First‐principles study, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high‐entropy ceramic

The formation possibility of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high‐entropy ceramic (HHC‐1) was first analyzed by the first‐principles calculations, and then, it was successfully fabricated by hot‐pressing sintering technique at 2073 K under a pressure of 30 MPa. The first‐principles calculation results...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Ceramic Society Vol. 102; no. 7; pp. 4344 - 4352
Main Authors Ye, Beilin, Wen, Tongqi, Huang, Kehan, Wang, Cai‐Zhuang, Chu, Yanhui
Format Journal Article
LanguageEnglish
Published Columbus Wiley Subscription Services, Inc 01.07.2019
Wiley-Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The formation possibility of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high‐entropy ceramic (HHC‐1) was first analyzed by the first‐principles calculations, and then, it was successfully fabricated by hot‐pressing sintering technique at 2073 K under a pressure of 30 MPa. The first‐principles calculation results showed that the mixing enthalpy and mixing entropy of HHC‐1 were −0.869 ± 0.290 kJ/mol and 0.805R, respectively. The experimental results showed that the as‐prepared HHC‐1 not only had an interesting single rock‐salt crystal structure of metal carbides but also possessed high compositional uniformity from nanoscale to microscale. By taking advantage of these unique features, it exhibited extremely high nanohardness of 40.6 ± 0.6 GPa and elastic modulus in the range from 514 ± 10 to 522 ± 10 GPa and relatively high electrical resistivity of 91 ± 1.3 μΩ·cm, which could be due to the presence of solid solution effects.
AbstractList The formation possibility of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high‐entropy ceramic (HHC‐1) was first analyzed by the first‐principles calculations, and then, it was successfully fabricated by hot‐pressing sintering technique at 2073 K under a pressure of 30 MPa. The first‐principles calculation results showed that the mixing enthalpy and mixing entropy of HHC‐1 were −0.869 ± 0.290 kJ/mol and 0.805R, respectively. The experimental results showed that the as‐prepared HHC‐1 not only had an interesting single rock‐salt crystal structure of metal carbides but also possessed high compositional uniformity from nanoscale to microscale. By taking advantage of these unique features, it exhibited extremely high nanohardness of 40.6 ± 0.6 GPa and elastic modulus in the range from 514 ± 10 to 522 ± 10 GPa and relatively high electrical resistivity of 91 ± 1.3 μΩ·cm, which could be due to the presence of solid solution effects.
The formation possibility of (Hf 0.2 Zr 0.2 Ta 0.2 Nb 0.2 Ti 0.2 )C high‐entropy ceramic ( HHC ‐1) was first analyzed by the first‐principles calculations, and then, it was successfully fabricated by hot‐pressing sintering technique at 2073 K under a pressure of 30  MP a. The first‐principles calculation results showed that the mixing enthalpy and mixing entropy of HHC ‐1 were −0.869 ± 0.290 kJ /mol and 0.805R, respectively. The experimental results showed that the as‐prepared HHC ‐1 not only had an interesting single rock‐salt crystal structure of metal carbides but also possessed high compositional uniformity from nanoscale to microscale. By taking advantage of these unique features, it exhibited extremely high nanohardness of 40.6 ± 0.6  GP a and elastic modulus in the range from 514 ± 10 to 522 ± 10  GP a and relatively high electrical resistivity of 91 ± 1.3 μΩ·cm, which could be due to the presence of solid solution effects.
The formation possibility of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high‐entropy ceramic (HHC‐1) was first analyzed by the first‐principles calculations, and then, it was successfully fabricated by hot‐pressing sintering technique at 2073 K under a pressure of 30 MPa. The first‐principles calculation results showed that the mixing enthalpy and mixing entropy of HHC‐1 were −0.869 ± 0.290 kJ/mol and 0.805R, respectively. The experimental results showed that the as‐prepared HHC‐1 not only had an interesting single rock‐salt crystal structure of metal carbides but also possessed high compositional uniformity from nanoscale to microscale. By taking advantage of these unique features, it exhibited extremely high nanohardness of 40.6 ± 0.6 GPa and elastic modulus in the range from 514 ± 10 to 522 ± 10 GPa and relatively high electrical resistivity of 91 ± 1.3 μΩ·cm, which could be due to the presence of solid solution effects.
Author Ye, Beilin
Huang, Kehan
Wen, Tongqi
Wang, Cai‐Zhuang
Chu, Yanhui
Author_xml – sequence: 1
  givenname: Beilin
  surname: Ye
  fullname: Ye, Beilin
  organization: South China University of Technology
– sequence: 2
  givenname: Tongqi
  surname: Wen
  fullname: Wen, Tongqi
  organization: Iowa State University
– sequence: 3
  givenname: Kehan
  surname: Huang
  fullname: Huang, Kehan
  organization: South China University of Technology
– sequence: 4
  givenname: Cai‐Zhuang
  surname: Wang
  fullname: Wang, Cai‐Zhuang
  organization: Iowa State University
– sequence: 5
  givenname: Yanhui
  orcidid: 0000-0001-6158-7501
  surname: Chu
  fullname: Chu, Yanhui
  email: chuyh@scut.edu.cn
  organization: South China University of Technology
BackLink https://www.osti.gov/biblio/1490123$$D View this record in Osti.gov
BookMark eNp9kL1OwzAUhS1UJNrCwhNEsABqin8SJxmrqqUgBEtZWCzHcYir1i62K1QmHoFn5ElwGyaE8HB8r_3dI_v0QEcbLQE4RXCIwrpecCGHiOIiPQBdlKYoxgWiHdCFEOI4yzE8Aj3nFqFFRZ50gZ0q6_zXx-faKi3Ueild5Pym2g6impdWCe6V0YOI6yoSDbdceGnV-_40MnV0MavhED_bIHMe5KHcVSrI5Thq1EsTrKX21qy3kZCWr5Q4Boc1Xzp58rP3wdN0Mh_P4vvHm9vx6D4WhCZpXGWioDLLBA89yXOcVCkqKC-pyGVdZ2lKEKkIKbOK5DVKKsRpTiUkOAlfSyXpg7PW1zivmBPKS9EIo7UUnqGkgAiTAJ230Nqa1410ni3MxurwLhZuE4phRrNAwZYS1jhnZc2C2z4Db7laMgTZLn62i5_t4w8jV79GQsIrbrd_w6iF39RSbv8h2d1oPGlnvgFyPpaK
CitedBy_id crossref_primary_10_1016_j_ceramint_2025_03_336
crossref_primary_10_1016_j_jeurceramsoc_2023_01_028
crossref_primary_10_2139_ssrn_4177737
crossref_primary_10_1007_s40843_023_2496_5
crossref_primary_10_26599_JAC_2023_9220761
crossref_primary_10_1016_j_wear_2023_204808
crossref_primary_10_3390_ma16062495
crossref_primary_10_1016_j_mtla_2022_101617
crossref_primary_10_1016_j_jmst_2020_07_014
crossref_primary_10_1016_j_ceramint_2021_07_106
crossref_primary_10_1111_jace_18400
crossref_primary_10_1111_jace_18521
crossref_primary_10_1038_s41598_020_78175_8
crossref_primary_10_1016_j_ceramint_2020_03_045
crossref_primary_10_1016_j_jallcom_2023_172073
crossref_primary_10_1039_C9TA05698J
crossref_primary_10_1016_j_jeurceramsoc_2025_117367
crossref_primary_10_1002_advs_202501157
crossref_primary_10_1016_j_jmst_2020_07_019
crossref_primary_10_1021_acsaem_4c01614
crossref_primary_10_1016_j_ceramint_2022_10_239
crossref_primary_10_1016_j_ijrmhm_2023_106549
crossref_primary_10_1016_j_mser_2021_100644
crossref_primary_10_1016_j_ceramint_2024_10_243
crossref_primary_10_1111_jace_19862
crossref_primary_10_1111_jace_20282
crossref_primary_10_1111_jace_17443
crossref_primary_10_1002_adem_202001044
crossref_primary_10_1016_j_jmrt_2024_11_100
crossref_primary_10_1016_j_msea_2025_148125
crossref_primary_10_1016_j_jeurceramsoc_2022_06_026
crossref_primary_10_3390_cryst11091035
crossref_primary_10_1016_j_jeurceramsoc_2021_01_048
crossref_primary_10_1016_j_ceramint_2019_07_195
crossref_primary_10_1016_j_jeurceramsoc_2024_117072
crossref_primary_10_1016_j_jeurceramsoc_2024_03_019
crossref_primary_10_1016_j_jmatprotec_2023_118253
crossref_primary_10_1111_jace_18988
crossref_primary_10_1016_j_ceramint_2023_10_303
crossref_primary_10_1016_j_ceramint_2022_02_144
crossref_primary_10_1016_j_mtla_2020_100746
crossref_primary_10_1016_j_jallcom_2022_167095
crossref_primary_10_3103_S1061386222040136
crossref_primary_10_1007_s11665_024_10337_5
crossref_primary_10_1016_j_jeurceramsoc_2021_05_026
crossref_primary_10_1002_adfm_202312239
crossref_primary_10_1002_aenm_202100640
crossref_primary_10_1111_jace_18620
crossref_primary_10_1134_S003602952308030X
crossref_primary_10_1007_s40843_019_9469_4
crossref_primary_10_1016_j_jeurceramsoc_2022_03_054
crossref_primary_10_1016_j_actamat_2023_119132
crossref_primary_10_1016_j_ceramint_2020_12_201
crossref_primary_10_1016_j_xcrp_2023_101512
crossref_primary_10_1016_j_jeurceramsoc_2020_12_044
crossref_primary_10_1016_j_jeurceramsoc_2020_12_043
crossref_primary_10_1016_j_ceramint_2022_11_185
crossref_primary_10_1016_j_jallcom_2022_163868
crossref_primary_10_1016_j_jeurceramsoc_2023_10_036
crossref_primary_10_1016_j_ceramint_2021_04_123
crossref_primary_10_1016_j_jeurceramsoc_2023_08_029
crossref_primary_10_31857_S0235010623040084
crossref_primary_10_1016_j_ceramint_2021_11_317
crossref_primary_10_1016_j_jeurceramsoc_2022_02_021
crossref_primary_10_1111_jace_18197
crossref_primary_10_26599_JAC_2024_9221010
crossref_primary_10_1016_j_jallcom_2025_179739
crossref_primary_10_1016_j_jallcom_2023_170205
crossref_primary_10_1016_j_mtla_2019_100540
crossref_primary_10_1016_j_actamat_2023_119369
crossref_primary_10_1016_j_corsci_2023_111753
crossref_primary_10_1111_jace_20027
crossref_primary_10_1016_j_jeurceramsoc_2020_03_020
crossref_primary_10_1111_ijac_14891
crossref_primary_10_1016_j_jmst_2023_03_034
crossref_primary_10_1016_j_triboint_2021_106883
crossref_primary_10_1007_s12598_024_03083_z
crossref_primary_10_26599_JAC_2023_9220688
crossref_primary_10_3390_ma17215294
crossref_primary_10_1016_j_euromechsol_2023_105165
crossref_primary_10_1016_j_jeurceramsoc_2023_10_026
crossref_primary_10_1111_jace_18843
crossref_primary_10_1016_j_ijrmhm_2021_105646
crossref_primary_10_1016_j_ijrmhm_2024_106613
crossref_primary_10_1103_PhysRevB_105_224102
crossref_primary_10_1016_j_jeurceramsoc_2021_05_002
crossref_primary_10_1016_j_jmst_2021_09_064
crossref_primary_10_1016_j_commatsci_2023_112464
crossref_primary_10_1016_j_jallcom_2021_161645
crossref_primary_10_1007_s40843_023_2461_y
crossref_primary_10_1016_j_jallcom_2022_164097
crossref_primary_10_1111_jace_20123
crossref_primary_10_3390_ceramics7040089
crossref_primary_10_1016_j_ceramint_2025_01_087
crossref_primary_10_1016_j_jmrt_2023_01_194
crossref_primary_10_1111_jace_20368
crossref_primary_10_1038_s41467_022_33497_1
crossref_primary_10_1007_s42864_021_00085_7
crossref_primary_10_1016_j_ceramint_2021_12_038
crossref_primary_10_1016_j_jeurceramsoc_2023_04_015
crossref_primary_10_1016_j_ceramint_2024_10_429
crossref_primary_10_1016_j_ceramint_2024_06_367
crossref_primary_10_1016_j_jmat_2024_100967
crossref_primary_10_1007_s10891_021_02276_y
crossref_primary_10_1016_j_jmst_2020_01_005
crossref_primary_10_1016_j_ijrmhm_2024_106755
crossref_primary_10_1111_jace_19592
crossref_primary_10_1016_j_ijrmhm_2022_105859
crossref_primary_10_1007_s40843_022_2080_5
crossref_primary_10_1016_j_corsci_2020_109019
crossref_primary_10_1016_j_jeurceramsoc_2023_06_061
crossref_primary_10_1063_5_0198141
crossref_primary_10_1016_j_jallcom_2020_153930
crossref_primary_10_1002_aesr_202400146
crossref_primary_10_1002_adts_202000111
crossref_primary_10_1111_jace_20356
crossref_primary_10_1016_j_commatsci_2024_113158
crossref_primary_10_1016_j_ceramint_2024_06_017
crossref_primary_10_1016_j_jallcom_2023_168737
crossref_primary_10_26599_JAC_2023_9220679
crossref_primary_10_1016_j_fmre_2022_04_010
crossref_primary_10_1111_jace_16896
crossref_primary_10_1007_s10853_021_06004_y
crossref_primary_10_1016_j_mtadv_2020_100114
crossref_primary_10_1016_j_ceramint_2024_12_248
crossref_primary_10_1007_s40145_021_0469_y
crossref_primary_10_1016_j_actamat_2019_03_021
crossref_primary_10_1038_s41578_019_0170_8
crossref_primary_10_1016_j_jeurceramsoc_2021_07_063
crossref_primary_10_1007_s10853_024_10064_1
crossref_primary_10_1016_j_jallcom_2023_172668
crossref_primary_10_1016_j_jmst_2022_05_012
crossref_primary_10_1111_ijac_14578
crossref_primary_10_1016_j_jeurceramsoc_2022_07_007
crossref_primary_10_1016_j_ceramint_2023_09_025
crossref_primary_10_1016_j_jeurceramsoc_2023_05_031
crossref_primary_10_1146_annurev_matsci_080819_121217
crossref_primary_10_1016_j_ijrmhm_2024_106651
crossref_primary_10_1016_j_compositesb_2022_110467
crossref_primary_10_1016_j_rinp_2022_105341
crossref_primary_10_1016_j_jssc_2022_123650
crossref_primary_10_1016_j_jallcom_2023_169978
crossref_primary_10_1016_j_jeurceramsoc_2021_06_009
crossref_primary_10_1111_jace_16983
crossref_primary_10_1111_jace_16746
crossref_primary_10_1016_j_ceramint_2022_11_208
crossref_primary_10_26599_JAC_2025_9221028
crossref_primary_10_1002_adfm_202418802
crossref_primary_10_1016_j_pmatsci_2024_101300
crossref_primary_10_1016_j_ceramint_2023_09_115
crossref_primary_10_1016_j_jeurceramsoc_2020_05_040
crossref_primary_10_1016_j_matt_2025_102004
crossref_primary_10_1016_j_jeurceramsoc_2023_12_072
crossref_primary_10_1111_ijac_14287
crossref_primary_10_1016_j_matchar_2022_111932
crossref_primary_10_1016_j_surfin_2024_104982
crossref_primary_10_1038_s41467_023_41481_6
crossref_primary_10_1039_D1NR03289E
crossref_primary_10_1016_j_jeurceramsoc_2022_06_073
crossref_primary_10_1111_jace_16993
crossref_primary_10_1016_j_jeurceramsoc_2020_02_059
crossref_primary_10_1016_j_jeurceramsoc_2022_06_075
crossref_primary_10_1111_jace_17600
crossref_primary_10_1016_j_ceramint_2022_08_147
crossref_primary_10_1111_jace_16514
crossref_primary_10_1016_j_jeurceramsoc_2022_08_025
crossref_primary_10_1016_j_jmat_2024_06_002
crossref_primary_10_1016_j_ceramint_2023_12_095
crossref_primary_10_1016_j_jeurceramsoc_2024_116726
crossref_primary_10_1016_j_jeurceramsoc_2024_05_036
crossref_primary_10_1016_j_jmst_2021_01_071
crossref_primary_10_1016_j_jeurceramsoc_2021_12_058
crossref_primary_10_1021_acsnano_1c02775
crossref_primary_10_3390_cryst13040708
crossref_primary_10_15541_jim20240385
crossref_primary_10_1016_j_fmre_2022_01_030
crossref_primary_10_1016_j_ceramint_2023_08_094
crossref_primary_10_1007_s11661_020_06034_2
crossref_primary_10_1016_j_compositesb_2021_108681
crossref_primary_10_1016_j_jeurceramsoc_2023_04_056
crossref_primary_10_1088_2752_5724_ad8463
crossref_primary_10_1111_jace_16725
crossref_primary_10_1016_j_ceramint_2021_02_264
crossref_primary_10_1038_s43246_024_00533_0
crossref_primary_10_1111_jace_18100
crossref_primary_10_1111_jace_17134
crossref_primary_10_1016_j_wear_2023_204751
crossref_primary_10_1016_j_jeurceramsoc_2022_05_069
crossref_primary_10_1016_j_jmst_2019_07_056
crossref_primary_10_1016_j_jmat_2022_09_014
crossref_primary_10_1016_j_jallcom_2023_169626
crossref_primary_10_1111_jace_18116
crossref_primary_10_1111_jace_19206
crossref_primary_10_1016_j_ceramint_2023_10_279
crossref_primary_10_1016_j_ceramint_2023_12_304
crossref_primary_10_1016_j_ceramint_2020_07_131
crossref_primary_10_3390_ceramics3030032
crossref_primary_10_1063_5_0066698
crossref_primary_10_1016_j_partic_2024_04_010
crossref_primary_10_1016_j_ceramint_2021_02_013
crossref_primary_10_1111_jace_18474
crossref_primary_10_1007_s40145_020_0373_x
crossref_primary_10_1016_j_ceramint_2025_01_463
crossref_primary_10_1016_j_jmrt_2024_07_045
crossref_primary_10_1016_j_msea_2020_140520
crossref_primary_10_1016_j_jeurceramsoc_2024_01_034
crossref_primary_10_1016_j_apsusc_2022_153247
crossref_primary_10_1016_j_ceramint_2021_03_052
crossref_primary_10_1557_s43577_022_00281_x
crossref_primary_10_1016_j_apmt_2024_102563
crossref_primary_10_1016_j_jmst_2022_03_035
crossref_primary_10_1002_pssb_202100140
crossref_primary_10_1007_s40145_021_0477_y
crossref_primary_10_1016_j_ceramint_2022_01_129
crossref_primary_10_1007_s40843_024_3045_4
crossref_primary_10_1016_j_xcrp_2024_101821
crossref_primary_10_1016_j_jmrt_2023_04_220
crossref_primary_10_1002_smtd_202201138
crossref_primary_10_1016_j_jeurceramsoc_2022_02_034
crossref_primary_10_1111_jace_18323
crossref_primary_10_1016_j_scib_2019_05_007
crossref_primary_10_1016_j_jmrt_2024_07_153
crossref_primary_10_17073_1997_308X_2023_3_14_21
crossref_primary_10_1016_j_jeurceramsoc_2021_07_012
crossref_primary_10_26599_JAC_2023_9220736
crossref_primary_10_1016_j_ceramint_2020_01_137
crossref_primary_10_1016_j_ceramint_2024_03_369
crossref_primary_10_1016_j_jmst_2022_08_026
crossref_primary_10_1016_j_ceramint_2025_02_165
crossref_primary_10_1016_j_jeurceramsoc_2021_08_048
crossref_primary_10_1111_jace_18577
crossref_primary_10_1016_j_jeurceramsoc_2024_116931
crossref_primary_10_1016_j_jallcom_2024_175929
crossref_primary_10_1063_1_5126652
crossref_primary_10_1016_j_mattod_2024_06_005
crossref_primary_10_1111_jace_19782
crossref_primary_10_1088_2631_7990_acbd6e
crossref_primary_10_1080_17436753_2021_2014277
crossref_primary_10_1007_s11661_023_07263_x
crossref_primary_10_1016_j_ceramint_2020_05_240
crossref_primary_10_1016_j_msea_2024_147532
crossref_primary_10_1063_1_5094580
crossref_primary_10_1111_ijac_14619
crossref_primary_10_1016_j_jeurceramsoc_2022_12_056
crossref_primary_10_1016_j_jeurceramsoc_2021_08_037
crossref_primary_10_1002_smll_202403159
crossref_primary_10_1007_s10853_020_04583_w
crossref_primary_10_3390_met11091399
crossref_primary_10_1016_j_jpowsour_2020_228959
crossref_primary_10_1016_j_jeurceramsoc_2021_04_053
crossref_primary_10_1111_jace_16801
crossref_primary_10_1016_j_jeurceramsoc_2022_06_067
crossref_primary_10_1080_21870764_2020_1840703
crossref_primary_10_1111_jace_19077
crossref_primary_10_1016_j_ceramint_2024_04_032
crossref_primary_10_1111_jace_20194
crossref_primary_10_1111_jace_17333
crossref_primary_10_1016_j_corsci_2022_110574
crossref_primary_10_1111_jace_17332
crossref_primary_10_1016_j_jallcom_2024_176131
crossref_primary_10_1016_j_jeurceramsoc_2023_03_050
crossref_primary_10_1016_j_ceramint_2024_05_077
crossref_primary_10_1007_s11243_024_00598_3
crossref_primary_10_1016_j_compositesb_2021_109586
crossref_primary_10_1016_j_compositesb_2022_110177
crossref_primary_10_1007_s40843_019_9585_3
crossref_primary_10_1038_s41586_023_06786_y
crossref_primary_10_1016_j_xcrp_2025_102449
crossref_primary_10_1007_s40195_022_01382_x
crossref_primary_10_15541_jim20230562
crossref_primary_10_1016_j_ceramint_2021_10_165
crossref_primary_10_1016_j_actamat_2022_117887
crossref_primary_10_1016_j_susmat_2024_e00969
crossref_primary_10_1016_j_mtcomm_2024_110638
crossref_primary_10_1088_1361_648X_ac877d
crossref_primary_10_26599_JAC_2024_9220888
crossref_primary_10_1016_j_jmat_2023_07_003
Cites_doi 10.1111/jace.15779
10.1016/S0263-4368(99)00005-0
10.1007/s10853-012-7024-8
10.1016/j.jallcom.2013.01.200
10.1080/21663831.2014.912690
10.1038/ncomms9736
10.1002/9783527618217
10.1016/j.scriptamat.2008.05.026
10.1002/adem.200300567
10.1016/j.scriptamat.2017.08.040
10.1038/srep37946
10.1007/978-94-009-1565-7
10.1557/JMR.1992.1564
10.1016/j.jeurceramsoc.2016.02.009
10.1016/j.ceramint.2018.07.149
10.1007/BF01349680
10.4028/www.scientific.net/AMR.1120-1121.11
10.1103/PhysRevLett.77.3865
10.1038/ncomms9485
10.1103/PhysRevLett.119.176402
10.1016/j.actamat.2016.08.081
10.1103/PhysRevB.48.11685
10.1016/j.actamat.2017.01.048
10.1016/j.matchemphys.2011.11.021
10.1111/j.1151-2916.1981.tb10320.x
10.1016/j.ijhydene.2018.05.048
10.1016/j.ceramint.2018.08.100
10.1016/j.ijrmhm.2011.10.002
10.1016/j.tsf.2017.06.029
10.1016/j.pmatsci.2013.10.001
10.1103/PhysRevB.54.11169
10.1016/j.ceramint.2017.12.024
10.1016/j.ceramint.2015.05.022
10.1016/0001-6160(86)90079-9
10.1016/j.actamat.2017.12.037
10.1002/adma.201707512
10.1016/j.jeurceramsoc.2017.04.064
10.1016/j.scriptamat.2018.02.008
10.1103/PhysRevB.47.558
10.1103/PhysRevB.16.1748
10.1103/PhysRevLett.117.205502
10.1016/j.commatsci.2014.09.021
10.1016/j.jeurceramsoc.2018.04.010
10.1016/j.actamat.2006.05.054
ContentType Journal Article
Copyright 2018 The American Ceramic Society
2019 American Ceramic Society
Copyright_xml – notice: 2018 The American Ceramic Society
– notice: 2019 American Ceramic Society
DBID AAYXX
CITATION
7QQ
7SR
8FD
JG9
OTOTI
DOI 10.1111/jace.16295
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
Engineering
EISSN 1551-2916
EndPage 4352
ExternalDocumentID 1490123
10_1111_jace_16295
JACE16295
Genre article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2017YFB0703200
– fundername: CAST
  funderid: 2017QNRC001
– fundername: National Natural Science Foundation of China
  funderid: 51802100
– fundername: Iowa State University
  funderid: DE‐AC02‐07CH11358
– fundername: National Energy Research Scientific Computing Center
– fundername: U.S. Department of Energy
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEFU
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBO
EBS
EDO
EJD
EMK
ESX
F00
F01
F04
FEDTE
FOJGT
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
H~9
I-F
IRD
ITF
ITG
ITH
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QF4
QM1
QN7
QO4
R.K
RAX
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TAE
TH9
TN5
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WFSAM
WH7
WIH
WIK
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
YQT
ZCG
ZE2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QQ
7SR
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
08R
AAJUZ
ABCVL
ABHUG
ABPTK
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
PQEST
UMP
ID FETCH-LOGICAL-c3645-d7c96e77cac3638824d5196ab6c8eff755313d33b7d38f14d1a686e03241985e3
IEDL.DBID DR2
ISSN 0002-7820
IngestDate Fri May 19 00:35:44 EDT 2023
Fri Jul 25 19:23:53 EDT 2025
Tue Jul 01 01:35:37 EDT 2025
Thu Apr 24 22:50:16 EDT 2025
Wed Jan 22 16:40:01 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3645-d7c96e77cac3638824d5196ab6c8eff755313d33b7d38f14d1a686e03241985e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
ORCID 0000-0001-6158-7501
0000000161587501
OpenAccessLink https://www.osti.gov/biblio/1490123
PQID 2334620767
PQPubID 41752
PageCount 9
ParticipantIDs osti_scitechconnect_1490123
proquest_journals_2334620767
crossref_citationtrail_10_1111_jace_16295
crossref_primary_10_1111_jace_16295
wiley_primary_10_1111_jace_16295_JACE16295
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2019
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July 2019
PublicationDecade 2010
PublicationPlace Columbus
PublicationPlace_xml – name: Columbus
– name: United States
PublicationTitle Journal of the American Ceramic Society
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Wiley-Blackwell
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley-Blackwell
References 2018; 142
1993; 48
2017; 636
2017; 119
2015; 6
2013; 48
2018; 149
2018; 146
1986; 34
2018; 101
2015; 96
2008
2008; 59
2004; 6
1996
2013; 561
2018; 44
2014; 61
2007; 55
2018; 43
1996; 54
2016; 36
1981; 64
2012; 31
1996; 77
1992; 7
2016; 6
1921; 5
2012; 132
2014; 2
2017; 37
1977; 16
1999; 17
2015; 41
2018; 30
2016; 117
1992; 47
2017; 122
2018; 38
2017; 127
2015; 1120
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
Pierson HO (e_1_2_8_36_1) 1996
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 6
  start-page: 8485
  year: 2015
  article-title: Entropy‐stabilized oxides
  publication-title: Nat Commun
– volume: 61
  start-page: 4344
  year: 2014
  end-page: 93
  article-title: Microstructures and properties of high‐entropy alloys
  publication-title: Prog Mater Sci
– volume: 47
  start-page: 558
  year: 1992
  article-title: Ab initio molecular dynamics for liquid metals
  publication-title: Phys Rev B
– volume: 48
  start-page: 2388
  year: 2013
  end-page: 93
  article-title: Densification behavior and mechanical properties of spark plasma‐sintered ZrC‐TiC and ZrC‐TiC‐CNT composites
  publication-title: J Mater Sci
– volume: 48
  start-page: 11685
  year: 1993
  article-title: Theory of bonding in transition‐metal carbides and nitrides
  publication-title: Phys Rev B
– volume: 16
  start-page: 1748
  year: 1977
  end-page: 4352
  article-title: Special points for Brillouin‐zone integrations
  publication-title: Phys Rev B
– year: 1996
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 8
  article-title: Generalized gradient approximation made simple
  publication-title: Phys Rev Lett
– volume: 30
  start-page: 1707512
  year: 2018
  article-title: Mechanochemical‐Assisted synthesis of high‐entropy metal nitride via a soft urea strategy
  publication-title: Adv Mater
– volume: 6
  start-page: 37946
  year: 2016
  article-title: High‐entropy metal diborides: a new class of high‐entropy materials and a new type of ultrahigh temperature ceramics
  publication-title: Sci Rep
– volume: 127
  start-page: 312
  year: 2017
  end-page: 8
  article-title: Segregation of solute atoms (Y, Nb, Ta, Mo and W) in ZrB grain boundaries and their effects on grain boundary strengths: a first‐principles investigation
  publication-title: Acta Mater
– volume: 64
  start-page: 533
  year: 1981
  end-page: 8
  article-title: A critical evaluation of indentation techniques for measuring fracture toughness: Indirect crack measurements
  publication-title: J Am Ceram Soc
– volume: 31
  start-page: 132
  year: 2012
  end-page: 7
  article-title: The effect of Ti substitution by Zr on the microstructure and mechanical properties of the cermet Ti Zr C sintered by SPS
  publication-title: Int J Refract Met Hard Mater
– volume: 7
  start-page: 1564
  year: 1992
  end-page: 83
  article-title: An improved technique for determining hardness and elastic‐modulus using load and displacement sensing indentation experiments
  publication-title: J Mater Res
– volume: 1120
  start-page: 11
  year: 2015
  end-page: 5
  article-title: Research on mechanical characteristic of micro‐nano structure TaC ceramic by nanoindentation
  publication-title: Adv Mater Res
– volume: 59
  start-page: 638
  year: 2008
  end-page: 41
  article-title: Spark plasma sintering and mechanical behaviour of ZrC‐based composites
  publication-title: Scripta Mater
– volume: 55
  start-page: 1215
  year: 2007
  end-page: 26
  article-title: Calculations of thermophysical properties of cubic carbides and nitrides using the Debye‐Grüneisen model
  publication-title: Acta Mater
– volume: 43
  start-page: 16793
  year: 2018
  end-page: 803
  article-title: Phase stability and hydrogen desorption in a quinary equimolar mixture of light‐metals borohydrides
  publication-title: Int J Hydrogen Energ
– volume: 54
  start-page: 11169
  year: 1996
  article-title: Efficient iterative schemes for ab initio total‐energy calculations using a plane‐wave basis set
  publication-title: Phys Rev B
– volume: 36
  start-page: 1539
  year: 2016
  end-page: 48
  article-title: Sintering behaviour, solid solution formation and characterisation of TaC, HfC and TaC‐HfC fabricated by spark plasma sintering
  publication-title: J Eur Ceram Soc
– volume: 44
  start-page: 4320
  year: 2018
  end-page: 4352
  article-title: Self‐propagating high‐temperature synthesis of single‐phase binary tantalum‐hafnium carbide (Ta, Hf) C and its consolidation by hot pressing and spark plasma sintering
  publication-title: Ceram Int
– volume: 34
  start-page: 437
  year: 1986
  end-page: 45
  article-title: A compound‐energy model of ordering in a phase with sites of different coordination numbers
  publication-title: Acta Metall
– volume: 38
  start-page: 3578
  year: 2018
  end-page: 84
  article-title: High‐entropy fluorite oxides
  publication-title: J Eur Ceram Soc
– year: 2008
– volume: 37
  start-page: 4371
  year: 2017
  end-page: 7
  article-title: Nanoindentation and tribology of VC, NbC and ZrC refractory carbides
  publication-title: J Eur Ceram Soc
– volume: 101
  start-page: 4486
  year: 2018
  end-page: 91
  article-title: (Hf Zr Ta Nb Ti )C high‐entropy ceramics with low thermal conductivity
  publication-title: J Am Ceram Soc
– volume: 44
  start-page: 22014
  year: 2018
  end-page: 8
  article-title: High‐entropy carbide: a novel class of multicomponent ceramics
  publication-title: Ceram Int
– volume: 636
  start-page: 346
  year: 2017
  end-page: 52
  article-title: Exploring the high entropy alloy concept in (AlTiVNbCr)N
  publication-title: Thin Solid Films
– volume: 119
  start-page: 176402
  year: 2017
  article-title: Electronic‐structure origin of cation disorder in transition‐metal oxides
  publication-title: Phys Rev Lett
– volume: 2
  start-page: 107
  year: 2014
  end-page: 23
  article-title: High‐entropy alloys: a critical review
  publication-title: Mater Res Lett
– volume: 44
  start-page: 19247
  year: 2018
  end-page: 53
  article-title: Synthesis and properties of (Hf Ta )C solid solution carbides
  publication-title: Ceram Int
– volume: 142
  start-page: 116
  year: 2018
  end-page: 20
  article-title: A new class of high‐entropy perovskite oxides
  publication-title: Scripta Mater
– volume: 132
  start-page: 233
  year: 2012
  end-page: 8
  article-title: Prediction of high‐entropy stabilized solid‐solution in multi‐component alloys
  publication-title: Mater Chem Phys
– volume: 149
  start-page: 93
  year: 2018
  end-page: 7
  article-title: High‐entropy ceramic thin films; A case study on transition metal diborides
  publication-title: Scripta Mater
– volume: 122
  start-page: 448
  year: 2017
  end-page: 511
  article-title: Critical review of high entropy alloys and related concepts
  publication-title: Acta Mater
– volume: 96
  start-page: 312
  year: 2015
  end-page: 8
  article-title: Special quasirandom structures of alon
  publication-title: Comput Mater Sci
– volume: 17
  start-page: 21
  year: 1999
  end-page: 6
  article-title: Electrical properties of hard materials
  publication-title: Int J Refract Met Hard Mater
– volume: 117
  start-page: 205502
  year: 2016
  article-title: Lattice vibrations change the solid solubility of an alloy at high temperatures
  publication-title: Phys Rev Lett
– volume: 41
  start-page: 10828
  year: 2015
  end-page: 34
  article-title: High‐temperature reactive spark plasma consolidation of TiB ‐NbC ceramic composites
  publication-title: Ceram Int
– volume: 146
  start-page: 119
  year: 2018
  end-page: 25
  article-title: Phase stability and distortion in high‐entropy oxides
  publication-title: Acta Mater
– volume: 561
  start-page: 220
  year: 2013
  end-page: 7
  article-title: The phase stability and mechanical properties of Nb‐C system: using first‐principles calculations and nano‐indentation
  publication-title: J Alloys Comp
– volume: 5
  start-page: 17
  year: 1921
  end-page: 26
  article-title: Die konstitution der mischkristalle und die raumfüllung der atome
  publication-title: Z Phys
– volume: 6
  start-page: 8736
  year: 2015
  article-title: Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys
  publication-title: Nat Commun
– volume: 6
  start-page: 299
  year: 2004
  end-page: 303
  article-title: Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv Eng Mater
– ident: e_1_2_8_13_1
  doi: 10.1111/jace.15779
– ident: e_1_2_8_34_1
  doi: 10.1016/S0263-4368(99)00005-0
– ident: e_1_2_8_46_1
  doi: 10.1007/s10853-012-7024-8
– ident: e_1_2_8_42_1
  doi: 10.1016/j.jallcom.2013.01.200
– ident: e_1_2_8_6_1
  doi: 10.1080/21663831.2014.912690
– ident: e_1_2_8_35_1
  doi: 10.1038/ncomms9736
– ident: e_1_2_8_37_1
  doi: 10.1002/9783527618217
– ident: e_1_2_8_38_1
  doi: 10.1016/j.scriptamat.2008.05.026
– ident: e_1_2_8_7_1
  doi: 10.1002/adem.200300567
– ident: e_1_2_8_3_1
  doi: 10.1016/j.scriptamat.2017.08.040
– ident: e_1_2_8_10_1
  doi: 10.1038/srep37946
– ident: e_1_2_8_16_1
  doi: 10.1007/978-94-009-1565-7
– ident: e_1_2_8_25_1
  doi: 10.1557/JMR.1992.1564
– volume-title: Handbook of refractory carbides and nitrides: properties, characteristics, processing and applications
  year: 1996
  ident: e_1_2_8_36_1
– ident: e_1_2_8_44_1
  doi: 10.1016/j.jeurceramsoc.2016.02.009
– ident: e_1_2_8_22_1
  doi: 10.1016/j.ceramint.2018.07.149
– ident: e_1_2_8_28_1
  doi: 10.1007/BF01349680
– ident: e_1_2_8_41_1
  doi: 10.4028/www.scientific.net/AMR.1120-1121.11
– ident: e_1_2_8_20_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_8_2_1
  doi: 10.1038/ncomms9485
– ident: e_1_2_8_23_1
  doi: 10.1103/PhysRevLett.119.176402
– ident: e_1_2_8_5_1
  doi: 10.1016/j.actamat.2016.08.081
– ident: e_1_2_8_15_1
  doi: 10.1103/PhysRevB.48.11685
– ident: e_1_2_8_33_1
  doi: 10.1016/j.actamat.2017.01.048
– ident: e_1_2_8_30_1
  doi: 10.1016/j.matchemphys.2011.11.021
– ident: e_1_2_8_27_1
  doi: 10.1111/j.1151-2916.1981.tb10320.x
– ident: e_1_2_8_32_1
  doi: 10.1016/j.ijhydene.2018.05.048
– ident: e_1_2_8_14_1
  doi: 10.1016/j.ceramint.2018.08.100
– ident: e_1_2_8_43_1
  doi: 10.1016/j.ijrmhm.2011.10.002
– ident: e_1_2_8_21_1
  doi: 10.1016/j.tsf.2017.06.029
– ident: e_1_2_8_4_1
  doi: 10.1016/j.pmatsci.2013.10.001
– ident: e_1_2_8_17_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_8_40_1
  doi: 10.1016/j.ceramint.2017.12.024
– ident: e_1_2_8_45_1
  doi: 10.1016/j.ceramint.2015.05.022
– ident: e_1_2_8_31_1
  doi: 10.1016/0001-6160(86)90079-9
– ident: e_1_2_8_8_1
  doi: 10.1016/j.actamat.2017.12.037
– ident: e_1_2_8_12_1
  doi: 10.1002/adma.201707512
– ident: e_1_2_8_39_1
  doi: 10.1016/j.jeurceramsoc.2017.04.064
– ident: e_1_2_8_11_1
  doi: 10.1016/j.scriptamat.2018.02.008
– ident: e_1_2_8_18_1
  doi: 10.1103/PhysRevB.47.558
– ident: e_1_2_8_24_1
  doi: 10.1103/PhysRevB.16.1748
– ident: e_1_2_8_29_1
  doi: 10.1103/PhysRevLett.117.205502
– ident: e_1_2_8_19_1
  doi: 10.1016/j.commatsci.2014.09.021
– ident: e_1_2_8_9_1
  doi: 10.1016/j.jeurceramsoc.2018.04.010
– ident: e_1_2_8_26_1
  doi: 10.1016/j.actamat.2006.05.054
SSID ssj0001984
Score 2.6689358
Snippet The formation possibility of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high‐entropy ceramic (HHC‐1) was first analyzed by the first‐principles calculations, and then, it...
The formation possibility of (Hf 0.2 Zr 0.2 Ta 0.2 Nb 0.2 Ti 0.2 )C high‐entropy ceramic ( HHC ‐1) was first analyzed by the first‐principles calculations, and...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4344
SubjectTerms Crystal structure
electrical resistivity
Enthalpy
Entropy
Entropy of formation
first‐principles calculations
high‐entropy ceramics
Mathematical analysis
mechanical properties
Metal carbides
Modulus of elasticity
Nanohardness
Principles
Solid solutions
Title First‐principles study, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high‐entropy ceramic
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjace.16295
https://www.proquest.com/docview/2334620767
https://www.osti.gov/biblio/1490123
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB6CT-0h6SMhbtKy0B6SEBlbK60k6MUYGxNoDiUJIRDEPsGktY1kH5JTf0J_Y39JZ1aPOqEE2suygtEi7c7sfrM78y3AJ24ioY3tBzFiaXRQEhGk0ihK8JHk_NjYU-Z_ORfTy-jsOr7egs9NLkzFD9FuuJFl-PmaDFyqctPIpba9gQgzyjCnYC1CRF__cEehNx012JdI4WpuUh_G0776aDXqLNCqHiHNTbzqF5zJDtw2n1rFmdz11ivV0w9PWBz_919ewXaNRNmwUp3XsGXnb-DlBj8hPl3NynUlU76FYjJDqPjrx89ls0FfMs9Oe8qcVEW9-XfK5Nww3fJAV2mebOHY0dT1e-FNgcWFxOJcUW2GxfGIEW0yNk17zYvlPdO2kN9nehcuJ-OL0TSor2wINJ1nBibRmbBJoiU-c0TvkUGIKKQSOrXOJTGaPDecq8Tw1A0iM5AiFbaPsA7HK7Z8DzrzxdzuA0v7LjQ0PdBJbhRKOk_MnE61HEROq7ALx83Q5brmM6drNb7lrV-DvZr7Xu3Cx1Z2WbF4_FXqgDQgR-xBBLqaIo30Cp2jjIBnFw4bxchrOy_zkPNIhKjhSRdO_Ag_035-NhyNfe3dvwgfwAtEaVkVI3wInVWxtu8RCa3UB6_xvwFl1gHh
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NThsxEB5BOJQeCv0TKVAs0UOp2ChZ73p3jyglChRyqEKFell5_SNFpUm0mxzg1EfoM_IkzHg3S6hQJbhYtjRrae0Z-5vx-DPAJ64DobRpeyFiaXRQIuHFUmd0wUeS82NCR5l_PhD9i-D0MryscnPoLkzJD1EH3Mgy3HpNBk4B6WUrl8q0OsJPwlVYoye9iTr_6_d79ij0p4MF-iVauIqd1CXy1N8-2I8aE7SrB1hzGbG6Lae3Ub6rWjimQso0-dWaz7KWuvmHx_HZf7MJryowyo5K7XkNK2b8Bl4uURRi68eomJcyxVvIeyNEi7d__k4XMfqCOYLaQ2Zlllfxv0Mmx5qpmgq6vOnJJpZ97tt2y_-ZYzGUWAwyqo2wOOgyYk7GrincPJleM2Vy-Xuk3sFF73jY7XvVqw2eoiNNT0cqESaKlMQ2RwAfaESJQmZCxcbaKESr55rzLNI8tp1Ad6SIhWkjssMJCw1_D43xZGy2gMVt62taIegwN_AlHSkmVsVKdgKrMr8JB4u5S1VFaU4va1yltWuDo5q6UW3Cfi07LYk8HpXaJhVIEX4Qh66iZCM1Q_8oIezZhJ2FZqSVqRepz3kgfFTyqAlf3BT_p__09Kh77GofniK8By_6w_Oz9Oxk8G0b1hG0JWXK8A40Zvnc7CIwmmUfnfrfAYEfBf0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB_qCaIPrZ94bdWAPljpHnubbHYXfCnXHmfVQ6SVIpQlmw84bO-OvbsHffJP8G_sX-JM9sOriKAvIQuzYTeZSX4zmfwC8IIbIbWxYRAjlkYHJZFBqkxBB3wUOT829pT578dydCqOz-KzDXjdnIWp-CHagBtZhp-vycDnxq0budK215dRFt-Am0KGGV3ccPjxF3kUutOiAb_ECleTk_o8nvbda8tRZ4ZmdQ1qrgNWv-IMt-C8-dYq0eRLb7UsevrbbzSO__szd2GzhqLsoNKde7Bhp_fhzhpBIT59mixWlcziAZTDCWLFq-8_5k2EfsE8Pe0-c6oo6-jfPlNTw3RLBF2d82Qzx16OXNiLPpdYnCgsxgXVJljsDRjxJmPTFGyezb8ybUt1OdEP4XR4dDIYBfWdDYGmDc3AJDqTNkm0wmeO8F0YxIhSFVKn1rkkRpvnhvMiMTx1fWH6SqbShojrcLxiyx9BZzqb2sfA0tBFhuYH2soVkaINxczpVKu-cLqIurDXDF2ua0JzulfjIm8dG-zV3PdqF563svOKxuOPUjukATmCD2LQ1ZRqpJfoHWWEPLuw2yhGXhv6Io84FzJCFU-68MqP8F_az48PBke-tv0vws_g1ofDYf7uzfjtDtxGxJZV-cK70FmWK_sEUdGyeOqV_ydqZgSs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First%E2%80%90principles+study%2C+fabrication%2C+and+characterization+of+%28Hf+0.2+Zr+0.2+Ta+0.2+Nb+0.2+Ti+0.2+%29C+high%E2%80%90entropy+ceramic&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=Ye%2C+Beilin&rft.au=Wen%2C+Tongqi&rft.au=Huang%2C+Kehan&rft.au=Wang%2C+Cai%E2%80%90Zhuang&rft.date=2019-07-01&rft.pub=Wiley-Blackwell&rft.issn=0002-7820&rft.eissn=1551-2916&rft.volume=102&rft.issue=7&rft_id=info:doi/10.1111%2Fjace.16295&rft.externalDocID=1490123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon