Comparison of foam core sandwich panel and through-thickness polymer pin-reinforced foam core sandwich panel subject to indentation and flatwise compression loadings

Through‐thickness polymer pin–reinforced foam core sandwich (FCS) panels are new type of composite sandwich structure as the foam core of this structure was reinforced with cylindrical polymer pins, which also rigidly connect the face sheets. These sandwich panels are made of glass fiber–reinforced...

Full description

Saved in:
Bibliographic Details
Published inPolymer composites Vol. 37; no. 2; pp. 612 - 619
Main Authors Abdi, B., Azwan, S., Abdullah, M.R., Ayob, Amran, Yahya, Yazid
Format Journal Article
LanguageEnglish
Published Newtown Blackwell Publishing Ltd 01.02.2016
Subjects
Online AccessGet full text
ISSN0272-8397
1548-0569
DOI10.1002/pc.23218

Cover

Loading…
Abstract Through‐thickness polymer pin–reinforced foam core sandwich (FCS) panels are new type of composite sandwich structure as the foam core of this structure was reinforced with cylindrical polymer pins, which also rigidly connect the face sheets. These sandwich panels are made of glass fiber–reinforced polyester face sheets and closed‐cell polyurethane foam core with cylindrical polymer pins produced during fabrication process. The indentation and compression behavior of these sandwich panels were compared with common traditional sandwich panel, and it has been found that by reinforcing the foam core with cylindrical polymer pins, the indentation strength, energy absorption, and compression strength of the sandwich panels were improved significantly. The effect of diameter of polymer pins on indentation and compression behavior of both sandwich panels was studied and results showed that the diameter of polymer pins had a large influence on the compression and indentation behavior of through‐thickness polymer pin–reinforced FCS panel, and the effect of adding polymer pins to FCS panel on indentation behavior is similar to the effect of increasing the thickness of face sheet. The effect of strain rate on indentation behavior of FCS panel and through‐thickness polymer pin–reinforced FCS panel were studied, and results showed that both types of composite sandwich panels are strain rate dependent structure as by increasing strain rate, the indentation properties and energy absorption properties of these structures are increased. POLYM. COMPOS., 37:612–619, 2016. © 2014 Society of Plastics Engineers
AbstractList Through‐thickness polymer pin–reinforced foam core sandwich (FCS) panels are new type of composite sandwich structure as the foam core of this structure was reinforced with cylindrical polymer pins, which also rigidly connect the face sheets. These sandwich panels are made of glass fiber–reinforced polyester face sheets and closed‐cell polyurethane foam core with cylindrical polymer pins produced during fabrication process. The indentation and compression behavior of these sandwich panels were compared with common traditional sandwich panel, and it has been found that by reinforcing the foam core with cylindrical polymer pins, the indentation strength, energy absorption, and compression strength of the sandwich panels were improved significantly. The effect of diameter of polymer pins on indentation and compression behavior of both sandwich panels was studied and results showed that the diameter of polymer pins had a large influence on the compression and indentation behavior of through‐thickness polymer pin–reinforced FCS panel, and the effect of adding polymer pins to FCS panel on indentation behavior is similar to the effect of increasing the thickness of face sheet. The effect of strain rate on indentation behavior of FCS panel and through‐thickness polymer pin–reinforced FCS panel were studied, and results showed that both types of composite sandwich panels are strain rate dependent structure as by increasing strain rate, the indentation properties and energy absorption properties of these structures are increased. POLYM. COMPOS., 37:612–619, 2016. © 2014 Society of Plastics Engineers
Through-thickness polymer pin-reinforced foam core sandwich (FCS) panels are new type of composite sandwich structure as the foam core of this structure was reinforced with cylindrical polymer pins, which also rigidly connect the face sheets. These sandwich panels are made of glass fiber-reinforced polyester face sheets and closed-cell polyurethane foam core with cylindrical polymer pins produced during fabrication process. The indentation and compression behavior of these sandwich panels were compared with common traditional sandwich panel, and it has been found that by reinforcing the foam core with cylindrical polymer pins, the indentation strength, energy absorption, and compression strength of the sandwich panels were improved significantly. The effect of diameter of polymer pins on indentation and compression behavior of both sandwich panels was studied and results showed that the diameter of polymer pins had a large influence on the compression and indentation behavior of through-thickness polymer pin-reinforced FCS panel, and the effect of adding polymer pins to FCS panel on indentation behavior is similar to the effect of increasing the thickness of face sheet. The effect of strain rate on indentation behavior of FCS panel and through-thickness polymer pin-reinforced FCS panel were studied, and results showed that both types of composite sandwich panels are strain rate dependent structure as by increasing strain rate, the indentation properties and energy absorption properties of these structures are increased. POLYM. COMPOS., 37:612-619, 2016. copyright 2014 Society of Plastics Engineers
Author Abdi, B.
Abdullah, M.R.
Yahya, Yazid
Azwan, S.
Ayob, Amran
Author_xml – sequence: 1
  givenname: B.
  surname: Abdi
  fullname: Abdi, B.
  email: behzad.abdi@gmail.com
  organization: Centre for Composites, Universiti Teknologi Malaysia, Johor, 81310, Johor Bahru, Malaysia
– sequence: 2
  givenname: S.
  surname: Azwan
  fullname: Azwan, S.
  organization: Centre for Composites, Universiti Teknologi Malaysia, Johor, 81310, Johor Bahru, Malaysia
– sequence: 3
  givenname: M.R.
  surname: Abdullah
  fullname: Abdullah, M.R.
  organization: Centre for Composites, Universiti Teknologi Malaysia, Johor, 81310, Johor Bahru, Malaysia
– sequence: 4
  givenname: Amran
  surname: Ayob
  fullname: Ayob, Amran
  organization: Centre for Composites, Universiti Teknologi Malaysia, Johor, 81310, Johor Bahru, Malaysia
– sequence: 5
  givenname: Yazid
  surname: Yahya
  fullname: Yahya, Yazid
  organization: Centre for Composites, Universiti Teknologi Malaysia, Johor, 81310, Johor Bahru, Malaysia
BookMark eNp10d1qFDEUB_AgFdxWwUcIeOPNbPMxycxcyqqtUKv4gZchm5zpZjuTjEmGdR_I92zWlQrFXoWQ3_nnHM4pOvHBA0IvKVlSQtj5ZJaMM9o-QQsq6rYiQnYnaEFYw6qWd80zdJrStkgqJV-g36swTjq6FDwOPe6DHrEJEXDS3u6c2eBJexhwueG8iWG-2VR548yth5TwFIb9CBFPzlcRnO9DNGAfT0nzegsm4xyw8xZ81tmVjw_h_aDzziUodeMUS_jhYQjaOn-TnqOnvR4SvPh7nqHv7999W11WV58uPqzeXFWGyzJrz2XbUdtbIXogQGxtBbBOd0QYQnhNZNO1kuu2YYR3oNfNmjAB1pKaEiYNP0Ovj7lTDD9nSFmNLhkYhtJ9mJOiLSF1K0UnC331gG7DHH3pTtFGNIXUjBe1PCoTQ0oRemXccegctRsUJeqwNTUZ9Wdr_zq4L5iiG3Xc_49WR7pzA-wfderz6oF3KcOve6_jrZINb4T6cX2h6q_y-uMXcane8jtw8blf
CODEN PCOMDI
CitedBy_id crossref_primary_10_1007_s40799_023_00694_6
crossref_primary_10_1002_pc_27307
crossref_primary_10_1177_1099636218792671
crossref_primary_10_3390_polym13213627
crossref_primary_10_1002_pc_26989
crossref_primary_10_1177_0021998319845428
crossref_primary_10_3390_jcs3020040
crossref_primary_10_1002_pc_24508
crossref_primary_10_1016_j_oceaneng_2017_08_039
crossref_primary_10_1177_1099636218792675
crossref_primary_10_1016_j_compscitech_2018_11_030
crossref_primary_10_1177_07316844221105287
crossref_primary_10_1007_s13369_025_10061_9
crossref_primary_10_1016_j_engfailanal_2020_104765
crossref_primary_10_1021_acsomega_2c04826
crossref_primary_10_1177_1099636220909752
crossref_primary_10_1002_pc_28981
crossref_primary_10_1016_j_compositesa_2020_106128
crossref_primary_10_1177_1099636221998180
crossref_primary_10_1177_09544089231189609
crossref_primary_10_1590_1679_78253688
crossref_primary_10_1002_pc_25662
crossref_primary_10_1002_pc_25543
crossref_primary_10_1177_0021998319874502
Cites_doi 10.1016/j.compositesa.2009.04.004
10.1016/j.compositesa.2011.07.020
10.4028/www.scientific.net/AMM.229-231.303
10.1016/j.compstruct.2013.02.010
10.4028/www.scientific.net/AMM.229-231.766
10.1007/s11340-006-7103-3
10.1007/s10443-012-9285-4
10.1007/1-4020-3848-8_70
10.1016/j.matdes.2013.05.024
10.1016/j.compositesb.2012.01.002
10.1016/j.engstruct.2011.11.023
10.1016/j.compositesb.2011.02.013
10.1016/j.compstruct.2009.10.005
10.1016/j.ijsolstr.2010.03.025
10.1016/j.compstruct.2009.11.014
10.1016/j.compositesa.2013.04.010
10.1016/S0263-8223(02)00087-9
10.1201/9781420031683
10.1016/j.compstruct.2009.08.016
10.1016/j.compstruct.2009.11.005
10.1016/j.compstruct.2012.09.002
ContentType Journal Article
Copyright 2014 Society of Plastics Engineers
2016 Society of Plastics Engineers
Copyright_xml – notice: 2014 Society of Plastics Engineers
– notice: 2016 Society of Plastics Engineers
DBID BSCLL
AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/pc.23218
DatabaseName Istex
CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList
CrossRef
Materials Research Database
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1548-0569
EndPage 619
ExternalDocumentID 3923836271
10_1002_pc_23218
PC23218
ark_67375_WNG_4S6NMR5H_D
Genre article
GrantInformation_xml – fundername: Research University grant (GUP)
  funderid: R.J130000.7824.4F131
GroupedDBID .-4
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
29O
31~
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
88I
8AF
8AO
8FE
8FG
8FW
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABHFT
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
FOJGT
G-S
G.N
GNP
GNUQQ
GODZA
H.T
H.X
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IX1
J0M
JPC
KB.
KC.
KQQ
KZ1
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LMP
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2P
M2Q
M6K
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
P62
PALCI
PDBOC
PQQKQ
PROAC
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RWM
RX1
RYL
S0X
SAMSI
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
PHGZM
PHGZT
7SR
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c3648-f36891dfd55fe0e0d4d5e29a905c00340679863a872039eab7b025edd041026c3
IEDL.DBID DR2
ISSN 0272-8397
IngestDate Fri Jul 11 11:52:40 EDT 2025
Fri Jul 25 09:52:09 EDT 2025
Tue Jul 01 00:42:36 EDT 2025
Thu Apr 24 22:51:10 EDT 2025
Wed Jan 22 16:23:15 EST 2025
Wed Oct 30 09:48:50 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3648-f36891dfd55fe0e0d4d5e29a905c00340679863a872039eab7b025edd041026c3
Notes ark:/67375/WNG-4S6NMR5H-D
ArticleID:PC23218
istex:2A31DEE01960A955BF12C32C4C130EACD79D02CD
Research University grant (GUP) - No. R.J130000.7824.4F131
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1757596423
PQPubID 37365
PageCount 8
ParticipantIDs proquest_miscellaneous_1800486596
proquest_journals_1757596423
crossref_citationtrail_10_1002_pc_23218
crossref_primary_10_1002_pc_23218
wiley_primary_10_1002_pc_23218_PC23218
istex_primary_ark_67375_WNG_4S6NMR5H_D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02
February 2016
2016-02-00
20160201
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02
PublicationDecade 2010
PublicationPlace Newtown
PublicationPlace_xml – name: Newtown
PublicationTitle Polymer composites
PublicationTitleAlternate Polym. Compos
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References S. Zhu and G.B. Chai, Compos. Struct., 101, 204 (2013).
E.A. Flores-Johnson and Q. Li, Compos. B Eng., 42(5), 1212 (2011).
S.H. Yoon, K.J. Jang, S.H. Cho, B.J. Park, and J.M. Cho, in Proceedings of the Twelfth International Conference on Composite Materials, CD edition, Paris, France, Extended Abstracts, 373 (1999).
L. Du and G. Jiao, Compos. A: Appl. Sci. Manufact., 40, 822 (2009).
A. Nanayakkara, S. Feih, and A. Mouritz, Compos. A: Appl. Sci. Manufact., 42,1673 (2011).
G.S. Landon, C.J. Von Klemperer, B.K. Rowland, and G.N. Nurick, Eng. Struct., 36, 104 (2012).
P. Potluri, E. Kusak, and T.Y. Reddy, Compos. Struct., 59, 251 (2003).
L.S. Sutherland and C. Guedes Soares, Compos. B, 43, 1459 (2012).
D. Ruan, G. Lu, and Y.C. Wong, Compos. Struct., 92(9), 2039 (2010).
D. Gay, S.V. Hoa, and S.W. Tsai, Composite Materials: Design and Applications, CRC Press (2002).
N. Mitra, Compos. Struct., 92, 1065 (2010).
G.L. Roy, C. Binetruy, and P. Krawczak, Sandwich Structures 7: Advancing with Sandwich Structures and Materials, 693 (2005).
ASTM Standard D365, "Standard Test Method for Flatwise Compressive Properties of Sandwich Cores," ASTM International, West Conshohocken, PA (2006).
D. Feng and F. Aymerich, Compos. A, 52, 12 (2013).
S.S.R. Koloor, B. Abdi, M.R. Abdullah, A. Ayob, and M.Y. BinYahya, Appl. Mech. Mater., 229, 303 (2012).
B. Abdi, S.S.R. Koloor, M.R. Abdullah, A. Ayob, M.Y. Bin Yahya, and M.N. Tamin, Appl. Mech. Mater., 229, 766 (2012).
S. Abrate, Impact on Composite Structures, Cambridge University Press (2005).
M. Rice, C. Fleischer, and M. Zupan, Exp. Mech., 46, 197 (2006).
A. Henao, M. Carrera, A. Miravete, and L. Castejón, Compos. Struct., 92, 2052 (2010).
J. Wang, A.M. Waas, and H. Wang, Compos. Struct., 96, 298 (2013).
A. Aktas, P. Potluri, and I. Porat, Appl. Compos. Mater., 20(4), 553 (2013).
E.S. Larry and O.A. Daniel, Development and Evaluation of Stitched Sandwich Panels (2001).
A.T. Nettles and M.J. Douglas, ASTM Spec. Tech. Publ., 1416, 116 (2002).
F. Xia and X.Q. Wu, Compos. Struct., 92, 412 (2010).
A. Mostafa, K. Shankar, and E.V. Morozov, Mater. Des., 51, 1008 (2013).
E.A. Flores-Johnson and Q.M. Li, Int. J. Solids Struct., 47, 1987 (2010).
2009; 40
2010; 47
2001
2002; 1416
2006; 46
2013; 51
2013; 20
2013; 96
2013; 52
2011; 42
2013; 101
2003; 59
2006
2005
2002
2010; 92
2012; 36
2012; 43
2012; 229
1999
e_1_2_6_10_1
Yoon S.H. (e_1_2_6_20_1) 1999
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
Nettles A.T. (e_1_2_6_8_1) 2002; 1416
Abrate S. (e_1_2_6_2_1) 2005
ASTM Standard D365 (e_1_2_6_24_1) 2006
e_1_2_6_9_1
Larry E.S. (e_1_2_6_22_1) 2001
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: J. Wang, A.M. Waas, and H. Wang, Compos. Struct., 96, 298 (2013).
– reference: A. Mostafa, K. Shankar, and E.V. Morozov, Mater. Des., 51, 1008 (2013).
– reference: D. Feng and F. Aymerich, Compos. A, 52, 12 (2013).
– reference: E.S. Larry and O.A. Daniel, Development and Evaluation of Stitched Sandwich Panels (2001).
– reference: A. Henao, M. Carrera, A. Miravete, and L. Castejón, Compos. Struct., 92, 2052 (2010).
– reference: P. Potluri, E. Kusak, and T.Y. Reddy, Compos. Struct., 59, 251 (2003).
– reference: L.S. Sutherland and C. Guedes Soares, Compos. B, 43, 1459 (2012).
– reference: A.T. Nettles and M.J. Douglas, ASTM Spec. Tech. Publ., 1416, 116 (2002).
– reference: S. Abrate, Impact on Composite Structures, Cambridge University Press (2005).
– reference: A. Aktas, P. Potluri, and I. Porat, Appl. Compos. Mater., 20(4), 553 (2013).
– reference: S. Zhu and G.B. Chai, Compos. Struct., 101, 204 (2013).
– reference: F. Xia and X.Q. Wu, Compos. Struct., 92, 412 (2010).
– reference: N. Mitra, Compos. Struct., 92, 1065 (2010).
– reference: D. Gay, S.V. Hoa, and S.W. Tsai, Composite Materials: Design and Applications, CRC Press (2002).
– reference: S.H. Yoon, K.J. Jang, S.H. Cho, B.J. Park, and J.M. Cho, in Proceedings of the Twelfth International Conference on Composite Materials, CD edition, Paris, France, Extended Abstracts, 373 (1999).
– reference: G.L. Roy, C. Binetruy, and P. Krawczak, Sandwich Structures 7: Advancing with Sandwich Structures and Materials, 693 (2005).
– reference: ASTM Standard D365, "Standard Test Method for Flatwise Compressive Properties of Sandwich Cores," ASTM International, West Conshohocken, PA (2006).
– reference: B. Abdi, S.S.R. Koloor, M.R. Abdullah, A. Ayob, M.Y. Bin Yahya, and M.N. Tamin, Appl. Mech. Mater., 229, 766 (2012).
– reference: S.S.R. Koloor, B. Abdi, M.R. Abdullah, A. Ayob, and M.Y. BinYahya, Appl. Mech. Mater., 229, 303 (2012).
– reference: E.A. Flores-Johnson and Q. Li, Compos. B Eng., 42(5), 1212 (2011).
– reference: G.S. Landon, C.J. Von Klemperer, B.K. Rowland, and G.N. Nurick, Eng. Struct., 36, 104 (2012).
– reference: L. Du and G. Jiao, Compos. A: Appl. Sci. Manufact., 40, 822 (2009).
– reference: M. Rice, C. Fleischer, and M. Zupan, Exp. Mech., 46, 197 (2006).
– reference: D. Ruan, G. Lu, and Y.C. Wong, Compos. Struct., 92(9), 2039 (2010).
– reference: E.A. Flores-Johnson and Q.M. Li, Int. J. Solids Struct., 47, 1987 (2010).
– reference: A. Nanayakkara, S. Feih, and A. Mouritz, Compos. A: Appl. Sci. Manufact., 42,1673 (2011).
– start-page: 693
  year: 2005
– volume: 229
  start-page: 766
  year: 2012
  publication-title: Appl. Mech. Mater.
– volume: 20
  start-page: 553
  issue: 4
  year: 2013
  publication-title: Appl. Compos. Mater.
– year: 2005
– volume: 1416
  start-page: 116
  year: 2002
  publication-title: ASTM Spec. Tech. Publ.
– volume: 229
  start-page: 303
  year: 2012
  publication-title: Appl. Mech. Mater.
– volume: 51
  start-page: 1008
  year: 2013
  publication-title: Mater. Des.
– volume: 43
  start-page: 1459
  year: 2012
  publication-title: Compos. B
– year: 2001
– volume: 92
  start-page: 2039
  issue: 9
  year: 2010
  publication-title: Compos. Struct.
– volume: 47
  start-page: 1987
  year: 2010
  publication-title: Int. J. Solids Struct.
– start-page: 373
  year: 1999
– volume: 92
  start-page: 412
  year: 2010
  publication-title: Compos. Struct.
– volume: 36
  start-page: 104
  year: 2012
  publication-title: Eng. Struct.
– year: 2002
– volume: 59
  start-page: 251
  year: 2003
  publication-title: Compos. Struct.
– year: 2006
– volume: 92
  start-page: 1065
  year: 2010
  publication-title: Compos. Struct.
– volume: 46
  start-page: 197
  year: 2006
  publication-title: Exp. Mech.
– volume: 42
  start-page: 1212
  issue: 5
  year: 2011
  publication-title: Compos. B Eng.
– volume: 52
  start-page: 12
  year: 2013
  publication-title: Compos. A
– volume: 101
  start-page: 204
  year: 2013
  publication-title: Compos. Struct.
– volume: 96
  start-page: 298
  year: 2013
  publication-title: Compos. Struct.
– volume: 42
  start-page: 1673
  year: 2011
  publication-title: Compos. A: Appl. Sci. Manufact.
– volume: 40
  start-page: 822
  year: 2009
  publication-title: Compos. A: Appl. Sci. Manufact.
– volume: 92
  start-page: 2052
  year: 2010
  publication-title: Compos. Struct.
– ident: e_1_2_6_17_1
  doi: 10.1016/j.compositesa.2009.04.004
– ident: e_1_2_6_19_1
  doi: 10.1016/j.compositesa.2011.07.020
– ident: e_1_2_6_27_1
  doi: 10.4028/www.scientific.net/AMM.229-231.303
– ident: e_1_2_6_5_1
  doi: 10.1016/j.compstruct.2013.02.010
– ident: e_1_2_6_26_1
  doi: 10.4028/www.scientific.net/AMM.229-231.766
– start-page: 373
  volume-title: Proceedings of the Twelfth International Conference on Composite Materials, CD edition
  year: 1999
  ident: e_1_2_6_20_1
– volume-title: Development and Evaluation of Stitched Sandwich Panels
  year: 2001
  ident: e_1_2_6_22_1
– ident: e_1_2_6_18_1
  doi: 10.1007/s11340-006-7103-3
– ident: e_1_2_6_21_1
  doi: 10.1007/s10443-012-9285-4
– ident: e_1_2_6_23_1
  doi: 10.1007/1-4020-3848-8_70
– volume: 1416
  start-page: 116
  year: 2002
  ident: e_1_2_6_8_1
  publication-title: ASTM Spec. Tech. Publ.
– ident: e_1_2_6_13_1
  doi: 10.1016/j.matdes.2013.05.024
– ident: e_1_2_6_9_1
  doi: 10.1016/j.compositesb.2012.01.002
– ident: e_1_2_6_10_1
  doi: 10.1016/j.engstruct.2011.11.023
– ident: e_1_2_6_3_1
  doi: 10.1016/j.compositesb.2011.02.013
– ident: e_1_2_6_12_1
  doi: 10.1016/j.compstruct.2009.10.005
– ident: e_1_2_6_7_1
  doi: 10.1016/j.ijsolstr.2010.03.025
– ident: e_1_2_6_6_1
  doi: 10.1016/j.compstruct.2009.11.014
– ident: e_1_2_6_11_1
  doi: 10.1016/j.compositesa.2013.04.010
– volume-title: “Standard Test Method for Flatwise Compressive Properties of Sandwich Cores
  year: 2006
  ident: e_1_2_6_24_1
– ident: e_1_2_6_16_1
  doi: 10.1016/S0263-8223(02)00087-9
– ident: e_1_2_6_25_1
  doi: 10.1201/9781420031683
– ident: e_1_2_6_14_1
  doi: 10.1016/j.compstruct.2009.08.016
– ident: e_1_2_6_15_1
  doi: 10.1016/j.compstruct.2009.11.005
– ident: e_1_2_6_4_1
  doi: 10.1016/j.compstruct.2012.09.002
– volume-title: Impact on Composite Structures
  year: 2005
  ident: e_1_2_6_2_1
SSID ssj0021663
Score 2.2320611
Snippet Through‐thickness polymer pin–reinforced foam core sandwich (FCS) panels are new type of composite sandwich structure as the foam core of this structure was...
Through-thickness polymer pin-reinforced foam core sandwich (FCS) panels are new type of composite sandwich structure as the foam core of this structure was...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 612
SubjectTerms Compressive strength
Energy absorption
Indentation
Panels
Plastic foam
Polymer matrix composites
Sandwich construction
Strain rate
Title Comparison of foam core sandwich panel and through-thickness polymer pin-reinforced foam core sandwich panel subject to indentation and flatwise compression loadings
URI https://api.istex.fr/ark:/67375/WNG-4S6NMR5H-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpc.23218
https://www.proquest.com/docview/1757596423
https://www.proquest.com/docview/1800486596
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZQucCB8iuWtshICE7ZZhMncY5ooayQukKFikocLMc_YrVpEm2yasupj4DEU_S1-iTMOD-0iEqIU7TK7Nprz4y_OJ-_IeQlICFwHW09P5bKY4oxj3MGE6In3JeQla2rDbg_j2eH7MNRdNSxKvEsTKsPMWy4YWS4fI0BLrN697doaKXGgAYmeM4XqVqIhw4G5ahgErdF1IIEAh7W3F531g92-y9eW4lu46CeXoOZV8GqW232NsnXvp8tyWQ5XjfZWH3_Q8Lx__7IfXKvA6H0Tes1D8gtUzwkd69IEz4iF9OhQCEtLbWlPKaoeElrWeiThfpGIY2YnMIn2tX6uTz_geT5JSZPWpX52bFZ0WpRXJ7_XBkn0KqMvvmX6nWGe0K0KSlKOLZHogrXgM1lc7KoDUUCfEvcLWheOvp__Zgc7r37PJ15XVkHT4UxuIENY55OtNVRZI1vfM10ZIJUpn6kUC4Ht7Z4HEqOb4hTI7MkA2BmtPYZoKFYhU_IRlEW5imhnEeaK2mZBBzFYZ4zXwcyAWujg9DaEXndT7FQneY5lt7IRavWHIhKCTf4I_JisKxanY-_2LxyXjIYyNUSeXFJJL7M3wv2KZ7vH0Qz8XZEtns3El1KqAXgtCRK4XEvhLaG2xDM-IYGxrlcgw13EohgBm05n7mxM-Lj1F2f_avhFrkDYK9jnG-TjWa1NjsAqJrsuQudX7fTILo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKewAO_CMWChgJwSnbbGInjjihLWWB7gqVVvSAZDn-EatNk2iTVYFTHwGJp-C1-iSMnR9aRCXEKYoyiR17ZvxlMv4GoaeAhEB1lPH8SEiPSEI8xghMiBoxX4BXNq424HQWTQ7I20N6uIZedHthGn6IPuBmLcP5a2vgNiC99Zs1tJRDgAMjdglt2ILetnzB9l7PHRWMoqaMWhCDycOq2zHP-sFWd-e5tWjDDuuXc0DzLFx1683OdfSp62mTZrIYrup0KL_9QeL4n69yA11rcSh-2SjOTbSm81vo6hl2wtvo57ivUYgLg00hjrAlvcSVyNXxXH7G4El0huEMt-V-Tk--2_z5hfWfuCyyr0d6ict5fnryY6kdR6vU6uInVavUhoVwXWDL4tjsispdAyYT9fG80tjmwDe5uznOCrcDoLqDDnZe7Y8nXlvZwZNhBJpgwoglI2UUpUb72ldEUR0kIvGptIw5NrrFolAw-5M40SKNU8BmWimfACCKZHgXredFru8hzBhVTApDBEApBhOd-ioQMUhrFYTGDNDzbo65bGnPbfWNjDeEzQEvJXeDP0BPesmyofr4i8wzpya9gFgubGpcTPnH2WtOPkSz6R6d8O0B2uz0iLdeoeIA1WKawBdfCG31l8Ge7U8aGOdiBTLMsSCCGLTllObCzvD3Y3e8_6-Cj9Hlyf50l---mb17gK4A9msT0DfRer1c6YeAr-r0kbOjX5WFJNQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWglRAsKK-KgQJGQrDKNJPYibNEU4bh0VFVqKjEwnL8EKNJk2iSUYFVP6ESX8Fv9Uu4dh60iEqIVRTlJk7se69PnJNzEXoGSAhcRxnPj4T0iCTEY4zAgKgR8wVkZeNqA-7OoukBeXtID1tWpf0XptGH6BfcbGS4fG0DvFRm-7doaCmHgAZG7CpaJxHEigVE-710VDCKmipqQQwRD5NuJzzrB9vdmRemonXbq18v4MzzaNVNN5MN9Lm70YZlshiu6nQov_-h4fh_T3IL3WxRKH7ZuM1tdEXnd9CNc9qEd9HPcV-hEBcGm0IcYSt5iSuRq-O5_IIhj-gMwx5ui_2cnZxa9vzCZk9cFtm3I73E5Tw_O_mx1E6hVWp1-ZWqVWoXhXBdYKvh2PwTlbsGTCbq43mlsWXAN8zdHGeF4_9X99DB5NXH8dRr6zp4MozAD0wYsWSkjKLUaF_7iiiqg0QkPpVWL8eubbEoFMx-Ik60SOMUkJlWyicAhyIZbqK1vMj1fYQZo4pJYYgAIMVgnFNfBSIGa62C0JgBetENMZet6LmtvZHxRq454KXkrvMH6GlvWTZCH3-xee68pDcQy4UlxsWUf5q95uRDNNvdp1O-M0BbnRvxNidUHIBaTBN43wuhrf4wRLP9RAP9XKzAhjkNRDCDtpzPXHozfG_stg_-1fAJura3M-Hv38zePUTXAfi17PMttFYvV_oRgKs6feyi6Bc4XCOM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+foam+core+sandwich+panel+and+through-thickness+polymer+pin-reinforced+foam+core+sandwich+panel+subject+to+indentation+and+flatwise+compression+loadings&rft.jtitle=Polymer+composites&rft.au=Abdi%2C+B&rft.au=Azwan%2C+S&rft.au=Abdullah%2C+MR&rft.au=Ayob%2C+Amran&rft.date=2016-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0272-8397&rft.eissn=1548-0569&rft.volume=37&rft.issue=2&rft.spage=612&rft_id=info:doi/10.1002%2Fpc.23218&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3923836271
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8397&client=summon