Overload and variable amplitude load effects on the fatigue strength of welded joints
Different load spectra and individual load peaks might substantially relax high residual stresses as well as induce compressive residual stresses in welded components and, consequently, affect the fatigue performance of these joints. Consideration of peak loads and resulting relaxation of residual s...
Saved in:
Published in | Welding in the world Vol. 68; no. 2; pp. 411 - 425 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Different load spectra and individual load peaks might substantially relax high residual stresses as well as induce compressive residual stresses in welded components and, consequently, affect the fatigue performance of these joints. Consideration of peak loads and resulting relaxation of residual stresses in fatigue analyses can substantially enhance the accuracy of life prediction. The aim of the current study is to experimentally investigate the fatigue strength of welded joints subjected to different levels of overloads and variable amplitude (VA) loads and to develop local fatigue assessment method to account for the relaxation of residual stresses via a mean stress correction using the 4R method. The 4R method applies a local stress ratio for the mean stress correction considering material strength, residual stresses, applied stress ratio of external loading and local weld geometry in elastic–plastic material behaviour. Fatigue tests were carried out on fillet-welded longitudinal gusset joints made of S700 high-strength steels under applied stress ratio
R
= 0–0.1. A mild strength steel (S355) and ultra-high-strength steel (S1100) were selected as reference steel grades for the fatigue testing to study the material strength effects. Numerical analyses were conducted to evaluate the fatigue notch factors using the effective notch stress concept with the reference radius of
r
ref
= 1.0 mm and theory of critical distance (TCD) using the point method. The experimental results indicated that a substantial improvement in the fatigue strength capacity can be claimed in the joints subjected to tensile overloads, particularly in the studied S700 and S1100 steels. The higher-level overload (0.8
f
y
), corresponding to the nominal cross-sectional area, improved the mean fatigue strength of the welded joints manufactured of high-strength S700 steel by approximately 60%, while the lower overload (0.6
f
y
) improved the mean fatigue strength by 20%. In addition, a use of equivalent nominal stresses for the joints subjected to VA loads resulted in conservative assessments when employing S–N curves obtained for the CA loading. The 4R method, via the local mean stress correction for individual cycles, provided higher accuracy for the fatigue assessments. |
---|---|
AbstractList | Different load spectra and individual load peaks might substantially relax high residual stresses as well as induce compressive residual stresses in welded components and, consequently, affect the fatigue performance of these joints. Consideration of peak loads and resulting relaxation of residual stresses in fatigue analyses can substantially enhance the accuracy of life prediction. The aim of the current study is to experimentally investigate the fatigue strength of welded joints subjected to different levels of overloads and variable amplitude (VA) loads and to develop local fatigue assessment method to account for the relaxation of residual stresses via a mean stress correction using the 4R method. The 4R method applies a local stress ratio for the mean stress correction considering material strength, residual stresses, applied stress ratio of external loading and local weld geometry in elastic–plastic material behaviour. Fatigue tests were carried out on fillet-welded longitudinal gusset joints made of S700 high-strength steels under applied stress ratio
R
= 0–0.1. A mild strength steel (S355) and ultra-high-strength steel (S1100) were selected as reference steel grades for the fatigue testing to study the material strength effects. Numerical analyses were conducted to evaluate the fatigue notch factors using the effective notch stress concept with the reference radius of
r
ref
= 1.0 mm and theory of critical distance (TCD) using the point method. The experimental results indicated that a substantial improvement in the fatigue strength capacity can be claimed in the joints subjected to tensile overloads, particularly in the studied S700 and S1100 steels. The higher-level overload (0.8
f
y
), corresponding to the nominal cross-sectional area, improved the mean fatigue strength of the welded joints manufactured of high-strength S700 steel by approximately 60%, while the lower overload (0.6
f
y
) improved the mean fatigue strength by 20%. In addition, a use of equivalent nominal stresses for the joints subjected to VA loads resulted in conservative assessments when employing S–N curves obtained for the CA loading. The 4R method, via the local mean stress correction for individual cycles, provided higher accuracy for the fatigue assessments. Different load spectra and individual load peaks might substantially relax high residual stresses as well as induce compressive residual stresses in welded components and, consequently, affect the fatigue performance of these joints. Consideration of peak loads and resulting relaxation of residual stresses in fatigue analyses can substantially enhance the accuracy of life prediction. The aim of the current study is to experimentally investigate the fatigue strength of welded joints subjected to different levels of overloads and variable amplitude (VA) loads and to develop local fatigue assessment method to account for the relaxation of residual stresses via a mean stress correction using the 4R method. The 4R method applies a local stress ratio for the mean stress correction considering material strength, residual stresses, applied stress ratio of external loading and local weld geometry in elastic–plastic material behaviour. Fatigue tests were carried out on fillet-welded longitudinal gusset joints made of S700 high-strength steels under applied stress ratio R = 0–0.1. A mild strength steel (S355) and ultra-high-strength steel (S1100) were selected as reference steel grades for the fatigue testing to study the material strength effects. Numerical analyses were conducted to evaluate the fatigue notch factors using the effective notch stress concept with the reference radius of rref = 1.0 mm and theory of critical distance (TCD) using the point method. The experimental results indicated that a substantial improvement in the fatigue strength capacity can be claimed in the joints subjected to tensile overloads, particularly in the studied S700 and S1100 steels. The higher-level overload (0.8fy), corresponding to the nominal cross-sectional area, improved the mean fatigue strength of the welded joints manufactured of high-strength S700 steel by approximately 60%, while the lower overload (0.6fy) improved the mean fatigue strength by 20%. In addition, a use of equivalent nominal stresses for the joints subjected to VA loads resulted in conservative assessments when employing S–N curves obtained for the CA loading. The 4R method, via the local mean stress correction for individual cycles, provided higher accuracy for the fatigue assessments. |
Author | Pesonen, Tero Björk, Timo Grönlund, Kiia Ahola, Antti Riski, Jani Lipiäinen, Kalle |
Author_xml | – sequence: 1 givenname: Kiia orcidid: 0009-0001-3427-0565 surname: Grönlund fullname: Grönlund, Kiia email: kiia.gronlund@lut.fi organization: Laboratory of Steel Structures, Lappeenranta-Lahti University of Technology LUT – sequence: 2 givenname: Antti surname: Ahola fullname: Ahola, Antti organization: Laboratory of Steel Structures, Lappeenranta-Lahti University of Technology LUT – sequence: 3 givenname: Jani surname: Riski fullname: Riski, Jani organization: Laboratory of Steel Structures, Lappeenranta-Lahti University of Technology LUT – sequence: 4 givenname: Tero surname: Pesonen fullname: Pesonen, Tero organization: Laboratory of Steel Structures, Lappeenranta-Lahti University of Technology LUT – sequence: 5 givenname: Kalle surname: Lipiäinen fullname: Lipiäinen, Kalle organization: Laboratory of Steel Structures, Lappeenranta-Lahti University of Technology LUT – sequence: 6 givenname: Timo surname: Björk fullname: Björk, Timo organization: Laboratory of Steel Structures, Lappeenranta-Lahti University of Technology LUT |
BookMark | eNp9kE1rAjEQhkOxULX9Az0Fet42X2Y3xyL9AsFLPYeYnejKmtgkWuqv79YtFHrwMMxh3mfmnXeEBj54QOiWkntKSPmQBKFKFITxglApWHG8QENalVUhpVQDNCRE8IKxqrpCo5Q2hBDV1RAt5geIbTA1Nr7GBxMbs2wBm-2ubfK-BnyagXNgc8LB47wG7ExuVnvAKUfwq7zGweFPaGuo8SY0PqdrdOlMm-Dmt4_R4vnpffpazOYvb9PHWWG55LlwtqSidIZ1jh0IEJVlZkKlnNiytJwyrsSSSMEVc46ryhKhlktOFal4Scuaj9Fdv3cXw8ceUtabsI--O6mZYnTCmVCyU1W9ysaQUgSnbZO7F4LP0TStpkT_hKj7EHUXoj6FqI8dyv6hu9hsTfw6D_EeSp3YryD-uTpDfQN3nYZh |
CitedBy_id | crossref_primary_10_1016_j_engfracmech_2024_110218 crossref_primary_10_4028_p_Fz73UR crossref_primary_10_1016_j_ijfatigue_2024_108803 crossref_primary_10_17073_0368_0797_2024_4_409_416 crossref_primary_10_1016_j_ijfatigue_2024_108148 crossref_primary_10_1016_j_engfracmech_2024_110034 crossref_primary_10_1016_j_euromechsol_2025_105600 crossref_primary_10_1007_s40194_025_01989_5 crossref_primary_10_1007_s40194_024_01919_x |
Cites_doi | 10.1007/S40194-015-0248-X/FIGURES/10 10.1016/J.PROSTR.2022.03.041 10.1007/978-3-642-55248-9 10.1016/J.IJFATIGUE.2020.105687 10.1111/ffe.12619 10.1007/s11665-008-9225-5 10.1016/j.msea.2012.07.024 10.1016/j.prostr.2022.03.047 10.1007/s40194-023-01544-0 10.1016/J.IJFATIGUE.2016.06.019 10.1016/J.IJFATIGUE.2020.105916 10.1007/BF03263475 10.1007/s40194-020-00852-z 10.1007/S40194-018-0657-8/FIGURES/20 10.1016/B978-0-08-044478-9.X5000-5 10.1007/978-3-319-23757-2 10.1007/S40194-013-0078-7/FIGURES/19 10.1016/J.IJFATIGUE.2008.02.015 10.1016/J.JCSR.2019.105861 10.1016/J.IJFATIGUE.2016.12.031 10.1016/J.IJFATIGUE.2023.107604 10.1111/ffe.12377 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s40194-023-01642-z |
DatabaseName | Springer Nature OA Free Journals (Selected full-text) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-6669 |
EndPage | 425 |
ExternalDocumentID | 10_1007_s40194_023_01642_z |
GrantInformation_xml | – fundername: Business Finland (CaNelis Project) grantid: 3406/31/2022 – fundername: LUT University (previously Lappeenranta University of Technology (LUT)) – fundername: HRO Design Forum |
GroupedDBID | --K -EM 06D 0R~ 1B1 203 2LR 30V 4.4 406 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTHY ABTKH ABTMW ABULA ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGWZB AGYKE AHAVH AHBYD AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG AUKKA AVWKF AXYYD AYJHY BGNMA C6C CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ7 HMJXF HRMNR HZ~ IHE IKXTQ ITM IWAJR J-C JBSCW JZLTJ KOV LLZTM M41 M4Y NPVJJ NQ- NQJWS NU0 O9- O93 O9J P2P PT4 RIG ROL RPZ RSV SHX SISQX SJN SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 XPP Z5O Z7R Z7V Z7X Z7Y Z7Z Z81 Z85 ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c363t-fc7147fa2642fe4e48c2a51665c77c312394b064392ff398c049bb319083717d3 |
IEDL.DBID | C6C |
ISSN | 0043-2288 |
IngestDate | Fri Jul 25 11:08:09 EDT 2025 Tue Jul 01 04:25:39 EDT 2025 Thu Apr 24 22:57:00 EDT 2025 Fri Feb 21 02:40:29 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Welded joints Overload Variable amplitude loading Fatigue strength 4R method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-fc7147fa2642fe4e48c2a51665c77c312394b064392ff398c049bb319083717d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0001-3427-0565 |
OpenAccessLink | https://doi.org/10.1007/s40194-023-01642-z |
PQID | 2921532496 |
PQPubID | 2043671 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2921532496 crossref_citationtrail_10_1007_s40194_023_01642_z crossref_primary_10_1007_s40194_023_01642_z springer_journals_10_1007_s40194_023_01642_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | The International Journal of Materials Joining |
PublicationTitle | Welding in the world |
PublicationTitleAbbrev | Weld World |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | YıldırımHCRemesHNussbaumerAFatigue properties of as-welded and post-weld-treated high-strength steel joints: the influence of constant and variable amplitude loadsInt J Fatigue202013810568710.1016/J.IJFATIGUE.2020.105687 SonsinoCMEffect of residual stresses on the fatigue behaviour of welded joints depending on loading conditions and weld geometryInt J Fatigue200931881011:CAS:528:DC%2BD1cXht1yjtLfE10.1016/J.IJFATIGUE.2008.02.015 BaumgartnerJSchmidtHInceEFatigue assessment of welded joints using stress averaging and critical distance approachesWelding in the World2015597317421:CAS:528:DC%2BC2MXpt12gsrc%3D10.1007/S40194-015-0248-X/FIGURES/10 HaratiESvenssonLEKarlssonLWidmarkMEffect of high frequency mechanical impact treatment on fatigue strength of welded 1300 MPa yield strength steelInt J Fatigue201692961061:CAS:528:DC%2BC28XhtFegur%2FO10.1016/J.IJFATIGUE.2016.06.019 NussbaumerABorgesLDavaineLFatigue design of steel and composite structures: Eurocode 3: design of steel structures, part 1–9 fatigue, eurocode 4: design of composite steel and concrete structures20182Wiley BaumgartnerJBruderTInfluence of weld geometry and residual stresses on the fatigue strength of longitudinal stiffenersWelding World20135784185510.1007/S40194-013-0078-7/FIGURES/19 LipiäinenKAholaABjörkTWelding in the World Fatigue performance of ultra-high-strength steel laser cut notches under variable amplitude loadingWelding in the World20231310.1007/s40194-023-01544-0 NykänenTBjörkTA new proposal for assessment of the fatigue strength of steel butt-welded joints improved by peening (HFMI) under constant amplitude tensile loadingFatigue Fract Eng Mater Struct20163956658210.1111/ffe.12377 CarpinteriASpagnoliAVantadoriSA review of multiaxial fatigue criteria for random variable amplitude loadsFatigue Fract Eng Mater Struct2017401007103610.1111/ffe.12619 HemmesiKEllmerFFarajianMOn the evaluation of overload effects on the fatigue strength of metallic materialsProcedia Struct Integr20223840141010.1016/J.PROSTR.2022.03.041 WeichIUmmenhoferTNitschke-PagelTFatigue behaviour of welded high-strength steels after high frequency mechanical post-weld treatmentsWelding in the World200953R322R3321:CAS:528:DC%2BD1MXhs1Wiur%2FK10.1007/BF03263475 HeyraudHMareauCLefebvreFExperimental characterization and numerical modeling of the influence of a proof load on the fatigue resistance of welded structuresInt J Fatigue20231721076041:CAS:528:DC%2BB3sXlvFyisL0%3D10.1016/J.IJFATIGUE.2023.107604 HenselJMean stress correction in fatigue design under consideration of welding residual stressWelding in the World2020645355441:CAS:528:DC%2BB3cXjvFGnuro%3D10.1007/s40194-020-00852-z Taylor D (2007) The theory of critical distances: a new perspective in fracture mechanics. The theory of critical distances: a new perspective in fracture mechanics pp 1–284. https://doi.org/10.1016/B978-0-08-044478-9.X5000-5 AholaASkrikoTBjörkTFatigue strength assessment of ultra-high-strength steel fillet weld joints using 4R methodJ Constr Steel Res202016710586110.1016/J.JCSR.2019.105861 LopezZFatemiAA method of predicting cyclic stress-strain curve from tensile properties for steels201210.1016/j.msea.2012.07.024 Köhler M, Jenne S, Pötter K, Zenner H (2017) Load assumption for fatigue design of structures and components. In: Counting methods, safety aspects, practical application pp 1–226. https://doi.org/10.1007/978-3-642-55248-9 Huther I, Lefebvre F, Abdellaoui B, Leray V (2022) Influence of overload on fatigue behaviour of longitudinal non-load-carrying welded joints. In: Procedia Structural Integrity. Elsevier B.V. pp 466–476. https://doi.org/10.1016/j.prostr.2022.03.047 BjörkTMettänenHAholaAFatigue strength assessment of duplex and super-duplex stainless steels by 4R methodWelding in the World2018621285130010.1007/S40194-018-0657-8/FIGURES/20 Pavlina EJ, Van Tyne CJ (2008) Correlation of yield strength and tensile strength with hardness for steels. J Mater Eng Perform. https://doi.org/10.1007/s11665-008-9225-5 NykänenTMettänenHBjörkTAholaAFatigue assessment of welded joints under variable amplitude loading using a novel notch stress approachInt J Fatigue201710117719110.1016/J.IJFATIGUE.2016.12.031 Hobbacher AF (2016) Recommendations for fatigue design of welded joints and components (IIW Collection), 2nd end. Springer AholaAMuikkuABraunMBjörkTFatigue strength assessment of ground fillet-welded joints using 4R methodInt J Fatigue20211421:CAS:528:DC%2BB3cXhslyntr7L10.1016/J.IJFATIGUE.2020.105916 A Ahola (1642_CR22) 2021; 142 1642_CR11 1642_CR10 J Hensel (1642_CR23) 2020; 64 K Lipiäinen (1642_CR8) 2023; 1 1642_CR14 J Baumgartner (1642_CR7) 2013; 57 E Harati (1642_CR13) 2016; 92 A Nussbaumer (1642_CR1) 2018 T Nykänen (1642_CR15) 2016; 39 HC Yıldırım (1642_CR9) 2020; 138 H Heyraud (1642_CR4) 2023; 172 K Hemmesi (1642_CR6) 2022; 38 I Weich (1642_CR12) 2009; 53 Z Lopez (1642_CR20) 2012 T Nykänen (1642_CR18) 2017; 101 J Baumgartner (1642_CR21) 2015; 59 CM Sonsino (1642_CR5) 2009; 31 1642_CR3 1642_CR19 A Carpinteri (1642_CR2) 2017; 40 T Björk (1642_CR16) 2018; 62 A Ahola (1642_CR17) 2020; 167 |
References_xml | – reference: NykänenTMettänenHBjörkTAholaAFatigue assessment of welded joints under variable amplitude loading using a novel notch stress approachInt J Fatigue201710117719110.1016/J.IJFATIGUE.2016.12.031 – reference: Pavlina EJ, Van Tyne CJ (2008) Correlation of yield strength and tensile strength with hardness for steels. J Mater Eng Perform. https://doi.org/10.1007/s11665-008-9225-5 – reference: NussbaumerABorgesLDavaineLFatigue design of steel and composite structures: Eurocode 3: design of steel structures, part 1–9 fatigue, eurocode 4: design of composite steel and concrete structures20182Wiley – reference: Köhler M, Jenne S, Pötter K, Zenner H (2017) Load assumption for fatigue design of structures and components. In: Counting methods, safety aspects, practical application pp 1–226. https://doi.org/10.1007/978-3-642-55248-9 – reference: HemmesiKEllmerFFarajianMOn the evaluation of overload effects on the fatigue strength of metallic materialsProcedia Struct Integr20223840141010.1016/J.PROSTR.2022.03.041 – reference: YıldırımHCRemesHNussbaumerAFatigue properties of as-welded and post-weld-treated high-strength steel joints: the influence of constant and variable amplitude loadsInt J Fatigue202013810568710.1016/J.IJFATIGUE.2020.105687 – reference: BjörkTMettänenHAholaAFatigue strength assessment of duplex and super-duplex stainless steels by 4R methodWelding in the World2018621285130010.1007/S40194-018-0657-8/FIGURES/20 – reference: HaratiESvenssonLEKarlssonLWidmarkMEffect of high frequency mechanical impact treatment on fatigue strength of welded 1300 MPa yield strength steelInt J Fatigue201692961061:CAS:528:DC%2BC28XhtFegur%2FO10.1016/J.IJFATIGUE.2016.06.019 – reference: SonsinoCMEffect of residual stresses on the fatigue behaviour of welded joints depending on loading conditions and weld geometryInt J Fatigue200931881011:CAS:528:DC%2BD1cXht1yjtLfE10.1016/J.IJFATIGUE.2008.02.015 – reference: AholaAMuikkuABraunMBjörkTFatigue strength assessment of ground fillet-welded joints using 4R methodInt J Fatigue20211421:CAS:528:DC%2BB3cXhslyntr7L10.1016/J.IJFATIGUE.2020.105916 – reference: HenselJMean stress correction in fatigue design under consideration of welding residual stressWelding in the World2020645355441:CAS:528:DC%2BB3cXjvFGnuro%3D10.1007/s40194-020-00852-z – reference: NykänenTBjörkTA new proposal for assessment of the fatigue strength of steel butt-welded joints improved by peening (HFMI) under constant amplitude tensile loadingFatigue Fract Eng Mater Struct20163956658210.1111/ffe.12377 – reference: Taylor D (2007) The theory of critical distances: a new perspective in fracture mechanics. The theory of critical distances: a new perspective in fracture mechanics pp 1–284. https://doi.org/10.1016/B978-0-08-044478-9.X5000-5 – reference: LipiäinenKAholaABjörkTWelding in the World Fatigue performance of ultra-high-strength steel laser cut notches under variable amplitude loadingWelding in the World20231310.1007/s40194-023-01544-0 – reference: BaumgartnerJBruderTInfluence of weld geometry and residual stresses on the fatigue strength of longitudinal stiffenersWelding World20135784185510.1007/S40194-013-0078-7/FIGURES/19 – reference: Huther I, Lefebvre F, Abdellaoui B, Leray V (2022) Influence of overload on fatigue behaviour of longitudinal non-load-carrying welded joints. In: Procedia Structural Integrity. Elsevier B.V. pp 466–476. https://doi.org/10.1016/j.prostr.2022.03.047 – reference: HeyraudHMareauCLefebvreFExperimental characterization and numerical modeling of the influence of a proof load on the fatigue resistance of welded structuresInt J Fatigue20231721076041:CAS:528:DC%2BB3sXlvFyisL0%3D10.1016/J.IJFATIGUE.2023.107604 – reference: CarpinteriASpagnoliAVantadoriSA review of multiaxial fatigue criteria for random variable amplitude loadsFatigue Fract Eng Mater Struct2017401007103610.1111/ffe.12619 – reference: Hobbacher AF (2016) Recommendations for fatigue design of welded joints and components (IIW Collection), 2nd end. Springer – reference: WeichIUmmenhoferTNitschke-PagelTFatigue behaviour of welded high-strength steels after high frequency mechanical post-weld treatmentsWelding in the World200953R322R3321:CAS:528:DC%2BD1MXhs1Wiur%2FK10.1007/BF03263475 – reference: AholaASkrikoTBjörkTFatigue strength assessment of ultra-high-strength steel fillet weld joints using 4R methodJ Constr Steel Res202016710586110.1016/J.JCSR.2019.105861 – reference: BaumgartnerJSchmidtHInceEFatigue assessment of welded joints using stress averaging and critical distance approachesWelding in the World2015597317421:CAS:528:DC%2BC2MXpt12gsrc%3D10.1007/S40194-015-0248-X/FIGURES/10 – reference: LopezZFatemiAA method of predicting cyclic stress-strain curve from tensile properties for steels201210.1016/j.msea.2012.07.024 – volume: 59 start-page: 731 year: 2015 ident: 1642_CR21 publication-title: Welding in the World doi: 10.1007/S40194-015-0248-X/FIGURES/10 – volume: 38 start-page: 401 year: 2022 ident: 1642_CR6 publication-title: Procedia Struct Integr doi: 10.1016/J.PROSTR.2022.03.041 – ident: 1642_CR14 doi: 10.1007/978-3-642-55248-9 – volume: 138 start-page: 105687 year: 2020 ident: 1642_CR9 publication-title: Int J Fatigue doi: 10.1016/J.IJFATIGUE.2020.105687 – volume: 40 start-page: 1007 year: 2017 ident: 1642_CR2 publication-title: Fatigue Fract Eng Mater Struct doi: 10.1111/ffe.12619 – ident: 1642_CR19 doi: 10.1007/s11665-008-9225-5 – year: 2012 ident: 1642_CR20 publication-title: A method of predicting cyclic stress-strain curve from tensile properties for steels doi: 10.1016/j.msea.2012.07.024 – ident: 1642_CR3 doi: 10.1016/j.prostr.2022.03.047 – volume: 1 start-page: 3 year: 2023 ident: 1642_CR8 publication-title: Welding in the World doi: 10.1007/s40194-023-01544-0 – volume: 92 start-page: 96 year: 2016 ident: 1642_CR13 publication-title: Int J Fatigue doi: 10.1016/J.IJFATIGUE.2016.06.019 – volume: 142 year: 2021 ident: 1642_CR22 publication-title: Int J Fatigue doi: 10.1016/J.IJFATIGUE.2020.105916 – volume: 53 start-page: R322 year: 2009 ident: 1642_CR12 publication-title: Welding in the World doi: 10.1007/BF03263475 – volume: 64 start-page: 535 year: 2020 ident: 1642_CR23 publication-title: Welding in the World doi: 10.1007/s40194-020-00852-z – volume: 62 start-page: 1285 year: 2018 ident: 1642_CR16 publication-title: Welding in the World doi: 10.1007/S40194-018-0657-8/FIGURES/20 – ident: 1642_CR11 doi: 10.1016/B978-0-08-044478-9.X5000-5 – ident: 1642_CR10 doi: 10.1007/978-3-319-23757-2 – volume: 57 start-page: 841 year: 2013 ident: 1642_CR7 publication-title: Welding World doi: 10.1007/S40194-013-0078-7/FIGURES/19 – volume: 31 start-page: 88 year: 2009 ident: 1642_CR5 publication-title: Int J Fatigue doi: 10.1016/J.IJFATIGUE.2008.02.015 – volume: 167 start-page: 105861 year: 2020 ident: 1642_CR17 publication-title: J Constr Steel Res doi: 10.1016/J.JCSR.2019.105861 – volume: 101 start-page: 177 year: 2017 ident: 1642_CR18 publication-title: Int J Fatigue doi: 10.1016/J.IJFATIGUE.2016.12.031 – volume: 172 start-page: 107604 year: 2023 ident: 1642_CR4 publication-title: Int J Fatigue doi: 10.1016/J.IJFATIGUE.2023.107604 – volume-title: Fatigue design of steel and composite structures: Eurocode 3: design of steel structures, part 1–9 fatigue, eurocode 4: design of composite steel and concrete structures year: 2018 ident: 1642_CR1 – volume: 39 start-page: 566 year: 2016 ident: 1642_CR15 publication-title: Fatigue Fract Eng Mater Struct doi: 10.1111/ffe.12377 |
SSID | ssj0009000 |
Score | 2.3524709 |
Snippet | Different load spectra and individual load peaks might substantially relax high residual stresses as well as induce compressive residual stresses in welded... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 411 |
SubjectTerms | Amplitudes Assessments Chemistry and Materials Science Compressive properties Fatigue strength Fatigue tests High strength steels Life prediction Materials Science Mathematical analysis Metal fatigue Metallic Materials Overloading Peak load Research Paper Residual stress Solid Mechanics Steel Stress ratio Theoretical and Applied Mechanics Welded joints |
Title | Overload and variable amplitude load effects on the fatigue strength of welded joints |
URI | https://link.springer.com/article/10.1007/s40194-023-01642-z https://www.proquest.com/docview/2921532496 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMeDbhc9iD9xOkcO3jRokyZNj9vYHArz4mCeSpMmUxmtuE5hf70vXbfpUMFToUlTeC8hn5D3vg-hc54EroZtQpimnPiBFCTkJiRMCmapFlSpIkC2L3oD_3bIh6VMjsuFWbu_v5oA_zvxWuqifoCVyWwTVbnHAlemoS3aK4Hd60W6CSMUfl8myPw8xvdNaEWWa5ehxR7T3UU7JRzi5tybe2jDpPto-4tk4AEa3MPcG2dxguM0we9w0nW5Tzh2geFOphIXbWWUBs5SDICHLZh_NDXYJYako_wJZxZ_mHFiEvySPaf55BANup2Hdo-UpRGIZoLlxOrA8wMbA85Qa3zjS01j7gnBdRBo5rmC56qgDWotC6WGg4BSsNyAuOAAl7AjVEmz1BwjLBQDqFMS3sawo2npkiqpZzxrpdTc1JC3sFWkS91wV75iHC0Vjwv7RmDfqLBvNKuhi-U3r3PVjD971xcuiMoVNIloCDACtBeKGrpcuGXV_PtoJ__rfoq2KHDKPBC7jir529ScAWfkqoGqzW6r1XfPm8e7TqOYcJ9LhslT |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BOQAHdkRZfeAGRsROnORYIaDsl1aCUxQ7dlmqBNEUpH494zRpoQIkrt7keOz4jfzmDcC-l_g2h21CuWIedf1A0NDTIeWB4IYpwaQsCLK3otl2L--9-zIorFex3asnyeJPPQp2Q0_Aytgyy_9B1EwH0zDjYhG6XDON84er07HY7nEVesIpw6mUwTI_j_L9QhqjzImH0eK-OVuEdjXTIc3k5aifyyM1mBBx_O-nLMFCCUBJY7hjlmFKpysw_0WWcBXad7i_u1mckDhNyDt60za-isSWfG6lMElRVzJBSJYSBJHEoIk7fU1s8EnayR9JZsiH7iY6Ic_ZU5r31qB9dto6adIy_QJVXPCcGuU7rm9ihEzMaFe7gWKx5wjhKd9X3LFJ1WWBaJgxPAwUOhtS4pFGVIdOYsLXoZZmqd4AIiRH4CgDLI3x1lSBDdxkjnaMCQLl6To4lQ0iVWqT2xQZ3WikqlwsWYRLFhVLFg3qcDDq8zpU5viz9XZl2qg8pb2IhQh4EFGGog6HlaXG1b-Ptvm_5nsw22zdXEfXF7dXWzDHEBcNid_bUMvf-noHcU0ud8tt_AkdUuqQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QfRBvOJ0ah580zCbtGn7KNMxL0wfHOwttGkyldEO1yns13uSttsUFXxtLpRzEs53yPm-g9Cpl_imh21CmKQecf2Ak9BTIWEBZ5pKTuPYFsh2eafn3va9_gKL31a7V0-SBafBqDSleXOU6OaM-AZZgZG0paYWCBA0mS6jFchUHJN-tXhrLrt7UZFQGKHwUyVt5uc9voamOd789kRqI097E22UkBFfFj7eQksq3UbrC0KCO6j3ACdymEUJjtIEv0P-axhRODLl4ka8EtuxsnYDZykG2Ic1OGUwUdjQRdJB_owzjT_UMFEJfs1e0ny8i3rt66dWh5QNE4hknOVES99xfR0ByKFaucoNJI08h3NP-r5kjmmDHlsMQrVmYSAhPYhjuISAwyCtS9geqqVZqvYR5jEDqBcH8DWCOCcDQ7WkjnK0DgLpqTpyKlsJWaqJm6YWQzHTQbb2FWBfYe0rpnV0NlszKrQ0_pzdqFwgyns1FjQEiAIYMOR1dF65ZT78-24H_5t-glYfr9ri_qZ7d4jWKACZolK7gWr520QdARDJ42N71j4BwBDRgA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overload+and+variable+amplitude+load+effects+on+the+fatigue+strength+of+welded+joints&rft.jtitle=Welding+in+the+world&rft.au=Gr%C3%B6nlund+Kiia&rft.au=Ahola+Antti&rft.au=Riski+Jani&rft.au=Pesonen+Tero&rft.date=2024-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0043-2288&rft.eissn=1878-6669&rft.volume=68&rft.issue=2&rft.spage=411&rft.epage=425&rft_id=info:doi/10.1007%2Fs40194-023-01642-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-2288&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-2288&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-2288&client=summon |