Semi-coupled air/water immersed boundary approach for curvilinear dynamic overset grids with application to ship hydrodynamics

For many problems in ship hydrodynamics, the effects of air flow on the water flow are negligible (the frequently called free surface conditions), but the air flow around the ship is still of interest. A method is presented where the water flow is decoupled from the air solution, but the air flow us...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in fluids Vol. 58; no. 6; pp. 591 - 624
Main Authors Huang, Juntao, Carrica, Pablo M., Stern, Frederick
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 30.10.2008
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For many problems in ship hydrodynamics, the effects of air flow on the water flow are negligible (the frequently called free surface conditions), but the air flow around the ship is still of interest. A method is presented where the water flow is decoupled from the air solution, but the air flow uses the unsteady water flow as a boundary condition. The authors call this a semi‐coupled air/water flow approach. The method can be divided into two steps. At each time step the free surface water flow is computed first with a single‐phase method assuming constant pressure and zero stress on the interface. The second step is to compute the air flow assuming the free surface as a moving immersed boundary (IB). The IB method developed for Cartesian grids (Annu. Rev. Fluid Mech. 2005; 37:239–261) is extended to curvilinear grids, where no‐slip and continuity conditions are used to enforce velocity and pressure boundary conditions for the air flow. The forcing points close to the IB can be computed and corrected under a sharp interface condition, which makes the computation very stable. The overset implementation is similar to that of the single‐phase solver (Comput. Fluids 2007; 36:1415–1433), with the difference that points in water are set as IB points even if they are fringe points. Pressure–velocity coupling through pressure implicit with splitting of operators or projection methods is used for water computations, and a projection method is used for the air. The method on each fluid is a single‐phase method, thus avoiding ill‐conditioned numerical systems caused by large differences of fluid properties between air and water. The computation is only slightly slower than the single‐phase version, with complete absence of spurious velocity oscillations near the free surface, frequently present in fully coupled approaches. Validations are performed for laminar Couette flow over a wavy boundary by comparing with the analytical solution, and for the surface combatant model David Taylor Model Basin (DTMB) 5512 by comparing with Experimental Fluid Dynamics (EFD) and the results of two‐phase level set computations. Complex flow computations are demonstrated for the ONR Tumblehome DTMB 5613 with superstructure subject to waves and wind, including 6DOF motions and broaching in SS7 irregular waves and wind. Copyright © 2008 John Wiley & Sons, Ltd.
AbstractList For many problems in ship hydrodynamics, the effects of air flow on the water flow are negligible (the frequently called free surface conditions), but the air flow around the ship is still of interest. A method is presented where the water flow is decoupled from the air solution, but the air flow uses the unsteady water flow as a boundary condition. The authors call this a semi‐coupled air/water flow approach. The method can be divided into two steps. At each time step the free surface water flow is computed first with a single‐phase method assuming constant pressure and zero stress on the interface. The second step is to compute the air flow assuming the free surface as a moving immersed boundary (IB). The IB method developed for Cartesian grids (Annu. Rev. Fluid Mech. 2005; 37:239–261) is extended to curvilinear grids, where no‐slip and continuity conditions are used to enforce velocity and pressure boundary conditions for the air flow. The forcing points close to the IB can be computed and corrected under a sharp interface condition, which makes the computation very stable. The overset implementation is similar to that of the single‐phase solver (Comput. Fluids 2007; 36:1415–1433), with the difference that points in water are set as IB points even if they are fringe points. Pressure–velocity coupling through pressure implicit with splitting of operators or projection methods is used for water computations, and a projection method is used for the air. The method on each fluid is a single‐phase method, thus avoiding ill‐conditioned numerical systems caused by large differences of fluid properties between air and water. The computation is only slightly slower than the single‐phase version, with complete absence of spurious velocity oscillations near the free surface, frequently present in fully coupled approaches. Validations are performed for laminar Couette flow over a wavy boundary by comparing with the analytical solution, and for the surface combatant model David Taylor Model Basin (DTMB) 5512 by comparing with Experimental Fluid Dynamics (EFD) and the results of two‐phase level set computations. Complex flow computations are demonstrated for the ONR Tumblehome DTMB 5613 with superstructure subject to waves and wind, including 6DOF motions and broaching in SS7 irregular waves and wind. Copyright © 2008 John Wiley & Sons, Ltd.
For many problems in ship hydrodynamics, the effects of air flow on the water flow are negligible (the frequently called free surface conditions), but the air flow around the ship is still of interest. A method is presented where the water flow is decoupled from the air solution, but the air flow uses the unsteady water flow as a boundary condition. The authors call this a semi-coupled air/water flow approach. The method can be divided into two steps. At each time step the free surface water flow is computed first with a single-phase method assuming constant pressure and zero stress on the interface. The second step is to compute the air flow assuming the free surface as a moving immersed boundary (IB). The IB method developed for Cartesian grids (Annu. Rev. Fluid Mech. 2005; 37:239-261) is extended to curvilinear grids, where no-slip and continuity conditions are used to enforce velocity and pressure boundary conditions for the air flow. The forcing points close to the IB can be computed and corrected under a sharp interface condition, which makes the computation very stable. The overset implementation is similar to that of the single-phase solver (Comput. Fluids 2007; 36:1415-1433), with the difference that points in water are set as IB points even if they are fringe points. Pressure-velocity coupling through pressure implicit with splitting of operators or projection methods is used for water computations, and a projection method is used for the air. The method on each fluid is a single-phase method, thus avoiding ill-conditioned numerical systems caused by large differences of fluid properties between air and water. The computation is only slightly slower than the single-phase version, with complete absence of spurious velocity oscillations near the free surface, frequently present in fully coupled approaches. Validations are performed for laminar Couette flow over a wavy boundary by comparing with the analytical solution, and for the surface combatant model David Taylor Model Basin (DTMB) 5512 by comparing with Experimental Fluid Dynamics (EFD) and the results of two-phase level set computations. Complex flow computations are demonstrated for the ONR Tumblehome DTMB 5613 with superstructure subject to waves and wind, including 6DOF motions and broaching in SS7 irregular waves and wind.
For many problems in ship hydrodynamics, the effects of air flow on the water flow are negligible (the frequently called free surface conditions), but the air flow around the ship is still of interest. A method is presented where the water flow is decoupled from the air solution, but the air flow uses the unsteady water flow as a boundary condition. The authors call this a semi‐coupled air/water flow approach. The method can be divided into two steps. At each time step the free surface water flow is computed first with a single‐phase method assuming constant pressure and zero stress on the interface. The second step is to compute the air flow assuming the free surface as a moving immersed boundary (IB). The IB method developed for Cartesian grids ( Annu. Rev. Fluid Mech . 2005; 37 :239–261) is extended to curvilinear grids, where no‐slip and continuity conditions are used to enforce velocity and pressure boundary conditions for the air flow. The forcing points close to the IB can be computed and corrected under a sharp interface condition, which makes the computation very stable. The overset implementation is similar to that of the single‐phase solver ( Comput. Fluids 2007; 36 :1415–1433), with the difference that points in water are set as IB points even if they are fringe points. Pressure–velocity coupling through pressure implicit with splitting of operators or projection methods is used for water computations, and a projection method is used for the air. The method on each fluid is a single‐phase method, thus avoiding ill‐conditioned numerical systems caused by large differences of fluid properties between air and water. The computation is only slightly slower than the single‐phase version, with complete absence of spurious velocity oscillations near the free surface, frequently present in fully coupled approaches. Validations are performed for laminar Couette flow over a wavy boundary by comparing with the analytical solution, and for the surface combatant model David Taylor Model Basin (DTMB) 5512 by comparing with Experimental Fluid Dynamics (EFD) and the results of two‐phase level set computations. Complex flow computations are demonstrated for the ONR Tumblehome DTMB 5613 with superstructure subject to waves and wind, including 6DOF motions and broaching in SS7 irregular waves and wind. Copyright © 2008 John Wiley & Sons, Ltd.
Author Stern, Frederick
Carrica, Pablo M.
Huang, Juntao
Author_xml – sequence: 1
  givenname: Juntao
  surname: Huang
  fullname: Huang, Juntao
  organization: IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242, U.S.A
– sequence: 2
  givenname: Pablo M.
  surname: Carrica
  fullname: Carrica, Pablo M.
  organization: IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242, U.S.A
– sequence: 3
  givenname: Frederick
  surname: Stern
  fullname: Stern, Frederick
  email: frederick-stern@uiowa.edu
  organization: IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242, U.S.A
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20751175$$DView record in Pascal Francis
BookMark eNp1kU2P0zAQhi20SHQXJH6CLyAu6fojiZ0j2qULosAB0B6tqe1QgxMH29nSC78dlxYkEJxGGj3PSO-85-hsDKNF6DElS0oIu-y9WVLRyHtoQUknKsJbfoYWhAlaMdLRB-g8pc-EkI5JvkDf39vBVTrMk7cGg4uXO8g2YjcMNqay2oR5NBD3GKYpBtBb3IeI9RzvnHejhYjNfoTBaRzuDkbGn6IzCe9c3h4c7zRkF0acA05bN-Ht3sRwctJDdL8Hn-yj07xAH1cvPly9rNbvbl5dPV9Xmre1rCjwlslaAtQMSC8FN7wt6TZCauC8EZxb0xrDO0I3tW2lZG1d15ueFrwxml-gp8e7JcPX2aasBpe09R5GG-akeENbybqugE9OICQNvo8wapfUFN1QnqAYEQ0t7y3c8sjpGFKKtlfa5Z9BcwTnFSXqUIcqdahDHUV49pfw6-Y_0OqI7py3-_9yarW-_pN3Kdtvv3mIX1QruGjU7dsb9Ubcvu7q9bVa8R_zKaw3
CODEN IJNFDW
CitedBy_id crossref_primary_10_1007_s40722_022_00255_w
crossref_primary_10_1007_s00158_017_1775_4
crossref_primary_10_1002_fld_2517
crossref_primary_10_1016_j_compfluid_2020_104627
crossref_primary_10_1016_j_marstruc_2022_103256
crossref_primary_10_1177_1077546317722897
crossref_primary_10_1007_s40722_022_00243_0
crossref_primary_10_1016_j_compfluid_2018_01_006
crossref_primary_10_1115_1_4042752
crossref_primary_10_1016_j_compfluid_2011_10_002
crossref_primary_10_1115_1_4041229
crossref_primary_10_1016_j_oceaneng_2022_113235
crossref_primary_10_1016_j_oceaneng_2023_115511
crossref_primary_10_1016_j_oceaneng_2019_04_082
crossref_primary_10_3233_ISP_180147
crossref_primary_10_1016_j_oceaneng_2015_10_039
crossref_primary_10_1007_s00366_021_01375_x
crossref_primary_10_1016_j_apor_2015_04_007
crossref_primary_10_1016_j_apor_2020_102060
crossref_primary_10_1016_j_oceaneng_2022_111607
crossref_primary_10_1007_s00773_008_0022_5
crossref_primary_10_1115_1_4064971
crossref_primary_10_1016_S1001_6058_15_60452_8
crossref_primary_10_1016_j_oceaneng_2021_109081
crossref_primary_10_1115_1_4041372
crossref_primary_10_1016_j_oceaneng_2019_03_025
crossref_primary_10_1016_j_oceaneng_2021_109725
crossref_primary_10_1002_fld_2499
crossref_primary_10_1016_j_oceaneng_2021_109600
crossref_primary_10_3390_math8040546
crossref_primary_10_1063_5_0122257
crossref_primary_10_1177_1094342010394887
crossref_primary_10_1016_j_oceaneng_2019_106277
crossref_primary_10_1016_j_renene_2011_06_029
crossref_primary_10_1016_j_renene_2016_09_070
crossref_primary_10_3390_jmse12111979
crossref_primary_10_1016_j_oceaneng_2010_09_016
crossref_primary_10_1007_s10439_022_02902_7
crossref_primary_10_1080_10618562_2016_1234043
crossref_primary_10_1002_fld_5066
crossref_primary_10_1002_acs_3835
crossref_primary_10_1016_j_apor_2015_08_008
crossref_primary_10_1016_j_oceaneng_2022_112047
crossref_primary_10_1016_j_oceaneng_2019_05_064
crossref_primary_10_1016_j_renene_2014_11_014
crossref_primary_10_1016_j_renene_2016_05_061
crossref_primary_10_1016_j_apor_2016_04_006
crossref_primary_10_1016_j_oceaneng_2025_120312
crossref_primary_10_1007_s11831_014_9138_4
crossref_primary_10_1016_j_oceaneng_2016_02_019
crossref_primary_10_1080_0305215X_2014_895340
crossref_primary_10_1016_j_oceaneng_2017_07_053
crossref_primary_10_1007_s11831_022_09808_6
crossref_primary_10_1016_j_oceaneng_2019_106685
crossref_primary_10_1016_j_oceaneng_2022_113529
Cites_doi 10.1016/j.compfluid.2007.01.007
10.21236/ADA458092
10.1016/0021-9991(81)90145-5
10.2514/3.12149
10.5957/jsr.2003.47.1.63
10.1016/0021-9991(88)90002-2
10.1016/S0045-7930(99)00033-X
10.1002/fld.1499
10.1007/s003480100293
10.1080/10618560310001634159
10.1017/S0022112099006965
10.1002/fld.1406
10.1002/fld.1279
10.2514/6.1991-1560
10.1016/0021-9991(72)90065-4
10.5957/jsr.1988.32.4.246
10.5957/jsr.2005.49.1.55
10.1016/j.compfluid.2004.12.005
10.1017/S0022112059000568
10.1146/annurev.fluid.37.061903.175743
ContentType Journal Article
Copyright Copyright © 2008 John Wiley & Sons, Ltd.
2008 INIST-CNRS
Copyright_xml – notice: Copyright © 2008 John Wiley & Sons, Ltd.
– notice: 2008 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/fld.1758
DatabaseName Istex
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1097-0363
EndPage 624
ExternalDocumentID 20751175
10_1002_fld_1758
FLD1758
ark_67375_WNG_M7WK94LD_F
Genre article
GrantInformation_xml – fundername: ONR
  funderid: N00014‐01‐1‐0073; N00014‐06‐1‐0420
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
6TJ
AAMMB
ABEML
ACSCC
AEFGJ
AGHNM
AGXDD
AI.
AIDQK
AIDYY
AMVHM
HF~
IQODW
M6O
PALCI
RIWAO
RJQFR
SAMSI
TUS
VH1
VOH
ZY4
~A~
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3648-1a362848aa42a0f873d36097b78ca335733ed6dd3901b4e68826444bf12a05dc3
IEDL.DBID DR2
ISSN 0271-2091
IngestDate Thu Jul 10 23:12:49 EDT 2025
Mon Jul 21 09:13:47 EDT 2025
Thu Apr 24 22:57:22 EDT 2025
Tue Jul 01 02:08:29 EDT 2025
Wed Jan 22 17:06:16 EST 2025
Wed Oct 30 09:53:14 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Computational fluid dynamics
ship hydrodynamics
Computation code
Hydrodynamics
Air water interface
Modeling
Curvilinear coordinate
immersed boundary
curvilinear and dynamic overset grids
Parallel processing
Free surface flow
Numerical simulation
level set method
Shipbuilding
Ship
free surface flows
Mesh generation
semi-coupled method
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3648-1a362848aa42a0f873d36097b78ca335733ed6dd3901b4e68826444bf12a05dc3
Notes istex:44CB2145AACBF6D0CE9453EEBE5B1043F18742C3
ArticleID:FLD1758
ark:/67375/WNG-M7WK94LD-F
ONR - No. N00014-01-1-0073; No. N00014-06-1-0420
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 35168299
PQPubID 23500
PageCount 34
ParticipantIDs proquest_miscellaneous_35168299
pascalfrancis_primary_20751175
crossref_citationtrail_10_1002_fld_1758
crossref_primary_10_1002_fld_1758
wiley_primary_10_1002_fld_1758_FLD1758
istex_primary_ark_67375_WNG_M7WK94LD_F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 30 October 2008
PublicationDateYYYYMMDD 2008-10-30
PublicationDate_xml – month: 10
  year: 2008
  text: 30 October 2008
  day: 30
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle International journal for numerical methods in fluids
PublicationTitleAlternate Int. J. Numer. Meth. Fluids
PublicationYear 2008
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Syms GF. Numerical simulation of frigate airwakes. International Journal of Computational Fluid Dynamics 2004; 18:199-207.
Gui L, Longo J, Stern F. Towing tank PIV measurement system, data and uncertainty assessment for DTMB model 5512. Experiments in Fluids 2001; 31:336-346.
Wilson RV, Carrica PM, Stern F. Simulation of a ship breaking bow wave and induced vortices and scars. International Journal for Numerical Methods in Fluids 2007; 54(4):419-451.
Reddy KR, Toffoletto R, Jones KRW. Numerical simulation of ship airwakes. Computers and Fluids 2000; 29:451-465.
Peskin CS. Flow patterns around heart valves: a numerical method. Journal of Computational Physics 1972; 10:252-271.
Wilson RV, Carrica PM, Stern F. Unsteady RANS method for ship motions with application to roll for a surface combatant. Computers and Fluids 2006; 35:501-524.
Sullivan PP, McWilliams JC, Moeng CH. Simulation of turbulent flow over idealized water waves. Journal of Fluid Mechanics 2000; 404:47-85.
Hirt CW, Nichols BD. Volume of fluid (VOF) method for dynamics of free boundaries. Journal of Computational Physics 1981; 39:201-225.
Larsson L, Stern F, Bertram V. Benchmarking of computational fluid dynamics for ship flows: the Gothenburg 2000 Workshop. Journal of Ship Research 2003; 47:63-81.
Thompson JF, Warsi ZUA, Mastin JW. Numerical Grid Generation. North-Holland: Amsterdam, 1985.
Carrica PM, Wilson RV, Stern F. Ship motions using single-phase level set with dynamic overset grids. Computers and Fluids 2007; 36:1415-1433.
Benjamin TB. Shearing flow over a wavy boundary. Journal of Fluid Mechanics 1959; 6:161-205.
Carrica PM, Wilson RV, Stern F. An unsteady single-phase level set method for viscous free surface flows. International Journal for Numerical Methods in Fluids 2007; 53(2):229-256.
Longo J, Stern F. Uncertainty assessment for towing tank tests with example for surface combatant DTMB model 5512. Journal of Ship Research 2005; 49:55-68.
Lewis E (ed.). Principles of Naval Architecture, vol. III. SNAME: Jersey City, NJ, 1989; 28.
Mittal R, Iaccarino G. Immersed boundary methods. Annual Review of Fluid Mechanics 2005; 37:239-261.
Menter FR. Two-equation eddy viscosity turbulence models for engineering applications. AIAA Journal 1994; 32:1598-1605.
Osher S, Sethian JA. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 1988; 79:12-49.
Huang JT, Carrica PM, Stern F. Coupled ghost fluid/two-phase level set method for curvilinear body fitted grids. International Journal for Numerical Methods in Fluids 2007; 55(8):867-897.
Stern F, Kim HT, Patel VC, Chen HC. A viscous-flow approach to the computation of propeller-hull interaction. Journal of Ship Research 1988; 32(4):246-262.
2000; 29
2004; 18
2006; 35
2000; 404
1988; 32
2003; 47
1985
1988; 79
1972; 10
1981; 39
1982
2003
1989; III
2007; 53
2005; 37
2007; 54
2005; 49
2007; 55
2007; 36
1994; 32
1959; 6
2001; 31
Lewis E (e_1_2_1_19_2) 1989
e_1_2_1_22_2
e_1_2_1_23_2
e_1_2_1_20_2
e_1_2_1_26_2
e_1_2_1_27_2
e_1_2_1_24_2
Stern F (e_1_2_1_21_2) 1988; 32
e_1_2_1_29_2
Larsson L (e_1_2_1_25_2) 2003; 47
Youngs DL (e_1_2_1_10_2) 1982
e_1_2_1_6_2
e_1_2_1_30_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
Longo J (e_1_2_1_28_2) 2005; 49
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_15_2
e_1_2_1_13_2
Thompson JF (e_1_2_1_16_2) 1985
e_1_2_1_14_2
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
References_xml – reference: Hirt CW, Nichols BD. Volume of fluid (VOF) method for dynamics of free boundaries. Journal of Computational Physics 1981; 39:201-225.
– reference: Sullivan PP, McWilliams JC, Moeng CH. Simulation of turbulent flow over idealized water waves. Journal of Fluid Mechanics 2000; 404:47-85.
– reference: Carrica PM, Wilson RV, Stern F. Ship motions using single-phase level set with dynamic overset grids. Computers and Fluids 2007; 36:1415-1433.
– reference: Thompson JF, Warsi ZUA, Mastin JW. Numerical Grid Generation. North-Holland: Amsterdam, 1985.
– reference: Syms GF. Numerical simulation of frigate airwakes. International Journal of Computational Fluid Dynamics 2004; 18:199-207.
– reference: Osher S, Sethian JA. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 1988; 79:12-49.
– reference: Lewis E (ed.). Principles of Naval Architecture, vol. III. SNAME: Jersey City, NJ, 1989; 28.
– reference: Benjamin TB. Shearing flow over a wavy boundary. Journal of Fluid Mechanics 1959; 6:161-205.
– reference: Longo J, Stern F. Uncertainty assessment for towing tank tests with example for surface combatant DTMB model 5512. Journal of Ship Research 2005; 49:55-68.
– reference: Peskin CS. Flow patterns around heart valves: a numerical method. Journal of Computational Physics 1972; 10:252-271.
– reference: Mittal R, Iaccarino G. Immersed boundary methods. Annual Review of Fluid Mechanics 2005; 37:239-261.
– reference: Stern F, Kim HT, Patel VC, Chen HC. A viscous-flow approach to the computation of propeller-hull interaction. Journal of Ship Research 1988; 32(4):246-262.
– reference: Larsson L, Stern F, Bertram V. Benchmarking of computational fluid dynamics for ship flows: the Gothenburg 2000 Workshop. Journal of Ship Research 2003; 47:63-81.
– reference: Reddy KR, Toffoletto R, Jones KRW. Numerical simulation of ship airwakes. Computers and Fluids 2000; 29:451-465.
– reference: Huang JT, Carrica PM, Stern F. Coupled ghost fluid/two-phase level set method for curvilinear body fitted grids. International Journal for Numerical Methods in Fluids 2007; 55(8):867-897.
– reference: Menter FR. Two-equation eddy viscosity turbulence models for engineering applications. AIAA Journal 1994; 32:1598-1605.
– reference: Wilson RV, Carrica PM, Stern F. Simulation of a ship breaking bow wave and induced vortices and scars. International Journal for Numerical Methods in Fluids 2007; 54(4):419-451.
– reference: Gui L, Longo J, Stern F. Towing tank PIV measurement system, data and uncertainty assessment for DTMB model 5512. Experiments in Fluids 2001; 31:336-346.
– reference: Wilson RV, Carrica PM, Stern F. Unsteady RANS method for ship motions with application to roll for a surface combatant. Computers and Fluids 2006; 35:501-524.
– reference: Carrica PM, Wilson RV, Stern F. An unsteady single-phase level set method for viscous free surface flows. International Journal for Numerical Methods in Fluids 2007; 53(2):229-256.
– volume: 37
  start-page: 239
  year: 2005
  end-page: 261
  article-title: Immersed boundary methods
  publication-title: Annual Review of Fluid Mechanics
– year: 1985
– volume: 18
  start-page: 199
  year: 2004
  end-page: 207
  article-title: Numerical simulation of frigate airwakes
  publication-title: International Journal of Computational Fluid Dynamics
– volume: 53
  start-page: 229
  issue: 2
  year: 2007
  end-page: 256
  article-title: An unsteady single‐phase level set method for viscous free surface flows
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 47
  start-page: 63
  year: 2003
  end-page: 81
  article-title: Benchmarking of computational fluid dynamics for ship flows: the Gothenburg 2000 Workshop
  publication-title: Journal of Ship Research
– volume: 32
  start-page: 1598
  year: 1994
  end-page: 1605
  article-title: Two‐equation eddy viscosity turbulence models for engineering applications
  publication-title: AIAA Journal
– volume: 49
  start-page: 55
  year: 2005
  end-page: 68
  article-title: Uncertainty assessment for towing tank tests with example for surface combatant DTMB model 5512
  publication-title: Journal of Ship Research
– volume: 6
  start-page: 161
  year: 1959
  end-page: 205
  article-title: Shearing flow over a wavy boundary
  publication-title: Journal of Fluid Mechanics
– volume: 35
  start-page: 501
  year: 2006
  end-page: 524
  article-title: Unsteady RANS method for ship motions with application to roll for a surface combatant
  publication-title: Computers and Fluids
– volume: 32
  start-page: 246
  issue: 4
  year: 1988
  end-page: 262
  article-title: A viscous‐flow approach to the computation of propeller–hull interaction
  publication-title: Journal of Ship Research
– volume: 55
  start-page: 867
  issue: 8
  year: 2007
  end-page: 897
  article-title: Coupled ghost fluid/two‐phase level set method for curvilinear body fitted grids
  publication-title: International Journal for Numerical Methods in Fluids
– year: 2003
– volume: III
  start-page: 28
  year: 1989
– volume: 404
  start-page: 47
  year: 2000
  end-page: 85
  article-title: Simulation of turbulent flow over idealized water waves
  publication-title: Journal of Fluid Mechanics
– volume: 36
  start-page: 1415
  year: 2007
  end-page: 1433
  article-title: Ship motions using single‐phase level set with dynamic overset grids
  publication-title: Computers and Fluids
– volume: 29
  start-page: 451
  year: 2000
  end-page: 465
  article-title: Numerical simulation of ship airwakes
  publication-title: Computers and Fluids
– volume: 54
  start-page: 419
  issue: 4
  year: 2007
  end-page: 451
  article-title: Simulation of a ship breaking bow wave and induced vortices and scars
  publication-title: International Journal for Numerical Methods in Fluids
– start-page: 24
  end-page: 27
– volume: 79
  start-page: 12
  year: 1988
  end-page: 49
  article-title: Fronts propagating with curvature‐dependent speed: algorithms based on Hamilton–Jacobi formulations
  publication-title: Journal of Computational Physics
– volume: 10
  start-page: 252
  year: 1972
  end-page: 271
  article-title: Flow patterns around heart valves: a numerical method
  publication-title: Journal of Computational Physics
– volume: 39
  start-page: 201
  year: 1981
  end-page: 225
  article-title: Volume of fluid (VOF) method for dynamics of free boundaries
  publication-title: Journal of Computational Physics
– volume: 31
  start-page: 336
  year: 2001
  end-page: 346
  article-title: Towing tank PIV measurement system, data and uncertainty assessment for DTMB model 5512
  publication-title: Experiments in Fluids
– start-page: 273
  year: 1982
  end-page: 285
– ident: e_1_2_1_3_2
  doi: 10.1016/j.compfluid.2007.01.007
– ident: e_1_2_1_11_2
– start-page: 273
  volume-title: Numerical Methods for Fluid Dynamics
  year: 1982
  ident: e_1_2_1_10_2
– ident: e_1_2_1_17_2
  doi: 10.21236/ADA458092
– ident: e_1_2_1_9_2
  doi: 10.1016/0021-9991(81)90145-5
– ident: e_1_2_1_18_2
  doi: 10.2514/3.12149
– volume: 47
  start-page: 63
  year: 2003
  ident: e_1_2_1_25_2
  article-title: Benchmarking of computational fluid dynamics for ship flows: the Gothenburg 2000 Workshop
  publication-title: Journal of Ship Research
  doi: 10.5957/jsr.2003.47.1.63
– ident: e_1_2_1_30_2
– ident: e_1_2_1_8_2
  doi: 10.1016/0021-9991(88)90002-2
– ident: e_1_2_1_6_2
  doi: 10.1016/S0045-7930(99)00033-X
– ident: e_1_2_1_13_2
  doi: 10.1002/fld.1499
– ident: e_1_2_1_27_2
  doi: 10.1007/s003480100293
– ident: e_1_2_1_7_2
  doi: 10.1080/10618560310001634159
– volume-title: Numerical Grid Generation
  year: 1985
  ident: e_1_2_1_16_2
– start-page: 28
  volume-title: Principles of Naval Architecture
  year: 1989
  ident: e_1_2_1_19_2
– ident: e_1_2_1_20_2
  doi: 10.1017/S0022112099006965
– ident: e_1_2_1_22_2
  doi: 10.1002/fld.1406
– ident: e_1_2_1_5_2
  doi: 10.1002/fld.1279
– ident: e_1_2_1_23_2
  doi: 10.2514/6.1991-1560
– ident: e_1_2_1_14_2
  doi: 10.1016/0021-9991(72)90065-4
– volume: 32
  start-page: 246
  issue: 4
  year: 1988
  ident: e_1_2_1_21_2
  article-title: A viscous‐flow approach to the computation of propeller–hull interaction
  publication-title: Journal of Ship Research
  doi: 10.5957/jsr.1988.32.4.246
– volume: 49
  start-page: 55
  year: 2005
  ident: e_1_2_1_28_2
  article-title: Uncertainty assessment for towing tank tests with example for surface combatant DTMB model 5512
  publication-title: Journal of Ship Research
  doi: 10.5957/jsr.2005.49.1.55
– ident: e_1_2_1_29_2
– ident: e_1_2_1_26_2
– ident: e_1_2_1_2_2
  doi: 10.1016/j.compfluid.2004.12.005
– ident: e_1_2_1_12_2
– ident: e_1_2_1_24_2
  doi: 10.1017/S0022112059000568
– ident: e_1_2_1_4_2
– ident: e_1_2_1_15_2
  doi: 10.1146/annurev.fluid.37.061903.175743
SSID ssj0009283
Score 2.2226553
Snippet For many problems in ship hydrodynamics, the effects of air flow on the water flow are negligible (the frequently called free surface conditions), but the air...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 591
SubjectTerms Applied sciences
Computational methods in fluid dynamics
curvilinear and dynamic overset grids
Exact sciences and technology
Fluid dynamics
free surface flows
Fundamental areas of phenomenology (including applications)
Ground, air and sea transportation, marine construction
immersed boundary
level set method
Marine construction
Physics
semi-coupled method
ship hydrodynamics
Title Semi-coupled air/water immersed boundary approach for curvilinear dynamic overset grids with application to ship hydrodynamics
URI https://api.istex.fr/ark:/67375/WNG-M7WK94LD-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.1758
https://www.proquest.com/docview/35168299
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6hcikHCgXE0lKMhOC0u0mc5xFRthW0PQBVK3Gw_EqJus1WeahdTv0J_EZ-CTN5bHcRSIhTpGicOM6M_c14_A3AK8_noStlOtQ6iNFBSdxhIh2JXkqCtwNlnaYc0OFRuH_sfzgNTrusSjoL0_JDLAJuZBnNfE0GLlU5viUNTadmhGsfnfOlVC3CQ59umaMSr2Xg9CIXFSFxe95Zxxv3DVdWors0qNeUGSlLHJy0rWqxAjuXwWuz-kw24Gvf7zbp5HxUV2qkv_9G6fh_H_YA7neglL1ttegh3LH5Jmx0AJV15l9uwr0l9sJHcPPZXmQ_b37oWX05RTmZFeMrhK4Fy5poON5STdGmYs566nKGGJnpGucn6qcsmJnn8iLTjDJJS1uxsyIzJaPoMFvaW2fVjFFaGfs2Nzjjt23Kx3A8ef_l3f6wK-gw1Dz00VuVuFzGfiyl70knjSNueOgkkYpiLTknakZrQmMoDqN8GyL6R7jmq9RF8cBo_gTW8llunwJDn55bdO2jmJhMFT4rJKp-FSTodKeRHsCb_ucK3bGdU9GNqWh5mj2BwyxomAfwciF52TJ8_EHmdaMfCwFZnFNGXBSIk6M9cRidfEz8g10xGcDOigItGngIzYgVdQAveo0SaMi0OyNzO6tLwQM3jBEc4Lsa7fhrZ8TkYJeuz_5VcAvWvY7FlzvbsFYVtX2OUKpSO43R_AJv7RzC
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6V9gA9UCigpkC7SAhOSWyvn-KEKCHQJAdo1R6QVuv1mlpNncoPteHUn8Bv5Jcw40eaIJAQJ0urWXs9nt39Znb8DcBLy-auKWXcVcrx0UEJzG4gDYleSoDNTqiNqhzQeOIOj-1Pp87pGrxp_4Wp-SEWATeaGdV6TROcAtL9W9bQeBr1cPPz78AGFfSu_KnPt9xRgVVzcFqeiaYQmC3zrGH1254re9EGqfWaciNljuqJ67oWK8BzGb5W-89gC762I6_TTs57ZRH21PffSB3_89UewP0Gl7K3tSE9hDWdbsNWg1FZswLk27C5RGD4CG6-6Ivk580PNSsvpygnk6x_heg1Y0kVEMemsKrblM1Zy17OECYzVeISRQOVGYvmqbxIFKNk0lwX7FuWRDmjADFbOl5nxYxRZhk7m0e46Nd98sdwPHh_9G7YbWo6dBV3bXRYJe6Yvu1LaVvSiH2PR9w1Ai_0fCU5J3ZGHblRRKGY0NYuOgCI2OwwNlHciRR_AuvpLNU7wNCt5xq9e88nMtMQ7-USW3_oBOh3x57qwOv26wrVEJ5T3Y2pqKmaLYFqFqTmDrxYSF7WJB9_kHlVGchCQGbnlBTnOeJk8kGMvZPDwB4diEEH9lYsaNHBQnRGxKgd2G9NSuBcpgMamepZmQvumK6P-ACfVZnHXwcjBqMDuu7-q-A-3B0ejUdi9HFy-BTuWQ2pLzeewXqRlfo5Iqsi3Ktm0C8XoiDd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BKyE4UCggwqNdJASnJLbXzyMimELTCAFVK3FYrXfXEDV1Ij8E4dSfwG_klzDjR5ogkBAnS6tZe72e2f1mdvwNwFPH5b4tZdpXygvRQYnsfiQtiV5KhM1eYqy6HNDRxD84dt-eeqdtViX9C9PwQ6wCbmQZ9XpNBr7Q6fCSNDSd6QHufeFV2HZ9KySNHr2_pI6KnIaC0wls1ITI7ohnLWfY9dzYirZpVr9RaqQscHbSpqzFBu5cR6_19hPvwKdu4E3WydmgKpOB-v4bp-P_vdktuNmiUvaiUaPbcMVku7DTIlTW2n-xCzfW6AvvwMUHcz79efFDzavFDOXkNB9-Reyas2kdDsempK7alC9Zx13OECQzVeECReOUOdPLTJ5PFaNU0sKU7HM-1QWj8DBbO1xn5ZxRXhn7stS45Dd9irtwHL_6-PKg31Z06Cvuu-iuStwvQzeU0nWklYYB19y3oiAJQiU5J25Go32tKRCTuMZH-I94zU1SG8U9rfg92MrmmbkPDJ16btC3D0KiMk3wXj5x9SdehF53GqgePO8-rlAt3TlV3ZiJhqjZETjNgqa5B09WkouG4uMPMs9q_VgJyPyMUuICT5xMXouj4OQwcscjEfdgb0OBVh0cxGZEi9qD_U6jBFoyHc_IzMyrQnDP9kNEB_isWjv-OhgRj0d0ffCvgvtw7d0oFuM3k8OHcN1pGX259Qi2yrwyjxFWlclebT-_AMYcH5U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-coupled+air%2Fwater+immersed+boundary+approach+for+curvilinear+dynamic+overset+grids+with+application+to+ship+hydrodynamics&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Huang%2C+Juntao&rft.au=Carrica%2C+Pablo+M&rft.au=Stern%2C+Frederick&rft.date=2008-10-30&rft.issn=0271-2091&rft.volume=58&rft.issue=6&rft.spage=591&rft.epage=624&rft_id=info:doi/10.1002%2Ffld.1758&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon