No optimal spatial filtering distance for mitigating sampling bias in ecological niche models

Aim The continuous development of statistical tools applied to ecology has contributed to great advances for modelling species' niches and distributions from opportunistic observations. However, as these observations are subject to biases caused by spatial variation in sampling effort, ecologic...

Full description

Saved in:
Bibliographic Details
Published inJournal of biogeography Vol. 51; no. 9; pp. 1783 - 1794
Main Authors Lamboley, Quentin, Fourcade, Yoan
Format Journal Article
LanguageEnglish
Published Oxford Wiley Subscription Services, Inc 01.09.2024
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aim The continuous development of statistical tools applied to ecology has contributed to great advances for modelling species' niches and distributions from opportunistic observations. However, as these observations are subject to biases caused by spatial variation in sampling effort, ecological niche models (ENMs) are also frequently biased. Among several bias correction methods that have been proposed, spatial filtering—imposing a minimum distance between occurrences—is widely used, yet lacks clear guidelines for choosing the filtering distance. Here, we aimed to explore the impact of spatial filtering distances on the performance of ENMs. Location Europe. Taxon Virtual species. Methods We applied ENMs to two virtual species with contrasting levels of specialisation, across a spectrum of modelling conditions, bias types and sample sizes. Results Models applied to the specialist species had on average a lower performance than those applied to the generalist species. Using a biased sample reduced model performance, especially when the bias was strong, and when the sample size was large. In many cases, spatial filtering failed to improve model performance or even reduced it. We did find an improvement for the generalist species modelled with large and strongly biased datasets. However, there was no optimal filtering distance, as this improvement was linearly and positively associated with filtering distance. Moreover, because the initial bias was strong and the filtered dataset became very small, the resulting models had only very low accuracy. Main Conclusions Our results suggest that there is no optimal filtering distance for dealing with sampling bias in ENMs, and that spatial filtering never improves model performance enough to draw accurate predictions. We therefore recommend spatial filtering to be employed cautiously, only when enough data are available, and bearing in mind that its effectiveness remains highly uncertain.
AbstractList AIM: The continuous development of statistical tools applied to ecology has contributed to great advances for modelling species' niches and distributions from opportunistic observations. However, as these observations are subject to biases caused by spatial variation in sampling effort, ecological niche models (ENMs) are also frequently biased. Among several bias correction methods that have been proposed, spatial filtering—imposing a minimum distance between occurrences—is widely used, yet lacks clear guidelines for choosing the filtering distance. Here, we aimed to explore the impact of spatial filtering distances on the performance of ENMs. LOCATION: Europe. TAXON: Virtual species. METHODS: We applied ENMs to two virtual species with contrasting levels of specialisation, across a spectrum of modelling conditions, bias types and sample sizes. RESULTS: Models applied to the specialist species had on average a lower performance than those applied to the generalist species. Using a biased sample reduced model performance, especially when the bias was strong, and when the sample size was large. In many cases, spatial filtering failed to improve model performance or even reduced it. We did find an improvement for the generalist species modelled with large and strongly biased datasets. However, there was no optimal filtering distance, as this improvement was linearly and positively associated with filtering distance. Moreover, because the initial bias was strong and the filtered dataset became very small, the resulting models had only very low accuracy. MAIN CONCLUSIONS: Our results suggest that there is no optimal filtering distance for dealing with sampling bias in ENMs, and that spatial filtering never improves model performance enough to draw accurate predictions. We therefore recommend spatial filtering to be employed cautiously, only when enough data are available, and bearing in mind that its effectiveness remains highly uncertain.
AimThe continuous development of statistical tools applied to ecology has contributed to great advances for modelling species' niches and distributions from opportunistic observations. However, as these observations are subject to biases caused by spatial variation in sampling effort, ecological niche models (ENMs) are also frequently biased. Among several bias correction methods that have been proposed, spatial filtering—imposing a minimum distance between occurrences—is widely used, yet lacks clear guidelines for choosing the filtering distance. Here, we aimed to explore the impact of spatial filtering distances on the performance of ENMs.LocationEurope.TaxonVirtual species.MethodsWe applied ENMs to two virtual species with contrasting levels of specialisation, across a spectrum of modelling conditions, bias types and sample sizes.ResultsModels applied to the specialist species had on average a lower performance than those applied to the generalist species. Using a biased sample reduced model performance, especially when the bias was strong, and when the sample size was large. In many cases, spatial filtering failed to improve model performance or even reduced it. We did find an improvement for the generalist species modelled with large and strongly biased datasets. However, there was no optimal filtering distance, as this improvement was linearly and positively associated with filtering distance. Moreover, because the initial bias was strong and the filtered dataset became very small, the resulting models had only very low accuracy.Main ConclusionsOur results suggest that there is no optimal filtering distance for dealing with sampling bias in ENMs, and that spatial filtering never improves model performance enough to draw accurate predictions. We therefore recommend spatial filtering to be employed cautiously, only when enough data are available, and bearing in mind that its effectiveness remains highly uncertain.
Aim The continuous development of statistical tools applied to ecology has contributed to great advances for modelling species' niches and distributions from opportunistic observations. However, as these observations are subject to biases caused by spatial variation in sampling effort, ecological niche models (ENMs) are also frequently biased. Among several bias correction methods that have been proposed, spatial filtering—imposing a minimum distance between occurrences—is widely used, yet lacks clear guidelines for choosing the filtering distance. Here, we aimed to explore the impact of spatial filtering distances on the performance of ENMs. Location Europe. Taxon Virtual species. Methods We applied ENMs to two virtual species with contrasting levels of specialisation, across a spectrum of modelling conditions, bias types and sample sizes. Results Models applied to the specialist species had on average a lower performance than those applied to the generalist species. Using a biased sample reduced model performance, especially when the bias was strong, and when the sample size was large. In many cases, spatial filtering failed to improve model performance or even reduced it. We did find an improvement for the generalist species modelled with large and strongly biased datasets. However, there was no optimal filtering distance, as this improvement was linearly and positively associated with filtering distance. Moreover, because the initial bias was strong and the filtered dataset became very small, the resulting models had only very low accuracy. Main Conclusions Our results suggest that there is no optimal filtering distance for dealing with sampling bias in ENMs, and that spatial filtering never improves model performance enough to draw accurate predictions. We therefore recommend spatial filtering to be employed cautiously, only when enough data are available, and bearing in mind that its effectiveness remains highly uncertain.
Author Lamboley, Quentin
Fourcade, Yoan
Author_xml – sequence: 1
  givenname: Quentin
  orcidid: 0009-0004-1382-1382
  surname: Lamboley
  fullname: Lamboley, Quentin
  organization: Univ Paris‐Est Creteil, Sorbonne Université, Université Paris‐Cité, CNRS, IRD, INRAE, Institut d'Écologie et des Sciences de l'Environnement, IEES
– sequence: 2
  givenname: Yoan
  orcidid: 0000-0003-3820-946X
  surname: Fourcade
  fullname: Fourcade, Yoan
  email: yoan.fourcade@u‐pec.fr
  organization: Univ Paris‐Est Creteil, Sorbonne Université, Université Paris‐Cité, CNRS, IRD, INRAE, Institut d'Écologie et des Sciences de l'Environnement, IEES
BackLink https://hal.u-pec.fr/hal-04570479$$DView record in HAL
BookMark eNp9kU1P3DAQhi1EpS60h_6DSFzKITCO42R9BESBatVeyhFZjj-WWTl2amdB_Pt62aqVkFpfxho973y9R-QwxGAJ-UThjJZ3vhnwjLZL3h6QBWUdr5tOiEOyAAa8hqaH9-Qo5w0ACM7aBXn4Fqs4zTgqX-VJzViiQz_bhGFdGcyzCtpWLqZqxBnXhSj5rMbJ7z4DqlxhqKyOPq5RF3VA_WirMRrr8wfyzimf7cff8Zjcf7n-cXVbr77f3F1drGrNuratqaUDE6yhBkQDymjDtBFOOEOt6AfXmSU3PQe77K3j2gnWatAKOuW6gS57dkxO93UflZdTKtukFxkVytuLldzloOU9tL14ooX9vGenFH9ubZ7liFlb71WwcZslo5z15XLAC3ryBt3EbQplE8l2kwKFpvvbXKeYc7LuzwQU5M4UWUyRr6YU9vwNq3EuN41hTgr9_xTP6O3Lv0vLr5d3e8UvzAKfQA
CitedBy_id crossref_primary_10_1016_j_biocon_2024_110890
crossref_primary_10_1111_gcb_17557
crossref_primary_10_1002_ece3_70181
crossref_primary_10_1111_ecog_07294
crossref_primary_10_1080_01650521_2025_2470057
Cites_doi 10.1111/ecog.06219
10.1111/ecog.01388
10.1016/j.ecolmodel.2011.02.011
10.1016/j.ecolmodel.2013.12.012
10.1038/s41559‐023‐02047‐3
10.1111/2041‐210X.13874
10.1111/j.2041‐210X.2010.00036.x
10.1016/j.biocon.2013.08.009
10.1890/07-2153.1
10.1111/j.1365‐2699.2006.01584.x
10.1111/j.1600‐0587.2011.06545.x
10.1111/2041‐210X.13142
10.1016/j.ecolind.2019.105539
10.1111/ecog.05926
10.1111/ecog.01132
10.1080/14772000.2012.705357
10.1111/j.2006.0906‐7590.04596.x
10.1016/j.ecolind.2022.109487
10.1002/ece3.6254
10.1111/j.1466‐8238.2011.00659.x
10.1111/j.1600‐0587.2013.00441.x
10.1111/2041‐210X.14101
10.1111/j.2006.0906‐7590.04823.x
10.1016/j.ecoinf.2013.11.002
10.1111/j.1600‐0587.2013.07872.x
10.1641/0006‐3568(2004)054[0486:RASBOT]2.0.CO;2
10.1002/ecs2.3422
10.1146/annurev.ecolsys.110308.120159
10.1111/syen.12589
10.1016/j.ecolmodel.2005.03.026
10.1088/1748‐9326/aabd42
10.1371/journal.pone.0097122
10.1111/geb.12268
10.7717/peerj.10411
10.1371/journal.pone.0147796
10.1111/ddi.13698
10.1111/ecog.02414
10.1111/ddi.13442
10.1111/2041‐210x.12945
10.1111/ecog.02909
10.1111/ecog.01509
10.1016/S0304‐3800(01)00388‐X
10.1371/journal.pone.0187906
10.1111/geb.13491
10.1002/ecs2.4703
10.1111/j.0906-7590.2004.03764.x
10.1111/ecog.04503
10.1111/ecog.03049
10.1111/ddi.13030
10.1111/geb.13725
10.1111/j.1600‐0587.2013.00205.x
10.1016/j.ecolind.2020.107147
10.1111/ddi.13802
10.1016/j.ecolmodel.2018.08.013
10.1111/jbi.12227
10.1111/ddi.12096
ContentType Journal Article
Copyright 2024 The Authors. published by John Wiley & Sons Ltd.
2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution - NonCommercial
Copyright_xml – notice: 2024 The Authors. published by John Wiley & Sons Ltd.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution - NonCommercial
DBID 24P
AAYXX
CITATION
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
1XC
VOOES
DOI 10.1111/jbi.14854
DatabaseName Wiley Online Library Open Access
CrossRef
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Entomology Abstracts


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Biology
Ecology
Environmental Sciences
EISSN 1365-2699
EndPage 1794
ExternalDocumentID oai_HAL_hal_04570479v1
10_1111_jbi_14854
JBI14854
Genre methodAndProtocol
GeographicLocations Europe
GeographicLocations_xml – name: Europe
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29J
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABPLY
ABPPZ
ABPVW
ABSQW
ABTLG
ABXSQ
ACAHQ
ACBWZ
ACCZN
ACGFS
ACHIC
ACPOU
ACPRK
ACRPL
ACSCC
ACSTJ
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AI.
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ANHSF
AQVQM
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HVGLF
HZI
HZ~
H~9
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
TN5
UB1
VH1
VOH
VQP
W8V
W99
WBKPD
WIH
WIK
WMRSR
WOHZO
WQJ
WSUWO
WXSBR
XG1
YQT
ZZTAW
~02
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c3644-1e1b39321d0920adcd3cd9f9fd1e97bf6d85d750e87ef5cf934c0ca06af6b1873
IEDL.DBID DR2
ISSN 0305-0270
IngestDate Fri May 09 12:14:34 EDT 2025
Fri Jul 11 18:38:01 EDT 2025
Fri Jul 25 12:03:49 EDT 2025
Tue Jul 01 01:14:23 EDT 2025
Thu Apr 24 23:04:52 EDT 2025
Sun Jul 06 04:45:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Species distribution modelling
MaxEnt
Bias
Ecological niche
Spatial thinning
Sub-sampling
Spatial filtering
Language English
License Attribution-NonCommercial
Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3644-1e1b39321d0920adcd3cd9f9fd1e97bf6d85d750e87ef5cf934c0ca06af6b1873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3820-946X
0009-0004-1382-1382
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjbi.14854
PQID 3092001026
PQPubID 1086398
PageCount 12
ParticipantIDs hal_primary_oai_HAL_hal_04570479v1
proquest_miscellaneous_3153736505
proquest_journals_3092001026
crossref_primary_10_1111_jbi_14854
crossref_citationtrail_10_1111_jbi_14854
wiley_primary_10_1111_jbi_14854_JBI14854
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2024
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Journal of biogeography
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2017; 40
2023; 32
2015; 38
2009; 40
2006; 33
2019; 10
2023; 7
2021; 28
2004; 4
2013; 167
2024; 30
2018; 41
2020; 10
2007; 30
2021; 121
2016; 39
2012; 10
2020; 8
2013; 19
2018; 9
2010; 1
2023; 29
2007; 8
2011; 20
2006; 29
2002; 148
2022; 31
2014; 19
2014; 9
2009; 19
2018; 386
2023; 14
2021; 44
2019; 106
2014; 275
2014; 41
2012; 35
2016; 11
2004; 54
2015; 24
2022; 145
2013; 36
2021; 12
2019; 42
2023; 48
2006; 190
2020
2022; 8
2017; 12
2014; 37
2022; 13
2020; 26
2016; 542–552
2011; 222
2018; 13
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
R Core Team (e_1_2_9_48_1) 2020
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Dudík M. (e_1_2_9_22_1) 2007; 8
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 19
  start-page: 1366
  issue: 11
  year: 2013
  end-page: 1379
  article-title: The importance of correcting for sampling bias in MaxEnt species distribution models
  publication-title: Diversity and Distributions
– volume: 275
  start-page: 73
  year: 2014
  end-page: 77
  article-title: Spatial filtering to reduce sampling bias can improve the performance of ecological niche models
  publication-title: Ecological Modelling
– volume: 14
  start-page: 1190
  issue: 5
  year: 2023
  end-page: 1199
  article-title: dynamicSDM: An R package for species geographical distribution and abundance modelling at high spatiotemporal resolution
  publication-title: Methods in Ecology and Evolution
– volume: 10
  start-page: 481
  issue: 4
  year: 2019
  end-page: 492
  article-title: Environmental filtering improves ecological niche models across multiple scales
  publication-title: Methods in Ecology and Evolution
– volume: 35
  start-page: 250
  year: 2012
  end-page: 258
  article-title: The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution models
  publication-title: Ecography
– volume: 28
  start-page: 128
  issue: 1
  year: 2021
  end-page: 141
  article-title: Target‐group backgrounds prove effective at correcting sampling bias in Maxent models
  publication-title: Diversity and Distributions
– volume: 1
  start-page: 330
  issue: 4
  year: 2010
  end-page: 342
  article-title: The art of modelling range‐shifting species
  publication-title: Methods in Ecology and Evolution
– volume: 167
  start-page: 161
  year: 2013
  end-page: 171
  article-title: Confronting expert‐based and modelled distributions for species with uncertain conservation status: A case study from the corncrake ( )
  publication-title: Biological Conservation
– volume: 38
  start-page: 541
  issue: 5
  year: 2015
  end-page: 545
  article-title: spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models
  publication-title: Ecography
– volume: 32
  start-page: 1717
  year: 2023
  end-page: 1729
  article-title: Sampling strategy matters to accurately estimate response curves' parameters in species distribution models
  publication-title: Global Ecology and Biogeography
– volume: 40
  start-page: 1076
  issue: 9
  year: 2017
  end-page: 1087
  article-title: Performance tradeoffs in target‐group bias correction for species distribution models
  publication-title: Ecography
– volume: 13
  issue: 6
  year: 2018
  article-title: Global patterns of current and future road infrastructure
  publication-title: Environmental Research Letters
– volume: 37
  start-page: 191
  issue: 2
  year: 2014
  end-page: 203
  article-title: Where is positional uncertainty a problem for species distribution modelling?
  publication-title: Ecography
– volume: 42
  start-page: 1717
  issue: 10
  year: 2019
  end-page: 1727
  article-title: Bunching up the background betters bias in species distribution models
  publication-title: Ecography
– volume: 30
  start-page: 135
  issue: 1
  year: 2007
  end-page: 151
  article-title: Effects of species' ecology on the accuracy of distribution models
  publication-title: Ecography
– volume: 19
  start-page: 181
  issue: 1
  year: 2009
  end-page: 197
  article-title: Sample selection bias and presence‐only distribution models: Implications for background and pseudo‐absence data
  publication-title: Ecological Applications
– volume: 7
  start-page: 816
  year: 2023
  end-page: 831
  article-title: Mass production of unvouchered records fails to represent global biodiversity patterns
  publication-title: Nature Ecology & Evolution
– volume: 12
  issue: 11
  year: 2017
  article-title: The interplay of various sources of noise on reliability of species distribution models hinges on ecological specialisation
  publication-title: PLoS One
– volume: 10
  start-page: 1
  issue: 3
  year: 2012
  end-page: 11
  article-title: Sampling bias in geographic and environmental space and its effect on the predictive power of species distribution models
  publication-title: Systematics and Biodiversity
– volume: 148
  start-page: 1
  issue: 1
  year: 2002
  end-page: 13
  article-title: Effects of sample size on accuracy of species distribution models
  publication-title: Ecological Modelling
– volume: 29
  start-page: 774
  issue: 6
  year: 2023
  end-page: 784
  article-title: Causal inference and large‐scale expert validation shed light on the drivers of SDM accuracy and variance
  publication-title: Diversity and Distributions
– volume: 8
  year: 2022
  article-title: Temporal trends in the spatial bias of species occurrence records
  publication-title: Ecography
– volume: 8
  start-page: 1217
  year: 2007
  end-page: 1260
  article-title: Maximum entropy density estimation with generalized regularization and an application to species distribution modeling
  publication-title: Journal of Machine Learning Research
– volume: 12
  issue: 3
  year: 2021
  article-title: Comparing sample bias correction methods for species distribution modeling using virtual species
  publication-title: Ecosphere
– volume: 13
  start-page: 1661
  issue: 8
  year: 2022
  end-page: 1669
  article-title: flexsdm: An r package for supporting a comprehensive and flexible species distribution modelling workflow
  publication-title: Methods in Ecology and Evolution
– volume: 4
  start-page: 437
  year: 2004
  end-page: 448
  article-title: Presence‐absence versus presence‐only modelling methods for predicting bird habitat suitability
  publication-title: Ecography
– volume: 31
  start-page: 1038
  issue: 6
  year: 2022
  end-page: 1050
  article-title: Correlations between spatial sampling biases and environmental niches affect species distribution models
  publication-title: Global Ecology and Biogeography
– volume: 48
  start-page: 489
  year: 2023
  end-page: 497
  article-title: GBIF falls short of providing a representative picture of the global distribution of insects
  publication-title: Systematic Entomology
– volume: 37
  start-page: 1084
  issue: 11
  year: 2014
  end-page: 1091
  article-title: Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models
  publication-title: Ecography
– volume: 19
  start-page: 10
  year: 2014
  end-page: 15
  article-title: Spatial bias in the GBIF database and its effect on modelling species' geographic distributions
  publication-title: Ecological Informatics
– volume: 54
  start-page: 485
  issue: 6
  year: 2004
  end-page: 486
  article-title: Research and societal benefits of the Global Biodiversity Information Facility
  publication-title: Bioscience
– volume: 9
  start-page: 1151
  year: 2018
  end-page: 1156
  article-title: Wallace: A flexible platform for reproducible modeling of species niches and distributions built for community expansion
  publication-title: Methods in Ecology and Evolution
– volume: 14
  issue: 12
  year: 2023
  article-title: Thinning occurrence points does not improve species distribution model performance
  publication-title: Ecosphere
– volume: 9
  issue: 5
  year: 2014
  article-title: Mapping species distributions with MAXENT using a geographically biased sample of presence data: A performance assessment of methods for correcting sampling bias
  publication-title: PLoS One
– volume: 10
  start-page: 5001
  issue: 11
  year: 2020
  end-page: 5014
  article-title: Do traits of plant species predict the efficacy of species distribution models for finding new occurrences?
  publication-title: Ecology and Evolution
– volume: 20
  start-page: 915
  issue: 6
  year: 2011
  end-page: 927
  article-title: Quantitative metrics of overlaps in Grinnellian niches: Advances and possible drawbacks
  publication-title: Global Ecology and Biogeography
– volume: 145
  year: 2022
  article-title: Assessing the effect of sample bias correction in species distribution models
  publication-title: Ecological Indicators
– volume: 29
  start-page: 129
  issue: 2
  year: 2006
  end-page: 151
  article-title: Novel methods improve prediction of species' distributions from occurrence data
  publication-title: Ecography
– volume: 106
  year: 2019
  article-title: Using ignorance scores to explore biodiversity recording effort for multiple taxa in the Caatinga
  publication-title: Ecological Indicators
– volume: 40
  start-page: 887
  year: 2017
  end-page: 893
  article-title: Opening the black box: An open‐source release of Maxent
  publication-title: Ecography
– volume: 542–552
  start-page: 542
  year: 2016
  end-page: 552
  article-title: Minimum required number of specimen records to develop accurate species distribution models
  publication-title: Ecography
– volume: 190
  start-page: 231
  issue: 3–4
  year: 2006
  end-page: 259
  article-title: Maximum entropy modeling of species geographic distributions
  publication-title: Ecological Modelling
– volume: 41
  start-page: 726
  issue: 5
  year: 2018
  end-page: 736
  article-title: The challenge of modeling niches and distributions for data‐poor species: A comprehensive approach to model complexity
  publication-title: Ecography
– volume: 26
  start-page: 315
  issue: 3
  year: 2020
  end-page: 328
  article-title: Deciphering ecology from statistical artefacts: Competing influence of sample size, prevalence and habitat specialization on species distribution models and how small evaluation datasets can inflate metrics of performance
  publication-title: Diversity and Distributions
– volume: 41
  start-page: 629
  issue: 4
  year: 2014
  end-page: 643
  article-title: Making better Maxent models of species distributions: Complexity, overfitting and evaluation
  publication-title: Journal of Biogeography
– volume: 30
  issue: 3
  year: 2024
  article-title: Effective strategies for correcting spatial sampling bias in species distribution models without independent test data
  publication-title: Diversity and Distributions
– volume: 33
  start-page: 1677
  issue: 10
  year: 2006
  end-page: 1688
  article-title: Five (or so) challenges for species distribution modelling
  publication-title: Journal of Biogeography
– volume: 222
  start-page: 1810
  issue: 11
  year: 2011
  end-page: 1819
  article-title: The crucial role of the accessible area in ecological niche modeling and species distribution modeling
  publication-title: Ecological Modelling
– volume: 24
  start-page: 276
  issue: 3
  year: 2015
  end-page: 292
  article-title: Is my species distribution model fit for purpose? Matching data and models to applications
  publication-title: Global Ecology and Biogeography
– volume: 40
  start-page: 677
  issue: 1
  year: 2009
  end-page: 697
  article-title: Species distribution models: Ecological explanation and prediction across space and time
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 39
  start-page: 599
  year: 2016
  end-page: 607
  article-title: virtualspecies, an R package to generate virtual species distributions
  publication-title: Ecography
– year: 2020
– volume: 386
  start-page: 83
  year: 2018
  end-page: 88
  article-title: The effect of large sample sizes on ecological niche models: Analysis using a North American rodent,
  publication-title: Ecological Modelling
– volume: 36
  start-page: 1058
  year: 2013
  end-page: 1069
  article-title: A practical guide to MaxEnt for modeling species' distributions: What it does, and why inputs and settings matter
  publication-title: Ecography
– volume: 44
  start-page: 1259
  issue: 9
  year: 2021
  end-page: 1269
  article-title: Sampling biases shape our view of the natural world
  publication-title: Ecography
– volume: 121
  year: 2021
  article-title: High uncertainty in the effects of data characteristics on the performance of species distribution models
  publication-title: Ecological Indicators
– volume: 11
  issue: 1
  year: 2016
  article-title: Explaining spatial variation in the recording effort of citizen science data across multiple taxa
  publication-title: PLoS One
– volume: 8
  year: 2020
  article-title: Data quantity is more important than its spatial bias for predictive species distribution modelling
  publication-title: PeerJ
– ident: e_1_2_9_13_1
  doi: 10.1111/ecog.06219
– ident: e_1_2_9_38_1
  doi: 10.1111/ecog.01388
– ident: e_1_2_9_7_1
  doi: 10.1016/j.ecolmodel.2011.02.011
– ident: e_1_2_9_12_1
  doi: 10.1016/j.ecolmodel.2013.12.012
– ident: e_1_2_9_19_1
  doi: 10.1038/s41559‐023‐02047‐3
– ident: e_1_2_9_58_1
  doi: 10.1111/2041‐210X.13874
– volume: 8
  start-page: 1217
  year: 2007
  ident: e_1_2_9_22_1
  article-title: Maximum entropy density estimation with generalized regularization and an application to species distribution modeling
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_9_25_1
  doi: 10.1111/j.2041‐210X.2010.00036.x
– ident: e_1_2_9_27_1
  doi: 10.1016/j.biocon.2013.08.009
– ident: e_1_2_9_47_1
  doi: 10.1890/07-2153.1
– ident: e_1_2_9_3_1
  doi: 10.1111/j.1365‐2699.2006.01584.x
– ident: e_1_2_9_9_1
  doi: 10.1111/j.1600‐0587.2011.06545.x
– ident: e_1_2_9_17_1
  doi: 10.1111/2041‐210X.13142
– ident: e_1_2_9_18_1
  doi: 10.1016/j.ecolind.2019.105539
– ident: e_1_2_9_34_1
  doi: 10.1111/ecog.05926
– ident: e_1_2_9_2_1
  doi: 10.1111/ecog.01132
– ident: e_1_2_9_16_1
  doi: 10.1080/14772000.2012.705357
– ident: e_1_2_9_24_1
  doi: 10.1111/j.2006.0906‐7590.04596.x
– ident: e_1_2_9_21_1
  doi: 10.1016/j.ecolind.2022.109487
– ident: e_1_2_9_40_1
  doi: 10.1002/ece3.6254
– ident: e_1_2_9_51_1
  doi: 10.1111/j.1466‐8238.2011.00659.x
– ident: e_1_2_9_57_1
  doi: 10.1111/j.1600‐0587.2013.00441.x
– ident: e_1_2_9_20_1
  doi: 10.1111/2041‐210X.14101
– ident: e_1_2_9_41_1
  doi: 10.1111/j.2006.0906‐7590.04823.x
– ident: e_1_2_9_10_1
  doi: 10.1016/j.ecoinf.2013.11.002
– ident: e_1_2_9_43_1
  doi: 10.1111/j.1600‐0587.2013.07872.x
– ident: e_1_2_9_23_1
  doi: 10.1641/0006‐3568(2004)054[0486:RASBOT]2.0.CO;2
– volume-title: R: A language and environment for statistical computing
  year: 2020
  ident: e_1_2_9_48_1
– ident: e_1_2_9_35_1
  doi: 10.1002/ecs2.3422
– ident: e_1_2_9_26_1
  doi: 10.1146/annurev.ecolsys.110308.120159
– ident: e_1_2_9_30_1
  doi: 10.1111/syen.12589
– ident: e_1_2_9_46_1
  doi: 10.1016/j.ecolmodel.2005.03.026
– ident: e_1_2_9_42_1
  doi: 10.1088/1748‐9326/aabd42
– ident: e_1_2_9_28_1
  doi: 10.1371/journal.pone.0097122
– ident: e_1_2_9_32_1
  doi: 10.1111/geb.12268
– ident: e_1_2_9_31_1
  doi: 10.7717/peerj.10411
– ident: e_1_2_9_39_1
  doi: 10.1371/journal.pone.0147796
– ident: e_1_2_9_14_1
  doi: 10.1111/ddi.13698
– ident: e_1_2_9_50_1
  doi: 10.1111/ecog.02414
– ident: e_1_2_9_6_1
  doi: 10.1111/ddi.13442
– ident: e_1_2_9_36_1
  doi: 10.1111/2041‐210x.12945
– ident: e_1_2_9_29_1
  doi: 10.1111/ecog.02909
– ident: e_1_2_9_56_1
  doi: 10.1111/ecog.01509
– ident: e_1_2_9_53_1
  doi: 10.1016/S0304‐3800(01)00388‐X
– ident: e_1_2_9_52_1
  doi: 10.1371/journal.pone.0187906
– ident: e_1_2_9_5_1
  doi: 10.1111/geb.13491
– ident: e_1_2_9_54_1
  doi: 10.1002/ecs2.4703
– ident: e_1_2_9_15_1
  doi: 10.1111/j.0906-7590.2004.03764.x
– ident: e_1_2_9_59_1
  doi: 10.1111/ecog.04503
– ident: e_1_2_9_45_1
  doi: 10.1111/ecog.03049
– ident: e_1_2_9_33_1
  doi: 10.1111/ddi.13030
– ident: e_1_2_9_8_1
  doi: 10.1111/geb.13725
– ident: e_1_2_9_44_1
  doi: 10.1111/j.1600‐0587.2013.00205.x
– ident: e_1_2_9_55_1
  doi: 10.1016/j.ecolind.2020.107147
– ident: e_1_2_9_4_1
  doi: 10.1111/ddi.13802
– ident: e_1_2_9_11_1
  doi: 10.1016/j.ecolmodel.2018.08.013
– ident: e_1_2_9_49_1
  doi: 10.1111/jbi.12227
– ident: e_1_2_9_37_1
  doi: 10.1111/ddi.12096
SSID ssj0009534
Score 2.4898949
Snippet Aim The continuous development of statistical tools applied to ecology has contributed to great advances for modelling species' niches and distributions from...
AimThe continuous development of statistical tools applied to ecology has contributed to great advances for modelling species' niches and distributions from...
AIM: The continuous development of statistical tools applied to ecology has contributed to great advances for modelling species' niches and distributions from...
Aim The continuous development of statistical tools applied to ecology has contributed to great advances for modelling species' niches and distributions from...
SourceID hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1783
SubjectTerms Bias
Biodiversity and Ecology
biogeography
data collection
Datasets
ecological niche
Ecological niches
Ecology, environment
Environmental Sciences
Europe
Life Sciences
MaxEnt
model validation
Modelling
Niches
sample size
Sampling
Spatial filtering
spatial thinning
Spatial variations
Species
species distribution modelling
Statistical models
sub‐sampling
Title No optimal spatial filtering distance for mitigating sampling bias in ecological niche models
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjbi.14854
https://www.proquest.com/docview/3092001026
https://www.proquest.com/docview/3153736505
https://hal.u-pec.fr/hal-04570479
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS90wFD-oMOaLc5vi9Yts7MGXStu0acqeVJQ72WQMBR8mJZ_covaKvVdwf_3O6Rd3Y4Oxp4YmgaTJyfml-eV3AD7EPMsFuoFA5sYFCZc-UCKUgcmUsKlRLkrpvvOXCzG-Ss6v0-sl-NjfhWn1IYYfbmQZzXpNBq50vWjkukQzlylpgRJXiwDRt3hBcJe30lFETouzsFMValg8fc1ffNHyhJiQCzBzEaw23ubsFXzv29mSTG4P5zN9aH78JuH4nx1Zh7UOhbKjdtq8hiVXvYEXbVzKZ0ydmi71sguSPnl-CzcXUzbFFeYea9ZExManL-m0Hd0fswREcQYxRMHsvmylO_B9rYizjgldqpqVFXOmX29ZRTxU1gTjqTfg6uz08mQcdNEZAsMRRAWRizRH9BfZMI9DZY3lxuY-9zZyeaa9sDK1iEeczJxPjc95YkKjQqG80JHM-CasVNPKbQFLrAqN17gTRbBBi4LJuY2kIKkgIY0awUE_ToXppMspgsZdMWxhdFk033AE74eiD61exx8L4WAP-aSwPT76XNA7RLgZqe4_RSPY7edC0dl1XXDqK8nwiRG8G7LRIumYRVVuOscy6EQynJBhiu1uBv7vLSnOjz81ie1_L7oDqzEiq5botgsrs8e520NkNNP7sBwnX_cbQ_gJh3IImg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RahceFcsFDCIA5dUSZw4jsSloFbbst0DaqVeqshPNYJmq2YXqfx6ZpyHFgQS4hTLHkt27PF8tsffALxLeVEKNAORLI2LMi59pEQsI1MoYXOjXJLTe-eTuZieZcfn-fkGfBjewnT8EOOBG2lGWK9JwelAel3LdY16LvNsE-5QRO-wofqSrlHu8o48itzT0iLueYWCH89Q9RdrtHlJvpBrQHMdrgZ7c_gALoaWdm4mX_dWS71nfvxG4vi_XXkI93sgyva7mfMINlzzGO52oSlvMXVg-tR2Hyf98vYJXMwXbIGLzBXWbMkXG7--pgt3tIDMEhbFScQQCLOrumPvwPxWkds6JnStWlY3zJlhyWUNuaKyEI-nfQpnhwenn6ZRH6AhMhxxVJS4RHMEgImNyzRW1lhubOlLbxNXFtoLK3OLkMTJwvnc-JJnJjYqFsoLnciC78BWs2jcM2CZVbHxGjejiDdoXTAlt4kUxBYkpFETeD8MVGV69nIKovGtGncxuq7CP5zA21H0uqPs-KMQjvZYTiTb0_1ZRXkIcgsi3v-eTGB3mAxVr9ptxamvxMQnJvBmLEalpJsW1bjFCmXQjhQcwW-O7Q4j__eWVMcfj0Li-b-Lvobt6enJrJodzT-_gHspAq3O720XtpY3K_cSgdJSvwr68BPKkAve
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RUAv5VXE0hYM4sAlVRInjiNOfa22pawQolIPoMhPNYJmK7Jbqfx6ZvLSFoGEOGXkR2THHs_nePwNwJuYZ7lAMxDI3Lgg4dIHSoQyMJkSNjXKRSndd_4wFZOz5OQ8PV-Bd_1dmJYfYvjhRprRrNek4FfWLyu5LlHNZZqswp0EX09T-vBTvMS4y1vuKPJOi7OwoxVq3Hj6qreM0eoFuUIu4cxltNqYm_ED-NI3tPUy-ba7mOtd8_M3Dsf_7MlD2OhgKNtr580jWHHVY7jbBqa8QenIdNL9Lkr6xc0T-DqdsRkuMZdYsyZPbHz6ko7b0f4xS0gUpxBDGMwuy5a7A9NrRU7rKOhS1aysmDP9gssqckRlTTSeehPOxkefDyZBF54hMBxRVBC5SHOEf5EN8zhU1lhubO5zbyOXZ9oLK1OLgMTJzPnU-JwnJjQqFMoLHcmMP4W1ala5Z8ASq0LjNW5FEW3QqmBybiMpiCtISKNG8LYfp8J03OUUQuN7MexhdFk033AEr4eiVy1hxx8L4WAP-USxPdk7LSgNIW5GtPvX0Qi2-7lQdIpdF5z6Sjx8YgSvhmxUSTpnUZWbLbAMWpGMI_RNsd3NwP-9JcXJ_nEjPP_3oi_h3sfDcXF6PH2_BesxoqzW6W0b1uY_Fm4HUdJcv2i04Re5YgqW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=No+optimal+spatial+filtering+distance+for+mitigating+sampling+bias+in+ecological+niche+models&rft.jtitle=Journal+of+biogeography&rft.au=Lamboley%2C+Quentin&rft.au=Fourcade%2C+Yoan&rft.date=2024-09-01&rft.issn=0305-0270&rft.eissn=1365-2699&rft.volume=51&rft.issue=9&rft.spage=1783&rft.epage=1794&rft_id=info:doi/10.1111%2Fjbi.14854&rft.externalDBID=10.1111%252Fjbi.14854&rft.externalDocID=JBI14854
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0270&client=summon