A convective weakly viscoelastic rotating flow with pressure Neumann condition
The objective of this work is to investigate through the numeric simulation, the effects of the weakly viscoelastic flow within a rotating rectangular duct subject to a buoyancy force due to the heating of one of the walls of the duct. A direct velocity–pressure algorithm in primitive variables with...
Saved in:
Published in | International journal for numerical methods in fluids Vol. 60; no. 3; pp. 295 - 322 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
30.05.2009
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The objective of this work is to investigate through the numeric simulation, the effects of the weakly viscoelastic flow within a rotating rectangular duct subject to a buoyancy force due to the heating of one of the walls of the duct. A direct velocity–pressure algorithm in primitive variables with a Neumann condition for the pressure is employed. The spatial discretization is made with finite central differences on a staggered grid. The pressure field is directly updated without any iteration. Numerical simulations were done for several Weissemberg numbers (We) and Grashof numbers (Gr) . The numerical results show that for high Weissemberg numbers (We>7.4 × 10−5) and for ducts with aspect ratio 2:1 and 8:1, the secondary flow is restabilized with a stretched double vortex configuration. It is also observed that when the Grashof number is increased (Gr>17 × 10−4) , the buoyancy force neutralizes the effects of the Coriolis force for ducts with aspect ratio 8:1. Copyright © 2008 John Wiley & Sons, Ltd. |
---|---|
AbstractList | The objective of this work is to investigate through the numeric simulation, the effects of the weakly viscoelastic flow within a rotating rectangular duct subject to a buoyancy force due to the heating of one of the walls of the duct. A direct velocity–pressure algorithm in primitive variables with a Neumann condition for the pressure is employed. The spatial discretization is made with finite central differences on a staggered grid. The pressure field is directly updated without any iteration. Numerical simulations were done for several Weissemberg numbers (
We
) and Grashof numbers (
Gr
) . The numerical results show that for high Weissemberg numbers (
We
>7.4 × 10
−5
) and for ducts with aspect ratio 2:1 and 8:1, the secondary flow is restabilized with a stretched double vortex configuration. It is also observed that when the Grashof number is increased (
Gr
>17 × 10
−4
) , the buoyancy force neutralizes the effects of the Coriolis force for ducts with aspect ratio 8:1. Copyright © 2008 John Wiley & Sons, Ltd. The objective of this work is to investigate through the numeric simulation, the effects of the weakly viscoelastic flow within a rotating rectangular duct subject to a buoyancy force due to the heating of one of the walls of the duct. A direct velocity-pressure algorithm in primitive variables with a Neumann condition for the pressure is employed. The spatial discretization is made with finite central differences on a staggered grid. The pressure field is directly updated without any iteration. Numerical simulations were done for several Weissemberg numbers (We) and Grashof numbers (Gr). The numerical results show that for high Weissemberg numbers (We > 7.4 X 10-5) and for ducts with aspect ratio 2:1 and 8:1, the secondary flow is restabilized with a stretched double vortex configuration. It is also observed that when the Grashof number is increased (Gr > 17 X 10-4), the buoyancy force neutralizes the effects of the Coriolis force for ducts with aspect ratio 8:1. The objective of this work is to investigate through the numeric simulation, the effects of the weakly viscoelastic flow within a rotating rectangular duct subject to a buoyancy force due to the heating of one of the walls of the duct. A direct velocity–pressure algorithm in primitive variables with a Neumann condition for the pressure is employed. The spatial discretization is made with finite central differences on a staggered grid. The pressure field is directly updated without any iteration. Numerical simulations were done for several Weissemberg numbers (We) and Grashof numbers (Gr) . The numerical results show that for high Weissemberg numbers (We>7.4 × 10−5) and for ducts with aspect ratio 2:1 and 8:1, the secondary flow is restabilized with a stretched double vortex configuration. It is also observed that when the Grashof number is increased (Gr>17 × 10−4) , the buoyancy force neutralizes the effects of the Coriolis force for ducts with aspect ratio 8:1. Copyright © 2008 John Wiley & Sons, Ltd. |
Author | Asenjo, Elba Bravo Rubio, Obidio Claeyssen, Julio R. |
Author_xml | – sequence: 1 givenname: Julio R. surname: Claeyssen fullname: Claeyssen, Julio R. email: julio@mat.ufrgs.br organization: IM-Promec, Universidade Federal do Rio Grande do Sul, P.O. Box 10673, 90001-970 Porto Alegre, RS, Brazil – sequence: 2 givenname: Elba Bravo surname: Asenjo fullname: Asenjo, Elba Bravo organization: UNASP-Adventist University Center of São Paulo, SP, Brazil – sequence: 3 givenname: Obidio surname: Rubio fullname: Rubio, Obidio organization: Facultad de Ciencias, Universidad Nacional de Trujillo, La Libertad, Peru |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22097770$$DView record in Pascal Francis |
BookMark | eNp10M1uEzEUBWALFalpi9RHmA0Vmwn-mYntZVVoCqRhUwQ768ZzB9w6drCdhLw9E6VUApWVN985uj4n5CjEgIScMzpmlPK3ve_GTCn1gowY1bKmYiKOyIhyyWpONTsmJznfU0o1V2JE5peVjWGDtrgNVluEB7-rNi7biB5ycbZKsUBx4XvV-7ittq78qFYJc14nrOa4XkII-4rOFRfDGXnZg8_46vE9JV-u399d3dSzz9MPV5ez2opJo2rBG7VouwWjHCVaTTllrGd9IwFaDpZZUB1y6OyCQY9CN6i0XvCJVsCGnDglF4feVYo_15iLWQ43o_cQMK6zEQ1rWy31AF8_QsgWfJ8gWJfNKrklpJ3hwyRSSjq48cHZFHNO2Bvr9v-OoSRw3jBq9vOaYV6zn3cIvPkn8KfzGVof6NZ53P3XmevZu7-9ywV_PXlID2YihWzN1_nU3H76-G16c9eYufgNMZ2bjw |
CODEN | IJNFDW |
CitedBy_id | crossref_primary_10_1016_j_expthermflusci_2013_07_010 |
Cites_doi | 10.1080/10407799808915068 10.1016/j.ces.2007.08.053 10.1002/(SICI)1097-0363(19990830)30:8<1009::AID-FLD876>3.0.CO;2-T 10.1002/1097-0363(20000915)34:1<1::AID-FLD46>3.0.CO;2-W 10.1080/10407789808914014 10.1080/10407799708914996 10.1016/0021-9991(87)90008-8 10.1016/0017-9310(96)00127-5 10.1016/S0377-0257(96)01504-2 10.1002/(SICI)1097-0363(19960430)22:8<771::AID-FLD379>3.0.CO;2-5 10.1016/S0009-2509(01)00363-3 10.1007/978-3-642-98037-4 10.1063/1.1761178 10.1002/fld.1015 10.1017/S0022112082002201 10.1017/S0022112071000077 10.1002/fld.1650071008 10.1080/10407799708914997 10.1002/(SICI)1097-0363(19960830)23:4<379::AID-FLD427>3.0.CO;2-6 10.1115/1.2825852 10.1002/1097-0363(20000715)33:5<681::AID-FLD25>3.0.CO;2-A 10.1007/978-1-4612-4462-2 |
ContentType | Journal Article |
Copyright | Copyright © 2008 John Wiley & Sons, Ltd. 2009 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2008 John Wiley & Sons, Ltd. – notice: 2009 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW 7SC 7TB 7U5 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
DOI | 10.1002/fld.1888 |
DatabaseName | Istex CrossRef Pascal-Francis Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1097-0363 |
EndPage | 322 |
ExternalDocumentID | 22097770 10_1002_fld_1888 FLD1888 ark_67375_WNG_MKJXGHT4_N |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RWS RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION 6TJ AAMMB ABEML ACSCC AEFGJ AGHNM AGXDD AI. AIDQK AIDYY AMVHM IQODW M6O PALCI RIWAO RJQFR SAMSI TUS VH1 VOH ZY4 ~A~ 7SC 7TB 7U5 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c3648-3248b5db102e7ec902011f1f47aa52ac1ca8de2adcb1afe394e899b2698a15db3 |
IEDL.DBID | DR2 |
ISSN | 0271-2091 |
IngestDate | Thu Jul 10 18:19:37 EDT 2025 Mon Jul 21 09:17:24 EDT 2025 Tue Jul 01 02:08:30 EDT 2025 Thu Apr 24 23:09:09 EDT 2025 Wed Jan 22 16:46:33 EST 2025 Wed Oct 30 09:57:24 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Rectangular pipe Viscoelastic fluid Rotating flow Computational fluid dynamics incompressible flow Digital simulation Boundary conditions pressure Neumann condition Rotating pipe Combined convection Algorithms finite differences methods mixed convection Modelling non-Newtonian Incompressible fluid Secondary flow Mesh generation Heat transfer Finite difference method |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3648-3248b5db102e7ec902011f1f47aa52ac1ca8de2adcb1afe394e899b2698a15db3 |
Notes | istex:CDF68E19F9AB7744C18EBA9E23A8CD34A246347B ark:/67375/WNG-MKJXGHT4-N ArticleID:FLD1888 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 34155979 |
PQPubID | 23500 |
PageCount | 28 |
ParticipantIDs | proquest_miscellaneous_34155979 pascalfrancis_primary_22097770 crossref_citationtrail_10_1002_fld_1888 crossref_primary_10_1002_fld_1888 wiley_primary_10_1002_fld_1888_FLD1888 istex_primary_ark_67375_WNG_MKJXGHT4_N |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 30 May 2009 |
PublicationDateYYYYMMDD | 2009-05-30 |
PublicationDate_xml | – month: 05 year: 2009 text: 30 May 2009 day: 30 |
PublicationDecade | 2000 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Chichester |
PublicationTitle | International journal for numerical methods in fluids |
PublicationTitleAlternate | Int. J. Numer. Meth. Fluids |
PublicationYear | 2009 |
Publisher | John Wiley & Sons, Ltd Wiley |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
References | Chen HB, Nandakumar K, Finlay WH, Ku HC. Three-dimensional viscous flow through rotating channel: a pseudospectral matrix method approach. International Journal for Numerical Methods in Fluids 1996; 23:379-396. Lee KT, Yan WM. Mixed convection heat and mass transfer in radially rotating rectangular ducts. Numerical Heat Transfer, Part A 1998; 34:747-767. Jin YY, Chen CF. Instability of convection and heat transfer of high Prandtl number fluids in a vertical slot. Journal of Heat Transfer 1996; 118:359-365. Roache PJ. Computational Fluid Dynamics. Hermosa Publications: Albuquerque, NM, 1982. Nonino C, Comini G. An equal-order velocity-pressure algorithm for incompressible thermal flows, part 1: formulation. Numerical Heat Transfer, Part B 1997; 32:1-15. Sheu TWH, Wang MMT, Tsai SF. Pressure boundary condition for a segregated approach to solving incompressible Navier-Stokes equations. Numerical Heat Transfer, Part B 1998; 34:457-467. Yamaguchi H, Fujiyoshi J, Matsui H. Spherical Couette flow of a viscoelastic fluid. Part I: experimental study of the inner sphere rotation. Journal of Non-Newtonian Fluid Mechanics 1997; 69:29-46. Claeyssen JR, Bravo E, Rubio O. Rotating incompressible flow with a pressure Neumann condition. International Journal for Numerical Methods in Fluids 2006; 50:1-26. Nonino C, Croce G. An equal-order velocity-pressure algorithm for incompressible thermal flows, part 2: validation. Numerical Heat Transfer, Part B 1997; 32:17-35. Speziale CG. Numerical solution of rotating internal flows. Lecture Notes in Applied Mathematics 1985; 22:261-288. Claeyssen JR, Bravo E, Platte R. Simulation in primitive variables of incompressible flow with pressure Neumann condition. International Journal for Numerical Methods in Fluids 1999; 30:1009-1026. Govatsos PA, Papantonis DE. A characteristic based method for the calculation of three-dimensional incompressible, turbulent and steady flows in hydraulic turbomachines and installations. International Journal for Numerical Methods in Fluids 2000; 34:1-30. Yang Z. Large eddy simulation of fully developed turbulent flow in a rotating pipe. International Journal for Numerical Methods in Fluids 2000; 33:681-694. Vanyo PJ. Rotating Fluids in Engineering and Science. Dover Publications, Inc.: Mineola, New York, 1993. Lee E, Lee YH, Pai YT, Hsu JP. Flow of a viscoelastic shear-thinning fluid between two concentric rotating spheres. Chemical Engineering Science 2002; 57:507-514. Speziale CG. Numerical study of viscous flow in rotating rectangular ducts. Journal of Fluid Mechanics 1982; 122:251-271. Ladyzhenskaya O. The Mathematical Theory of Viscous Incompressible Flow. Gordon & Breach: New York, 1969. Abdallah S. Numerical solutions for the pressure Poisson equation with Neumann boundary conditions using a non-staggered grid. Journal of Computational Physics 1987; 70:182-192. Harlow FH, Welch JE. Numerical calculation of time dependent viscous incompressible flow of fluid with free surface. Physics of Fluids 1965; 8:2182-2189. Liqiu W. Buoyancy-force-driven transitions in flow structures and their effects on heat transfer in rotating curved channel. International Journal of Heat and Mass Transfer 1997; 40(2):223-235. Ferguson J, Kemblowski Z. Applied Fluid Rheology. Elsevier Applied Science: London, 1991. Morse PM, Feschbach H. Methods of Theoretical Physics, Part I. McGraw-Hill: New York, 1953. Gresho PM, Sani RL. On pressure boundary conditions for the incompressible Navier-Stokes equations. International Journal for Numerical Methods in Fluids 1987; 7:1111-1145. Joseph DD. Fluid Dynamics of Viscoelastic Liquids. Springer: New York, 1990. Ames WF. Numerical Methods for Partial Differential Equations (3rd edn). Academic Press: New York, 1992. Temam R. Navier-Stokes Equations, Theory and Numerical Analysis (3rd edn). North-Holland: Amsterdam, 1984 (reprint AMS Chelsea Publishing, Providence, RI, 2004). Park HM, Hong SM, Lim JY. Estimation of rheological parameters using velocity measurements. Chemical Engineering Science 2007; 62:6806-6815. Khayat RE. On overstability in thermal convection of viscoelastic fluids. Developments in Non-Newtonian Flows AMD 1993; 175:71-83. Hart JE. Instability and secondary motion in a rotating channel flow. Journal of Fluid Mechanics 1971; 45:341-351. Robertson AM. On viscous flow in curved pipes of non-uniform cross-section. International Journal for Numerical Methods in Fluids 1996; 22:771-798. Ferziger JH, Perić M. Computational Methods for Fluid Dynamics (2nd edn). Springer: Berlin, 1999. 1997; 40 2006; 50 1987; 70 2002; 57 1971; 45 1997; 69 1987; 7 1982; 122 1953 1993 1992 1991 1985; 22 1999 1990 1997; 32 2000; 34 1965; 8 2000; 33 1984 1999; 30 1982 2007; 62 1998; 34 1969 1993; 175 1996; 118 1996; 23 1996; 22 Vanyo PJ (e_1_2_1_32_2) 1993 Morse PM (e_1_2_1_25_2) 1953 Ames WF (e_1_2_1_21_2) 1992 e_1_2_1_22_2 e_1_2_1_23_2 Khayat RE (e_1_2_1_8_2) 1993; 175 e_1_2_1_24_2 Speziale CG (e_1_2_1_6_2) 1985; 22 e_1_2_1_28_2 e_1_2_1_29_2 Ferguson J (e_1_2_1_27_2) 1991 Ladyzhenskaya O (e_1_2_1_17_2) 1969 e_1_2_1_30_2 e_1_2_1_7_2 e_1_2_1_4_2 e_1_2_1_5_2 e_1_2_1_2_2 e_1_2_1_11_2 e_1_2_1_3_2 e_1_2_1_12_2 e_1_2_1_33_2 e_1_2_1_10_2 e_1_2_1_31_2 e_1_2_1_15_2 Roache PJ (e_1_2_1_20_2) 1982 e_1_2_1_16_2 e_1_2_1_13_2 e_1_2_1_14_2 Temam R (e_1_2_1_26_2) 1984 e_1_2_1_19_2 e_1_2_1_9_2 e_1_2_1_18_2 |
References_xml | – reference: Morse PM, Feschbach H. Methods of Theoretical Physics, Part I. McGraw-Hill: New York, 1953. – reference: Nonino C, Croce G. An equal-order velocity-pressure algorithm for incompressible thermal flows, part 2: validation. Numerical Heat Transfer, Part B 1997; 32:17-35. – reference: Liqiu W. Buoyancy-force-driven transitions in flow structures and their effects on heat transfer in rotating curved channel. International Journal of Heat and Mass Transfer 1997; 40(2):223-235. – reference: Claeyssen JR, Bravo E, Platte R. Simulation in primitive variables of incompressible flow with pressure Neumann condition. International Journal for Numerical Methods in Fluids 1999; 30:1009-1026. – reference: Chen HB, Nandakumar K, Finlay WH, Ku HC. Three-dimensional viscous flow through rotating channel: a pseudospectral matrix method approach. International Journal for Numerical Methods in Fluids 1996; 23:379-396. – reference: Hart JE. Instability and secondary motion in a rotating channel flow. Journal of Fluid Mechanics 1971; 45:341-351. – reference: Speziale CG. Numerical study of viscous flow in rotating rectangular ducts. Journal of Fluid Mechanics 1982; 122:251-271. – reference: Govatsos PA, Papantonis DE. A characteristic based method for the calculation of three-dimensional incompressible, turbulent and steady flows in hydraulic turbomachines and installations. International Journal for Numerical Methods in Fluids 2000; 34:1-30. – reference: Claeyssen JR, Bravo E, Rubio O. Rotating incompressible flow with a pressure Neumann condition. International Journal for Numerical Methods in Fluids 2006; 50:1-26. – reference: Speziale CG. Numerical solution of rotating internal flows. Lecture Notes in Applied Mathematics 1985; 22:261-288. – reference: Vanyo PJ. Rotating Fluids in Engineering and Science. Dover Publications, Inc.: Mineola, New York, 1993. – reference: Temam R. Navier-Stokes Equations, Theory and Numerical Analysis (3rd edn). North-Holland: Amsterdam, 1984 (reprint AMS Chelsea Publishing, Providence, RI, 2004). – reference: Park HM, Hong SM, Lim JY. Estimation of rheological parameters using velocity measurements. Chemical Engineering Science 2007; 62:6806-6815. – reference: Ferziger JH, Perić M. Computational Methods for Fluid Dynamics (2nd edn). Springer: Berlin, 1999. – reference: Yamaguchi H, Fujiyoshi J, Matsui H. Spherical Couette flow of a viscoelastic fluid. Part I: experimental study of the inner sphere rotation. Journal of Non-Newtonian Fluid Mechanics 1997; 69:29-46. – reference: Lee KT, Yan WM. Mixed convection heat and mass transfer in radially rotating rectangular ducts. Numerical Heat Transfer, Part A 1998; 34:747-767. – reference: Abdallah S. Numerical solutions for the pressure Poisson equation with Neumann boundary conditions using a non-staggered grid. Journal of Computational Physics 1987; 70:182-192. – reference: Harlow FH, Welch JE. Numerical calculation of time dependent viscous incompressible flow of fluid with free surface. Physics of Fluids 1965; 8:2182-2189. – reference: Yang Z. Large eddy simulation of fully developed turbulent flow in a rotating pipe. International Journal for Numerical Methods in Fluids 2000; 33:681-694. – reference: Robertson AM. On viscous flow in curved pipes of non-uniform cross-section. International Journal for Numerical Methods in Fluids 1996; 22:771-798. – reference: Joseph DD. Fluid Dynamics of Viscoelastic Liquids. Springer: New York, 1990. – reference: Roache PJ. Computational Fluid Dynamics. Hermosa Publications: Albuquerque, NM, 1982. – reference: Jin YY, Chen CF. Instability of convection and heat transfer of high Prandtl number fluids in a vertical slot. Journal of Heat Transfer 1996; 118:359-365. – reference: Gresho PM, Sani RL. On pressure boundary conditions for the incompressible Navier-Stokes equations. International Journal for Numerical Methods in Fluids 1987; 7:1111-1145. – reference: Ferguson J, Kemblowski Z. Applied Fluid Rheology. Elsevier Applied Science: London, 1991. – reference: Ladyzhenskaya O. The Mathematical Theory of Viscous Incompressible Flow. Gordon & Breach: New York, 1969. – reference: Lee E, Lee YH, Pai YT, Hsu JP. Flow of a viscoelastic shear-thinning fluid between two concentric rotating spheres. Chemical Engineering Science 2002; 57:507-514. – reference: Nonino C, Comini G. An equal-order velocity-pressure algorithm for incompressible thermal flows, part 1: formulation. Numerical Heat Transfer, Part B 1997; 32:1-15. – reference: Sheu TWH, Wang MMT, Tsai SF. Pressure boundary condition for a segregated approach to solving incompressible Navier-Stokes equations. Numerical Heat Transfer, Part B 1998; 34:457-467. – reference: Khayat RE. On overstability in thermal convection of viscoelastic fluids. Developments in Non-Newtonian Flows AMD 1993; 175:71-83. – reference: Ames WF. Numerical Methods for Partial Differential Equations (3rd edn). Academic Press: New York, 1992. – start-page: 389 end-page: 399 – volume: 50 start-page: 1 year: 2006 end-page: 26 article-title: Rotating incompressible flow with a pressure Neumann condition publication-title: International Journal for Numerical Methods in Fluids – volume: 32 start-page: 1 year: 1997 end-page: 15 article-title: An equal‐order velocity–pressure algorithm for incompressible thermal flows, part 1: formulation publication-title: Numerical Heat Transfer, Part B – volume: 32 start-page: 17 year: 1997 end-page: 35 article-title: An equal‐order velocity–pressure algorithm for incompressible thermal flows, part 2: validation publication-title: Numerical Heat Transfer, Part B – volume: 57 start-page: 507 year: 2002 end-page: 514 article-title: Flow of a viscoelastic shear‐thinning fluid between two concentric rotating spheres publication-title: Chemical Engineering Science – volume: 175 start-page: 71 year: 1993 end-page: 83 article-title: On overstability in thermal convection of viscoelastic fluids publication-title: Developments in Non‐Newtonian Flows AMD – volume: 22 start-page: 261 year: 1985 end-page: 288 article-title: Numerical solution of rotating internal flows publication-title: Lecture Notes in Applied Mathematics – volume: 23 start-page: 379 year: 1996 end-page: 396 article-title: Three‐dimensional viscous flow through rotating channel: a pseudospectral matrix method approach publication-title: International Journal for Numerical Methods in Fluids – volume: 122 start-page: 251 year: 1982 end-page: 271 article-title: Numerical study of viscous flow in rotating rectangular ducts publication-title: Journal of Fluid Mechanics – volume: 34 start-page: 747 year: 1998 end-page: 767 article-title: Mixed convection heat and mass transfer in radially rotating rectangular ducts publication-title: Numerical Heat Transfer, Part A – volume: 34 start-page: 457 year: 1998 end-page: 467 article-title: Pressure boundary condition for a segregated approach to solving incompressible Navier–Stokes equations publication-title: Numerical Heat Transfer, Part B – year: 1990 – year: 1992 – volume: 30 start-page: 1009 year: 1999 end-page: 1026 article-title: Simulation in primitive variables of incompressible flow with pressure Neumann condition publication-title: International Journal for Numerical Methods in Fluids – volume: 22 start-page: 771 year: 1996 end-page: 798 article-title: On viscous flow in curved pipes of non‐uniform cross‐section publication-title: International Journal for Numerical Methods in Fluids – year: 1984 – year: 1982 – volume: 69 start-page: 29 year: 1997 end-page: 46 article-title: Spherical Couette flow of a viscoelastic fluid. Part I: experimental study of the inner sphere rotation publication-title: Journal of Non‐Newtonian Fluid Mechanics – volume: 118 start-page: 359 year: 1996 end-page: 365 article-title: Instability of convection and heat transfer of high Prandtl number fluids in a vertical slot publication-title: Journal of Heat Transfer – volume: 7 start-page: 1111 year: 1987 end-page: 1145 article-title: On pressure boundary conditions for the incompressible Navier–Stokes equations publication-title: International Journal for Numerical Methods in Fluids – volume: 40 start-page: 223 issue: 2 year: 1997 end-page: 235 article-title: Buoyancy‐force‐driven transitions in flow structures and their effects on heat transfer in rotating curved channel publication-title: International Journal of Heat and Mass Transfer – year: 1969 – volume: 70 start-page: 182 year: 1987 end-page: 192 article-title: Numerical solutions for the pressure Poisson equation with Neumann boundary conditions using a non‐staggered grid publication-title: Journal of Computational Physics – volume: 34 start-page: 1 year: 2000 end-page: 30 article-title: A characteristic based method for the calculation of three‐dimensional incompressible, turbulent and steady flows in hydraulic turbomachines and installations publication-title: International Journal for Numerical Methods in Fluids – volume: 33 start-page: 681 year: 2000 end-page: 694 article-title: Large eddy simulation of fully developed turbulent flow in a rotating pipe publication-title: International Journal for Numerical Methods in Fluids – year: 1953 – volume: 45 start-page: 341 year: 1971 end-page: 351 article-title: Instability and secondary motion in a rotating channel flow publication-title: Journal of Fluid Mechanics – year: 1991 – volume: 62 start-page: 6806 year: 2007 end-page: 6815 article-title: Estimation of rheological parameters using velocity measurements publication-title: Chemical Engineering Science – volume: 8 start-page: 2182 year: 1965 end-page: 2189 article-title: Numerical calculation of time dependent viscous incompressible flow of fluid with free surface publication-title: Physics of Fluids – year: 1993 – year: 1999 – ident: e_1_2_1_18_2 doi: 10.1080/10407799808915068 – volume: 175 start-page: 71 year: 1993 ident: e_1_2_1_8_2 article-title: On overstability in thermal convection of viscoelastic fluids publication-title: Developments in Non‐Newtonian Flows AMD – ident: e_1_2_1_15_2 doi: 10.1016/j.ces.2007.08.053 – ident: e_1_2_1_2_2 doi: 10.1002/(SICI)1097-0363(19990830)30:8<1009::AID-FLD876>3.0.CO;2-T – volume-title: Rotating Fluids in Engineering and Science year: 1993 ident: e_1_2_1_32_2 – volume-title: Computational Fluid Dynamics year: 1982 ident: e_1_2_1_20_2 – ident: e_1_2_1_31_2 doi: 10.1002/1097-0363(20000915)34:1<1::AID-FLD46>3.0.CO;2-W – volume-title: The Mathematical Theory of Viscous Incompressible Flow year: 1969 ident: e_1_2_1_17_2 – ident: e_1_2_1_13_2 doi: 10.1080/10407789808914014 – ident: e_1_2_1_10_2 doi: 10.1080/10407799708914996 – volume-title: Applied Fluid Rheology year: 1991 ident: e_1_2_1_27_2 – ident: e_1_2_1_23_2 doi: 10.1016/0021-9991(87)90008-8 – ident: e_1_2_1_12_2 doi: 10.1016/0017-9310(96)00127-5 – ident: e_1_2_1_33_2 doi: 10.1016/S0377-0257(96)01504-2 – volume-title: Navier–Stokes Equations, Theory and Numerical Analysis year: 1984 ident: e_1_2_1_26_2 – ident: e_1_2_1_7_2 doi: 10.1002/(SICI)1097-0363(19960430)22:8<771::AID-FLD379>3.0.CO;2-5 – ident: e_1_2_1_14_2 doi: 10.1016/S0009-2509(01)00363-3 – ident: e_1_2_1_22_2 doi: 10.1007/978-3-642-98037-4 – ident: e_1_2_1_19_2 doi: 10.1063/1.1761178 – ident: e_1_2_1_29_2 doi: 10.1002/fld.1015 – ident: e_1_2_1_24_2 – volume-title: Methods of Theoretical Physics, Part I year: 1953 ident: e_1_2_1_25_2 – ident: e_1_2_1_5_2 doi: 10.1017/S0022112082002201 – volume: 22 start-page: 261 year: 1985 ident: e_1_2_1_6_2 article-title: Numerical solution of rotating internal flows publication-title: Lecture Notes in Applied Mathematics – ident: e_1_2_1_16_2 doi: 10.1017/S0022112071000077 – ident: e_1_2_1_3_2 doi: 10.1002/fld.1650071008 – ident: e_1_2_1_11_2 doi: 10.1080/10407799708914997 – ident: e_1_2_1_4_2 doi: 10.1002/(SICI)1097-0363(19960830)23:4<379::AID-FLD427>3.0.CO;2-6 – ident: e_1_2_1_9_2 doi: 10.1115/1.2825852 – ident: e_1_2_1_30_2 doi: 10.1002/1097-0363(20000715)33:5<681::AID-FLD25>3.0.CO;2-A – ident: e_1_2_1_28_2 doi: 10.1007/978-1-4612-4462-2 – volume-title: Numerical Methods for Partial Differential Equations year: 1992 ident: e_1_2_1_21_2 |
SSID | ssj0009283 |
Score | 1.8679777 |
Snippet | The objective of this work is to investigate through the numeric simulation, the effects of the weakly viscoelastic flow within a rotating rectangular duct... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 295 |
SubjectTerms | Computational methods in fluid dynamics Convection and heat transfer Exact sciences and technology finite differences methods Fluid dynamics Fundamental areas of phenomenology (including applications) Hydrodynamic stability incompressible flow mixed convection non-Newtonian Non-newtonian fluid flows Physics pressure Neumann condition rotating flow Secondary instability Turbulent flows, convection, and heat transfer |
Title | A convective weakly viscoelastic rotating flow with pressure Neumann condition |
URI | https://api.istex.fr/ark:/67375/WNG-MKJXGHT4-N/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.1888 https://www.proquest.com/docview/34155979 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbQuMCBsQGiA4aREJzSxc4Px8cJ1lUDckCbqMTBsh0boVbJ1LQM-Ot5z0m6FYGEOOXy7Dj2e8-f7S-fCXnpJYfMGzsUuvUROEUWSal1lBlwIF84F7vAtijz6UV6NstmPasS_4Xp9CE2G24YGSFfY4Br0x5di4b6RTVmsH6D9ItULcRDH6-VoyTvFDi5YOAIkg26szE_GgpuzUS3sVO_IzNSt9A5vrvVYgt23gSvYfaZ7JLPQ7s70sl8vF6Zsf35m6Tj_33YfXKvB6X0uPOiPXLL1ftktweotA__dp_cvaFe-ICUxzRw1kPGpFdOzxc_6LevrW0cQHKoii4bPOivv1C_aK4obvnSwLtdLx0tHR4f1FhFFWhjD8nF5OT8zTTqr2eIbJKnRQRQrDBZZQCiOOGsjBFLeOZToXXGtWVWF5XjurKGae8SmTpY3Bmey0IzKJc8Ijt1U7vHhDJmbZXFlWco52eFAZCRW1YYWB1VuU1H5PUwVMr22uV4hcZCdarLXEGnKey0EXmxsbzs9Dr-YPMqjPbGQC_nyG8TmfpUnqoP785mp9PzVJUjcrjlDpsCHFxKCBGPyPPBPxSEJZ616No161YlCNSkkPCuMNZ_bYyavH-Lz4N_NXxC7nQnWlmUxE_Jzmq5ds8AGK3MYQiBX_qAC6A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V9gA9UCgglkdrJASnbOO8LU4VsF3abQ5oK_aAZDmOjdCukmofFPj1zDjJtotAQpxyGTvOeMb-7Jl8A_DSigBXXt8Q0a310ChiTwilvLhAA7KZMb5x2RZ5MryITifxZAvedP_CNPwQ6ws38gy3XpOD04X00TVrqJ2VfY4HuFuwQwW93Xnq4zV3lAgaDs4g5WgKgnfMs35w1LXc2It2SK3fKTdSLVA9tqlrsQE8b8JXt_8M9uBzN_Im7WTaXy2Lvv75G6njf37aPbjb4lJ23BjSfdgy1T7stRiVtSvAYh92bxAYPoD8mLm0dbdosiujprMf7NvXha4NonLsis1rivVXX5id1VeMbn2ZS71dzQ3LDUUQKuqidJljD-Fi8H78dui1FRo8HSZR5iEay4q4LBClmNRo4ROcsNxGqVJxoDTXKitNoEpdcGVNKCKD57siSESmOLYLH8F2VVfmMTDOtS5jv7ScGP10WiDOSDTPCjwglYmOevC6myupW_pyqqIxkw3xciBRaZKU1oMXa8nLhrLjDzKv3HSvBdR8SiluaSw_5Sfy_Ox0cjIcRzLvwcGGPawbBGhTaZr6PTjsDESiZ1K4RVWmXi1kSFhNpALf5Sb7r4ORg9E7ej75V8FDuD0cn4_k6EN-9hTuNAGu2Av9Z7C9nK_Mc8RJy-LA-cMvmkMPuw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BKyE40FJALJTWSAhO2cb59rFiu13aEiHUipU4WI5jI7SrpNoPCvz6zjjJtotAQpxysR1n_MZ-9kyeAV5bEeDM6xsSurUegiL2hFDKiwsEkM2M8Y3LtsiT0UV0Mo7HbVYl_QvT6EOsDtzIM9x8TQ5-WdqDG9FQOy37HPdvd2EzSvyMED34dCMdJYJGgjNIOSJB8E541g8OupprS9EmWfUHpUaqOVrHNtdarPHO2-zVLT_DLfjSdbzJOpn0l4uir3_9pun4f1-2DQ9bVsoOGxg9gjum2oGtlqGy1v_nO_DglnzhY8gPmUtad1MmuzJqMv3Jvn-b69ogJ8em2KymSH_1ldlpfcXozJe5xNvlzLDcUPygoiZKlzf2BC6GR-fvRl57P4OnwyTKPORiWRGXBXIUkxotfCITltsoVSoOlOZaZaUJVKkLrqwJRWRwd1cEicgUx3rhU9io6so8A8a51mXsl5aTnp9OC2QZieZZgdujMtFRD952QyV1K15Od2hMZSO7HEg0miSj9eDVquRlI9jxhzJv3GivCqjZhBLc0lh-zo_lh9OT8fHoPJJ5D_bW4LCqECCk0jT1e7Df4UOiX1KwRVWmXs5lSExNpALf5cb6r52Rw7MBPZ__a8F9uPdxMJRn7_PTF3C_iW7FXujvwsZitjQvkSQtij3nDdeHCQ5z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+convective+weakly+viscoelastic+rotating+flow+with+pressure+Neumann+condition&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Claeyssen%2C+Julio+R.&rft.au=Asenjo%2C+Elba+Bravo&rft.au=Rubio%2C+Obidio&rft.date=2009-05-30&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=60&rft.issue=3&rft.spage=295&rft.epage=322&rft_id=info:doi/10.1002%2Ffld.1888&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_MKJXGHT4_N |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon |