Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models
SummaryThe computational efficiency of a typical, projection‐based, nonlinear model reduction method hinges on the efficient approximation, for explicit computations, of the scalar projections onto a subspace of a residual vector. For implicit computations, it also hinges on the additional efficient...
Saved in:
Published in | International journal for numerical methods in engineering Vol. 102; no. 5; pp. 1077 - 1110 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Blackwell Publishing Ltd
04.05.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SummaryThe computational efficiency of a typical, projection‐based, nonlinear model reduction method hinges on the efficient approximation, for explicit computations, of the scalar projections onto a subspace of a residual vector. For implicit computations, it also hinges on the additional efficient approximation of similar projections of the Jacobian of this residual with respect to the solution. The computation of both approximations is often referred to in the literature as hyper reduction. To this effect, this paper focuses on the analysis and comparative performance study for nonlinear finite element reduced‐order models of solids and structures of the recently developed energy‐conserving mesh sampling and weighting (ECSW) hyper reduction method. Unlike most alternative approaches, this method approximates the scalar projections of residuals and/or Jacobians directly, instead of approximating first these vectors and matrices then projecting the resulting approximations onto the subspaces of interest. In this paper, it is shown that ECSW distinguishes itself furthermore from other hyper reduction methods through its preservation of the Lagrangian structure associated with Hamilton's principle. For second‐order dynamical systems, this enables it to also preserve the numerical stability properties of the discrete system to which it is applied. It is also shown that for a fixed set of parameter values, the approximation error committed online by ECSW is bounded by its counterpart error committed off‐line during the training of this method. Therefore, this error can be estimated in this case a priori and controlled. The performance of ECSW is demonstrated first for two academic but nevertheless interesting nonlinear dynamic response problems. For both of them, ECSW is shown to preserve numerical stability and deliver the desired level of accuracy, whereas the discrete empirical interpolation method and its recently introduced unassembled variant are shown to be susceptible to failure because of numerical instability. The potential of ECSW for enabling the effective reduction of nonlinear finite element dynamic models of solids and structures is also highlighted with the realistic simulation of the nonlinear transient dynamic response of a complete car engine to thermal and combustion pressure loads using an implicit scheme. For this simulation, ECSW is reported to enable the reduction of the CPU time required by the high‐dimensional nonlinear finite element dynamic analysis by more than four orders of magnitude, while achieving a very good level of accuracy. Copyright © 2015 John Wiley & Sons, Ltd. |
---|---|
AbstractList | The computational efficiency of a typical, projection-based, nonlinear model reduction method hinges on the efficient approximation, for explicit computations, of the scalar projections onto a subspace of a residual vector. For implicit computations, it also hinges on the additional efficient approximation of similar projections of the Jacobian of this residual with respect to the solution. The computation of both approximations is often referred to in the literature as hyper reduction. To this effect, this paper focuses on the analysis and comparative performance study for nonlinear finite element reduced-order models of solids and structures of the recently developed energy-conserving mesh sampling and weighting (ECSW) hyper reduction method. Unlike most alternative approaches, this method approximates the scalar projections of residuals and/or Jacobians directly, instead of approximating first these vectors and matrices then projecting the resulting approximations onto the subspaces of interest. In this paper, it is shown that ECSW distinguishes itself furthermore from other hyper reduction methods through its preservation of the Lagrangian structure associated with Hamilton's principle. For second-order dynamical systems, this enables it to also preserve the numerical stability properties of the discrete system to which it is applied. It is also shown that for a fixed set of parameter values, the approximation error committed online by ECSW is bounded by its counterpart error committed off-line during the training of this method. Therefore, this error can be estimated in this case a priori and controlled. The performance of ECSW is demonstrated first for two academic but nevertheless interesting nonlinear dynamic response problems. For both of them, ECSW is shown to preserve numerical stability and deliver the desired level of accuracy, whereas the discrete empirical interpolation method and its recently introduced unassembled variant are shown to be susceptible to failure because of numerical instability. The potential of ECSW for enabling the effective reduction of nonlinear finite element dynamic models of solids and structures is also highlighted with the realistic simulation of the nonlinear transient dynamic response of a complete car engine to thermal and combustion pressure loads using an implicit scheme. For this simulation, ECSW is reported to enable the reduction of the CPU time required by the high-dimensional nonlinear finite element dynamic analysis by more than four orders of magnitude, while achieving a very good level of accuracy. Copyright copyright 2015 John Wiley & Sons, Ltd. Summary The computational efficiency of a typical, projection-based, nonlinear model reduction method hinges on the efficient approximation, for explicit computations, of the scalar projections onto a subspace of a residual vector. For implicit computations, it also hinges on the additional efficient approximation of similar projections of the Jacobian of this residual with respect to the solution. The computation of both approximations is often referred to in the literature as hyper reduction. To this effect, this paper focuses on the analysis and comparative performance study for nonlinear finite element reduced-order models of solids and structures of the recently developed energy-conserving mesh sampling and weighting (ECSW) hyper reduction method. Unlike most alternative approaches, this method approximates the scalar projections of residuals and/or Jacobians directly, instead of approximating first these vectors and matrices then projecting the resulting approximations onto the subspaces of interest. In this paper, it is shown that ECSW distinguishes itself furthermore from other hyper reduction methods through its preservation of the Lagrangian structure associated with Hamilton's principle. For second-order dynamical systems, this enables it to also preserve the numerical stability properties of the discrete system to which it is applied. It is also shown that for a fixed set of parameter values, the approximation error committed online by ECSW is bounded by its counterpart error committed off-line during the training of this method. Therefore, this error can be estimated in this case a priori and controlled. The performance of ECSW is demonstrated first for two academic but nevertheless interesting nonlinear dynamic response problems. For both of them, ECSW is shown to preserve numerical stability and deliver the desired level of accuracy, whereas the discrete empirical interpolation method and its recently introduced unassembled variant are shown to be susceptible to failure because of numerical instability. The potential of ECSW for enabling the effective reduction of nonlinear finite element dynamic models of solids and structures is also highlighted with the realistic simulation of the nonlinear transient dynamic response of a complete car engine to thermal and combustion pressure loads using an implicit scheme. For this simulation, ECSW is reported to enable the reduction of the CPU time required by the high-dimensional nonlinear finite element dynamic analysis by more than four orders of magnitude, while achieving a very good level of accuracy. Copyright © 2015 John Wiley & Sons, Ltd. The computational efficiency of a typical, projection‐based, nonlinear model reduction method hinges on the efficient approximation, for explicit computations, of the scalar projections onto a subspace of a residual vector. For implicit computations, it also hinges on the additional efficient approximation of similar projections of the Jacobian of this residual with respect to the solution. The computation of both approximations is often referred to in the literature as hyper reduction. To this effect, this paper focuses on the analysis and comparative performance study for nonlinear finite element reduced‐order models of solids and structures of the recently developed energy‐conserving mesh sampling and weighting (ECSW) hyper reduction method. Unlike most alternative approaches, this method approximates the scalar projections of residuals and/or Jacobians directly, instead of approximating first these vectors and matrices then projecting the resulting approximations onto the subspaces of interest. In this paper, it is shown that ECSW distinguishes itself furthermore from other hyper reduction methods through its preservation of the Lagrangian structure associated with Hamilton's principle. For second‐order dynamical systems, this enables it to also preserve the numerical stability properties of the discrete system to which it is applied. It is also shown that for a fixed set of parameter values, the approximation error committed online by ECSW is bounded by its counterpart error committed off‐line during the training of this method. Therefore, this error can be estimated in this case a priori and controlled. The performance of ECSW is demonstrated first for two academic but nevertheless interesting nonlinear dynamic response problems. For both of them, ECSW is shown to preserve numerical stability and deliver the desired level of accuracy, whereas the discrete empirical interpolation method and its recently introduced unassembled variant are shown to be susceptible to failure because of numerical instability. The potential of ECSW for enabling the effective reduction of nonlinear finite element dynamic models of solids and structures is also highlighted with the realistic simulation of the nonlinear transient dynamic response of a complete car engine to thermal and combustion pressure loads using an implicit scheme. For this simulation, ECSW is reported to enable the reduction of the CPU time required by the high‐dimensional nonlinear finite element dynamic analysis by more than four orders of magnitude, while achieving a very good level of accuracy. Copyright © 2015 John Wiley & Sons, Ltd. SummaryThe computational efficiency of a typical, projection‐based, nonlinear model reduction method hinges on the efficient approximation, for explicit computations, of the scalar projections onto a subspace of a residual vector. For implicit computations, it also hinges on the additional efficient approximation of similar projections of the Jacobian of this residual with respect to the solution. The computation of both approximations is often referred to in the literature as hyper reduction. To this effect, this paper focuses on the analysis and comparative performance study for nonlinear finite element reduced‐order models of solids and structures of the recently developed energy‐conserving mesh sampling and weighting (ECSW) hyper reduction method. Unlike most alternative approaches, this method approximates the scalar projections of residuals and/or Jacobians directly, instead of approximating first these vectors and matrices then projecting the resulting approximations onto the subspaces of interest. In this paper, it is shown that ECSW distinguishes itself furthermore from other hyper reduction methods through its preservation of the Lagrangian structure associated with Hamilton's principle. For second‐order dynamical systems, this enables it to also preserve the numerical stability properties of the discrete system to which it is applied. It is also shown that for a fixed set of parameter values, the approximation error committed online by ECSW is bounded by its counterpart error committed off‐line during the training of this method. Therefore, this error can be estimated in this case a priori and controlled. The performance of ECSW is demonstrated first for two academic but nevertheless interesting nonlinear dynamic response problems. For both of them, ECSW is shown to preserve numerical stability and deliver the desired level of accuracy, whereas the discrete empirical interpolation method and its recently introduced unassembled variant are shown to be susceptible to failure because of numerical instability. The potential of ECSW for enabling the effective reduction of nonlinear finite element dynamic models of solids and structures is also highlighted with the realistic simulation of the nonlinear transient dynamic response of a complete car engine to thermal and combustion pressure loads using an implicit scheme. For this simulation, ECSW is reported to enable the reduction of the CPU time required by the high‐dimensional nonlinear finite element dynamic analysis by more than four orders of magnitude, while achieving a very good level of accuracy. Copyright © 2015 John Wiley & Sons, Ltd. |
Author | Chapman, Todd Farhat, Charbel Avery, Philip |
Author_xml | – sequence: 1 givenname: Charbel surname: Farhat fullname: Farhat, Charbel email: Correspondence to: Charbel Farhat, Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305-4035, USA., cfarhat@stanford.edu organization: Department of Aeronautics and Astronautics, 94305-4035, Stanford, CA, USA – sequence: 2 givenname: Todd surname: Chapman fullname: Chapman, Todd organization: Department of Aeronautics and Astronautics, CA, 94305-4035, Stanford, USA – sequence: 3 givenname: Philip surname: Avery fullname: Avery, Philip organization: Department of Aeronautics and Astronautics, CA, 94305-4035, Stanford, USA |
BookMark | eNp1kVFv1SAcxYmZiXebiR-BxBcf1jtob0t51GWbJtt1Rs18IxT-vZfZQgfU2a_lJ5TuLjMz-gSE3zn8D2cf7VlnAaFXlCwpIfmx7WG5qnPyDC0o4SwjOWF7aJGueFbymr5A-yHcEEJpSYoF-vU5-lHF0UM2eAjgfxi7OcIhysZ0Jk5HWFqNpVKjl2rCg3cD-GggYNfiuAUMFvxmypSzD2IcZD9082ZW3oHZbON86iFuncat8_e67ZSMsAedXjfOznYpSdKB9Lg11sTk3UEPNmI9WdkbhXunoQuH6HkruwAvH9YD9PXs9MvJ--zi4_mHk7cXmSqqFcl0m_6jrWRNWcMUq0ve6KbguuC85KTOW9nyVSVzTku9UroG1TRVI0FVsqpVI4sD9Gbnm0LfjhCi6E1Q0HXSghuDoFVdMs4LRhP6-i_0xo3epukSxSgllBVlopY7SnkXgodWKBPlnD56aTpBiZgrFKlCMVf4Z4JHweBNL_30LzTboXemg-m_nFhfnj7lTYjw85GX_ruoWMFKcb0-F9_erdfk-uqTOCt-A3htwSo |
CODEN | IJNMBH |
CitedBy_id | crossref_primary_10_1016_j_finel_2024_104222 crossref_primary_10_1016_j_finel_2023_104068 crossref_primary_10_1002_nme_6425 crossref_primary_10_1002_nme_6667 crossref_primary_10_1002_fld_5354 crossref_primary_10_1016_j_cma_2025_117863 crossref_primary_10_1002_fld_5234 crossref_primary_10_1016_j_cma_2023_116498 crossref_primary_10_1017_S0962492922000058 crossref_primary_10_1007_s11071_022_07733_8 crossref_primary_10_1115_1_4043450 crossref_primary_10_1515_cmam_2021_0131 crossref_primary_10_1016_j_finel_2023_104069 crossref_primary_10_1016_j_jcp_2020_109789 crossref_primary_10_1016_j_apnum_2019_04_020 crossref_primary_10_1016_j_compstruc_2017_04_005 crossref_primary_10_1016_j_apnum_2021_05_011 crossref_primary_10_1016_j_jcp_2022_111904 crossref_primary_10_1002_nme_5980 crossref_primary_10_1016_j_compfluid_2023_106013 crossref_primary_10_1016_j_cma_2018_02_028 crossref_primary_10_1016_j_jcp_2022_111068 crossref_primary_10_1002_nme_6395 crossref_primary_10_1016_j_jcp_2022_111348 crossref_primary_10_1002_nme_6033 crossref_primary_10_1016_j_camwa_2023_10_018 crossref_primary_10_1007_s11831_018_9258_3 crossref_primary_10_3390_act12060235 crossref_primary_10_1016_j_compstruc_2017_08_016 crossref_primary_10_1137_22M148402X crossref_primary_10_1016_j_cma_2017_06_029 crossref_primary_10_1137_17M1129635 crossref_primary_10_1016_j_jcp_2016_08_025 crossref_primary_10_1016_j_finel_2024_104237 crossref_primary_10_1016_j_cma_2022_115392 crossref_primary_10_1002_nme_7590 crossref_primary_10_1137_24M1652490 crossref_primary_10_1007_s10915_024_02488_3 crossref_primary_10_1115_1_4055546 crossref_primary_10_1016_j_jcp_2023_112727 crossref_primary_10_1016_j_applthermaleng_2024_124103 crossref_primary_10_1002_nme_5332 crossref_primary_10_1016_j_cma_2022_115786 crossref_primary_10_1016_j_cma_2022_115701 crossref_primary_10_1016_j_compfluid_2016_03_032 crossref_primary_10_1016_j_mechrescom_2023_104056 crossref_primary_10_1016_j_cma_2023_116398 crossref_primary_10_1016_j_cma_2023_116552 crossref_primary_10_1007_s10915_019_00917_2 crossref_primary_10_1002_nme_6447 crossref_primary_10_1002_nme_6964 crossref_primary_10_1016_j_jcp_2024_113230 crossref_primary_10_1115_1_4044805 crossref_primary_10_1002_nme_6603 crossref_primary_10_1137_23M1607799 crossref_primary_10_1137_19M1242963 crossref_primary_10_1016_j_finel_2022_103793 crossref_primary_10_3390_fluids5040189 crossref_primary_10_1016_j_cma_2017_06_011 crossref_primary_10_1137_22M1520189 crossref_primary_10_1016_j_cma_2019_112690 crossref_primary_10_1016_j_jocs_2017_01_004 crossref_primary_10_1016_j_cmpb_2024_108466 crossref_primary_10_1115_1_4053994 crossref_primary_10_1007_s00466_020_01946_7 crossref_primary_10_1016_j_crma_2017_10_020 crossref_primary_10_1007_s00466_017_1509_x crossref_primary_10_1002_nme_7385 crossref_primary_10_1007_s42967_023_00308_3 crossref_primary_10_1016_j_jcp_2023_112697 crossref_primary_10_1016_j_cma_2021_114206 crossref_primary_10_1016_j_engappai_2021_104652 crossref_primary_10_1016_j_ifacol_2018_04_019 crossref_primary_10_1137_21M1435343 crossref_primary_10_1016_j_tws_2019_03_009 crossref_primary_10_1016_j_cma_2024_117672 crossref_primary_10_1016_j_cma_2024_117278 crossref_primary_10_1109_TMAG_2023_3332210 crossref_primary_10_29252_nmce_3_1_58 crossref_primary_10_1016_j_cma_2020_113192 crossref_primary_10_1016_j_ymssp_2018_09_028 crossref_primary_10_1007_s00466_019_01703_5 crossref_primary_10_1115_1_4036989 crossref_primary_10_2514_1_J056314 crossref_primary_10_1016_j_cma_2016_11_016 crossref_primary_10_1016_j_ast_2017_05_041 crossref_primary_10_1016_j_jcp_2024_113058 crossref_primary_10_1002_nme_6505 crossref_primary_10_1016_j_cma_2023_116298 crossref_primary_10_1016_j_ast_2024_109312 crossref_primary_10_1016_j_cma_2023_116334 crossref_primary_10_1002_nme_5535 crossref_primary_10_2514_1_J060581 crossref_primary_10_1002_nme_70007 crossref_primary_10_1007_s10444_019_09721_w crossref_primary_10_1016_j_cam_2025_116584 crossref_primary_10_1115_1_4040021 crossref_primary_10_1016_j_cam_2019_112525 crossref_primary_10_1186_s40323_022_00235_7 crossref_primary_10_1115_1_4043892 crossref_primary_10_3390_en17205145 crossref_primary_10_1007_s00466_023_02416_6 crossref_primary_10_1016_j_jcp_2025_113729 crossref_primary_10_1016_j_ymssp_2021_108051 crossref_primary_10_1016_j_matcom_2022_10_034 crossref_primary_10_1002_nme_6236 crossref_primary_10_1016_j_jcp_2021_110336 crossref_primary_10_1016_j_jcp_2023_112512 crossref_primary_10_1007_s00466_017_1435_y crossref_primary_10_1007_s10444_019_09710_z crossref_primary_10_1016_j_ijnonlinmec_2022_104023 crossref_primary_10_1186_s40323_024_00263_5 crossref_primary_10_1016_j_cma_2024_117535 crossref_primary_10_1016_j_ymssp_2024_112261 crossref_primary_10_1063_5_0246751 crossref_primary_10_1002_nme_7305 crossref_primary_10_1016_j_cma_2024_117254 crossref_primary_10_1016_j_physd_2020_132614 crossref_primary_10_1016_j_cma_2024_117532 crossref_primary_10_1016_j_jcp_2022_111141 crossref_primary_10_1007_s10915_022_02001_8 crossref_primary_10_1007_s00158_022_03282_1 crossref_primary_10_1016_j_cma_2020_113568 crossref_primary_10_2514_1_J060742 crossref_primary_10_1016_j_cma_2021_113744 crossref_primary_10_1007_s11222_020_09954_6 crossref_primary_10_1088_1742_6596_1106_1_012024 crossref_primary_10_1002_nme_5135 crossref_primary_10_1016_j_jsv_2021_116055 crossref_primary_10_1016_j_cma_2022_115747 crossref_primary_10_3390_mca24020041 crossref_primary_10_1016_j_jcp_2023_112520 crossref_primary_10_1016_j_jcp_2022_111655 crossref_primary_10_2139_ssrn_4591464 crossref_primary_10_1002_nme_6187 crossref_primary_10_1016_j_jcp_2024_113677 crossref_primary_10_3390_math11183870 crossref_primary_10_2139_ssrn_4134905 crossref_primary_10_1016_j_jcp_2023_112420 crossref_primary_10_1016_j_cma_2025_117920 crossref_primary_10_1016_j_cma_2019_112652 crossref_primary_10_1002_nme_6009 crossref_primary_10_1016_j_tws_2017_05_001 crossref_primary_10_3390_app7060586 crossref_primary_10_1137_22M1503890 crossref_primary_10_1016_j_cma_2016_09_039 crossref_primary_10_1016_j_cpc_2024_109404 crossref_primary_10_1115_1_4043083 crossref_primary_10_2514_1_J057797 crossref_primary_10_1016_j_ymssp_2023_110901 crossref_primary_10_2139_ssrn_4162426 crossref_primary_10_1007_s11071_023_09213_z crossref_primary_10_1186_s40323_021_00203_7 crossref_primary_10_1007_s11831_017_9241_4 crossref_primary_10_1016_j_cma_2022_115813 crossref_primary_10_1016_j_compstruc_2024_107500 crossref_primary_10_1016_j_crme_2018_04_002 crossref_primary_10_1016_j_cma_2021_113956 crossref_primary_10_1002_nme_6634 crossref_primary_10_1002_nme_7326 crossref_primary_10_1007_s00466_018_1608_3 crossref_primary_10_1002_cnm_3320 crossref_primary_10_1002_pamm_202300063 crossref_primary_10_1007_s00371_018_1533_7 crossref_primary_10_3390_act10110279 crossref_primary_10_5050_KSNVE_2021_31_6_604 crossref_primary_10_1051_m2an_2020073 crossref_primary_10_1038_s41598_024_56118_x crossref_primary_10_1016_j_cma_2016_10_022 crossref_primary_10_1016_j_compstruc_2017_06_003 crossref_primary_10_12989_sss_2016_18_1_001 crossref_primary_10_1002_nme_6365 crossref_primary_10_1002_nme_7179 crossref_primary_10_1016_j_jcp_2020_109681 crossref_primary_10_1002_nme_5312 crossref_primary_10_1002_pamm_201710011 crossref_primary_10_1002_nme_7056 |
Cites_doi | 10.1017/S0022112004001338 10.1016/0045-7949(88)90004-1 10.1002/1099-1506(200010/12)7:7/8<687::AID-NLA219>3.0.CO;2-S 10.1016/0956-0521(94)00024-G 10.1016/j.jcp.2013.02.028 10.1090/qam/910462 10.1364/JOSAA.12.001657 10.2514/6.2012-1969 10.1115/1.1448332 10.1109/TAC.2008.2006102 10.1002/nme.76 10.1016/S0045-7825(97)00216-8 10.2514/6.2003-4213 10.2514/6.2012-2686 10.1109/CDC.2009.5400045 10.1002/nme.2309 10.1002/nme.4371 10.1016/j.jcp.2004.07.015 10.1002/nme.3050 10.1002/nme.4668 10.2514/6.2000-2545 10.1016/j.cma.2005.08.026 10.1145/1409060.1409118 10.1137/090766498 10.2514/1.J050233 10.1002/nme.2746 10.1002/nme.3074 10.1016/S0304-3975(97)00115-1 10.1007/978-3-319-02090-7_8 10.1002/nme.4363 10.1145/1073204.1073300 10.2514/2.1975 10.1051/m2an:2007031 10.2514/1.35850 10.1002/nme.167 10.1007/978-0-387-21792-5 10.1002/nme.1620320604 10.1016/S0045-7930(01)00104-9 |
ContentType | Journal Article |
Copyright | Copyright © 2015 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2015 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1002/nme.4820 |
DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Mathematics |
EISSN | 1097-0207 |
EndPage | 1110 |
ExternalDocumentID | 3648544161 10_1002_nme_4820 NME4820 ark_67375_WNG_XBNN0WPQ_F |
Genre | article |
GrantInformation_xml | – fundername: Office of Naval Research funderid: N00014‐11‐1‐0707 – fundername: Army Research Laboratory through the Army High Performance Computing Research Center under Cooperative Agreement funderid: W911NF‐07‐2‐0027 |
GroupedDBID | -~X .3N .4S .DC .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RWS RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION 7SC 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c3640-df100f6a817b7c7859bdb39d39959082faf946a2915d4cd8ecbb6baec6a68cba3 |
IEDL.DBID | DR2 |
ISSN | 0029-5981 |
IngestDate | Fri Jul 11 11:50:29 EDT 2025 Fri Jul 25 12:14:37 EDT 2025 Thu Apr 24 23:08:54 EDT 2025 Tue Jul 01 04:51:48 EDT 2025 Wed Jan 22 16:59:04 EST 2025 Wed Oct 30 09:53:10 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3640-df100f6a817b7c7859bdb39d39959082faf946a2915d4cd8ecbb6baec6a68cba3 |
Notes | Office of Naval Research - No. N00014-11-1-0707 istex:26BEECD7CE206F5EB3D6ED345CADB665CDF1FCAE ark:/67375/WNG-XBNN0WPQ-F ArticleID:NME4820 Army Research Laboratory through the Army High Performance Computing Research Center under Cooperative Agreement - No. W911NF-07-2-0027 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1671101735 |
PQPubID | 996376 |
PageCount | 34 |
ParticipantIDs | proquest_miscellaneous_1685799371 proquest_journals_1671101735 crossref_citationtrail_10_1002_nme_4820 crossref_primary_10_1002_nme_4820 wiley_primary_10_1002_nme_4820_NME4820 istex_primary_ark_67375_WNG_XBNN0WPQ_F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 4 May 2015 |
PublicationDateYYYYMMDD | 2015-05-04 |
PublicationDate_xml | – month: 05 year: 2015 text: 4 May 2015 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | International journal for numerical methods in engineering |
PublicationTitleAlternate | Int. J. Numer. Meth. Engng |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Prud'homme C, Rovas D, Veroy K, Machiels L, Maday Y, Patera A, Turinici G. Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods. Journal of Fluids Engineering-Transactions of the ASME 2002; 124(1):70-80. Everson R, Sirovich L. Karhunen-Loeve procedure for gappy data. Journal of the Optical Society of America A 1995; 12(8):1657-1664. Paul-Dubois-Taine A, Amsallem D. An adaptive and efficient greedy procedure for the optimal training of parametric reduced-order models. International Journal for Numerical Methods in Engineering 2014. (submitted for publication). Grepl MA, Maday Y, Nguyen NC, Patera A. Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM: Mathematical Modelling and Numerical Analysis 2007; 41(03):575-605. Tiso P, Rixen DJ. Discrete empirical interpolation method for finite element structural dynamics. Topics in Nonlinear Dynamics 2013; 1:203-212. Farhat C, Lesoinne M, Pierson K. A scalable dual-primal domain decomposition method. Numerical Linear Algebra with Applications 2000; 7:687-714. Astrid P, Weiland S, Willcox K, Backx T. Missing point estimation in models described by proper orthogonal decomposition. Automatic Control, IEEE Transactions on 2008; 53(10):2237-2251. Krysl P, Lall S, Marsden J. Dimensional model reduction in non-linear finite element dynamics of solids and structures. International Journal for Numerical Methods in Engineering 2001; 51(4):479-504. Sirovich L. Turbulence and the dynamics of coherent structures. I-coherent structures. Quarterly of Applied Mathematics 1987; 45:561-571. Carlberg K, Farhat C, Cortial J, Amsallem D. The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. Journal of Computational Physics 2013; 242:623-647. Geuzaine P, Brown G, Harris C, Farhat C. Aeroelastic dynamic analysis of a full F-16 configuration for various flight conditions. AIAA Journal 2003; 41:363-371. Farhat C, Lantéri S, Simon HD. TOP/DOMDEC, a software tool for mesh partitioning and parallel processing. Journal of Computing Systems in Engineering 1995; 6(1):13-26. Bui-Thanh T, Willcox K, Ghattas O. Parametric reduced-order models for probabilistic analysis of unsteady aerodynamic applications. AIAA Journal 2008; 46(10):2520-2529. Marsden JE, Ratiu TS. Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, vol. 17, Springer: New York, NY, 1999. Galbally D, Fidkowski K, Willcox K, Ghattas O. Non-linear model reduction for uncertainty quantification in large-scale inverse problems. International Journal for Numerical Methods in Engineering 2010; 81(12):1581-1608. Farhat C, Lesoinne M, LeTallec P. Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity. Computer Methods in Applied Mechanics and Engineering 1998; 157(1-2):95-114. Barbič J, James DL. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Transactions on Graphics (TOG) 2005; 24(3):982-990. Venturi D, Karniadakis G. Gappy data and reconstruction procedures for flow past a cylinder. Journal of Fluid Mechanics 2004; 519:315-336. Farhat C, Geuzaine P, Brown G. Application of a three-field nonlinear fluid-structure formulation to the prediction of the aeroelastic parameters of an F-16 fighter. Computers and Fluids 2003; 32:3-29. Farhat C, Lesoinne M, LeTallec P, Pierson K, Rixen D. FETI-DP: a dual-primal unified FETI method-part I: a faster alternative to the two-level FETI method. International Journal for Numerical Methods in Engineering 2001; 50:1523-1544. Amsallem D, Cortial J, Farhat C. Toward real-time CFD-based aeroelastic computations using a database of reduced-order information. AIAA Journal 2010; 48(9):2029-2037. Amsallem D, Zahr MJ, Farhat C. Nonlinear model order reduction based on local reduced-order bases. International Journal for Numerical Methods in Engineering 2012; 92(10):891-916. Astrid P 2004; Reduction of process simulation models: a proper orthogonal decomposition approach, Technische Universiteit Eindhoven: Eindhoven, Netherlands. Astrid P, Weiland S, Willcox K, Backx T. Missing point estimation in models described by proper orthogonal decomposition. IEEE Transactions on Automatic Control 2008; 53(10):2237-2251. Farhat C, Avery P, Chapman T, Cortial J. Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency. International Journal for Numerical Methods in Engineering 2014; 98(9):625-662. Ryckelynck D. A priori hyperreduction method: an adaptive approach. Journal of Computational Physics 2005; 202:346-366. Lawson CL, Hanson RJ. Solving Least Squares Problems, vol. 161, Englewood Cliffs, NJ: Prentice-hall, 1974. Chaturantabut S, Sorensen DC. Nonlinear model reduction via discrete empirical interpolation. SIAM Journal on Scientific and Statistical Computing 2010; 32(5):2737-2764. Nguyen N, Peraire J. An efficient reduced-order modeling approach for non-linear parametrized partial differential equations. International Journal for Numerical Methods in Engineering 2008; 76(1):27-55. Farhat C. A simple and efficient automatic FEM domain decomposer. Computers and Structures 1988; 28(5):579-602. Lieu T, Farhat C, Lesoinne M. Reduced-order fluid/structure modeling of a complete aircraft configuration. Computer Methods in Applied Mechanics and Engineering 2006; 195(41-43):5730-5742. Nielsen MB, Krenk S. Conservative integration of rigid body motion by quaternion parameters with implicit constraints. International Journal for Numerical Methods in Engineering 2012; 92(8):734-752. An SS, Kim T, James DL. Optimizing cubature for efficient integration of subspace deformations. ACM Transactions on Graphics 2008; 27(5):165. Carlberg K, Farhat C. A low-cost, goal-oriented compact proper orthogonal decomposition basis for model reduction of static systems. International Journal for Numerical Methods in Engineering 2011; 86(3):381-402. Carlberg K, Bou-Mosleh C, Farhat C. Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations. International Journal for Numerical Methods in Engineering 2011; 86(2):155-181. Amaldi E, Kann V. On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theoretical Computer Science 1998; 209(1):237-260. Farhat C, Roux F. A method of finite element tearing and interconnecting and its parallel solution algorithm. International Journal for Numerical Methods in Engineering 1991; 32:1205-1227. 2010; 32 2001; 50 2013; 1 2012 1991; 32 1995; 12 2000; 7 2006; 195 1974 2008; 76 2004 2013; 242 2008; 53 2010; 81 1998; 157 1995; 6 2003; 32 2005; 24 1999 2012; 92 1987; 45 2010; 48 2002; 124 2005; 202 2008; 27 1988; 28 2011; 86 1998; 209 2008; 46 2014 2007; 41 2003; 41 2001; 51 2004; 519 2014; 98 Paul‐Dubois‐Taine A (e_1_2_10_40_1) 2014 e_1_2_10_46_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_42_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 Tiso P (e_1_2_10_28_1) 2013; 1 Astrid P (e_1_2_10_23_1) 2004 Lawson CL (e_1_2_10_36_1) 1974 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – reference: Lieu T, Farhat C, Lesoinne M. Reduced-order fluid/structure modeling of a complete aircraft configuration. Computer Methods in Applied Mechanics and Engineering 2006; 195(41-43):5730-5742. – reference: Chaturantabut S, Sorensen DC. Nonlinear model reduction via discrete empirical interpolation. SIAM Journal on Scientific and Statistical Computing 2010; 32(5):2737-2764. – reference: Farhat C, Lesoinne M, LeTallec P. Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity. Computer Methods in Applied Mechanics and Engineering 1998; 157(1-2):95-114. – reference: Astrid P 2004; Reduction of process simulation models: a proper orthogonal decomposition approach, Technische Universiteit Eindhoven: Eindhoven, Netherlands. – reference: Farhat C, Geuzaine P, Brown G. Application of a three-field nonlinear fluid-structure formulation to the prediction of the aeroelastic parameters of an F-16 fighter. Computers and Fluids 2003; 32:3-29. – reference: Farhat C. A simple and efficient automatic FEM domain decomposer. Computers and Structures 1988; 28(5):579-602. – reference: Prud'homme C, Rovas D, Veroy K, Machiels L, Maday Y, Patera A, Turinici G. Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods. Journal of Fluids Engineering-Transactions of the ASME 2002; 124(1):70-80. – reference: Amsallem D, Zahr MJ, Farhat C. Nonlinear model order reduction based on local reduced-order bases. International Journal for Numerical Methods in Engineering 2012; 92(10):891-916. – reference: Amsallem D, Cortial J, Farhat C. Toward real-time CFD-based aeroelastic computations using a database of reduced-order information. AIAA Journal 2010; 48(9):2029-2037. – reference: Nguyen N, Peraire J. An efficient reduced-order modeling approach for non-linear parametrized partial differential equations. International Journal for Numerical Methods in Engineering 2008; 76(1):27-55. – reference: Astrid P, Weiland S, Willcox K, Backx T. Missing point estimation in models described by proper orthogonal decomposition. Automatic Control, IEEE Transactions on 2008; 53(10):2237-2251. – reference: Geuzaine P, Brown G, Harris C, Farhat C. Aeroelastic dynamic analysis of a full F-16 configuration for various flight conditions. AIAA Journal 2003; 41:363-371. – reference: Paul-Dubois-Taine A, Amsallem D. An adaptive and efficient greedy procedure for the optimal training of parametric reduced-order models. International Journal for Numerical Methods in Engineering 2014. (submitted for publication). – reference: Tiso P, Rixen DJ. Discrete empirical interpolation method for finite element structural dynamics. Topics in Nonlinear Dynamics 2013; 1:203-212. – reference: Krysl P, Lall S, Marsden J. Dimensional model reduction in non-linear finite element dynamics of solids and structures. International Journal for Numerical Methods in Engineering 2001; 51(4):479-504. – reference: Sirovich L. Turbulence and the dynamics of coherent structures. I-coherent structures. Quarterly of Applied Mathematics 1987; 45:561-571. – reference: Grepl MA, Maday Y, Nguyen NC, Patera A. Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM: Mathematical Modelling and Numerical Analysis 2007; 41(03):575-605. – reference: Farhat C, Lesoinne M, LeTallec P, Pierson K, Rixen D. FETI-DP: a dual-primal unified FETI method-part I: a faster alternative to the two-level FETI method. International Journal for Numerical Methods in Engineering 2001; 50:1523-1544. – reference: Carlberg K, Farhat C. A low-cost, goal-oriented compact proper orthogonal decomposition basis for model reduction of static systems. International Journal for Numerical Methods in Engineering 2011; 86(3):381-402. – reference: Farhat C, Roux F. A method of finite element tearing and interconnecting and its parallel solution algorithm. International Journal for Numerical Methods in Engineering 1991; 32:1205-1227. – reference: Nielsen MB, Krenk S. Conservative integration of rigid body motion by quaternion parameters with implicit constraints. International Journal for Numerical Methods in Engineering 2012; 92(8):734-752. – reference: Bui-Thanh T, Willcox K, Ghattas O. Parametric reduced-order models for probabilistic analysis of unsteady aerodynamic applications. AIAA Journal 2008; 46(10):2520-2529. – reference: Farhat C, Lesoinne M, Pierson K. A scalable dual-primal domain decomposition method. Numerical Linear Algebra with Applications 2000; 7:687-714. – reference: Everson R, Sirovich L. Karhunen-Loeve procedure for gappy data. Journal of the Optical Society of America A 1995; 12(8):1657-1664. – reference: Ryckelynck D. A priori hyperreduction method: an adaptive approach. Journal of Computational Physics 2005; 202:346-366. – reference: Lawson CL, Hanson RJ. Solving Least Squares Problems, vol. 161, Englewood Cliffs, NJ: Prentice-hall, 1974. – reference: Carlberg K, Bou-Mosleh C, Farhat C. Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations. International Journal for Numerical Methods in Engineering 2011; 86(2):155-181. – reference: Amaldi E, Kann V. On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theoretical Computer Science 1998; 209(1):237-260. – reference: Farhat C, Lantéri S, Simon HD. TOP/DOMDEC, a software tool for mesh partitioning and parallel processing. Journal of Computing Systems in Engineering 1995; 6(1):13-26. – reference: Carlberg K, Farhat C, Cortial J, Amsallem D. The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. Journal of Computational Physics 2013; 242:623-647. – reference: Galbally D, Fidkowski K, Willcox K, Ghattas O. Non-linear model reduction for uncertainty quantification in large-scale inverse problems. International Journal for Numerical Methods in Engineering 2010; 81(12):1581-1608. – reference: Venturi D, Karniadakis G. Gappy data and reconstruction procedures for flow past a cylinder. Journal of Fluid Mechanics 2004; 519:315-336. – reference: Farhat C, Avery P, Chapman T, Cortial J. Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency. International Journal for Numerical Methods in Engineering 2014; 98(9):625-662. – reference: An SS, Kim T, James DL. Optimizing cubature for efficient integration of subspace deformations. ACM Transactions on Graphics 2008; 27(5):165. – reference: Astrid P, Weiland S, Willcox K, Backx T. Missing point estimation in models described by proper orthogonal decomposition. IEEE Transactions on Automatic Control 2008; 53(10):2237-2251. – reference: Marsden JE, Ratiu TS. Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, vol. 17, Springer: New York, NY, 1999. – reference: Barbič J, James DL. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Transactions on Graphics (TOG) 2005; 24(3):982-990. – volume: 32 start-page: 1205 year: 1991 end-page: 1227 article-title: A method of finite element tearing and interconnecting and its parallel solution algorithm publication-title: International Journal for Numerical Methods in Engineering – volume: 24 start-page: 982 issue: 3 year: 2005 end-page: 990 article-title: Real‐time subspace integration for St. Venant–Kirchhoff deformable models publication-title: ACM Transactions on Graphics (TOG) – volume: 41 start-page: 363 year: 2003 end-page: 371 article-title: Aeroelastic dynamic analysis of a full F‐16 configuration for various flight conditions publication-title: AIAA Journal – volume: 86 start-page: 155 issue: 2 year: 2011 end-page: 181 article-title: Efficient non‐linear model reduction via a least‐squares Petrov–Galerkin projection and compressive tensor approximations publication-title: International Journal for Numerical Methods in Engineering – volume: 242 start-page: 623 year: 2013 end-page: 647 article-title: The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows publication-title: Journal of Computational Physics – year: 2014 article-title: An adaptive and efficient greedy procedure for the optimal training of parametric reduced‐order models publication-title: International Journal for Numerical Methods in Engineering – volume: 27 start-page: 165 issue: 5 year: 2008 article-title: Optimizing cubature for efficient integration of subspace deformations publication-title: ACM Transactions on Graphics – volume: 124 start-page: 70 issue: 1 year: 2002 end-page: 80 article-title: Reliable real‐time solution of parametrized partial differential equations: reduced‐basis output bound methods publication-title: Journal of Fluids Engineering—Transactions of the ASME – volume: 86 start-page: 381 issue: 3 year: 2011 end-page: 402 article-title: A low‐cost, goal‐oriented compact proper orthogonal decomposition basis for model reduction of static systems publication-title: International Journal for Numerical Methods in Engineering – volume: 1 start-page: 203 year: 2013 end-page: 212 article-title: Discrete empirical interpolation method for finite element structural dynamics publication-title: Topics in Nonlinear Dynamics – volume: 92 start-page: 891 issue: 10 year: 2012 end-page: 916 article-title: Nonlinear model order reduction based on local reduced‐order bases publication-title: International Journal for Numerical Methods in Engineering – volume: 6 start-page: 13 issue: 1 year: 1995 end-page: 26 article-title: TOP/DOMDEC, a software tool for mesh partitioning and parallel processing publication-title: Journal of Computing Systems in Engineering – volume: 157 start-page: 95 issue: 1‐2 year: 1998 end-page: 114 article-title: Load and motion transfer algorithms for fluid/structure interaction problems with non‐matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 28 start-page: 579 issue: 5 year: 1988 end-page: 602 article-title: A simple and efficient automatic FEM domain decomposer publication-title: Computers and Structures – start-page: AIAA year: 2012 end-page: Paper – volume: 53 start-page: 2237 issue: 10 year: 2008 end-page: 2251 article-title: Missing point estimation in models described by proper orthogonal decomposition publication-title: IEEE Transactions on Automatic Control – year: 2012 – volume: 81 start-page: 1581 issue: 12 year: 2010 end-page: 1608 article-title: Non‐linear model reduction for uncertainty quantification in large‐scale inverse problems publication-title: International Journal for Numerical Methods in Engineering – volume: 50 start-page: 1523 year: 2001 end-page: 1544 article-title: FETI‐DP: a dual‐primal unified FETI method—part I: a faster alternative to the two‐level FETI method publication-title: International Journal for Numerical Methods in Engineering – volume: 12 start-page: 1657 issue: 8 year: 1995 end-page: 1664 article-title: Karhunen–Loeve procedure for gappy data publication-title: Journal of the Optical Society of America A – start-page: 215 year: 2014 end-page: 234 – volume: 51 start-page: 479 issue: 4 year: 2001 end-page: 504 article-title: Dimensional model reduction in non‐linear finite element dynamics of solids and structures publication-title: International Journal for Numerical Methods in Engineering – volume: 92 start-page: 734 issue: 8 year: 2012 end-page: 752 article-title: Conservative integration of rigid body motion by quaternion parameters with implicit constraints publication-title: International Journal for Numerical Methods in Engineering – volume: 48 start-page: 2029 issue: 9 year: 2010 end-page: 2037 article-title: Toward real‐time CFD‐based aeroelastic computations using a database of reduced‐order information publication-title: AIAA Journal – volume: 46 start-page: 2520 issue: 10 year: 2008 end-page: 2529 article-title: Parametric reduced‐order models for probabilistic analysis of unsteady aerodynamic applications publication-title: AIAA Journal – volume: 32 start-page: 2737 issue: 5 year: 2010 end-page: 2764 article-title: Nonlinear model reduction via discrete empirical interpolation publication-title: SIAM Journal on Scientific and Statistical Computing – volume: 7 start-page: 687 year: 2000 end-page: 714 article-title: A scalable dual‐primal domain decomposition method publication-title: Numerical Linear Algebra with Applications – volume: 53 start-page: 2237 issue: 10 year: 2008 end-page: 2251 article-title: Missing point estimation in models described by proper orthogonal decomposition publication-title: Automatic Control, IEEE Transactions on – year: 2004 – year: 1974 – volume: 195 start-page: 5730 issue: 41–43 year: 2006 end-page: 5742 article-title: Reduced‐order fluid/structure modeling of a complete aircraft configuration publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 519 start-page: 315 year: 2004 end-page: 336 article-title: Gappy data and reconstruction procedures for flow past a cylinder publication-title: Journal of Fluid Mechanics – volume: 76 start-page: 27 issue: 1 year: 2008 end-page: 55 article-title: An efficient reduced‐order modeling approach for non‐linear parametrized partial differential equations publication-title: International Journal for Numerical Methods in Engineering – volume: 98 start-page: 625 issue: 9 year: 2014 end-page: 662 article-title: Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy‐based mesh sampling and weighting for computational efficiency publication-title: International Journal for Numerical Methods in Engineering – volume: 32 start-page: 3 year: 2003 end-page: 29 article-title: Application of a three‐field nonlinear fluid–structure formulation to the prediction of the aeroelastic parameters of an F‐16 fighter publication-title: Computers and Fluids – volume: 45 start-page: 561 year: 1987 end-page: 571 article-title: Turbulence and the dynamics of coherent structures. I‐coherent structures publication-title: Quarterly of Applied Mathematics – volume: 209 start-page: 237 issue: 1 year: 1998 end-page: 260 article-title: On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems publication-title: Theoretical Computer Science – volume: 202 start-page: 346 year: 2005 end-page: 366 article-title: A priori hyperreduction method: an adaptive approach publication-title: Journal of Computational Physics – start-page: 4316 end-page: 4321 – volume: 41 start-page: 575 issue: 03 year: 2007 end-page: 605 article-title: Efficient reduced‐basis treatment of nonaffine and nonlinear partial differential equations publication-title: ESAIM: Mathematical Modelling and Numerical Analysis – year: 1999 – ident: e_1_2_10_19_1 doi: 10.1017/S0022112004001338 – ident: e_1_2_10_41_1 doi: 10.1016/0045-7949(88)90004-1 – year: 2014 ident: e_1_2_10_40_1 article-title: An adaptive and efficient greedy procedure for the optimal training of parametric reduced‐order models publication-title: International Journal for Numerical Methods in Engineering – volume-title: Reduction of process simulation models: a proper orthogonal decomposition approach year: 2004 ident: e_1_2_10_23_1 – ident: e_1_2_10_30_1 – ident: e_1_2_10_44_1 doi: 10.1002/1099-1506(200010/12)7:7/8<687::AID-NLA219>3.0.CO;2-S – ident: e_1_2_10_42_1 doi: 10.1016/0956-0521(94)00024-G – ident: e_1_2_10_12_1 doi: 10.1016/j.jcp.2013.02.028 – ident: e_1_2_10_5_1 doi: 10.1090/qam/910462 – ident: e_1_2_10_17_1 doi: 10.1364/JOSAA.12.001657 – ident: e_1_2_10_29_1 doi: 10.2514/6.2012-1969 – ident: e_1_2_10_6_1 doi: 10.1115/1.1448332 – ident: e_1_2_10_24_1 doi: 10.1109/TAC.2008.2006102 – ident: e_1_2_10_45_1 doi: 10.1002/nme.76 – ident: e_1_2_10_34_1 doi: 10.1016/S0045-7825(97)00216-8 – ident: e_1_2_10_18_1 doi: 10.2514/6.2003-4213 – ident: e_1_2_10_8_1 doi: 10.2514/6.2012-2686 – ident: e_1_2_10_25_1 doi: 10.1109/CDC.2009.5400045 – ident: e_1_2_10_22_1 doi: 10.1002/nme.2309 – ident: e_1_2_10_7_1 doi: 10.1002/nme.4371 – ident: e_1_2_10_16_1 doi: 10.1016/j.jcp.2004.07.015 – ident: e_1_2_10_11_1 doi: 10.1002/nme.3050 – ident: e_1_2_10_31_1 doi: 10.1002/nme.4668 – volume-title: Solving Least Squares Problems year: 1974 ident: e_1_2_10_36_1 – ident: e_1_2_10_9_1 doi: 10.2514/6.2000-2545 – ident: e_1_2_10_2_1 doi: 10.1016/j.cma.2005.08.026 – ident: e_1_2_10_32_1 doi: 10.1145/1409060.1409118 – ident: e_1_2_10_27_1 doi: 10.1137/090766498 – ident: e_1_2_10_3_1 doi: 10.2514/1.J050233 – ident: e_1_2_10_20_1 doi: 10.1109/TAC.2008.2006102 – ident: e_1_2_10_26_1 doi: 10.1002/nme.2746 – ident: e_1_2_10_4_1 doi: 10.1002/nme.3074 – ident: e_1_2_10_35_1 doi: 10.1016/S0304-3975(97)00115-1 – ident: e_1_2_10_14_1 – ident: e_1_2_10_13_1 doi: 10.1007/978-3-319-02090-7_8 – ident: e_1_2_10_43_1 doi: 10.1002/nme.4363 – ident: e_1_2_10_15_1 doi: 10.1145/1073204.1073300 – ident: e_1_2_10_39_1 doi: 10.2514/2.1975 – ident: e_1_2_10_21_1 doi: 10.1051/m2an:2007031 – ident: e_1_2_10_10_1 doi: 10.2514/1.35850 – ident: e_1_2_10_37_1 doi: 10.1002/nme.167 – volume: 1 start-page: 203 year: 2013 ident: e_1_2_10_28_1 article-title: Discrete empirical interpolation method for finite element structural dynamics publication-title: Topics in Nonlinear Dynamics – ident: e_1_2_10_33_1 doi: 10.1007/978-0-387-21792-5 – ident: e_1_2_10_46_1 doi: 10.1002/nme.1620320604 – ident: e_1_2_10_38_1 doi: 10.1016/S0045-7930(01)00104-9 |
SSID | ssj0011503 |
Score | 2.5796092 |
Snippet | SummaryThe computational efficiency of a typical, projection‐based, nonlinear model reduction method hinges on the efficient approximation, for explicit... The computational efficiency of a typical, projection‐based, nonlinear model reduction method hinges on the efficient approximation, for explicit computations,... Summary The computational efficiency of a typical, projection-based, nonlinear model reduction method hinges on the efficient approximation, for explicit... The computational efficiency of a typical, projection-based, nonlinear model reduction method hinges on the efficient approximation, for explicit computations,... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1077 |
SubjectTerms | Accuracy Approximation Computational efficiency ECSW Finite element method Galerkin projection Hamilton's principle hyper reduction Mathematical analysis Mathematical models mesh sampling model reduction nonlinear dynamics Nonlinearity Projection proper orthogonal decomposition Reduction structure preserving |
Title | Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models |
URI | https://api.istex.fr/ark:/67375/WNG-XBNN0WPQ-F/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.4820 https://www.proquest.com/docview/1671101735 https://www.proquest.com/docview/1685799371 |
Volume | 102 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbhMxFLVQ2cCCQgERKMhICDaddB62Z2YJqKFCyohX1UgsLD-hKp1WM40grPgEvoYP4ku41_NQikBCrJJRfD2O597rE-f4XEIepYkrOFcWdVvjiBmWRmWpWCQK5lhibOoDm3Beif0D9nLBFz2rEs_CdPoQ44YbRkbI1xjgSre7a6KhJ27KYP2C9ItULcRDb0blKMQ52cDu4GWRDLqzcbo7GF5YiS7jpH65ADPXwWpYbWab5P0wzo5kcjxdnuup-fqbhOP_fZHr5FoPQunTzmtukEuu3iKbPSClfbi3W-TqmlohXM1Hidf2JvnxNijPLhv389t3ZNNi0qk_7FCAm4Fwu9qhqrZUGbNslFnRM9z2b1C_lZ56Cj1RF84dgrlBSncwp61Ciju8QdvPYd8Wr7pC1xQQdrD8CL-eG9qg7Cw6FnZYd1OhGuqPEEdT1xHjqV3V6uTI0FDzp71FDmZ7757vR30RiMhkgsWR9TBNXqgiyXVu8oKX2uqstHgkF8u1e-VLJlRaJtwyYwtntBZaOSOUKIxW2W2yASNwdwjleWYhpZUiV46lsVW5s97zBLqNjfV2Qp4MDiFNr5COhTo-yU7bOZXwqCQ-qgl5OLY861RB_tDmcfCpsYFqjpFFl3N5WL2Qi2dVFR--ei1nE7I9OJ3sE0grE5EnmC0zDvcaP4bQx_9zVO1Ol9im4DniywTuFTzsr4OR1XwPX-_-a8N75ApAQx6onWybbIBLufsAv871gxBovwBaKDPD |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKe4AeKBQQCwWMhODSbOPEdhJxAtRlgW7ET6vuoZLl-KdUpWmVdAXLiUfgaXggngSP86MtAglx2o0y4zjOzPiLM_4GoUcRMSljUgNvaxhQRaMgyyQNeEoNJUpH1mcTTnI-3qOvp2y6hJ52e2Eafoh-wQ08w8drcHBYkN5aYA09MUPqJrBLaAUKevv3qfc9dxQgnbjL72BZSjrm2TDa6jQvzEUrMKxfLgDNRbjq55vRGjroetqkmRwPZ-fFUH39jcTxP2_lGrra4lD8rDGc62jJlOtorcWkuPX4eh2tLhAWuqNJz_Ja30A_Pnjy2Vllfn77Dgm1EHfKw03sEKfPuZ1vYllqLJWaVVLN8Rms_FdA4YpPLXYtYeO3Hjp1BVndXh3XErLc3R_Q_eyXbuGoqXWNHcj2mh_dC3SFK2CeBduCBstmLGSF7RFAaWya3His56U8OVLYl_2pb6K90fbui3HQ1oEIVMxpGGjrhslymZKkSFSSsqzQRZxp2JULFduttBnlMsoI01Tp1Kii4IU0ikueqkLGt9Cy64G5jTBLYu2iWsYTaWgUapkYbS0jrtlQaasH6ElnEUK1JOlQq-OTaOidI-EelYBHNUAPe8mzhhjkDzKPvVH1ArI6hkS6hIn9_KWYPs_zcP_tOzEaoI3O6kQbQ2pBeEIgYMbMXas_7bwfPunI0pzOQCZlCUBM4q7lTeyvnRH5ZBt-7_yr4AN0ebw72RE7r_I3d9EVhxSZz_SkG2jZmZe559DYeXHfe90vVWE33g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbhMxELWglRA8UCggAgWMhOClm-7F9u4-Am0ol6zKpWokHiyvL1CVbqNNIwhPfAJfwwfxJcx4L0oRSIinZJUZr-Mdj0-c4zOEPIgjm3GuDOq2hgHTLA7yXLFAZMyySJvYeTbhuBC7--zFhE9aViWehWn0IfoNN5wZPl_jBJ8at7UkGnpshwzWr_NklYkww4jeftNLRyHQSTp6B8-zqBOeDeOtzvPMUrSKo_rlDM5cRqt-uRmtkfddRxuWydFwfloO9dffNBz_75tcIZdbFEofN2FzlZyz1TpZaxEpbef7bJ1cWpIrhKtxr_E6u0Z-vPXSs_Pa_vz2Hem0mHWqD5sU8KZn3C42qaoMVVrPa6UXdIr7_jUKuNITR6Elav3BQ3DXyOn27nSmkOMOb9D3s9-4xaum0jUFiO09P8LP55rWqDuLkYUNVs1QqJq6QwTS1DbMeGoWlTo-1NQX_ZldJ_ujnXdPd4O2CkSgE8HCwDgYJidUFqVlqtOM56Upk9zgmVys1-6Uy5lQcR5xw7TJrC5LUSqrhRKZLlVyg6xAD-xNQnmaGMhpuUiVZXFoVGqNczyCZkNtnBmQR11ASN1KpGOljk-yEXeOJTwqiY9qQO73ltNGFuQPNg99TPUGqj5CGl3K5UHxTE6eFEV4sPdajgZkows62WaQmYxEGmG6TDjcq_8Y5j7-oaMqezJHm4ynCDAjuJePsL92RhbjHXy99a-G98iFve2RfPW8eHmbXASYyD3Nk22QFYgueweg2Gl518-5X7tNNpY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure-preserving%2C+stability%2C+and+accuracy+properties+of+the+energy-conserving+sampling+and+weighting+method+for+the+hyper+reduction+of+nonlinear+finite+element+dynamic+models&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Farhat%2C+Charbel&rft.au=Chapman%2C+Todd&rft.au=Avery%2C+Philip&rft.date=2015-05-04&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=102&rft.issue=5&rft.spage=1077&rft.epage=1110&rft_id=info:doi/10.1002%2Fnme.4820&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_XBNN0WPQ_F |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon |