Binetruy, and P. Krawczak, Sandwich Structures 7: Advancing with Sandwich Structures and Materials, 693 (2005). – reference: ASTM Standard D365, "Standard Test Method for Flatwise Compressive Properties of Sandwich Cores," ASTM International, West Conshohocken, PA (2006). – reference: B. Abdi, S.S.R. Koloor, M.R. Abdullah, A. Ayob, M.Y. Bin Yahya, and M.N. Tamin, Appl. Mech. Mater., 229, 766 (2012). – reference: S.S.R. Koloor, B. Abdi, M.R. Abdullah, A. Ayob, and M.Y. BinYahya, Appl. Mech. Mater., 229, 303 (2012). – reference: E.A. Flores-Johnson and Q. Li, Compos. B Eng., 42(5), 1212 (2011). – reference: G.S. Landon, C.J. Von Klemperer, B.K. Rowland, and G.N. Nurick, Eng. Struct., 36, 104 (2012). – reference: L. Du and G. Jiao, Compos. A: Appl. Sci. Manufact., 40, 822 (2009). – reference: M. Rice, C. Fleischer, and M. Zupan, Exp. Mech., 46, 197 (2006). – reference: D. Ruan, G. Lu, and Y.C. Wong, Compos. Struct., 92(9), 2039 (2010). – reference: E.A. Flores-Johnson and Q.M. Li, Int. J. Solids Struct., 47, 1987 (2010). – reference: A. Nanayakkara, S. Feih, and A. Mouritz, Compos. A: Appl. Sci. Manufact., 42,1673 (2011). – start-page: 693 year: 2005 – volume: 229 start-page: 766 year: 2012 publication-title: Appl. Mech. Mater. – volume: 20 start-page: 553 issue: 4 year: 2013 publication-title: Appl. Compos. Mater. – year: 2005 – volume: 1416 start-page: 116 year: 2002 publication-title: ASTM Spec. Tech. Publ. – volume: 229 start-page: 303 year: 2012 publication-title: Appl. Mech. Mater. – volume: 51 start-page: 1008 year: 2013 publication-title: Mater. Des. – volume: 43 start-page: 1459 year: 2012 publication-title: Compos. B – year: 2001 – volume: 92 start-page: 2039 issue: 9 year: 2010 publication-title: Compos. Struct. – volume: 47 start-page: 1987 year: 2010 publication-title: Int. J. Solids Struct. – start-page: 373 year: 1999 – volume: 92 start-page: 412 year: 2010 publication-title: Compos. Struct. – volume: 36 start-page: 104 year: 2012 publication-title: Eng. Struct. – year: 2002 – volume: 59 start-page: 251 year: 2003 publication-title: Compos. Struct. – year: 2006 – volume: 92 start-page: 1065 year: 2010 publication-title: Compos. Struct. – volume: 46 start-page: 197 year: 2006 publication-title: Exp. Mech. – volume: 42 start-page: 1212 issue: 5 year: 2011 publication-title: Compos. B Eng. – volume: 52 start-page: 12 year: 2013 publication-title: Compos. A – volume: 101 start-page: 204 year: 2013 publication-title: Compos. Struct. – volume: 96 start-page: 298 year: 2013 publication-title: Compos. Struct. – volume: 42 start-page: 1673 year: 2011 publication-title: Compos. A: Appl. Sci. Manufact. – volume: 40 start-page: 822 year: 2009 publication-title: Compos. A: Appl. Sci. Manufact. – volume: 92 start-page: 2052 year: 2010 publication-title: Compos. Struct. – ident: e_1_2_6_17_1 doi: 10.1016/j.compositesa.2009.04.004 – ident: e_1_2_6_19_1 doi: 10.1016/j.compositesa.2011.07.020 – ident: e_1_2_6_27_1 doi: 10.4028/www.scientific.net/AMM.229-231.303 – ident: e_1_2_6_5_1 doi: 10.1016/j.compstruct.2013.02.010 – ident: e_1_2_6_26_1 doi: 10.4028/www.scientific.net/AMM.229-231.766 – start-page: 373 volume-title: Proceedings of the Twelfth International Conference on Composite Materials, CD edition year: 1999 ident: e_1_2_6_20_1 – volume-title: Development and Evaluation of Stitched Sandwich Panels year: 2001 ident: e_1_2_6_22_1 – ident: e_1_2_6_18_1 doi: 10.1007/s11340-006-7103-3 – ident: e_1_2_6_21_1 doi: 10.1007/s10443-012-9285-4 – ident: e_1_2_6_23_1 doi: 10.1007/1-4020-3848-8_70 – volume: 1416 start-page: 116 year: 2002 ident: e_1_2_6_8_1 publication-title: ASTM Spec. Tech. Publ. – ident: e_1_2_6_13_1 doi: 10.1016/j.matdes.2013.05.024 – ident: e_1_2_6_9_1 doi: 10.1016/j.compositesb.2012.01.002 – ident: e_1_2_6_10_1 doi: 10.1016/j.engstruct.2011.11.023 – ident: e_1_2_6_3_1 doi: 10.1016/j.compositesb.2011.02.013 – ident: e_1_2_6_12_1 doi: 10.1016/j.compstruct.2009.10.005 – ident: e_1_2_6_7_1 doi: 10.1016/j.ijsolstr.2010.03.025 – ident: e_1_2_6_6_1 doi: 10.1016/j.compstruct.2009.11.014 – ident: e_1_2_6_11_1 doi: 10.1016/j.compositesa.2013.04.010 – volume-title: “Standard Test Method for Flatwise Compressive Properties of Sandwich Cores year: 2006 ident: e_1_2_6_24_1 – ident: e_1_2_6_16_1 doi: 10.1016/S0263-8223(02)00087-9 – ident: e_1_2_6_25_1 doi: 10.1201/9781420031683 – ident: e_1_2_6_14_1 doi: 10.1016/j.compstruct.2009.08.016 – ident: e_1_2_6_15_1 doi: 10.1016/j.compstruct.2009.11.005 – ident: e_1_2_6_4_1 doi: 10.1016/j.compstruct.2012.09.002 – volume-title: Impact on Composite Structures year: 2005 ident: e_1_2_6_2_1 |
SSID | ssj0021663 |
Score | 2.2320611 |
Snippet | Through‐thickness polymer pin–reinforced foam core sandwich (FCS) panels are new type of composite sandwich structure as the foam core of this structure was... Through-thickness polymer pin-reinforced foam core sandwich (FCS) panels are new type of composite sandwich structure as the foam core of this structure was... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 612 |
SubjectTerms | Compressive strength Energy absorption Indentation Panels Plastic foam Polymer matrix composites Sandwich construction Strain rate |
Title | Comparison of foam core sandwich panel and through-thickness polymer pin-reinforced foam core sandwich panel subject to indentation and flatwise compression loadings |
URI | https://api.istex.fr/ark:/67375/WNG-4S6NMR5H-D/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpc.23218 https://www.proquest.com/docview/1757596423 https://www.proquest.com/docview/1800486596 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZQucCB8iuWtshICE7ZZhMncY5ooayQukKFikocLMc_YrVpEm2yasupj4DEU_S1-iTMOD-0iEqIU7TK7Nprz4y_OJ-_IeQlICFwHW09P5bKY4oxj3MGE6In3JeQla2rDbg_j2eH7MNRdNSxKvEsTKsPMWy4YWS4fI0BLrN697doaKXGgAYmeM4XqVqIhw4G5ahgErdF1IIEAh7W3F531g92-y9eW4lu46CeXoOZV8GqW232NsnXvp8tyWQ5XjfZWH3_Q8Lx__7IfXKvA6H0Tes1D8gtUzwkd69IEz4iF9OhQCEtLbWlPKaoeElrWeiThfpGIY2YnMIn2tX6uTz_geT5JSZPWpX52bFZ0WpRXJ7_XBkn0KqMvvmX6nWGe0K0KSlKOLZHogrXgM1lc7KoDUUCfEvcLWheOvp__Zgc7r37PJ15XVkHT4UxuIENY55OtNVRZI1vfM10ZIJUpn6kUC4Ht7Z4HEqOb4hTI7MkA2BmtPYZoKFYhU_IRlEW5imhnEeaK2mZBBzFYZ4zXwcyAWujg9DaEXndT7FQneY5lt7IRavWHIhKCTf4I_JisKxanY-_2LxyXjIYyNUSeXFJJL7M3wv2KZ7vH0Qz8XZEtns3El1KqAXgtCRK4XEvhLaG2xDM-IYGxrlcgw13EohgBm05n7mxM-Lj1F2f_avhFrkDYK9jnG-TjWa1NjsAqJrsuQudX7fTILo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKewAO_CMWChgJwSnbbGInjjihLWWB7gqVVvSAZDn-EatNk2iTVYFTHwGJp-C1-iSMnR9aRCXEKYoyiR17ZvxlMv4GoaeAhEB1lPH8SEiPSEI8xghMiBoxX4BXNq424HQWTQ7I20N6uIZedHthGn6IPuBmLcP5a2vgNiC99Zs1tJRDgAMjdglt2ILetnzB9l7PHRWMoqaMWhCDycOq2zHP-sFWd-e5tWjDDuuXc0DzLFx1683OdfSp62mTZrIYrup0KL_9QeL4n69yA11rcSh-2SjOTbSm81vo6hl2wtvo57ivUYgLg00hjrAlvcSVyNXxXH7G4El0huEMt-V-Tk--2_z5hfWfuCyyr0d6ict5fnryY6kdR6vU6uInVavUhoVwXWDL4tjsispdAyYT9fG80tjmwDe5uznOCrcDoLqDDnZe7Y8nXlvZwZNhBJpgwoglI2UUpUb72ldEUR0kIvGptIw5NrrFolAw-5M40SKNU8BmWimfACCKZHgXredFru8hzBhVTApDBEApBhOd-ioQMUhrFYTGDNDzbo65bGnPbfWNjDeEzQEvJXeDP0BPesmyofr4i8wzpya9gFgubGpcTPnH2WtOPkSz6R6d8O0B2uz0iLdeoeIA1WKawBdfCG31l8Ge7U8aGOdiBTLMsSCCGLTllObCzvD3Y3e8_6-Cj9Hlyf50l---mb17gK4A9msT0DfRer1c6YeAr-r0kbOjX5WFJNQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWglRAsKK-KgQJGQrDKNJPYibNEU4bh0VFVqKjEwnL8EKNJk2iSUYFVP6ESX8Fv9Uu4dh60iEqIVRTlJk7se69PnJNzEXoGSAhcRxnPj4T0iCTEY4zAgKgR8wVkZeNqA-7OoukBeXtID1tWpf0XptGH6BfcbGS4fG0DvFRm-7doaCmHgAZG7CpaJxHEigVE-710VDCKmipqQQwRD5NuJzzrB9vdmRemonXbq18v4MzzaNVNN5MN9Lm70YZlshiu6nQov_-h4fh_T3IL3WxRKH7ZuM1tdEXnd9CNc9qEd9HPcV-hEBcGm0IcYSt5iSuRq-O5_IIhj-gMwx5ui_2cnZxa9vzCZk9cFtm3I73E5Tw_O_mx1E6hVWp1-ZWqVWoXhXBdYKvh2PwTlbsGTCbq43mlsWXAN8zdHGeF4_9X99DB5NXH8dRr6zp4MozAD0wYsWSkjKLUaF_7iiiqg0QkPpVWL8eubbEoFMx-Ik60SOMUkJlWyicAhyIZbqK1vMj1fYQZo4pJYYgAIMVgnFNfBSIGa62C0JgBetENMZet6LmtvZHxRq454KXkrvMH6GlvWTZCH3-xee68pDcQy4UlxsWUf5q95uRDNNvdp1O-M0BbnRvxNidUHIBaTBN43wuhrf4wRLP9RAP9XKzAhjkNRDCDtpzPXHozfG_stg_-1fAJura3M-Hv38zePUTXAfi17PMttFYvV_oRgKs6feyi6Bc4XCOM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+foam+core+sandwich+panel+and+through-thickness+polymer+pin-reinforced+foam+core+sandwich+panel+subject+to+indentation+and+flatwise+compression+loadings&rft.jtitle=Polymer+composites&rft.au=Abdi%2C+B&rft.au=Azwan%2C+S&rft.au=Abdullah%2C+MR&rft.au=Ayob%2C+Amran&rft.date=2016-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0272-8397&rft.eissn=1548-0569&rft.volume=37&rft.issue=2&rft.spage=612&rft_id=info:doi/10.1002%2Fpc.23218&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3923836271 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8397&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8397&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8397&client=summon |