Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models

SummaryThe computational efficiency of a typical, projection‐based, nonlinear model reduction method hinges on the efficient approximation, for explicit computations, of the scalar projections onto a subspace of a residual vector. For implicit computations, it also hinges on the additional efficient...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in engineering Vol. 102; no. 5; pp. 1077 - 1110
Main Authors Farhat, Charbel, Chapman, Todd, Avery, Philip
Format Journal Article
LanguageEnglish
Published Bognor Regis Blackwell Publishing Ltd 04.05.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SummaryThe computational efficiency of a typical, projection‐based, nonlinear model reduction method hinges on the efficient approximation, for explicit computations, of the scalar projections onto a subspace of a residual vector. For implicit computations, it also hinges on the additional efficient approximation of similar projections of the Jacobian of this residual with respect to the solution. The computation of both approximations is often referred to in the literature as hyper reduction. To this effect, this paper focuses on the analysis and comparative performance study for nonlinear finite element reduced‐order models of solids and structures of the recently developed energy‐conserving mesh sampling and weighting (ECSW) hyper reduction method. Unlike most alternative approaches, this method approximates the scalar projections of residuals and/or Jacobians directly, instead of approximating first these vectors and matrices then projecting the resulting approximations onto the subspaces of interest. In this paper, it is shown that ECSW distinguishes itself furthermore from other hyper reduction methods through its preservation of the Lagrangian structure associated with Hamilton's principle. For second‐order dynamical systems, this enables it to also preserve the numerical stability properties of the discrete system to which it is applied. It is also shown that for a fixed set of parameter values, the approximation error committed online by ECSW is bounded by its counterpart error committed off‐line during the training of this method. Therefore, this error can be estimated in this case a priori and controlled. The performance of ECSW is demonstrated first for two academic but nevertheless interesting nonlinear dynamic response problems. For both of them, ECSW is shown to preserve numerical stability and deliver the desired level of accuracy, whereas the discrete empirical interpolation method and its recently introduced unassembled variant are shown to be susceptible to failure because of numerical instability. The potential of ECSW for enabling the effective reduction of nonlinear finite element dynamic models of solids and structures is also highlighted with the realistic simulation of the nonlinear transient dynamic response of a complete car engine to thermal and combustion pressure loads using an implicit scheme. For this simulation, ECSW is reported to enable the reduction of the CPU time required by the high‐dimensional nonlinear finite element dynamic analysis by more than four orders of magnitude, while achieving a very good level of accuracy. Copyright © 2015 John Wiley & Sons, Ltd.
AbstractList The computational efficiency of a typical, projection-based, nonlinear model reduction method hinges on the efficient approximation, for explicit computations, of the scalar projections onto a subspace of a residual vector. For implicit computations, it also hinges on the additional efficient approximation of similar projections of the Jacobian of this residual with respect to the solution. The computation of both approximations is often referred to in the literature as hyper reduction. To this effect, this paper focuses on the analysis and comparative performance study for nonlinear finite element reduced-order models of solids and structures of the recently developed energy-conserving mesh sampling and weighting (ECSW) hyper reduction method. Unlike most alternative approaches, this method approximates the scalar projections of residuals and/or Jacobians directly, instead of approximating first these vectors and matrices then projecting the resulting approximations onto the subspaces of interest. In this paper, it is shown that ECSW distinguishes itself furthermore from other hyper reduction methods through its preservation of the Lagrangian structure associated with Hamilton's principle. For second-order dynamical systems, this enables it to also preserve the numerical stability properties of the discrete system to which it is applied. It is also shown that for a fixed set of parameter values, the approximation error committed online by ECSW is bounded by its counterpart error committed off-line during the training of this method. Therefore, this error can be estimated in this case a priori and controlled. The performance of ECSW is demonstrated first for two academic but nevertheless interesting nonlinear dynamic response problems. For both of them, ECSW is shown to preserve numerical stability and deliver the desired level of accuracy, whereas the discrete empirical interpolation method and its recently introduced unassembled variant are shown to be susceptible to failure because of numerical instability. The potential of ECSW for enabling the effective reduction of nonlinear finite element dynamic models of solids and structures is also highlighted with the realistic simulation of the nonlinear transient dynamic response of a complete car engine to thermal and combustion pressure loads using an implicit scheme. For this simulation, ECSW is reported to enable the reduction of the CPU time required by the high-dimensional nonlinear finite element dynamic analysis by more than four orders of magnitude, while achieving a very good level of accuracy. Copyright copyright 2015 John Wiley & Sons, Ltd.
Summary The computational efficiency of a typical, projection-based, nonlinear model reduction method hinges on the efficient approximation, for explicit computations, of the scalar projections onto a subspace of a residual vector. For implicit computations, it also hinges on the additional efficient approximation of similar projections of the Jacobian of this residual with respect to the solution. The computation of both approximations is often referred to in the literature as hyper reduction. To this effect, this paper focuses on the analysis and comparative performance study for nonlinear finite element reduced-order models of solids and structures of the recently developed energy-conserving mesh sampling and weighting (ECSW) hyper reduction method. Unlike most alternative approaches, this method approximates the scalar projections of residuals and/or Jacobians directly, instead of approximating first these vectors and matrices then projecting the resulting approximations onto the subspaces of interest. In this paper, it is shown that ECSW distinguishes itself furthermore from other hyper reduction methods through its preservation of the Lagrangian structure associated with Hamilton's principle. For second-order dynamical systems, this enables it to also preserve the numerical stability properties of the discrete system to which it is applied. It is also shown that for a fixed set of parameter values, the approximation error committed online by ECSW is bounded by its counterpart error committed off-line during the training of this method. Therefore, this error can be estimated in this case a priori and controlled. The performance of ECSW is demonstrated first for two academic but nevertheless interesting nonlinear dynamic response problems. For both of them, ECSW is shown to preserve numerical stability and deliver the desired level of accuracy, whereas the discrete empirical interpolation method and its recently introduced unassembled variant are shown to be susceptible to failure because of numerical instability. The potential of ECSW for enabling the effective reduction of nonlinear finite element dynamic models of solids and structures is also highlighted with the realistic simulation of the nonlinear transient dynamic response of a complete car engine to thermal and combustion pressure loads using an implicit scheme. For this simulation, ECSW is reported to enable the reduction of the CPU time required by the high-dimensional nonlinear finite element dynamic analysis by more than four orders of magnitude, while achieving a very good level of accuracy. Copyright © 2015 John Wiley & Sons, Ltd.
The computational efficiency of a typical, projection‐based, nonlinear model reduction method hinges on the efficient approximation, for explicit computations, of the scalar projections onto a subspace of a residual vector. For implicit computations, it also hinges on the additional efficient approximation of similar projections of the Jacobian of this residual with respect to the solution. The computation of both approximations is often referred to in the literature as hyper reduction. To this effect, this paper focuses on the analysis and comparative performance study for nonlinear finite element reduced‐order models of solids and structures of the recently developed energy‐conserving mesh sampling and weighting (ECSW) hyper reduction method. Unlike most alternative approaches, this method approximates the scalar projections of residuals and/or Jacobians directly, instead of approximating first these vectors and matrices then projecting the resulting approximations onto the subspaces of interest. In this paper, it is shown that ECSW distinguishes itself furthermore from other hyper reduction methods through its preservation of the Lagrangian structure associated with Hamilton's principle. For second‐order dynamical systems, this enables it to also preserve the numerical stability properties of the discrete system to which it is applied. It is also shown that for a fixed set of parameter values, the approximation error committed online by ECSW is bounded by its counterpart error committed off‐line during the training of this method. Therefore, this error can be estimated in this case a priori and controlled. The performance of ECSW is demonstrated first for two academic but nevertheless interesting nonlinear dynamic response problems. For both of them, ECSW is shown to preserve numerical stability and deliver the desired level of accuracy, whereas the discrete empirical interpolation method and its recently introduced unassembled variant are shown to be susceptible to failure because of numerical instability. The potential of ECSW for enabling the effective reduction of nonlinear finite element dynamic models of solids and structures is also highlighted with the realistic simulation of the nonlinear transient dynamic response of a complete car engine to thermal and combustion pressure loads using an implicit scheme. For this simulation, ECSW is reported to enable the reduction of the CPU time required by the high‐dimensional nonlinear finite element dynamic analysis by more than four orders of magnitude, while achieving a very good level of accuracy. Copyright © 2015 John Wiley & Sons, Ltd.
SummaryThe computational efficiency of a typical, projection‐based, nonlinear model reduction method hinges on the efficient approximation, for explicit computations, of the scalar projections onto a subspace of a residual vector. For implicit computations, it also hinges on the additional efficient approximation of similar projections of the Jacobian of this residual with respect to the solution. The computation of both approximations is often referred to in the literature as hyper reduction. To this effect, this paper focuses on the analysis and comparative performance study for nonlinear finite element reduced‐order models of solids and structures of the recently developed energy‐conserving mesh sampling and weighting (ECSW) hyper reduction method. Unlike most alternative approaches, this method approximates the scalar projections of residuals and/or Jacobians directly, instead of approximating first these vectors and matrices then projecting the resulting approximations onto the subspaces of interest. In this paper, it is shown that ECSW distinguishes itself furthermore from other hyper reduction methods through its preservation of the Lagrangian structure associated with Hamilton's principle. For second‐order dynamical systems, this enables it to also preserve the numerical stability properties of the discrete system to which it is applied. It is also shown that for a fixed set of parameter values, the approximation error committed online by ECSW is bounded by its counterpart error committed off‐line during the training of this method. Therefore, this error can be estimated in this case a priori and controlled. The performance of ECSW is demonstrated first for two academic but nevertheless interesting nonlinear dynamic response problems. For both of them, ECSW is shown to preserve numerical stability and deliver the desired level of accuracy, whereas the discrete empirical interpolation method and its recently introduced unassembled variant are shown to be susceptible to failure because of numerical instability. The potential of ECSW for enabling the effective reduction of nonlinear finite element dynamic models of solids and structures is also highlighted with the realistic simulation of the nonlinear transient dynamic response of a complete car engine to thermal and combustion pressure loads using an implicit scheme. For this simulation, ECSW is reported to enable the reduction of the CPU time required by the high‐dimensional nonlinear finite element dynamic analysis by more than four orders of magnitude, while achieving a very good level of accuracy. Copyright © 2015 John Wiley & Sons, Ltd.
Author Chapman, Todd
Farhat, Charbel
Avery, Philip
Author_xml – sequence: 1
  givenname: Charbel
  surname: Farhat
  fullname: Farhat, Charbel
  email: Correspondence to: Charbel Farhat, Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305-4035, USA., cfarhat@stanford.edu
  organization: Department of Aeronautics and Astronautics, 94305-4035, Stanford, CA, USA
– sequence: 2
  givenname: Todd
  surname: Chapman
  fullname: Chapman, Todd
  organization: Department of Aeronautics and Astronautics, CA, 94305-4035, Stanford, USA
– sequence: 3
  givenname: Philip
  surname: Avery
  fullname: Avery, Philip
  organization: Department of Aeronautics and Astronautics, CA, 94305-4035, Stanford, USA
BookMark eNp1kVFv1SAcxYmZiXebiR-BxBcf1jtob0t51GWbJtt1Rs18IxT-vZfZQgfU2a_lJ5TuLjMz-gSE3zn8D2cf7VlnAaFXlCwpIfmx7WG5qnPyDC0o4SwjOWF7aJGueFbymr5A-yHcEEJpSYoF-vU5-lHF0UM2eAjgfxi7OcIhysZ0Jk5HWFqNpVKjl2rCg3cD-GggYNfiuAUMFvxmypSzD2IcZD9082ZW3oHZbON86iFuncat8_e67ZSMsAedXjfOznYpSdKB9Lg11sTk3UEPNmI9WdkbhXunoQuH6HkruwAvH9YD9PXs9MvJ--zi4_mHk7cXmSqqFcl0m_6jrWRNWcMUq0ve6KbguuC85KTOW9nyVSVzTku9UroG1TRVI0FVsqpVI4sD9Gbnm0LfjhCi6E1Q0HXSghuDoFVdMs4LRhP6-i_0xo3epukSxSgllBVlopY7SnkXgodWKBPlnD56aTpBiZgrFKlCMVf4Z4JHweBNL_30LzTboXemg-m_nFhfnj7lTYjw85GX_ruoWMFKcb0-F9_erdfk-uqTOCt-A3htwSo
CODEN IJNMBH
CitedBy_id crossref_primary_10_1016_j_finel_2024_104222
crossref_primary_10_1016_j_finel_2023_104068
crossref_primary_10_1002_nme_6425
crossref_primary_10_1002_nme_6667
crossref_primary_10_1002_fld_5354
crossref_primary_10_1016_j_cma_2025_117863
crossref_primary_10_1002_fld_5234
crossref_primary_10_1016_j_cma_2023_116498
crossref_primary_10_1017_S0962492922000058
crossref_primary_10_1007_s11071_022_07733_8
crossref_primary_10_1115_1_4043450
crossref_primary_10_1515_cmam_2021_0131
crossref_primary_10_1016_j_finel_2023_104069
crossref_primary_10_1016_j_jcp_2020_109789
crossref_primary_10_1016_j_apnum_2019_04_020
crossref_primary_10_1016_j_compstruc_2017_04_005
crossref_primary_10_1016_j_apnum_2021_05_011
crossref_primary_10_1016_j_jcp_2022_111904
crossref_primary_10_1002_nme_5980
crossref_primary_10_1016_j_compfluid_2023_106013
crossref_primary_10_1016_j_cma_2018_02_028
crossref_primary_10_1016_j_jcp_2022_111068
crossref_primary_10_1002_nme_6395
crossref_primary_10_1016_j_jcp_2022_111348
crossref_primary_10_1002_nme_6033
crossref_primary_10_1016_j_camwa_2023_10_018
crossref_primary_10_1007_s11831_018_9258_3
crossref_primary_10_3390_act12060235
crossref_primary_10_1016_j_compstruc_2017_08_016
crossref_primary_10_1137_22M148402X
crossref_primary_10_1016_j_cma_2017_06_029
crossref_primary_10_1137_17M1129635
crossref_primary_10_1016_j_jcp_2016_08_025
crossref_primary_10_1016_j_finel_2024_104237
crossref_primary_10_1016_j_cma_2022_115392
crossref_primary_10_1002_nme_7590
crossref_primary_10_1137_24M1652490
crossref_primary_10_1007_s10915_024_02488_3
crossref_primary_10_1115_1_4055546
crossref_primary_10_1016_j_jcp_2023_112727
crossref_primary_10_1016_j_applthermaleng_2024_124103
crossref_primary_10_1002_nme_5332
crossref_primary_10_1016_j_cma_2022_115786
crossref_primary_10_1016_j_cma_2022_115701
crossref_primary_10_1016_j_compfluid_2016_03_032
crossref_primary_10_1016_j_mechrescom_2023_104056
crossref_primary_10_1016_j_cma_2023_116398
crossref_primary_10_1016_j_cma_2023_116552
crossref_primary_10_1007_s10915_019_00917_2
crossref_primary_10_1002_nme_6447
crossref_primary_10_1002_nme_6964
crossref_primary_10_1016_j_jcp_2024_113230
crossref_primary_10_1115_1_4044805
crossref_primary_10_1002_nme_6603
crossref_primary_10_1137_23M1607799
crossref_primary_10_1137_19M1242963
crossref_primary_10_1016_j_finel_2022_103793
crossref_primary_10_3390_fluids5040189
crossref_primary_10_1016_j_cma_2017_06_011
crossref_primary_10_1137_22M1520189
crossref_primary_10_1016_j_cma_2019_112690
crossref_primary_10_1016_j_jocs_2017_01_004
crossref_primary_10_1016_j_cmpb_2024_108466
crossref_primary_10_1115_1_4053994
crossref_primary_10_1007_s00466_020_01946_7
crossref_primary_10_1016_j_crma_2017_10_020
crossref_primary_10_1007_s00466_017_1509_x
crossref_primary_10_1002_nme_7385
crossref_primary_10_1007_s42967_023_00308_3
crossref_primary_10_1016_j_jcp_2023_112697
crossref_primary_10_1016_j_cma_2021_114206
crossref_primary_10_1016_j_engappai_2021_104652
crossref_primary_10_1016_j_ifacol_2018_04_019
crossref_primary_10_1137_21M1435343
crossref_primary_10_1016_j_tws_2019_03_009
crossref_primary_10_1016_j_cma_2024_117672
crossref_primary_10_1016_j_cma_2024_117278
crossref_primary_10_1109_TMAG_2023_3332210
crossref_primary_10_29252_nmce_3_1_58
crossref_primary_10_1016_j_cma_2020_113192
crossref_primary_10_1016_j_ymssp_2018_09_028
crossref_primary_10_1007_s00466_019_01703_5
crossref_primary_10_1115_1_4036989
crossref_primary_10_2514_1_J056314
crossref_primary_10_1016_j_cma_2016_11_016
crossref_primary_10_1016_j_ast_2017_05_041
crossref_primary_10_1016_j_jcp_2024_113058
crossref_primary_10_1002_nme_6505
crossref_primary_10_1016_j_cma_2023_116298
crossref_primary_10_1016_j_ast_2024_109312
crossref_primary_10_1016_j_cma_2023_116334
crossref_primary_10_1002_nme_5535
crossref_primary_10_2514_1_J060581
crossref_primary_10_1002_nme_70007
crossref_primary_10_1007_s10444_019_09721_w
crossref_primary_10_1016_j_cam_2025_116584
crossref_primary_10_1115_1_4040021
crossref_primary_10_1016_j_cam_2019_112525
crossref_primary_10_1186_s40323_022_00235_7
crossref_primary_10_1115_1_4043892
crossref_primary_10_3390_en17205145
crossref_primary_10_1007_s00466_023_02416_6
crossref_primary_10_1016_j_jcp_2025_113729
crossref_primary_10_1016_j_ymssp_2021_108051
crossref_primary_10_1016_j_matcom_2022_10_034
crossref_primary_10_1002_nme_6236
crossref_primary_10_1016_j_jcp_2021_110336
crossref_primary_10_1016_j_jcp_2023_112512
crossref_primary_10_1007_s00466_017_1435_y
crossref_primary_10_1007_s10444_019_09710_z
crossref_primary_10_1016_j_ijnonlinmec_2022_104023
crossref_primary_10_1186_s40323_024_00263_5
crossref_primary_10_1016_j_cma_2024_117535
crossref_primary_10_1016_j_ymssp_2024_112261
crossref_primary_10_1063_5_0246751
crossref_primary_10_1002_nme_7305
crossref_primary_10_1016_j_cma_2024_117254
crossref_primary_10_1016_j_physd_2020_132614
crossref_primary_10_1016_j_cma_2024_117532
crossref_primary_10_1016_j_jcp_2022_111141
crossref_primary_10_1007_s10915_022_02001_8
crossref_primary_10_1007_s00158_022_03282_1
crossref_primary_10_1016_j_cma_2020_113568
crossref_primary_10_2514_1_J060742
crossref_primary_10_1016_j_cma_2021_113744
crossref_primary_10_1007_s11222_020_09954_6
crossref_primary_10_1088_1742_6596_1106_1_012024
crossref_primary_10_1002_nme_5135
crossref_primary_10_1016_j_jsv_2021_116055
crossref_primary_10_1016_j_cma_2022_115747
crossref_primary_10_3390_mca24020041
crossref_primary_10_1016_j_jcp_2023_112520
crossref_primary_10_1016_j_jcp_2022_111655
crossref_primary_10_2139_ssrn_4591464
crossref_primary_10_1002_nme_6187
crossref_primary_10_1016_j_jcp_2024_113677
crossref_primary_10_3390_math11183870
crossref_primary_10_2139_ssrn_4134905
crossref_primary_10_1016_j_jcp_2023_112420
crossref_primary_10_1016_j_cma_2025_117920
crossref_primary_10_1016_j_cma_2019_112652
crossref_primary_10_1002_nme_6009
crossref_primary_10_1016_j_tws_2017_05_001
crossref_primary_10_3390_app7060586
crossref_primary_10_1137_22M1503890
crossref_primary_10_1016_j_cma_2016_09_039
crossref_primary_10_1016_j_cpc_2024_109404
crossref_primary_10_1115_1_4043083
crossref_primary_10_2514_1_J057797
crossref_primary_10_1016_j_ymssp_2023_110901
crossref_primary_10_2139_ssrn_4162426
crossref_primary_10_1007_s11071_023_09213_z
crossref_primary_10_1186_s40323_021_00203_7
crossref_primary_10_1007_s11831_017_9241_4
crossref_primary_10_1016_j_cma_2022_115813
crossref_primary_10_1016_j_compstruc_2024_107500
crossref_primary_10_1016_j_crme_2018_04_002
crossref_primary_10_1016_j_cma_2021_113956
crossref_primary_10_1002_nme_6634
crossref_primary_10_1002_nme_7326
crossref_primary_10_1007_s00466_018_1608_3
crossref_primary_10_1002_cnm_3320
crossref_primary_10_1002_pamm_202300063
crossref_primary_10_1007_s00371_018_1533_7
crossref_primary_10_3390_act10110279
crossref_primary_10_5050_KSNVE_2021_31_6_604
crossref_primary_10_1051_m2an_2020073
crossref_primary_10_1038_s41598_024_56118_x
crossref_primary_10_1016_j_cma_2016_10_022
crossref_primary_10_1016_j_compstruc_2017_06_003
crossref_primary_10_12989_sss_2016_18_1_001
crossref_primary_10_1002_nme_6365
crossref_primary_10_1002_nme_7179
crossref_primary_10_1016_j_jcp_2020_109681
crossref_primary_10_1002_nme_5312
crossref_primary_10_1002_pamm_201710011
crossref_primary_10_1002_nme_7056
Cites_doi 10.1017/S0022112004001338
10.1016/0045-7949(88)90004-1
10.1002/1099-1506(200010/12)7:7/8<687::AID-NLA219>3.0.CO;2-S
10.1016/0956-0521(94)00024-G
10.1016/j.jcp.2013.02.028
10.1090/qam/910462
10.1364/JOSAA.12.001657
10.2514/6.2012-1969
10.1115/1.1448332
10.1109/TAC.2008.2006102
10.1002/nme.76
10.1016/S0045-7825(97)00216-8
10.2514/6.2003-4213
10.2514/6.2012-2686
10.1109/CDC.2009.5400045
10.1002/nme.2309
10.1002/nme.4371
10.1016/j.jcp.2004.07.015
10.1002/nme.3050
10.1002/nme.4668
10.2514/6.2000-2545
10.1016/j.cma.2005.08.026
10.1145/1409060.1409118
10.1137/090766498
10.2514/1.J050233
10.1002/nme.2746
10.1002/nme.3074
10.1016/S0304-3975(97)00115-1
10.1007/978-3-319-02090-7_8
10.1002/nme.4363
10.1145/1073204.1073300
10.2514/2.1975
10.1051/m2an:2007031
10.2514/1.35850
10.1002/nme.167
10.1007/978-0-387-21792-5
10.1002/nme.1620320604
10.1016/S0045-7930(01)00104-9
ContentType Journal Article
Copyright Copyright © 2015 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2015 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.4820
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage 1110
ExternalDocumentID 3648544161
10_1002_nme_4820
NME4820
ark_67375_WNG_XBNN0WPQ_F
Genre article
GrantInformation_xml – fundername: Office of Naval Research
  funderid: N00014‐11‐1‐0707
– fundername: Army Research Laboratory through the Army High Performance Computing Research Center under Cooperative Agreement
  funderid: W911NF‐07‐2‐0027
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
7SC
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3640-df100f6a817b7c7859bdb39d39959082faf946a2915d4cd8ecbb6baec6a68cba3
IEDL.DBID DR2
ISSN 0029-5981
IngestDate Fri Jul 11 11:50:29 EDT 2025
Fri Jul 25 12:14:37 EDT 2025
Thu Apr 24 23:08:54 EDT 2025
Tue Jul 01 04:51:48 EDT 2025
Wed Jan 22 16:59:04 EST 2025
Wed Oct 30 09:53:10 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3640-df100f6a817b7c7859bdb39d39959082faf946a2915d4cd8ecbb6baec6a68cba3
Notes Office of Naval Research - No. N00014-11-1-0707
istex:26BEECD7CE206F5EB3D6ED345CADB665CDF1FCAE
ark:/67375/WNG-XBNN0WPQ-F
ArticleID:NME4820
Army Research Laboratory through the Army High Performance Computing Research Center under Cooperative Agreement - No. W911NF-07-2-0027
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1671101735
PQPubID 996376
PageCount 34
ParticipantIDs proquest_miscellaneous_1685799371
proquest_journals_1671101735
crossref_citationtrail_10_1002_nme_4820
crossref_primary_10_1002_nme_4820
wiley_primary_10_1002_nme_4820_NME4820
istex_primary_ark_67375_WNG_XBNN0WPQ_F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 4 May 2015
PublicationDateYYYYMMDD 2015-05-04
PublicationDate_xml – month: 05
  year: 2015
  text: 4 May 2015
  day: 04
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal for numerical methods in engineering
PublicationTitleAlternate Int. J. Numer. Meth. Engng
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Prud'homme C, Rovas D, Veroy K, Machiels L, Maday Y, Patera A, Turinici G. Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods. Journal of Fluids Engineering-Transactions of the ASME 2002; 124(1):70-80.
Everson R, Sirovich L. Karhunen-Loeve procedure for gappy data. Journal of the Optical Society of America A 1995; 12(8):1657-1664.
Paul-Dubois-Taine A, Amsallem D. An adaptive and efficient greedy procedure for the optimal training of parametric reduced-order models. International Journal for Numerical Methods in Engineering 2014. (submitted for publication).
Grepl MA, Maday Y, Nguyen NC, Patera A. Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM: Mathematical Modelling and Numerical Analysis 2007; 41(03):575-605.
Tiso P, Rixen DJ. Discrete empirical interpolation method for finite element structural dynamics. Topics in Nonlinear Dynamics 2013; 1:203-212.
Farhat C, Lesoinne M, Pierson K. A scalable dual-primal domain decomposition method. Numerical Linear Algebra with Applications 2000; 7:687-714.
Astrid P, Weiland S, Willcox K, Backx T. Missing point estimation in models described by proper orthogonal decomposition. Automatic Control, IEEE Transactions on 2008; 53(10):2237-2251.
Krysl P, Lall S, Marsden J. Dimensional model reduction in non-linear finite element dynamics of solids and structures. International Journal for Numerical Methods in Engineering 2001; 51(4):479-504.
Sirovich L. Turbulence and the dynamics of coherent structures. I-coherent structures. Quarterly of Applied Mathematics 1987; 45:561-571.
Carlberg K, Farhat C, Cortial J, Amsallem D. The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. Journal of Computational Physics 2013; 242:623-647.
Geuzaine P, Brown G, Harris C, Farhat C. Aeroelastic dynamic analysis of a full F-16 configuration for various flight conditions. AIAA Journal 2003; 41:363-371.
Farhat C, Lantéri S, Simon HD. TOP/DOMDEC, a software tool for mesh partitioning and parallel processing. Journal of Computing Systems in Engineering 1995; 6(1):13-26.
Bui-Thanh T, Willcox K, Ghattas O. Parametric reduced-order models for probabilistic analysis of unsteady aerodynamic applications. AIAA Journal 2008; 46(10):2520-2529.
Marsden JE, Ratiu TS. Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, vol. 17, Springer: New York, NY, 1999.
Galbally D, Fidkowski K, Willcox K, Ghattas O. Non-linear model reduction for uncertainty quantification in large-scale inverse problems. International Journal for Numerical Methods in Engineering 2010; 81(12):1581-1608.
Farhat C, Lesoinne M, LeTallec P. Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity. Computer Methods in Applied Mechanics and Engineering 1998; 157(1-2):95-114.
Barbič J, James DL. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Transactions on Graphics (TOG) 2005; 24(3):982-990.
Venturi D, Karniadakis G. Gappy data and reconstruction procedures for flow past a cylinder. Journal of Fluid Mechanics 2004; 519:315-336.
Farhat C, Geuzaine P, Brown G. Application of a three-field nonlinear fluid-structure formulation to the prediction of the aeroelastic parameters of an F-16 fighter. Computers and Fluids 2003; 32:3-29.
Farhat C, Lesoinne M, LeTallec P, Pierson K, Rixen D. FETI-DP: a dual-primal unified FETI method-part I: a faster alternative to the two-level FETI method. International Journal for Numerical Methods in Engineering 2001; 50:1523-1544.
Amsallem D, Cortial J, Farhat C. Toward real-time CFD-based aeroelastic computations using a database of reduced-order information. AIAA Journal 2010; 48(9):2029-2037.
Amsallem D, Zahr MJ, Farhat C. Nonlinear model order reduction based on local reduced-order bases. International Journal for Numerical Methods in Engineering 2012; 92(10):891-916.
Astrid P 2004; Reduction of process simulation models: a proper orthogonal decomposition approach, Technische Universiteit Eindhoven: Eindhoven, Netherlands.
Astrid P, Weiland S, Willcox K, Backx T. Missing point estimation in models described by proper orthogonal decomposition. IEEE Transactions on Automatic Control 2008; 53(10):2237-2251.
Farhat C, Avery P, Chapman T, Cortial J. Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency. International Journal for Numerical Methods in Engineering 2014; 98(9):625-662.
Ryckelynck D. A priori hyperreduction method: an adaptive approach. Journal of Computational Physics 2005; 202:346-366.
Lawson CL, Hanson RJ. Solving Least Squares Problems, vol. 161, Englewood Cliffs, NJ: Prentice-hall, 1974.
Chaturantabut S, Sorensen DC. Nonlinear model reduction via discrete empirical interpolation. SIAM Journal on Scientific and Statistical Computing 2010; 32(5):2737-2764.
Nguyen N, Peraire J. An efficient reduced-order modeling approach for non-linear parametrized partial differential equations. International Journal for Numerical Methods in Engineering 2008; 76(1):27-55.
Farhat C. A simple and efficient automatic FEM domain decomposer. Computers and Structures 1988; 28(5):579-602.
Lieu T, Farhat C, Lesoinne M. Reduced-order fluid/structure modeling of a complete aircraft configuration. Computer Methods in Applied Mechanics and Engineering 2006; 195(41-43):5730-5742.
Nielsen MB, Krenk S. Conservative integration of rigid body motion by quaternion parameters with implicit constraints. International Journal for Numerical Methods in Engineering 2012; 92(8):734-752.
An SS, Kim T, James DL. Optimizing cubature for efficient integration of subspace deformations. ACM Transactions on Graphics 2008; 27(5):165.
Carlberg K, Farhat C. A low-cost, goal-oriented compact proper orthogonal decomposition basis for model reduction of static systems. International Journal for Numerical Methods in Engineering 2011; 86(3):381-402.
Carlberg K, Bou-Mosleh C, Farhat C. Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations. International Journal for Numerical Methods in Engineering 2011; 86(2):155-181.
Amaldi E, Kann V. On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theoretical Computer Science 1998; 209(1):237-260.
Farhat C, Roux F. A method of finite element tearing and interconnecting and its parallel solution algorithm. International Journal for Numerical Methods in Engineering 1991; 32:1205-1227.
2010; 32
2001; 50
2013; 1
2012
1991; 32
1995; 12
2000; 7
2006; 195
1974
2008; 76
2004
2013; 242
2008; 53
2010; 81
1998; 157
1995; 6
2003; 32
2005; 24
1999
2012; 92
1987; 45
2010; 48
2002; 124
2005; 202
2008; 27
1988; 28
2011; 86
1998; 209
2008; 46
2014
2007; 41
2003; 41
2001; 51
2004; 519
2014; 98
Paul‐Dubois‐Taine A (e_1_2_10_40_1) 2014
e_1_2_10_46_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Tiso P (e_1_2_10_28_1) 2013; 1
Astrid P (e_1_2_10_23_1) 2004
Lawson CL (e_1_2_10_36_1) 1974
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – reference: Lieu T, Farhat C, Lesoinne M. Reduced-order fluid/structure modeling of a complete aircraft configuration. Computer Methods in Applied Mechanics and Engineering 2006; 195(41-43):5730-5742.
– reference: Chaturantabut S, Sorensen DC. Nonlinear model reduction via discrete empirical interpolation. SIAM Journal on Scientific and Statistical Computing 2010; 32(5):2737-2764.
– reference: Farhat C, Lesoinne M, LeTallec P. Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity. Computer Methods in Applied Mechanics and Engineering 1998; 157(1-2):95-114.
– reference: Astrid P 2004; Reduction of process simulation models: a proper orthogonal decomposition approach, Technische Universiteit Eindhoven: Eindhoven, Netherlands.
– reference: Farhat C, Geuzaine P, Brown G. Application of a three-field nonlinear fluid-structure formulation to the prediction of the aeroelastic parameters of an F-16 fighter. Computers and Fluids 2003; 32:3-29.
– reference: Farhat C. A simple and efficient automatic FEM domain decomposer. Computers and Structures 1988; 28(5):579-602.
– reference: Prud'homme C, Rovas D, Veroy K, Machiels L, Maday Y, Patera A, Turinici G. Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods. Journal of Fluids Engineering-Transactions of the ASME 2002; 124(1):70-80.
– reference: Amsallem D, Zahr MJ, Farhat C. Nonlinear model order reduction based on local reduced-order bases. International Journal for Numerical Methods in Engineering 2012; 92(10):891-916.
– reference: Amsallem D, Cortial J, Farhat C. Toward real-time CFD-based aeroelastic computations using a database of reduced-order information. AIAA Journal 2010; 48(9):2029-2037.
– reference: Nguyen N, Peraire J. An efficient reduced-order modeling approach for non-linear parametrized partial differential equations. International Journal for Numerical Methods in Engineering 2008; 76(1):27-55.
– reference: Astrid P, Weiland S, Willcox K, Backx T. Missing point estimation in models described by proper orthogonal decomposition. Automatic Control, IEEE Transactions on 2008; 53(10):2237-2251.
– reference: Geuzaine P, Brown G, Harris C, Farhat C. Aeroelastic dynamic analysis of a full F-16 configuration for various flight conditions. AIAA Journal 2003; 41:363-371.
– reference: Paul-Dubois-Taine A, Amsallem D. An adaptive and efficient greedy procedure for the optimal training of parametric reduced-order models. International Journal for Numerical Methods in Engineering 2014. (submitted for publication).
– reference: Tiso P, Rixen DJ. Discrete empirical interpolation method for finite element structural dynamics. Topics in Nonlinear Dynamics 2013; 1:203-212.
– reference: Krysl P, Lall S, Marsden J. Dimensional model reduction in non-linear finite element dynamics of solids and structures. International Journal for Numerical Methods in Engineering 2001; 51(4):479-504.
– reference: Sirovich L. Turbulence and the dynamics of coherent structures. I-coherent structures. Quarterly of Applied Mathematics 1987; 45:561-571.
– reference: Grepl MA, Maday Y, Nguyen NC, Patera A. Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM: Mathematical Modelling and Numerical Analysis 2007; 41(03):575-605.
– reference: Farhat C, Lesoinne M, LeTallec P, Pierson K, Rixen D. FETI-DP: a dual-primal unified FETI method-part I: a faster alternative to the two-level FETI method. International Journal for Numerical Methods in Engineering 2001; 50:1523-1544.
– reference: Carlberg K, Farhat C. A low-cost, goal-oriented compact proper orthogonal decomposition basis for model reduction of static systems. International Journal for Numerical Methods in Engineering 2011; 86(3):381-402.
– reference: Farhat C, Roux F. A method of finite element tearing and interconnecting and its parallel solution algorithm. International Journal for Numerical Methods in Engineering 1991; 32:1205-1227.
– reference: Nielsen MB, Krenk S. Conservative integration of rigid body motion by quaternion parameters with implicit constraints. International Journal for Numerical Methods in Engineering 2012; 92(8):734-752.
– reference: Bui-Thanh T, Willcox K, Ghattas O. Parametric reduced-order models for probabilistic analysis of unsteady aerodynamic applications. AIAA Journal 2008; 46(10):2520-2529.
– reference: Farhat C, Lesoinne M, Pierson K. A scalable dual-primal domain decomposition method. Numerical Linear Algebra with Applications 2000; 7:687-714.
– reference: Everson R, Sirovich L. Karhunen-Loeve procedure for gappy data. Journal of the Optical Society of America A 1995; 12(8):1657-1664.
– reference: Ryckelynck D. A priori hyperreduction method: an adaptive approach. Journal of Computational Physics 2005; 202:346-366.
– reference: Lawson CL, Hanson RJ. Solving Least Squares Problems, vol. 161, Englewood Cliffs, NJ: Prentice-hall, 1974.
– reference: Carlberg K, Bou-Mosleh C, Farhat C. Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations. International Journal for Numerical Methods in Engineering 2011; 86(2):155-181.
– reference: Amaldi E, Kann V. On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theoretical Computer Science 1998; 209(1):237-260.
– reference: Farhat C, Lantéri S, Simon HD. TOP/DOMDEC, a software tool for mesh partitioning and parallel processing. Journal of Computing Systems in Engineering 1995; 6(1):13-26.
– reference: Carlberg K, Farhat C, Cortial J, Amsallem D. The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. Journal of Computational Physics 2013; 242:623-647.
– reference: Galbally D, Fidkowski K, Willcox K, Ghattas O. Non-linear model reduction for uncertainty quantification in large-scale inverse problems. International Journal for Numerical Methods in Engineering 2010; 81(12):1581-1608.
– reference: Venturi D, Karniadakis G. Gappy data and reconstruction procedures for flow past a cylinder. Journal of Fluid Mechanics 2004; 519:315-336.
– reference: Farhat C, Avery P, Chapman T, Cortial J. Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency. International Journal for Numerical Methods in Engineering 2014; 98(9):625-662.
– reference: An SS, Kim T, James DL. Optimizing cubature for efficient integration of subspace deformations. ACM Transactions on Graphics 2008; 27(5):165.
– reference: Astrid P, Weiland S, Willcox K, Backx T. Missing point estimation in models described by proper orthogonal decomposition. IEEE Transactions on Automatic Control 2008; 53(10):2237-2251.
– reference: Marsden JE, Ratiu TS. Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, vol. 17, Springer: New York, NY, 1999.
– reference: Barbič J, James DL. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Transactions on Graphics (TOG) 2005; 24(3):982-990.
– volume: 32
  start-page: 1205
  year: 1991
  end-page: 1227
  article-title: A method of finite element tearing and interconnecting and its parallel solution algorithm
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 24
  start-page: 982
  issue: 3
  year: 2005
  end-page: 990
  article-title: Real‐time subspace integration for St. Venant–Kirchhoff deformable models
  publication-title: ACM Transactions on Graphics (TOG)
– volume: 41
  start-page: 363
  year: 2003
  end-page: 371
  article-title: Aeroelastic dynamic analysis of a full F‐16 configuration for various flight conditions
  publication-title: AIAA Journal
– volume: 86
  start-page: 155
  issue: 2
  year: 2011
  end-page: 181
  article-title: Efficient non‐linear model reduction via a least‐squares Petrov–Galerkin projection and compressive tensor approximations
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 242
  start-page: 623
  year: 2013
  end-page: 647
  article-title: The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows
  publication-title: Journal of Computational Physics
– year: 2014
  article-title: An adaptive and efficient greedy procedure for the optimal training of parametric reduced‐order models
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 27
  start-page: 165
  issue: 5
  year: 2008
  article-title: Optimizing cubature for efficient integration of subspace deformations
  publication-title: ACM Transactions on Graphics
– volume: 124
  start-page: 70
  issue: 1
  year: 2002
  end-page: 80
  article-title: Reliable real‐time solution of parametrized partial differential equations: reduced‐basis output bound methods
  publication-title: Journal of Fluids Engineering—Transactions of the ASME
– volume: 86
  start-page: 381
  issue: 3
  year: 2011
  end-page: 402
  article-title: A low‐cost, goal‐oriented compact proper orthogonal decomposition basis for model reduction of static systems
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 1
  start-page: 203
  year: 2013
  end-page: 212
  article-title: Discrete empirical interpolation method for finite element structural dynamics
  publication-title: Topics in Nonlinear Dynamics
– volume: 92
  start-page: 891
  issue: 10
  year: 2012
  end-page: 916
  article-title: Nonlinear model order reduction based on local reduced‐order bases
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 6
  start-page: 13
  issue: 1
  year: 1995
  end-page: 26
  article-title: TOP/DOMDEC, a software tool for mesh partitioning and parallel processing
  publication-title: Journal of Computing Systems in Engineering
– volume: 157
  start-page: 95
  issue: 1‐2
  year: 1998
  end-page: 114
  article-title: Load and motion transfer algorithms for fluid/structure interaction problems with non‐matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 28
  start-page: 579
  issue: 5
  year: 1988
  end-page: 602
  article-title: A simple and efficient automatic FEM domain decomposer
  publication-title: Computers and Structures
– start-page: AIAA
  year: 2012
  end-page: Paper
– volume: 53
  start-page: 2237
  issue: 10
  year: 2008
  end-page: 2251
  article-title: Missing point estimation in models described by proper orthogonal decomposition
  publication-title: IEEE Transactions on Automatic Control
– year: 2012
– volume: 81
  start-page: 1581
  issue: 12
  year: 2010
  end-page: 1608
  article-title: Non‐linear model reduction for uncertainty quantification in large‐scale inverse problems
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 50
  start-page: 1523
  year: 2001
  end-page: 1544
  article-title: FETI‐DP: a dual‐primal unified FETI method—part I: a faster alternative to the two‐level FETI method
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 12
  start-page: 1657
  issue: 8
  year: 1995
  end-page: 1664
  article-title: Karhunen–Loeve procedure for gappy data
  publication-title: Journal of the Optical Society of America A
– start-page: 215
  year: 2014
  end-page: 234
– volume: 51
  start-page: 479
  issue: 4
  year: 2001
  end-page: 504
  article-title: Dimensional model reduction in non‐linear finite element dynamics of solids and structures
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 92
  start-page: 734
  issue: 8
  year: 2012
  end-page: 752
  article-title: Conservative integration of rigid body motion by quaternion parameters with implicit constraints
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 48
  start-page: 2029
  issue: 9
  year: 2010
  end-page: 2037
  article-title: Toward real‐time CFD‐based aeroelastic computations using a database of reduced‐order information
  publication-title: AIAA Journal
– volume: 46
  start-page: 2520
  issue: 10
  year: 2008
  end-page: 2529
  article-title: Parametric reduced‐order models for probabilistic analysis of unsteady aerodynamic applications
  publication-title: AIAA Journal
– volume: 32
  start-page: 2737
  issue: 5
  year: 2010
  end-page: 2764
  article-title: Nonlinear model reduction via discrete empirical interpolation
  publication-title: SIAM Journal on Scientific and Statistical Computing
– volume: 7
  start-page: 687
  year: 2000
  end-page: 714
  article-title: A scalable dual‐primal domain decomposition method
  publication-title: Numerical Linear Algebra with Applications
– volume: 53
  start-page: 2237
  issue: 10
  year: 2008
  end-page: 2251
  article-title: Missing point estimation in models described by proper orthogonal decomposition
  publication-title: Automatic Control, IEEE Transactions on
– year: 2004
– year: 1974
– volume: 195
  start-page: 5730
  issue: 41–43
  year: 2006
  end-page: 5742
  article-title: Reduced‐order fluid/structure modeling of a complete aircraft configuration
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 519
  start-page: 315
  year: 2004
  end-page: 336
  article-title: Gappy data and reconstruction procedures for flow past a cylinder
  publication-title: Journal of Fluid Mechanics
– volume: 76
  start-page: 27
  issue: 1
  year: 2008
  end-page: 55
  article-title: An efficient reduced‐order modeling approach for non‐linear parametrized partial differential equations
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 98
  start-page: 625
  issue: 9
  year: 2014
  end-page: 662
  article-title: Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy‐based mesh sampling and weighting for computational efficiency
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 32
  start-page: 3
  year: 2003
  end-page: 29
  article-title: Application of a three‐field nonlinear fluid–structure formulation to the prediction of the aeroelastic parameters of an F‐16 fighter
  publication-title: Computers and Fluids
– volume: 45
  start-page: 561
  year: 1987
  end-page: 571
  article-title: Turbulence and the dynamics of coherent structures. I‐coherent structures
  publication-title: Quarterly of Applied Mathematics
– volume: 209
  start-page: 237
  issue: 1
  year: 1998
  end-page: 260
  article-title: On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems
  publication-title: Theoretical Computer Science
– volume: 202
  start-page: 346
  year: 2005
  end-page: 366
  article-title: A priori hyperreduction method: an adaptive approach
  publication-title: Journal of Computational Physics
– start-page: 4316
  end-page: 4321
– volume: 41
  start-page: 575
  issue: 03
  year: 2007
  end-page: 605
  article-title: Efficient reduced‐basis treatment of nonaffine and nonlinear partial differential equations
  publication-title: ESAIM: Mathematical Modelling and Numerical Analysis
– year: 1999
– ident: e_1_2_10_19_1
  doi: 10.1017/S0022112004001338
– ident: e_1_2_10_41_1
  doi: 10.1016/0045-7949(88)90004-1
– year: 2014
  ident: e_1_2_10_40_1
  article-title: An adaptive and efficient greedy procedure for the optimal training of parametric reduced‐order models
  publication-title: International Journal for Numerical Methods in Engineering
– volume-title: Reduction of process simulation models: a proper orthogonal decomposition approach
  year: 2004
  ident: e_1_2_10_23_1
– ident: e_1_2_10_30_1
– ident: e_1_2_10_44_1
  doi: 10.1002/1099-1506(200010/12)7:7/8<687::AID-NLA219>3.0.CO;2-S
– ident: e_1_2_10_42_1
  doi: 10.1016/0956-0521(94)00024-G
– ident: e_1_2_10_12_1
  doi: 10.1016/j.jcp.2013.02.028
– ident: e_1_2_10_5_1
  doi: 10.1090/qam/910462
– ident: e_1_2_10_17_1
  doi: 10.1364/JOSAA.12.001657
– ident: e_1_2_10_29_1
  doi: 10.2514/6.2012-1969
– ident: e_1_2_10_6_1
  doi: 10.1115/1.1448332
– ident: e_1_2_10_24_1
  doi: 10.1109/TAC.2008.2006102
– ident: e_1_2_10_45_1
  doi: 10.1002/nme.76
– ident: e_1_2_10_34_1
  doi: 10.1016/S0045-7825(97)00216-8
– ident: e_1_2_10_18_1
  doi: 10.2514/6.2003-4213
– ident: e_1_2_10_8_1
  doi: 10.2514/6.2012-2686
– ident: e_1_2_10_25_1
  doi: 10.1109/CDC.2009.5400045
– ident: e_1_2_10_22_1
  doi: 10.1002/nme.2309
– ident: e_1_2_10_7_1
  doi: 10.1002/nme.4371
– ident: e_1_2_10_16_1
  doi: 10.1016/j.jcp.2004.07.015
– ident: e_1_2_10_11_1
  doi: 10.1002/nme.3050
– ident: e_1_2_10_31_1
  doi: 10.1002/nme.4668
– volume-title: Solving Least Squares Problems
  year: 1974
  ident: e_1_2_10_36_1
– ident: e_1_2_10_9_1
  doi: 10.2514/6.2000-2545
– ident: e_1_2_10_2_1
  doi: 10.1016/j.cma.2005.08.026
– ident: e_1_2_10_32_1
  doi: 10.1145/1409060.1409118
– ident: e_1_2_10_27_1
  doi: 10.1137/090766498
– ident: e_1_2_10_3_1
  doi: 10.2514/1.J050233
– ident: e_1_2_10_20_1
  doi: 10.1109/TAC.2008.2006102
– ident: e_1_2_10_26_1
  doi: 10.1002/nme.2746
– ident: e_1_2_10_4_1
  doi: 10.1002/nme.3074
– ident: e_1_2_10_35_1
  doi: 10.1016/S0304-3975(97)00115-1
– ident: e_1_2_10_14_1
– ident: e_1_2_10_13_1
  doi: 10.1007/978-3-319-02090-7_8
– ident: e_1_2_10_43_1
  doi: 10.1002/nme.4363
– ident: e_1_2_10_15_1
  doi: 10.1145/1073204.1073300
– ident: e_1_2_10_39_1
  doi: 10.2514/2.1975
– ident: e_1_2_10_21_1
  doi: 10.1051/m2an:2007031
– ident: e_1_2_10_10_1
  doi: 10.2514/1.35850
– ident: e_1_2_10_37_1
  doi: 10.1002/nme.167
– volume: 1
  start-page: 203
  year: 2013
  ident: e_1_2_10_28_1
  article-title: Discrete empirical interpolation method for finite element structural dynamics
  publication-title: Topics in Nonlinear Dynamics
– ident: e_1_2_10_33_1
  doi: 10.1007/978-0-387-21792-5
– ident: e_1_2_10_46_1
  doi: 10.1002/nme.1620320604
– ident: e_1_2_10_38_1
  doi: 10.1016/S0045-7930(01)00104-9
SSID ssj0011503
Score 2.5796092
Snippet SummaryThe computational efficiency of a typical, projection‐based, nonlinear model reduction method hinges on the efficient approximation, for explicit...
The computational efficiency of a typical, projection‐based, nonlinear model reduction method hinges on the efficient approximation, for explicit computations,...
Summary The computational efficiency of a typical, projection-based, nonlinear model reduction method hinges on the efficient approximation, for explicit...
The computational efficiency of a typical, projection-based, nonlinear model reduction method hinges on the efficient approximation, for explicit computations,...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1077
SubjectTerms Accuracy
Approximation
Computational efficiency
ECSW
Finite element method
Galerkin projection
Hamilton's principle
hyper reduction
Mathematical analysis
Mathematical models
mesh sampling
model reduction
nonlinear dynamics
Nonlinearity
Projection
proper orthogonal decomposition
Reduction
structure preserving
Title Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models
URI https://api.istex.fr/ark:/67375/WNG-XBNN0WPQ-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.4820
https://www.proquest.com/docview/1671101735
https://www.proquest.com/docview/1685799371
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbhMxFLVQ2cCCQgERKMhICDaddB62Z2YJqKFCyohX1UgsLD-hKp1WM40grPgEvoYP4ku41_NQikBCrJJRfD2O597rE-f4XEIepYkrOFcWdVvjiBmWRmWpWCQK5lhibOoDm3Beif0D9nLBFz2rEs_CdPoQ44YbRkbI1xjgSre7a6KhJ27KYP2C9ItULcRDb0blKMQ52cDu4GWRDLqzcbo7GF5YiS7jpH65ADPXwWpYbWab5P0wzo5kcjxdnuup-fqbhOP_fZHr5FoPQunTzmtukEuu3iKbPSClfbi3W-TqmlohXM1Hidf2JvnxNijPLhv389t3ZNNi0qk_7FCAm4Fwu9qhqrZUGbNslFnRM9z2b1C_lZ56Cj1RF84dgrlBSncwp61Ciju8QdvPYd8Wr7pC1xQQdrD8CL-eG9qg7Cw6FnZYd1OhGuqPEEdT1xHjqV3V6uTI0FDzp71FDmZ7757vR30RiMhkgsWR9TBNXqgiyXVu8oKX2uqstHgkF8u1e-VLJlRaJtwyYwtntBZaOSOUKIxW2W2yASNwdwjleWYhpZUiV46lsVW5s97zBLqNjfV2Qp4MDiFNr5COhTo-yU7bOZXwqCQ-qgl5OLY861RB_tDmcfCpsYFqjpFFl3N5WL2Qi2dVFR--ei1nE7I9OJ3sE0grE5EnmC0zDvcaP4bQx_9zVO1Ol9im4DniywTuFTzsr4OR1XwPX-_-a8N75ApAQx6onWybbIBLufsAv871gxBovwBaKDPD
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKe4AeKBQQCwWMhODSbOPEdhJxAtRlgW7ET6vuoZLl-KdUpWmVdAXLiUfgaXggngSP86MtAglx2o0y4zjOzPiLM_4GoUcRMSljUgNvaxhQRaMgyyQNeEoNJUpH1mcTTnI-3qOvp2y6hJ52e2Eafoh-wQ08w8drcHBYkN5aYA09MUPqJrBLaAUKevv3qfc9dxQgnbjL72BZSjrm2TDa6jQvzEUrMKxfLgDNRbjq55vRGjroetqkmRwPZ-fFUH39jcTxP2_lGrra4lD8rDGc62jJlOtorcWkuPX4eh2tLhAWuqNJz_Ja30A_Pnjy2Vllfn77Dgm1EHfKw03sEKfPuZ1vYllqLJWaVVLN8Rms_FdA4YpPLXYtYeO3Hjp1BVndXh3XErLc3R_Q_eyXbuGoqXWNHcj2mh_dC3SFK2CeBduCBstmLGSF7RFAaWya3His56U8OVLYl_2pb6K90fbui3HQ1oEIVMxpGGjrhslymZKkSFSSsqzQRZxp2JULFduttBnlMsoI01Tp1Kii4IU0ikueqkLGt9Cy64G5jTBLYu2iWsYTaWgUapkYbS0jrtlQaasH6ElnEUK1JOlQq-OTaOidI-EelYBHNUAPe8mzhhjkDzKPvVH1ArI6hkS6hIn9_KWYPs_zcP_tOzEaoI3O6kQbQ2pBeEIgYMbMXas_7bwfPunI0pzOQCZlCUBM4q7lTeyvnRH5ZBt-7_yr4AN0ebw72RE7r_I3d9EVhxSZz_SkG2jZmZe559DYeXHfe90vVWE33g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbhMxELWglRA8UCggAgWMhOClm-7F9u4-Am0ol6zKpWokHiyvL1CVbqNNIwhPfAJfwwfxJcx4L0oRSIinZJUZr-Mdj0-c4zOEPIgjm3GuDOq2hgHTLA7yXLFAZMyySJvYeTbhuBC7--zFhE9aViWehWn0IfoNN5wZPl_jBJ8at7UkGnpshwzWr_NklYkww4jeftNLRyHQSTp6B8-zqBOeDeOtzvPMUrSKo_rlDM5cRqt-uRmtkfddRxuWydFwfloO9dffNBz_75tcIZdbFEofN2FzlZyz1TpZaxEpbef7bJ1cWpIrhKtxr_E6u0Z-vPXSs_Pa_vz2Hem0mHWqD5sU8KZn3C42qaoMVVrPa6UXdIr7_jUKuNITR6Elav3BQ3DXyOn27nSmkOMOb9D3s9-4xaum0jUFiO09P8LP55rWqDuLkYUNVs1QqJq6QwTS1DbMeGoWlTo-1NQX_ZldJ_ujnXdPd4O2CkSgE8HCwDgYJidUFqVlqtOM56Upk9zgmVys1-6Uy5lQcR5xw7TJrC5LUSqrhRKZLlVyg6xAD-xNQnmaGMhpuUiVZXFoVGqNczyCZkNtnBmQR11ASN1KpGOljk-yEXeOJTwqiY9qQO73ltNGFuQPNg99TPUGqj5CGl3K5UHxTE6eFEV4sPdajgZkows62WaQmYxEGmG6TDjcq_8Y5j7-oaMqezJHm4ynCDAjuJePsL92RhbjHXy99a-G98iFve2RfPW8eHmbXASYyD3Nk22QFYgueweg2Gl518-5X7tNNpY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure-preserving%2C+stability%2C+and+accuracy+properties+of+the+energy-conserving+sampling+and+weighting+method+for+the+hyper+reduction+of+nonlinear+finite+element+dynamic+models&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Farhat%2C+Charbel&rft.au=Chapman%2C+Todd&rft.au=Avery%2C+Philip&rft.date=2015-05-04&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=102&rft.issue=5&rft.spage=1077&rft.epage=1110&rft_id=info:doi/10.1002%2Fnme.4820&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_XBNN0WPQ_F
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon