A convective weakly viscoelastic rotating flow with pressure Neumann condition

The objective of this work is to investigate through the numeric simulation, the effects of the weakly viscoelastic flow within a rotating rectangular duct subject to a buoyancy force due to the heating of one of the walls of the duct. A direct velocity–pressure algorithm in primitive variables with...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in fluids Vol. 60; no. 3; pp. 295 - 322
Main Authors Claeyssen, Julio R., Asenjo, Elba Bravo, Rubio, Obidio
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 30.05.2009
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The objective of this work is to investigate through the numeric simulation, the effects of the weakly viscoelastic flow within a rotating rectangular duct subject to a buoyancy force due to the heating of one of the walls of the duct. A direct velocity–pressure algorithm in primitive variables with a Neumann condition for the pressure is employed. The spatial discretization is made with finite central differences on a staggered grid. The pressure field is directly updated without any iteration. Numerical simulations were done for several Weissemberg numbers (We) and Grashof numbers (Gr) . The numerical results show that for high Weissemberg numbers (We>7.4 × 10−5) and for ducts with aspect ratio 2:1 and 8:1, the secondary flow is restabilized with a stretched double vortex configuration. It is also observed that when the Grashof number is increased (Gr>17 × 10−4) , the buoyancy force neutralizes the effects of the Coriolis force for ducts with aspect ratio 8:1. Copyright © 2008 John Wiley & Sons, Ltd.
AbstractList The objective of this work is to investigate through the numeric simulation, the effects of the weakly viscoelastic flow within a rotating rectangular duct subject to a buoyancy force due to the heating of one of the walls of the duct. A direct velocity–pressure algorithm in primitive variables with a Neumann condition for the pressure is employed. The spatial discretization is made with finite central differences on a staggered grid. The pressure field is directly updated without any iteration. Numerical simulations were done for several Weissemberg numbers ( We ) and Grashof numbers ( Gr ) . The numerical results show that for high Weissemberg numbers ( We >7.4 × 10 −5 ) and for ducts with aspect ratio 2:1 and 8:1, the secondary flow is restabilized with a stretched double vortex configuration. It is also observed that when the Grashof number is increased ( Gr >17 × 10 −4 ) , the buoyancy force neutralizes the effects of the Coriolis force for ducts with aspect ratio 8:1. Copyright © 2008 John Wiley & Sons, Ltd.
The objective of this work is to investigate through the numeric simulation, the effects of the weakly viscoelastic flow within a rotating rectangular duct subject to a buoyancy force due to the heating of one of the walls of the duct. A direct velocity-pressure algorithm in primitive variables with a Neumann condition for the pressure is employed. The spatial discretization is made with finite central differences on a staggered grid. The pressure field is directly updated without any iteration. Numerical simulations were done for several Weissemberg numbers (We) and Grashof numbers (Gr). The numerical results show that for high Weissemberg numbers (We > 7.4 X 10-5) and for ducts with aspect ratio 2:1 and 8:1, the secondary flow is restabilized with a stretched double vortex configuration. It is also observed that when the Grashof number is increased (Gr > 17 X 10-4), the buoyancy force neutralizes the effects of the Coriolis force for ducts with aspect ratio 8:1.
The objective of this work is to investigate through the numeric simulation, the effects of the weakly viscoelastic flow within a rotating rectangular duct subject to a buoyancy force due to the heating of one of the walls of the duct. A direct velocity–pressure algorithm in primitive variables with a Neumann condition for the pressure is employed. The spatial discretization is made with finite central differences on a staggered grid. The pressure field is directly updated without any iteration. Numerical simulations were done for several Weissemberg numbers (We) and Grashof numbers (Gr) . The numerical results show that for high Weissemberg numbers (We>7.4 × 10−5) and for ducts with aspect ratio 2:1 and 8:1, the secondary flow is restabilized with a stretched double vortex configuration. It is also observed that when the Grashof number is increased (Gr>17 × 10−4) , the buoyancy force neutralizes the effects of the Coriolis force for ducts with aspect ratio 8:1. Copyright © 2008 John Wiley & Sons, Ltd.
Author Asenjo, Elba Bravo
Rubio, Obidio
Claeyssen, Julio R.
Author_xml – sequence: 1
  givenname: Julio R.
  surname: Claeyssen
  fullname: Claeyssen, Julio R.
  email: julio@mat.ufrgs.br
  organization: IM-Promec, Universidade Federal do Rio Grande do Sul, P.O. Box 10673, 90001-970 Porto Alegre, RS, Brazil
– sequence: 2
  givenname: Elba Bravo
  surname: Asenjo
  fullname: Asenjo, Elba Bravo
  organization: UNASP-Adventist University Center of São Paulo, SP, Brazil
– sequence: 3
  givenname: Obidio
  surname: Rubio
  fullname: Rubio, Obidio
  organization: Facultad de Ciencias, Universidad Nacional de Trujillo, La Libertad, Peru
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22097770$$DView record in Pascal Francis
BookMark eNp10M1uEzEUBWALFalpi9RHmA0Vmwn-mYntZVVoCqRhUwQ768ZzB9w6drCdhLw9E6VUApWVN985uj4n5CjEgIScMzpmlPK3ve_GTCn1gowY1bKmYiKOyIhyyWpONTsmJznfU0o1V2JE5peVjWGDtrgNVluEB7-rNi7biB5ycbZKsUBx4XvV-7ittq78qFYJc14nrOa4XkII-4rOFRfDGXnZg8_46vE9JV-u399d3dSzz9MPV5ez2opJo2rBG7VouwWjHCVaTTllrGd9IwFaDpZZUB1y6OyCQY9CN6i0XvCJVsCGnDglF4feVYo_15iLWQ43o_cQMK6zEQ1rWy31AF8_QsgWfJ8gWJfNKrklpJ3hwyRSSjq48cHZFHNO2Bvr9v-OoSRw3jBq9vOaYV6zn3cIvPkn8KfzGVof6NZ53P3XmevZu7-9ywV_PXlID2YihWzN1_nU3H76-G16c9eYufgNMZ2bjw
CODEN IJNFDW
CitedBy_id crossref_primary_10_1016_j_expthermflusci_2013_07_010
Cites_doi 10.1080/10407799808915068
10.1016/j.ces.2007.08.053
10.1002/(SICI)1097-0363(19990830)30:8<1009::AID-FLD876>3.0.CO;2-T
10.1002/1097-0363(20000915)34:1<1::AID-FLD46>3.0.CO;2-W
10.1080/10407789808914014
10.1080/10407799708914996
10.1016/0021-9991(87)90008-8
10.1016/0017-9310(96)00127-5
10.1016/S0377-0257(96)01504-2
10.1002/(SICI)1097-0363(19960430)22:8<771::AID-FLD379>3.0.CO;2-5
10.1016/S0009-2509(01)00363-3
10.1007/978-3-642-98037-4
10.1063/1.1761178
10.1002/fld.1015
10.1017/S0022112082002201
10.1017/S0022112071000077
10.1002/fld.1650071008
10.1080/10407799708914997
10.1002/(SICI)1097-0363(19960830)23:4<379::AID-FLD427>3.0.CO;2-6
10.1115/1.2825852
10.1002/1097-0363(20000715)33:5<681::AID-FLD25>3.0.CO;2-A
10.1007/978-1-4612-4462-2
ContentType Journal Article
Copyright Copyright © 2008 John Wiley & Sons, Ltd.
2009 INIST-CNRS
Copyright_xml – notice: Copyright © 2008 John Wiley & Sons, Ltd.
– notice: 2009 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/fld.1888
DatabaseName Istex
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1097-0363
EndPage 322
ExternalDocumentID 22097770
10_1002_fld_1888
FLD1888
ark_67375_WNG_MKJXGHT4_N
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
6TJ
AAMMB
ABEML
ACSCC
AEFGJ
AGHNM
AGXDD
AI.
AIDQK
AIDYY
AMVHM
IQODW
M6O
PALCI
RIWAO
RJQFR
SAMSI
TUS
VH1
VOH
ZY4
~A~
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3648-3248b5db102e7ec902011f1f47aa52ac1ca8de2adcb1afe394e899b2698a15db3
IEDL.DBID DR2
ISSN 0271-2091
IngestDate Thu Jul 10 18:19:37 EDT 2025
Mon Jul 21 09:17:24 EDT 2025
Tue Jul 01 02:08:30 EDT 2025
Thu Apr 24 23:09:09 EDT 2025
Wed Jan 22 16:46:33 EST 2025
Wed Oct 30 09:57:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Rectangular pipe
Viscoelastic fluid
Rotating flow
Computational fluid dynamics
incompressible flow
Digital simulation
Boundary conditions
pressure Neumann condition
Rotating pipe
Combined convection
Algorithms
finite differences methods
mixed convection
Modelling
non-Newtonian
Incompressible fluid
Secondary flow
Mesh generation
Heat transfer
Finite difference method
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3648-3248b5db102e7ec902011f1f47aa52ac1ca8de2adcb1afe394e899b2698a15db3
Notes istex:CDF68E19F9AB7744C18EBA9E23A8CD34A246347B
ark:/67375/WNG-MKJXGHT4-N
ArticleID:FLD1888
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 34155979
PQPubID 23500
PageCount 28
ParticipantIDs proquest_miscellaneous_34155979
pascalfrancis_primary_22097770
crossref_citationtrail_10_1002_fld_1888
crossref_primary_10_1002_fld_1888
wiley_primary_10_1002_fld_1888_FLD1888
istex_primary_ark_67375_WNG_MKJXGHT4_N
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 30 May 2009
PublicationDateYYYYMMDD 2009-05-30
PublicationDate_xml – month: 05
  year: 2009
  text: 30 May 2009
  day: 30
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle International journal for numerical methods in fluids
PublicationTitleAlternate Int. J. Numer. Meth. Fluids
PublicationYear 2009
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Chen HB, Nandakumar K, Finlay WH, Ku HC. Three-dimensional viscous flow through rotating channel: a pseudospectral matrix method approach. International Journal for Numerical Methods in Fluids 1996; 23:379-396.
Lee KT, Yan WM. Mixed convection heat and mass transfer in radially rotating rectangular ducts. Numerical Heat Transfer, Part A 1998; 34:747-767.
Jin YY, Chen CF. Instability of convection and heat transfer of high Prandtl number fluids in a vertical slot. Journal of Heat Transfer 1996; 118:359-365.
Roache PJ. Computational Fluid Dynamics. Hermosa Publications: Albuquerque, NM, 1982.
Nonino C, Comini G. An equal-order velocity-pressure algorithm for incompressible thermal flows, part 1: formulation. Numerical Heat Transfer, Part B 1997; 32:1-15.
Sheu TWH, Wang MMT, Tsai SF. Pressure boundary condition for a segregated approach to solving incompressible Navier-Stokes equations. Numerical Heat Transfer, Part B 1998; 34:457-467.
Yamaguchi H, Fujiyoshi J, Matsui H. Spherical Couette flow of a viscoelastic fluid. Part I: experimental study of the inner sphere rotation. Journal of Non-Newtonian Fluid Mechanics 1997; 69:29-46.
Claeyssen JR, Bravo E, Rubio O. Rotating incompressible flow with a pressure Neumann condition. International Journal for Numerical Methods in Fluids 2006; 50:1-26.
Nonino C, Croce G. An equal-order velocity-pressure algorithm for incompressible thermal flows, part 2: validation. Numerical Heat Transfer, Part B 1997; 32:17-35.
Speziale CG. Numerical solution of rotating internal flows. Lecture Notes in Applied Mathematics 1985; 22:261-288.
Claeyssen JR, Bravo E, Platte R. Simulation in primitive variables of incompressible flow with pressure Neumann condition. International Journal for Numerical Methods in Fluids 1999; 30:1009-1026.
Govatsos PA, Papantonis DE. A characteristic based method for the calculation of three-dimensional incompressible, turbulent and steady flows in hydraulic turbomachines and installations. International Journal for Numerical Methods in Fluids 2000; 34:1-30.
Yang Z. Large eddy simulation of fully developed turbulent flow in a rotating pipe. International Journal for Numerical Methods in Fluids 2000; 33:681-694.
Vanyo PJ. Rotating Fluids in Engineering and Science. Dover Publications, Inc.: Mineola, New York, 1993.
Lee E, Lee YH, Pai YT, Hsu JP. Flow of a viscoelastic shear-thinning fluid between two concentric rotating spheres. Chemical Engineering Science 2002; 57:507-514.
Speziale CG. Numerical study of viscous flow in rotating rectangular ducts. Journal of Fluid Mechanics 1982; 122:251-271.
Ladyzhenskaya O. The Mathematical Theory of Viscous Incompressible Flow. Gordon & Breach: New York, 1969.
Abdallah S. Numerical solutions for the pressure Poisson equation with Neumann boundary conditions using a non-staggered grid. Journal of Computational Physics 1987; 70:182-192.
Harlow FH, Welch JE. Numerical calculation of time dependent viscous incompressible flow of fluid with free surface. Physics of Fluids 1965; 8:2182-2189.
Liqiu W. Buoyancy-force-driven transitions in flow structures and their effects on heat transfer in rotating curved channel. International Journal of Heat and Mass Transfer 1997; 40(2):223-235.
Ferguson J, Kemblowski Z. Applied Fluid Rheology. Elsevier Applied Science: London, 1991.
Morse PM, Feschbach H. Methods of Theoretical Physics, Part I. McGraw-Hill: New York, 1953.
Gresho PM, Sani RL. On pressure boundary conditions for the incompressible Navier-Stokes equations. International Journal for Numerical Methods in Fluids 1987; 7:1111-1145.
Joseph DD. Fluid Dynamics of Viscoelastic Liquids. Springer: New York, 1990.
Ames WF. Numerical Methods for Partial Differential Equations (3rd edn). Academic Press: New York, 1992.
Temam R. Navier-Stokes Equations, Theory and Numerical Analysis (3rd edn). North-Holland: Amsterdam, 1984 (reprint AMS Chelsea Publishing, Providence, RI, 2004).
Park HM, Hong SM, Lim JY. Estimation of rheological parameters using velocity measurements. Chemical Engineering Science 2007; 62:6806-6815.
Khayat RE. On overstability in thermal convection of viscoelastic fluids. Developments in Non-Newtonian Flows AMD 1993; 175:71-83.
Hart JE. Instability and secondary motion in a rotating channel flow. Journal of Fluid Mechanics 1971; 45:341-351.
Robertson AM. On viscous flow in curved pipes of non-uniform cross-section. International Journal for Numerical Methods in Fluids 1996; 22:771-798.
Ferziger JH, Perić M. Computational Methods for Fluid Dynamics (2nd edn). Springer: Berlin, 1999.
1997; 40
2006; 50
1987; 70
2002; 57
1971; 45
1997; 69
1987; 7
1982; 122
1953
1993
1992
1991
1985; 22
1999
1990
1997; 32
2000; 34
1965; 8
2000; 33
1984
1999; 30
1982
2007; 62
1998; 34
1969
1993; 175
1996; 118
1996; 23
1996; 22
Vanyo PJ (e_1_2_1_32_2) 1993
Morse PM (e_1_2_1_25_2) 1953
Ames WF (e_1_2_1_21_2) 1992
e_1_2_1_22_2
e_1_2_1_23_2
Khayat RE (e_1_2_1_8_2) 1993; 175
e_1_2_1_24_2
Speziale CG (e_1_2_1_6_2) 1985; 22
e_1_2_1_28_2
e_1_2_1_29_2
Ferguson J (e_1_2_1_27_2) 1991
Ladyzhenskaya O (e_1_2_1_17_2) 1969
e_1_2_1_30_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_33_2
e_1_2_1_10_2
e_1_2_1_31_2
e_1_2_1_15_2
Roache PJ (e_1_2_1_20_2) 1982
e_1_2_1_16_2
e_1_2_1_13_2
e_1_2_1_14_2
Temam R (e_1_2_1_26_2) 1984
e_1_2_1_19_2
e_1_2_1_9_2
e_1_2_1_18_2
References_xml – reference: Morse PM, Feschbach H. Methods of Theoretical Physics, Part I. McGraw-Hill: New York, 1953.
– reference: Nonino C, Croce G. An equal-order velocity-pressure algorithm for incompressible thermal flows, part 2: validation. Numerical Heat Transfer, Part B 1997; 32:17-35.
– reference: Liqiu W. Buoyancy-force-driven transitions in flow structures and their effects on heat transfer in rotating curved channel. International Journal of Heat and Mass Transfer 1997; 40(2):223-235.
– reference: Claeyssen JR, Bravo E, Platte R. Simulation in primitive variables of incompressible flow with pressure Neumann condition. International Journal for Numerical Methods in Fluids 1999; 30:1009-1026.
– reference: Chen HB, Nandakumar K, Finlay WH, Ku HC. Three-dimensional viscous flow through rotating channel: a pseudospectral matrix method approach. International Journal for Numerical Methods in Fluids 1996; 23:379-396.
– reference: Hart JE. Instability and secondary motion in a rotating channel flow. Journal of Fluid Mechanics 1971; 45:341-351.
– reference: Speziale CG. Numerical study of viscous flow in rotating rectangular ducts. Journal of Fluid Mechanics 1982; 122:251-271.
– reference: Govatsos PA, Papantonis DE. A characteristic based method for the calculation of three-dimensional incompressible, turbulent and steady flows in hydraulic turbomachines and installations. International Journal for Numerical Methods in Fluids 2000; 34:1-30.
– reference: Claeyssen JR, Bravo E, Rubio O. Rotating incompressible flow with a pressure Neumann condition. International Journal for Numerical Methods in Fluids 2006; 50:1-26.
– reference: Speziale CG. Numerical solution of rotating internal flows. Lecture Notes in Applied Mathematics 1985; 22:261-288.
– reference: Vanyo PJ. Rotating Fluids in Engineering and Science. Dover Publications, Inc.: Mineola, New York, 1993.
– reference: Temam R. Navier-Stokes Equations, Theory and Numerical Analysis (3rd edn). North-Holland: Amsterdam, 1984 (reprint AMS Chelsea Publishing, Providence, RI, 2004).
– reference: Park HM, Hong SM, Lim JY. Estimation of rheological parameters using velocity measurements. Chemical Engineering Science 2007; 62:6806-6815.
– reference: Ferziger JH, Perić M. Computational Methods for Fluid Dynamics (2nd edn). Springer: Berlin, 1999.
– reference: Yamaguchi H, Fujiyoshi J, Matsui H. Spherical Couette flow of a viscoelastic fluid. Part I: experimental study of the inner sphere rotation. Journal of Non-Newtonian Fluid Mechanics 1997; 69:29-46.
– reference: Lee KT, Yan WM. Mixed convection heat and mass transfer in radially rotating rectangular ducts. Numerical Heat Transfer, Part A 1998; 34:747-767.
– reference: Abdallah S. Numerical solutions for the pressure Poisson equation with Neumann boundary conditions using a non-staggered grid. Journal of Computational Physics 1987; 70:182-192.
– reference: Harlow FH, Welch JE. Numerical calculation of time dependent viscous incompressible flow of fluid with free surface. Physics of Fluids 1965; 8:2182-2189.
– reference: Yang Z. Large eddy simulation of fully developed turbulent flow in a rotating pipe. International Journal for Numerical Methods in Fluids 2000; 33:681-694.
– reference: Robertson AM. On viscous flow in curved pipes of non-uniform cross-section. International Journal for Numerical Methods in Fluids 1996; 22:771-798.
– reference: Joseph DD. Fluid Dynamics of Viscoelastic Liquids. Springer: New York, 1990.
– reference: Roache PJ. Computational Fluid Dynamics. Hermosa Publications: Albuquerque, NM, 1982.
– reference: Jin YY, Chen CF. Instability of convection and heat transfer of high Prandtl number fluids in a vertical slot. Journal of Heat Transfer 1996; 118:359-365.
– reference: Gresho PM, Sani RL. On pressure boundary conditions for the incompressible Navier-Stokes equations. International Journal for Numerical Methods in Fluids 1987; 7:1111-1145.
– reference: Ferguson J, Kemblowski Z. Applied Fluid Rheology. Elsevier Applied Science: London, 1991.
– reference: Ladyzhenskaya O. The Mathematical Theory of Viscous Incompressible Flow. Gordon & Breach: New York, 1969.
– reference: Lee E, Lee YH, Pai YT, Hsu JP. Flow of a viscoelastic shear-thinning fluid between two concentric rotating spheres. Chemical Engineering Science 2002; 57:507-514.
– reference: Nonino C, Comini G. An equal-order velocity-pressure algorithm for incompressible thermal flows, part 1: formulation. Numerical Heat Transfer, Part B 1997; 32:1-15.
– reference: Sheu TWH, Wang MMT, Tsai SF. Pressure boundary condition for a segregated approach to solving incompressible Navier-Stokes equations. Numerical Heat Transfer, Part B 1998; 34:457-467.
– reference: Khayat RE. On overstability in thermal convection of viscoelastic fluids. Developments in Non-Newtonian Flows AMD 1993; 175:71-83.
– reference: Ames WF. Numerical Methods for Partial Differential Equations (3rd edn). Academic Press: New York, 1992.
– start-page: 389
  end-page: 399
– volume: 50
  start-page: 1
  year: 2006
  end-page: 26
  article-title: Rotating incompressible flow with a pressure Neumann condition
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 32
  start-page: 1
  year: 1997
  end-page: 15
  article-title: An equal‐order velocity–pressure algorithm for incompressible thermal flows, part 1: formulation
  publication-title: Numerical Heat Transfer, Part B
– volume: 32
  start-page: 17
  year: 1997
  end-page: 35
  article-title: An equal‐order velocity–pressure algorithm for incompressible thermal flows, part 2: validation
  publication-title: Numerical Heat Transfer, Part B
– volume: 57
  start-page: 507
  year: 2002
  end-page: 514
  article-title: Flow of a viscoelastic shear‐thinning fluid between two concentric rotating spheres
  publication-title: Chemical Engineering Science
– volume: 175
  start-page: 71
  year: 1993
  end-page: 83
  article-title: On overstability in thermal convection of viscoelastic fluids
  publication-title: Developments in Non‐Newtonian Flows AMD
– volume: 22
  start-page: 261
  year: 1985
  end-page: 288
  article-title: Numerical solution of rotating internal flows
  publication-title: Lecture Notes in Applied Mathematics
– volume: 23
  start-page: 379
  year: 1996
  end-page: 396
  article-title: Three‐dimensional viscous flow through rotating channel: a pseudospectral matrix method approach
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 122
  start-page: 251
  year: 1982
  end-page: 271
  article-title: Numerical study of viscous flow in rotating rectangular ducts
  publication-title: Journal of Fluid Mechanics
– volume: 34
  start-page: 747
  year: 1998
  end-page: 767
  article-title: Mixed convection heat and mass transfer in radially rotating rectangular ducts
  publication-title: Numerical Heat Transfer, Part A
– volume: 34
  start-page: 457
  year: 1998
  end-page: 467
  article-title: Pressure boundary condition for a segregated approach to solving incompressible Navier–Stokes equations
  publication-title: Numerical Heat Transfer, Part B
– year: 1990
– year: 1992
– volume: 30
  start-page: 1009
  year: 1999
  end-page: 1026
  article-title: Simulation in primitive variables of incompressible flow with pressure Neumann condition
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 22
  start-page: 771
  year: 1996
  end-page: 798
  article-title: On viscous flow in curved pipes of non‐uniform cross‐section
  publication-title: International Journal for Numerical Methods in Fluids
– year: 1984
– year: 1982
– volume: 69
  start-page: 29
  year: 1997
  end-page: 46
  article-title: Spherical Couette flow of a viscoelastic fluid. Part I: experimental study of the inner sphere rotation
  publication-title: Journal of Non‐Newtonian Fluid Mechanics
– volume: 118
  start-page: 359
  year: 1996
  end-page: 365
  article-title: Instability of convection and heat transfer of high Prandtl number fluids in a vertical slot
  publication-title: Journal of Heat Transfer
– volume: 7
  start-page: 1111
  year: 1987
  end-page: 1145
  article-title: On pressure boundary conditions for the incompressible Navier–Stokes equations
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 40
  start-page: 223
  issue: 2
  year: 1997
  end-page: 235
  article-title: Buoyancy‐force‐driven transitions in flow structures and their effects on heat transfer in rotating curved channel
  publication-title: International Journal of Heat and Mass Transfer
– year: 1969
– volume: 70
  start-page: 182
  year: 1987
  end-page: 192
  article-title: Numerical solutions for the pressure Poisson equation with Neumann boundary conditions using a non‐staggered grid
  publication-title: Journal of Computational Physics
– volume: 34
  start-page: 1
  year: 2000
  end-page: 30
  article-title: A characteristic based method for the calculation of three‐dimensional incompressible, turbulent and steady flows in hydraulic turbomachines and installations
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 33
  start-page: 681
  year: 2000
  end-page: 694
  article-title: Large eddy simulation of fully developed turbulent flow in a rotating pipe
  publication-title: International Journal for Numerical Methods in Fluids
– year: 1953
– volume: 45
  start-page: 341
  year: 1971
  end-page: 351
  article-title: Instability and secondary motion in a rotating channel flow
  publication-title: Journal of Fluid Mechanics
– year: 1991
– volume: 62
  start-page: 6806
  year: 2007
  end-page: 6815
  article-title: Estimation of rheological parameters using velocity measurements
  publication-title: Chemical Engineering Science
– volume: 8
  start-page: 2182
  year: 1965
  end-page: 2189
  article-title: Numerical calculation of time dependent viscous incompressible flow of fluid with free surface
  publication-title: Physics of Fluids
– year: 1993
– year: 1999
– ident: e_1_2_1_18_2
  doi: 10.1080/10407799808915068
– volume: 175
  start-page: 71
  year: 1993
  ident: e_1_2_1_8_2
  article-title: On overstability in thermal convection of viscoelastic fluids
  publication-title: Developments in Non‐Newtonian Flows AMD
– ident: e_1_2_1_15_2
  doi: 10.1016/j.ces.2007.08.053
– ident: e_1_2_1_2_2
  doi: 10.1002/(SICI)1097-0363(19990830)30:8<1009::AID-FLD876>3.0.CO;2-T
– volume-title: Rotating Fluids in Engineering and Science
  year: 1993
  ident: e_1_2_1_32_2
– volume-title: Computational Fluid Dynamics
  year: 1982
  ident: e_1_2_1_20_2
– ident: e_1_2_1_31_2
  doi: 10.1002/1097-0363(20000915)34:1<1::AID-FLD46>3.0.CO;2-W
– volume-title: The Mathematical Theory of Viscous Incompressible Flow
  year: 1969
  ident: e_1_2_1_17_2
– ident: e_1_2_1_13_2
  doi: 10.1080/10407789808914014
– ident: e_1_2_1_10_2
  doi: 10.1080/10407799708914996
– volume-title: Applied Fluid Rheology
  year: 1991
  ident: e_1_2_1_27_2
– ident: e_1_2_1_23_2
  doi: 10.1016/0021-9991(87)90008-8
– ident: e_1_2_1_12_2
  doi: 10.1016/0017-9310(96)00127-5
– ident: e_1_2_1_33_2
  doi: 10.1016/S0377-0257(96)01504-2
– volume-title: Navier–Stokes Equations, Theory and Numerical Analysis
  year: 1984
  ident: e_1_2_1_26_2
– ident: e_1_2_1_7_2
  doi: 10.1002/(SICI)1097-0363(19960430)22:8<771::AID-FLD379>3.0.CO;2-5
– ident: e_1_2_1_14_2
  doi: 10.1016/S0009-2509(01)00363-3
– ident: e_1_2_1_22_2
  doi: 10.1007/978-3-642-98037-4
– ident: e_1_2_1_19_2
  doi: 10.1063/1.1761178
– ident: e_1_2_1_29_2
  doi: 10.1002/fld.1015
– ident: e_1_2_1_24_2
– volume-title: Methods of Theoretical Physics, Part I
  year: 1953
  ident: e_1_2_1_25_2
– ident: e_1_2_1_5_2
  doi: 10.1017/S0022112082002201
– volume: 22
  start-page: 261
  year: 1985
  ident: e_1_2_1_6_2
  article-title: Numerical solution of rotating internal flows
  publication-title: Lecture Notes in Applied Mathematics
– ident: e_1_2_1_16_2
  doi: 10.1017/S0022112071000077
– ident: e_1_2_1_3_2
  doi: 10.1002/fld.1650071008
– ident: e_1_2_1_11_2
  doi: 10.1080/10407799708914997
– ident: e_1_2_1_4_2
  doi: 10.1002/(SICI)1097-0363(19960830)23:4<379::AID-FLD427>3.0.CO;2-6
– ident: e_1_2_1_9_2
  doi: 10.1115/1.2825852
– ident: e_1_2_1_30_2
  doi: 10.1002/1097-0363(20000715)33:5<681::AID-FLD25>3.0.CO;2-A
– ident: e_1_2_1_28_2
  doi: 10.1007/978-1-4612-4462-2
– volume-title: Numerical Methods for Partial Differential Equations
  year: 1992
  ident: e_1_2_1_21_2
SSID ssj0009283
Score 1.8679777
Snippet The objective of this work is to investigate through the numeric simulation, the effects of the weakly viscoelastic flow within a rotating rectangular duct...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 295
SubjectTerms Computational methods in fluid dynamics
Convection and heat transfer
Exact sciences and technology
finite differences methods
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Hydrodynamic stability
incompressible flow
mixed convection
non-Newtonian
Non-newtonian fluid flows
Physics
pressure Neumann condition
rotating flow
Secondary instability
Turbulent flows, convection, and heat transfer
Title A convective weakly viscoelastic rotating flow with pressure Neumann condition
URI https://api.istex.fr/ark:/67375/WNG-MKJXGHT4-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.1888
https://www.proquest.com/docview/34155979
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbQuMCBsQGiA4aREJzSxc4Px8cJ1lUDckCbqMTBsh0boVbJ1LQM-Ot5z0m6FYGEOOXy7Dj2e8-f7S-fCXnpJYfMGzsUuvUROEUWSal1lBlwIF84F7vAtijz6UV6NstmPasS_4Xp9CE2G24YGSFfY4Br0x5di4b6RTVmsH6D9ItULcRDH6-VoyTvFDi5YOAIkg26szE_GgpuzUS3sVO_IzNSt9A5vrvVYgt23gSvYfaZ7JLPQ7s70sl8vF6Zsf35m6Tj_33YfXKvB6X0uPOiPXLL1ftktweotA__dp_cvaFe-ICUxzRw1kPGpFdOzxc_6LevrW0cQHKoii4bPOivv1C_aK4obvnSwLtdLx0tHR4f1FhFFWhjD8nF5OT8zTTqr2eIbJKnRQRQrDBZZQCiOOGsjBFLeOZToXXGtWVWF5XjurKGae8SmTpY3Bmey0IzKJc8Ijt1U7vHhDJmbZXFlWco52eFAZCRW1YYWB1VuU1H5PUwVMr22uV4hcZCdarLXEGnKey0EXmxsbzs9Dr-YPMqjPbGQC_nyG8TmfpUnqoP785mp9PzVJUjcrjlDpsCHFxKCBGPyPPBPxSEJZ616No161YlCNSkkPCuMNZ_bYyavH-Lz4N_NXxC7nQnWlmUxE_Jzmq5ds8AGK3MYQiBX_qAC6A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V9gA9UCgglkdrJASnbOO8LU4VsF3abQ5oK_aAZDmOjdCukmofFPj1zDjJtotAQpxyGTvOeMb-7Jl8A_DSigBXXt8Q0a310ChiTwilvLhAA7KZMb5x2RZ5MryITifxZAvedP_CNPwQ6ws38gy3XpOD04X00TVrqJ2VfY4HuFuwQwW93Xnq4zV3lAgaDs4g5WgKgnfMs35w1LXc2It2SK3fKTdSLVA9tqlrsQE8b8JXt_8M9uBzN_Im7WTaXy2Lvv75G6njf37aPbjb4lJ23BjSfdgy1T7stRiVtSvAYh92bxAYPoD8mLm0dbdosiujprMf7NvXha4NonLsis1rivVXX5id1VeMbn2ZS71dzQ3LDUUQKuqidJljD-Fi8H78dui1FRo8HSZR5iEay4q4LBClmNRo4ROcsNxGqVJxoDTXKitNoEpdcGVNKCKD57siSESmOLYLH8F2VVfmMTDOtS5jv7ScGP10WiDOSDTPCjwglYmOevC6myupW_pyqqIxkw3xciBRaZKU1oMXa8nLhrLjDzKv3HSvBdR8SiluaSw_5Sfy_Ox0cjIcRzLvwcGGPawbBGhTaZr6PTjsDESiZ1K4RVWmXi1kSFhNpALf5Sb7r4ORg9E7ej75V8FDuD0cn4_k6EN-9hTuNAGu2Av9Z7C9nK_Mc8RJy-LA-cMvmkMPuw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BKyE40FJALJTWSAhO2cb59rFiu13aEiHUipU4WI5jI7SrpNoPCvz6zjjJtotAQpxysR1n_MZ-9kyeAV5bEeDM6xsSurUegiL2hFDKiwsEkM2M8Y3LtsiT0UV0Mo7HbVYl_QvT6EOsDtzIM9x8TQ5-WdqDG9FQOy37HPdvd2EzSvyMED34dCMdJYJGgjNIOSJB8E541g8OupprS9EmWfUHpUaqOVrHNtdarPHO2-zVLT_DLfjSdbzJOpn0l4uir3_9pun4f1-2DQ9bVsoOGxg9gjum2oGtlqGy1v_nO_DglnzhY8gPmUtad1MmuzJqMv3Jvn-b69ogJ8em2KymSH_1ldlpfcXozJe5xNvlzLDcUPygoiZKlzf2BC6GR-fvRl57P4OnwyTKPORiWRGXBXIUkxotfCITltsoVSoOlOZaZaUJVKkLrqwJRWRwd1cEicgUx3rhU9io6so8A8a51mXsl5aTnp9OC2QZieZZgdujMtFRD952QyV1K15Od2hMZSO7HEg0miSj9eDVquRlI9jxhzJv3GivCqjZhBLc0lh-zo_lh9OT8fHoPJJ5D_bW4LCqECCk0jT1e7Df4UOiX1KwRVWmXs5lSExNpALf5cb6r52Rw7MBPZ__a8F9uPdxMJRn7_PTF3C_iW7FXujvwsZitjQvkSQtij3nDdeHCQ5z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+convective+weakly+viscoelastic+rotating+flow+with+pressure+Neumann+condition&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Claeyssen%2C+Julio+R.&rft.au=Asenjo%2C+Elba+Bravo&rft.au=Rubio%2C+Obidio&rft.date=2009-05-30&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=60&rft.issue=3&rft.spage=295&rft.epage=322&rft_id=info:doi/10.1002%2Ffld.1888&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_MKJXGHT4_N
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon