Overload and variable amplitude load effects on the fatigue strength of welded joints

Different load spectra and individual load peaks might substantially relax high residual stresses as well as induce compressive residual stresses in welded components and, consequently, affect the fatigue performance of these joints. Consideration of peak loads and resulting relaxation of residual s...

Full description

Saved in:
Bibliographic Details
Published inWelding in the world Vol. 68; no. 2; pp. 411 - 425
Main Authors Grönlund, Kiia, Ahola, Antti, Riski, Jani, Pesonen, Tero, Lipiäinen, Kalle, Björk, Timo
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Different load spectra and individual load peaks might substantially relax high residual stresses as well as induce compressive residual stresses in welded components and, consequently, affect the fatigue performance of these joints. Consideration of peak loads and resulting relaxation of residual stresses in fatigue analyses can substantially enhance the accuracy of life prediction. The aim of the current study is to experimentally investigate the fatigue strength of welded joints subjected to different levels of overloads and variable amplitude (VA) loads and to develop local fatigue assessment method to account for the relaxation of residual stresses via a mean stress correction using the 4R method. The 4R method applies a local stress ratio for the mean stress correction considering material strength, residual stresses, applied stress ratio of external loading and local weld geometry in elastic–plastic material behaviour. Fatigue tests were carried out on fillet-welded longitudinal gusset joints made of S700 high-strength steels under applied stress ratio R  = 0–0.1. A mild strength steel (S355) and ultra-high-strength steel (S1100) were selected as reference steel grades for the fatigue testing to study the material strength effects. Numerical analyses were conducted to evaluate the fatigue notch factors using the effective notch stress concept with the reference radius of r ref  = 1.0 mm and theory of critical distance (TCD) using the point method. The experimental results indicated that a substantial improvement in the fatigue strength capacity can be claimed in the joints subjected to tensile overloads, particularly in the studied S700 and S1100 steels. The higher-level overload (0.8 f y ), corresponding to the nominal cross-sectional area, improved the mean fatigue strength of the welded joints manufactured of high-strength S700 steel by approximately 60%, while the lower overload (0.6 f y ) improved the mean fatigue strength by 20%. In addition, a use of equivalent nominal stresses for the joints subjected to VA loads resulted in conservative assessments when employing S–N curves obtained for the CA loading. The 4R method, via the local mean stress correction for individual cycles, provided higher accuracy for the fatigue assessments.
AbstractList Different load spectra and individual load peaks might substantially relax high residual stresses as well as induce compressive residual stresses in welded components and, consequently, affect the fatigue performance of these joints. Consideration of peak loads and resulting relaxation of residual stresses in fatigue analyses can substantially enhance the accuracy of life prediction. The aim of the current study is to experimentally investigate the fatigue strength of welded joints subjected to different levels of overloads and variable amplitude (VA) loads and to develop local fatigue assessment method to account for the relaxation of residual stresses via a mean stress correction using the 4R method. The 4R method applies a local stress ratio for the mean stress correction considering material strength, residual stresses, applied stress ratio of external loading and local weld geometry in elastic–plastic material behaviour. Fatigue tests were carried out on fillet-welded longitudinal gusset joints made of S700 high-strength steels under applied stress ratio R  = 0–0.1. A mild strength steel (S355) and ultra-high-strength steel (S1100) were selected as reference steel grades for the fatigue testing to study the material strength effects. Numerical analyses were conducted to evaluate the fatigue notch factors using the effective notch stress concept with the reference radius of r ref  = 1.0 mm and theory of critical distance (TCD) using the point method. The experimental results indicated that a substantial improvement in the fatigue strength capacity can be claimed in the joints subjected to tensile overloads, particularly in the studied S700 and S1100 steels. The higher-level overload (0.8 f y ), corresponding to the nominal cross-sectional area, improved the mean fatigue strength of the welded joints manufactured of high-strength S700 steel by approximately 60%, while the lower overload (0.6 f y ) improved the mean fatigue strength by 20%. In addition, a use of equivalent nominal stresses for the joints subjected to VA loads resulted in conservative assessments when employing S–N curves obtained for the CA loading. The 4R method, via the local mean stress correction for individual cycles, provided higher accuracy for the fatigue assessments.
Different load spectra and individual load peaks might substantially relax high residual stresses as well as induce compressive residual stresses in welded components and, consequently, affect the fatigue performance of these joints. Consideration of peak loads and resulting relaxation of residual stresses in fatigue analyses can substantially enhance the accuracy of life prediction. The aim of the current study is to experimentally investigate the fatigue strength of welded joints subjected to different levels of overloads and variable amplitude (VA) loads and to develop local fatigue assessment method to account for the relaxation of residual stresses via a mean stress correction using the 4R method. The 4R method applies a local stress ratio for the mean stress correction considering material strength, residual stresses, applied stress ratio of external loading and local weld geometry in elastic–plastic material behaviour. Fatigue tests were carried out on fillet-welded longitudinal gusset joints made of S700 high-strength steels under applied stress ratio R = 0–0.1. A mild strength steel (S355) and ultra-high-strength steel (S1100) were selected as reference steel grades for the fatigue testing to study the material strength effects. Numerical analyses were conducted to evaluate the fatigue notch factors using the effective notch stress concept with the reference radius of rref = 1.0 mm and theory of critical distance (TCD) using the point method. The experimental results indicated that a substantial improvement in the fatigue strength capacity can be claimed in the joints subjected to tensile overloads, particularly in the studied S700 and S1100 steels. The higher-level overload (0.8fy), corresponding to the nominal cross-sectional area, improved the mean fatigue strength of the welded joints manufactured of high-strength S700 steel by approximately 60%, while the lower overload (0.6fy) improved the mean fatigue strength by 20%. In addition, a use of equivalent nominal stresses for the joints subjected to VA loads resulted in conservative assessments when employing S–N curves obtained for the CA loading. The 4R method, via the local mean stress correction for individual cycles, provided higher accuracy for the fatigue assessments.
Author Pesonen, Tero
Björk, Timo
Grönlund, Kiia
Ahola, Antti
Riski, Jani
Lipiäinen, Kalle
Author_xml – sequence: 1
  givenname: Kiia
  orcidid: 0009-0001-3427-0565
  surname: Grönlund
  fullname: Grönlund, Kiia
  email: kiia.gronlund@lut.fi
  organization: Laboratory of Steel Structures, Lappeenranta-Lahti University of Technology LUT
– sequence: 2
  givenname: Antti
  surname: Ahola
  fullname: Ahola, Antti
  organization: Laboratory of Steel Structures, Lappeenranta-Lahti University of Technology LUT
– sequence: 3
  givenname: Jani
  surname: Riski
  fullname: Riski, Jani
  organization: Laboratory of Steel Structures, Lappeenranta-Lahti University of Technology LUT
– sequence: 4
  givenname: Tero
  surname: Pesonen
  fullname: Pesonen, Tero
  organization: Laboratory of Steel Structures, Lappeenranta-Lahti University of Technology LUT
– sequence: 5
  givenname: Kalle
  surname: Lipiäinen
  fullname: Lipiäinen, Kalle
  organization: Laboratory of Steel Structures, Lappeenranta-Lahti University of Technology LUT
– sequence: 6
  givenname: Timo
  surname: Björk
  fullname: Björk, Timo
  organization: Laboratory of Steel Structures, Lappeenranta-Lahti University of Technology LUT
BookMark eNp9kE1rAjEQhkOxULX9Az0Fet42X2Y3xyL9AsFLPYeYnejKmtgkWuqv79YtFHrwMMxh3mfmnXeEBj54QOiWkntKSPmQBKFKFITxglApWHG8QENalVUhpVQDNCRE8IKxqrpCo5Q2hBDV1RAt5geIbTA1Nr7GBxMbs2wBm-2ubfK-BnyagXNgc8LB47wG7ExuVnvAKUfwq7zGweFPaGuo8SY0PqdrdOlMm-Dmt4_R4vnpffpazOYvb9PHWWG55LlwtqSidIZ1jh0IEJVlZkKlnNiytJwyrsSSSMEVc46ryhKhlktOFal4Scuaj9Fdv3cXw8ceUtabsI--O6mZYnTCmVCyU1W9ysaQUgSnbZO7F4LP0TStpkT_hKj7EHUXoj6FqI8dyv6hu9hsTfw6D_EeSp3YryD-uTpDfQN3nYZh
CitedBy_id crossref_primary_10_1016_j_engfracmech_2024_110218
crossref_primary_10_4028_p_Fz73UR
crossref_primary_10_1016_j_ijfatigue_2024_108803
crossref_primary_10_17073_0368_0797_2024_4_409_416
crossref_primary_10_1016_j_ijfatigue_2024_108148
crossref_primary_10_1016_j_engfracmech_2024_110034
crossref_primary_10_1016_j_euromechsol_2025_105600
crossref_primary_10_1007_s40194_025_01989_5
crossref_primary_10_1007_s40194_024_01919_x
Cites_doi 10.1007/S40194-015-0248-X/FIGURES/10
10.1016/J.PROSTR.2022.03.041
10.1007/978-3-642-55248-9
10.1016/J.IJFATIGUE.2020.105687
10.1111/ffe.12619
10.1007/s11665-008-9225-5
10.1016/j.msea.2012.07.024
10.1016/j.prostr.2022.03.047
10.1007/s40194-023-01544-0
10.1016/J.IJFATIGUE.2016.06.019
10.1016/J.IJFATIGUE.2020.105916
10.1007/BF03263475
10.1007/s40194-020-00852-z
10.1007/S40194-018-0657-8/FIGURES/20
10.1016/B978-0-08-044478-9.X5000-5
10.1007/978-3-319-23757-2
10.1007/S40194-013-0078-7/FIGURES/19
10.1016/J.IJFATIGUE.2008.02.015
10.1016/J.JCSR.2019.105861
10.1016/J.IJFATIGUE.2016.12.031
10.1016/J.IJFATIGUE.2023.107604
10.1111/ffe.12377
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s40194-023-01642-z
DatabaseName Springer Nature OA Free Journals (Selected full-text)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-6669
EndPage 425
ExternalDocumentID 10_1007_s40194_023_01642_z
GrantInformation_xml – fundername: Business Finland (CaNelis Project)
  grantid: 3406/31/2022
– fundername: LUT University (previously Lappeenranta University of Technology (LUT))
– fundername: HRO Design Forum
GroupedDBID --K
-EM
06D
0R~
1B1
203
2LR
30V
4.4
406
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
BGNMA
C6C
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
HMJXF
HRMNR
HZ~
IHE
IKXTQ
ITM
IWAJR
J-C
JBSCW
JZLTJ
KOV
LLZTM
M41
M4Y
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9J
P2P
PT4
RIG
ROL
RPZ
RSV
SHX
SISQX
SJN
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
XPP
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z81
Z85
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c363t-fc7147fa2642fe4e48c2a51665c77c312394b064392ff398c049bb319083717d3
IEDL.DBID C6C
ISSN 0043-2288
IngestDate Fri Jul 25 11:08:09 EDT 2025
Tue Jul 01 04:25:39 EDT 2025
Thu Apr 24 22:57:00 EDT 2025
Fri Feb 21 02:40:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Welded joints
Overload
Variable amplitude loading
Fatigue strength
4R method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-fc7147fa2642fe4e48c2a51665c77c312394b064392ff398c049bb319083717d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-3427-0565
OpenAccessLink https://doi.org/10.1007/s40194-023-01642-z
PQID 2921532496
PQPubID 2043671
PageCount 15
ParticipantIDs proquest_journals_2921532496
crossref_citationtrail_10_1007_s40194_023_01642_z
crossref_primary_10_1007_s40194_023_01642_z
springer_journals_10_1007_s40194_023_01642_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle The International Journal of Materials Joining
PublicationTitle Welding in the world
PublicationTitleAbbrev Weld World
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References YıldırımHCRemesHNussbaumerAFatigue properties of as-welded and post-weld-treated high-strength steel joints: the influence of constant and variable amplitude loadsInt J Fatigue202013810568710.1016/J.IJFATIGUE.2020.105687
SonsinoCMEffect of residual stresses on the fatigue behaviour of welded joints depending on loading conditions and weld geometryInt J Fatigue200931881011:CAS:528:DC%2BD1cXht1yjtLfE10.1016/J.IJFATIGUE.2008.02.015
BaumgartnerJSchmidtHInceEFatigue assessment of welded joints using stress averaging and critical distance approachesWelding in the World2015597317421:CAS:528:DC%2BC2MXpt12gsrc%3D10.1007/S40194-015-0248-X/FIGURES/10
HaratiESvenssonLEKarlssonLWidmarkMEffect of high frequency mechanical impact treatment on fatigue strength of welded 1300 MPa yield strength steelInt J Fatigue201692961061:CAS:528:DC%2BC28XhtFegur%2FO10.1016/J.IJFATIGUE.2016.06.019
NussbaumerABorgesLDavaineLFatigue design of steel and composite structures: Eurocode 3: design of steel structures, part 1–9 fatigue, eurocode 4: design of composite steel and concrete structures20182Wiley
BaumgartnerJBruderTInfluence of weld geometry and residual stresses on the fatigue strength of longitudinal stiffenersWelding World20135784185510.1007/S40194-013-0078-7/FIGURES/19
LipiäinenKAholaABjörkTWelding in the World Fatigue performance of ultra-high-strength steel laser cut notches under variable amplitude loadingWelding in the World20231310.1007/s40194-023-01544-0
NykänenTBjörkTA new proposal for assessment of the fatigue strength of steel butt-welded joints improved by peening (HFMI) under constant amplitude tensile loadingFatigue Fract Eng Mater Struct20163956658210.1111/ffe.12377
CarpinteriASpagnoliAVantadoriSA review of multiaxial fatigue criteria for random variable amplitude loadsFatigue Fract Eng Mater Struct2017401007103610.1111/ffe.12619
HemmesiKEllmerFFarajianMOn the evaluation of overload effects on the fatigue strength of metallic materialsProcedia Struct Integr20223840141010.1016/J.PROSTR.2022.03.041
WeichIUmmenhoferTNitschke-PagelTFatigue behaviour of welded high-strength steels after high frequency mechanical post-weld treatmentsWelding in the World200953R322R3321:CAS:528:DC%2BD1MXhs1Wiur%2FK10.1007/BF03263475
HeyraudHMareauCLefebvreFExperimental characterization and numerical modeling of the influence of a proof load on the fatigue resistance of welded structuresInt J Fatigue20231721076041:CAS:528:DC%2BB3sXlvFyisL0%3D10.1016/J.IJFATIGUE.2023.107604
HenselJMean stress correction in fatigue design under consideration of welding residual stressWelding in the World2020645355441:CAS:528:DC%2BB3cXjvFGnuro%3D10.1007/s40194-020-00852-z
Taylor D (2007) The theory of critical distances: a new perspective in fracture mechanics. The theory of critical distances: a new perspective in fracture mechanics pp 1–284. https://doi.org/10.1016/B978-0-08-044478-9.X5000-5
AholaASkrikoTBjörkTFatigue strength assessment of ultra-high-strength steel fillet weld joints using 4R methodJ Constr Steel Res202016710586110.1016/J.JCSR.2019.105861
LopezZFatemiAA method of predicting cyclic stress-strain curve from tensile properties for steels201210.1016/j.msea.2012.07.024
Köhler M, Jenne S, Pötter K, Zenner H (2017) Load assumption for fatigue design of structures and components. In: Counting methods, safety aspects, practical application pp 1–226. https://doi.org/10.1007/978-3-642-55248-9
Huther I, Lefebvre F, Abdellaoui B, Leray V (2022) Influence of overload on fatigue behaviour of longitudinal non-load-carrying welded joints. In: Procedia Structural Integrity. Elsevier B.V. pp 466–476. https://doi.org/10.1016/j.prostr.2022.03.047
BjörkTMettänenHAholaAFatigue strength assessment of duplex and super-duplex stainless steels by 4R methodWelding in the World2018621285130010.1007/S40194-018-0657-8/FIGURES/20
Pavlina EJ, Van Tyne CJ (2008) Correlation of yield strength and tensile strength with hardness for steels. J Mater Eng Perform. https://doi.org/10.1007/s11665-008-9225-5
NykänenTMettänenHBjörkTAholaAFatigue assessment of welded joints under variable amplitude loading using a novel notch stress approachInt J Fatigue201710117719110.1016/J.IJFATIGUE.2016.12.031
Hobbacher AF (2016) Recommendations for fatigue design of welded joints and components (IIW Collection), 2nd end. Springer
AholaAMuikkuABraunMBjörkTFatigue strength assessment of ground fillet-welded joints using 4R methodInt J Fatigue20211421:CAS:528:DC%2BB3cXhslyntr7L10.1016/J.IJFATIGUE.2020.105916
A Ahola (1642_CR22) 2021; 142
1642_CR11
1642_CR10
J Hensel (1642_CR23) 2020; 64
K Lipiäinen (1642_CR8) 2023; 1
1642_CR14
J Baumgartner (1642_CR7) 2013; 57
E Harati (1642_CR13) 2016; 92
A Nussbaumer (1642_CR1) 2018
T Nykänen (1642_CR15) 2016; 39
HC Yıldırım (1642_CR9) 2020; 138
H Heyraud (1642_CR4) 2023; 172
K Hemmesi (1642_CR6) 2022; 38
I Weich (1642_CR12) 2009; 53
Z Lopez (1642_CR20) 2012
T Nykänen (1642_CR18) 2017; 101
J Baumgartner (1642_CR21) 2015; 59
CM Sonsino (1642_CR5) 2009; 31
1642_CR3
1642_CR19
A Carpinteri (1642_CR2) 2017; 40
T Björk (1642_CR16) 2018; 62
A Ahola (1642_CR17) 2020; 167
References_xml – reference: NykänenTMettänenHBjörkTAholaAFatigue assessment of welded joints under variable amplitude loading using a novel notch stress approachInt J Fatigue201710117719110.1016/J.IJFATIGUE.2016.12.031
– reference: Pavlina EJ, Van Tyne CJ (2008) Correlation of yield strength and tensile strength with hardness for steels. J Mater Eng Perform. https://doi.org/10.1007/s11665-008-9225-5
– reference: NussbaumerABorgesLDavaineLFatigue design of steel and composite structures: Eurocode 3: design of steel structures, part 1–9 fatigue, eurocode 4: design of composite steel and concrete structures20182Wiley
– reference: Köhler M, Jenne S, Pötter K, Zenner H (2017) Load assumption for fatigue design of structures and components. In: Counting methods, safety aspects, practical application pp 1–226. https://doi.org/10.1007/978-3-642-55248-9
– reference: HemmesiKEllmerFFarajianMOn the evaluation of overload effects on the fatigue strength of metallic materialsProcedia Struct Integr20223840141010.1016/J.PROSTR.2022.03.041
– reference: YıldırımHCRemesHNussbaumerAFatigue properties of as-welded and post-weld-treated high-strength steel joints: the influence of constant and variable amplitude loadsInt J Fatigue202013810568710.1016/J.IJFATIGUE.2020.105687
– reference: BjörkTMettänenHAholaAFatigue strength assessment of duplex and super-duplex stainless steels by 4R methodWelding in the World2018621285130010.1007/S40194-018-0657-8/FIGURES/20
– reference: HaratiESvenssonLEKarlssonLWidmarkMEffect of high frequency mechanical impact treatment on fatigue strength of welded 1300 MPa yield strength steelInt J Fatigue201692961061:CAS:528:DC%2BC28XhtFegur%2FO10.1016/J.IJFATIGUE.2016.06.019
– reference: SonsinoCMEffect of residual stresses on the fatigue behaviour of welded joints depending on loading conditions and weld geometryInt J Fatigue200931881011:CAS:528:DC%2BD1cXht1yjtLfE10.1016/J.IJFATIGUE.2008.02.015
– reference: AholaAMuikkuABraunMBjörkTFatigue strength assessment of ground fillet-welded joints using 4R methodInt J Fatigue20211421:CAS:528:DC%2BB3cXhslyntr7L10.1016/J.IJFATIGUE.2020.105916
– reference: HenselJMean stress correction in fatigue design under consideration of welding residual stressWelding in the World2020645355441:CAS:528:DC%2BB3cXjvFGnuro%3D10.1007/s40194-020-00852-z
– reference: NykänenTBjörkTA new proposal for assessment of the fatigue strength of steel butt-welded joints improved by peening (HFMI) under constant amplitude tensile loadingFatigue Fract Eng Mater Struct20163956658210.1111/ffe.12377
– reference: Taylor D (2007) The theory of critical distances: a new perspective in fracture mechanics. The theory of critical distances: a new perspective in fracture mechanics pp 1–284. https://doi.org/10.1016/B978-0-08-044478-9.X5000-5
– reference: LipiäinenKAholaABjörkTWelding in the World Fatigue performance of ultra-high-strength steel laser cut notches under variable amplitude loadingWelding in the World20231310.1007/s40194-023-01544-0
– reference: BaumgartnerJBruderTInfluence of weld geometry and residual stresses on the fatigue strength of longitudinal stiffenersWelding World20135784185510.1007/S40194-013-0078-7/FIGURES/19
– reference: Huther I, Lefebvre F, Abdellaoui B, Leray V (2022) Influence of overload on fatigue behaviour of longitudinal non-load-carrying welded joints. In: Procedia Structural Integrity. Elsevier B.V. pp 466–476. https://doi.org/10.1016/j.prostr.2022.03.047
– reference: HeyraudHMareauCLefebvreFExperimental characterization and numerical modeling of the influence of a proof load on the fatigue resistance of welded structuresInt J Fatigue20231721076041:CAS:528:DC%2BB3sXlvFyisL0%3D10.1016/J.IJFATIGUE.2023.107604
– reference: CarpinteriASpagnoliAVantadoriSA review of multiaxial fatigue criteria for random variable amplitude loadsFatigue Fract Eng Mater Struct2017401007103610.1111/ffe.12619
– reference: Hobbacher AF (2016) Recommendations for fatigue design of welded joints and components (IIW Collection), 2nd end. Springer
– reference: WeichIUmmenhoferTNitschke-PagelTFatigue behaviour of welded high-strength steels after high frequency mechanical post-weld treatmentsWelding in the World200953R322R3321:CAS:528:DC%2BD1MXhs1Wiur%2FK10.1007/BF03263475
– reference: AholaASkrikoTBjörkTFatigue strength assessment of ultra-high-strength steel fillet weld joints using 4R methodJ Constr Steel Res202016710586110.1016/J.JCSR.2019.105861
– reference: BaumgartnerJSchmidtHInceEFatigue assessment of welded joints using stress averaging and critical distance approachesWelding in the World2015597317421:CAS:528:DC%2BC2MXpt12gsrc%3D10.1007/S40194-015-0248-X/FIGURES/10
– reference: LopezZFatemiAA method of predicting cyclic stress-strain curve from tensile properties for steels201210.1016/j.msea.2012.07.024
– volume: 59
  start-page: 731
  year: 2015
  ident: 1642_CR21
  publication-title: Welding in the World
  doi: 10.1007/S40194-015-0248-X/FIGURES/10
– volume: 38
  start-page: 401
  year: 2022
  ident: 1642_CR6
  publication-title: Procedia Struct Integr
  doi: 10.1016/J.PROSTR.2022.03.041
– ident: 1642_CR14
  doi: 10.1007/978-3-642-55248-9
– volume: 138
  start-page: 105687
  year: 2020
  ident: 1642_CR9
  publication-title: Int J Fatigue
  doi: 10.1016/J.IJFATIGUE.2020.105687
– volume: 40
  start-page: 1007
  year: 2017
  ident: 1642_CR2
  publication-title: Fatigue Fract Eng Mater Struct
  doi: 10.1111/ffe.12619
– ident: 1642_CR19
  doi: 10.1007/s11665-008-9225-5
– year: 2012
  ident: 1642_CR20
  publication-title: A method of predicting cyclic stress-strain curve from tensile properties for steels
  doi: 10.1016/j.msea.2012.07.024
– ident: 1642_CR3
  doi: 10.1016/j.prostr.2022.03.047
– volume: 1
  start-page: 3
  year: 2023
  ident: 1642_CR8
  publication-title: Welding in the World
  doi: 10.1007/s40194-023-01544-0
– volume: 92
  start-page: 96
  year: 2016
  ident: 1642_CR13
  publication-title: Int J Fatigue
  doi: 10.1016/J.IJFATIGUE.2016.06.019
– volume: 142
  year: 2021
  ident: 1642_CR22
  publication-title: Int J Fatigue
  doi: 10.1016/J.IJFATIGUE.2020.105916
– volume: 53
  start-page: R322
  year: 2009
  ident: 1642_CR12
  publication-title: Welding in the World
  doi: 10.1007/BF03263475
– volume: 64
  start-page: 535
  year: 2020
  ident: 1642_CR23
  publication-title: Welding in the World
  doi: 10.1007/s40194-020-00852-z
– volume: 62
  start-page: 1285
  year: 2018
  ident: 1642_CR16
  publication-title: Welding in the World
  doi: 10.1007/S40194-018-0657-8/FIGURES/20
– ident: 1642_CR11
  doi: 10.1016/B978-0-08-044478-9.X5000-5
– ident: 1642_CR10
  doi: 10.1007/978-3-319-23757-2
– volume: 57
  start-page: 841
  year: 2013
  ident: 1642_CR7
  publication-title: Welding World
  doi: 10.1007/S40194-013-0078-7/FIGURES/19
– volume: 31
  start-page: 88
  year: 2009
  ident: 1642_CR5
  publication-title: Int J Fatigue
  doi: 10.1016/J.IJFATIGUE.2008.02.015
– volume: 167
  start-page: 105861
  year: 2020
  ident: 1642_CR17
  publication-title: J Constr Steel Res
  doi: 10.1016/J.JCSR.2019.105861
– volume: 101
  start-page: 177
  year: 2017
  ident: 1642_CR18
  publication-title: Int J Fatigue
  doi: 10.1016/J.IJFATIGUE.2016.12.031
– volume: 172
  start-page: 107604
  year: 2023
  ident: 1642_CR4
  publication-title: Int J Fatigue
  doi: 10.1016/J.IJFATIGUE.2023.107604
– volume-title: Fatigue design of steel and composite structures: Eurocode 3: design of steel structures, part 1–9 fatigue, eurocode 4: design of composite steel and concrete structures
  year: 2018
  ident: 1642_CR1
– volume: 39
  start-page: 566
  year: 2016
  ident: 1642_CR15
  publication-title: Fatigue Fract Eng Mater Struct
  doi: 10.1111/ffe.12377
SSID ssj0009000
Score 2.3524709
Snippet Different load spectra and individual load peaks might substantially relax high residual stresses as well as induce compressive residual stresses in welded...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 411
SubjectTerms Amplitudes
Assessments
Chemistry and Materials Science
Compressive properties
Fatigue strength
Fatigue tests
High strength steels
Life prediction
Materials Science
Mathematical analysis
Metal fatigue
Metallic Materials
Overloading
Peak load
Research Paper
Residual stress
Solid Mechanics
Steel
Stress ratio
Theoretical and Applied Mechanics
Welded joints
Title Overload and variable amplitude load effects on the fatigue strength of welded joints
URI https://link.springer.com/article/10.1007/s40194-023-01642-z
https://www.proquest.com/docview/2921532496
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMeDbhc9iD9xOkcO3jRokyZNj9vYHArz4mCeSpMmUxmtuE5hf70vXbfpUMFToUlTeC8hn5D3vg-hc54EroZtQpimnPiBFCTkJiRMCmapFlSpIkC2L3oD_3bIh6VMjsuFWbu_v5oA_zvxWuqifoCVyWwTVbnHAlemoS3aK4Hd60W6CSMUfl8myPw8xvdNaEWWa5ehxR7T3UU7JRzi5tybe2jDpPto-4tk4AEa3MPcG2dxguM0we9w0nW5Tzh2geFOphIXbWWUBs5SDICHLZh_NDXYJYako_wJZxZ_mHFiEvySPaf55BANup2Hdo-UpRGIZoLlxOrA8wMbA85Qa3zjS01j7gnBdRBo5rmC56qgDWotC6WGg4BSsNyAuOAAl7AjVEmz1BwjLBQDqFMS3sawo2npkiqpZzxrpdTc1JC3sFWkS91wV75iHC0Vjwv7RmDfqLBvNKuhi-U3r3PVjD971xcuiMoVNIloCDACtBeKGrpcuGXV_PtoJ__rfoq2KHDKPBC7jir529ScAWfkqoGqzW6r1XfPm8e7TqOYcJ9LhslT
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BOQAHdkRZfeAGRsROnORYIaDsl1aCUxQ7dlmqBNEUpH494zRpoQIkrt7keOz4jfzmDcC-l_g2h21CuWIedf1A0NDTIeWB4IYpwaQsCLK3otl2L--9-zIorFex3asnyeJPPQp2Q0_Aytgyy_9B1EwH0zDjYhG6XDON84er07HY7nEVesIpw6mUwTI_j_L9QhqjzImH0eK-OVuEdjXTIc3k5aifyyM1mBBx_O-nLMFCCUBJY7hjlmFKpysw_0WWcBXad7i_u1mckDhNyDt60za-isSWfG6lMElRVzJBSJYSBJHEoIk7fU1s8EnayR9JZsiH7iY6Ic_ZU5r31qB9dto6adIy_QJVXPCcGuU7rm9ihEzMaFe7gWKx5wjhKd9X3LFJ1WWBaJgxPAwUOhtS4pFGVIdOYsLXoZZmqd4AIiRH4CgDLI3x1lSBDdxkjnaMCQLl6To4lQ0iVWqT2xQZ3WikqlwsWYRLFhVLFg3qcDDq8zpU5viz9XZl2qg8pb2IhQh4EFGGog6HlaXG1b-Ptvm_5nsw22zdXEfXF7dXWzDHEBcNid_bUMvf-noHcU0ud8tt_AkdUuqQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QfRBvOJ0ah580zCbtGn7KNMxL0wfHOwttGkyldEO1yns13uSttsUFXxtLpRzEs53yPm-g9Cpl_imh21CmKQecf2Ak9BTIWEBZ5pKTuPYFsh2eafn3va9_gKL31a7V0-SBafBqDSleXOU6OaM-AZZgZG0paYWCBA0mS6jFchUHJN-tXhrLrt7UZFQGKHwUyVt5uc9voamOd789kRqI097E22UkBFfFj7eQksq3UbrC0KCO6j3ACdymEUJjtIEv0P-axhRODLl4ka8EtuxsnYDZykG2Ic1OGUwUdjQRdJB_owzjT_UMFEJfs1e0ny8i3rt66dWh5QNE4hknOVES99xfR0ByKFaucoNJI08h3NP-r5kjmmDHlsMQrVmYSAhPYhjuISAwyCtS9geqqVZqvYR5jEDqBcH8DWCOCcDQ7WkjnK0DgLpqTpyKlsJWaqJm6YWQzHTQbb2FWBfYe0rpnV0NlszKrQ0_pzdqFwgyns1FjQEiAIYMOR1dF65ZT78-24H_5t-glYfr9ri_qZ7d4jWKACZolK7gWr520QdARDJ42N71j4BwBDRgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overload+and+variable+amplitude+load+effects+on+the+fatigue+strength+of+welded+joints&rft.jtitle=Welding+in+the+world&rft.au=Gr%C3%B6nlund+Kiia&rft.au=Ahola+Antti&rft.au=Riski+Jani&rft.au=Pesonen+Tero&rft.date=2024-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0043-2288&rft.eissn=1878-6669&rft.volume=68&rft.issue=2&rft.spage=411&rft.epage=425&rft_id=info:doi/10.1007%2Fs40194-023-01642-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-2288&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-2288&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-2288&client=summon