Non-technical losses detection in energy consumption focusing on energy recovery and explainability

Non-technical losses (NTL) is a problem that many utility companies try to solve, often using black-box supervised classification algorithms. In general, this approach achieves good results. However, in practice, NTL detection faces technical, economic, and transparency challenges that cannot be eas...

Full description

Saved in:
Bibliographic Details
Published inMachine learning Vol. 111; no. 2; pp. 487 - 517
Main Authors Coma-Puig, Bernat, Carmona, Josep
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0885-6125
1573-0565
DOI10.1007/s10994-021-06051-1

Cover

Abstract Non-technical losses (NTL) is a problem that many utility companies try to solve, often using black-box supervised classification algorithms. In general, this approach achieves good results. However, in practice, NTL detection faces technical, economic, and transparency challenges that cannot be easily solved and which compromise the quality and fairness of the predictions. In this work, we contextualise these problems in an NTL detection system built for an international utility company. We explain how we have mitigated them by moving from classification into a regression system and introducing explanatory techniques to improve its accuracy and understanding. As we show in this work, the regression approach can be a good option to mitigate these technical problems, and can be adjusted in order to capture the most striking NTL cases. Moreover, explainable AI (through Shapley Values) allows us to both validate the correctness of the regression approach in this context beyond benchmarking, and improve the transparency of our system drastically.
AbstractList Non-technical losses (NTL) is a problem that many utility companies try to solve, often using black-box supervised classification algorithms. In general, this approach achieves good results. However, in practice, NTL detection faces technical, economic, and transparency challenges that cannot be easily solved and which compromise the quality and fairness of the predictions. In this work, we contextualise these problems in an NTL detection system built for an international utility company. We explain how we have mitigated them by moving from classification into a regression system and introducing explanatory techniques to improve its accuracy and understanding. As we show in this work, the regression approach can be a good option to mitigate these technical problems, and can be adjusted in order to capture the most striking NTL cases. Moreover, explainable AI (through Shapley Values) allows us to both validate the correctness of the regression approach in this context beyond benchmarking, and improve the transparency of our system drastically.
Author Coma-Puig, Bernat
Carmona, Josep
Author_xml – sequence: 1
  givenname: Bernat
  orcidid: 0000-0003-3944-797X
  surname: Coma-Puig
  fullname: Coma-Puig, Bernat
  email: bcoma@cs.upc.edu
  organization: Universitat Politècnica de Catalunya
– sequence: 2
  givenname: Josep
  surname: Carmona
  fullname: Carmona, Josep
  organization: Universitat Politècnica de Catalunya
BookMark eNp9kEtLAzEQgINUsK3-AU8LnqOT7CabPUrxBUUveg7Z7GxN2SY12Yr9925bUfDQ08DMfPP4JmTkg0dCLhlcM4DyJjGoqoICZxQkCEbZCRkzUeYUhBQjMgalBJWMizMySWkJAFwqOSb2OXjao333zpou60JKmLIGh1Tvgs-cz9BjXGwzG3zarNb7bBvsJjm_yMJvOaINnxi3mfFNhl_rzjhvate5fntOTlvTJbz4iVPydn_3Onuk85eHp9ntnNpc5j1t65bXsqyEKRBqaKzAEhFBsoLLugTBhc0LJQtUUjZNxRUU3DAplGo4EyKfkqvD3HUMHxtMvV6GTfTDSs3lMENVvMiHLn7osnF4NmKr19GtTNxqBnonUx9k6kGm3svUbIDUP8i63uxc9NG47jiaH9A07PELjH9XHaG-AZpCjAc
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3295688
crossref_primary_10_1109_ACCESS_2025_3541722
crossref_primary_10_1007_s41403_022_00362_y
crossref_primary_10_1016_j_jclepro_2024_142655
crossref_primary_10_1016_j_engappai_2025_110363
crossref_primary_10_3390_en16217460
crossref_primary_10_1016_j_engappai_2023_105904
crossref_primary_10_1109_ACCESS_2024_3426940
Cites_doi 10.1145/1143844.1143874
10.1145/582415.582418
10.1016/j.ijepes.2011.09.009
10.1017/CBO9780511803161
10.1002/ima.20188
10.1016/j.eswa.2011.02.062
10.1109/TCSS.2016.2519506
10.1109/DSAA.2016.19
10.1038/s41551-018-0304-0
10.1109/TSG.2012.2229397
10.1109/CIASG.2014.7011557
10.1016/j.epsr.2018.01.005
10.1109/ICDMW53433.2021.00123
10.1109/TPWRS.2008.926431
10.1007/978-3-319-22264-6_5
10.24251/HICSS.2018.668
10.1145/3167132.3167384
10.1109/ISGTEUROPE.2010.5638852
10.1016/j.patrec.2013.08.030
10.3390/en12091748
10.1109/ISGT-LA.2013.6554383
10.1145/3340531.3412152
10.1109/TPWRS.2010.2051823
10.1109/ICPM49681.2020.00012
10.2991/ijcis.2017.10.1.51
10.1109/TSG.2016.2560801
10.1016/j.ijepes.2012.10.031
10.1016/j.inffus.2019.12.012
10.5121/ijaia.2013.4602
10.1109/TDC.2008.4517232
10.1038/s42256-019-0048-x
10.1145/2382577.2382579
10.1109/TPWRD.2010.2055670
10.1016/j.ijepes.2015.02.037
10.1109/TSG.2018.2807925
10.1109/TPWRD.2009.2030890
10.3390/socsci9030030
10.1080/03610918.2020.1772302
10.1007/978-3-319-33331-1_16
10.1016/j.compeleceng.2011.09.013
10.1109/TPWRD.2011.2161621
10.1080/09528130903010295
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10994-021-06051-1
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 517
ExternalDocumentID 10_1007_s10994_021_06051_1
GrantInformation_xml – fundername: Universitat Politècnica de Catalunya
– fundername: Ministerio de Economía y Competitividad
  grantid: TIN2017-86727-C2-1-R
  funderid: http://dx.doi.org/10.13039/501100003329
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c363t-fbf2b6795a4e0b0dc5e7eee061426b70525c34864e866dd928042a16588d21553
IEDL.DBID 8FG
ISSN 0885-6125
IngestDate Fri Jul 25 03:36:21 EDT 2025
Tue Jul 01 00:46:07 EDT 2025
Thu Apr 24 22:58:53 EDT 2025
Fri Feb 21 02:47:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Regression
Robustness
Non-technical losses
Explainability
Classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-fbf2b6795a4e0b0dc5e7eee061426b70525c34864e866dd928042a16588d21553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3944-797X
OpenAccessLink https://link.springer.com/10.1007/s10994-021-06051-1
PQID 2642689243
PQPubID 54194
PageCount 31
ParticipantIDs proquest_journals_2642689243
crossref_primary_10_1007_s10994_021_06051_1
crossref_citationtrail_10_1007_s10994_021_06051_1
springer_journals_10_1007_s10994_021_06051_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220200
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 2
  year: 2022
  text: 20220200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References NagiJYapKSTiongSKAhmedSKNagiFImproving svm-based nontechnical loss detection in power utility using the fuzzy inference systemIEEE Transactions on Power Delivery20112621284128510.1109/TPWRD.2010.2055670
RudinCStop explaining black box machine learning models for high stakes decisions and use interpretable models insteadNature Machine Intelligence20191520621510.1038/s42256-019-0048-x
CostaBCAlbertoBLPortelaAMMaduroWElerEOFraud detection in electric power distribution networks using an ann-based knowledge-discovery processInternational Journal of Artificial Intelligence & Applications2013461710.5121/ijaia.2013.4602
MonederoIBiscarriFLeónCGuerreroJIBiscarriJMillánRDetection of frauds and other non-technical losses in a power utility using Pearson coefficient, Bayesian networks and decision treesInternational Journal of Electrical Power & Energy Systems2012341909810.1016/j.ijepes.2011.09.009
PapaJPFalcaoAXSuzukiCTSupervised pattern classification based on optimum-path forestInternational Journal of Imaging Systems and Technology200919212013110.1002/ima.20188
Yapo, A., & Weiss, J. (2018). Ethical implications of bias in machine learning. In Proceedings of the 51st Hawaii international conference on system sciences.
PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVVanderplasJPassosACournapeauDBrucherMPerrotMDuchesnayEScikit-learn: Machine learning in PythonJournal of Machine Learning Research2011122825283028543481280.68189
Lundberg, S. M., Erion, G. G., & Lee, S. I. (2018). Consistent individualized feature attribution for tree ensembles. arXiv preprint arXiv:1802.03888.
PearlJCausality2009Cambridge University Press1188.6829110.1017/CBO9780511803161
DrummondCJapkowiczNWarning: statistical benchmarking is addictive. Kicking the habit in machine learningJournal of Experimental & Theoretical Artificial Intelligence201022167801192.6851410.1080/09528130903010295
Alvarez-Melis, D., & Jaakkola, T. S. (2018). On the robustness of interpretability methods. arXiv preprint arXiv:1806.08049.
Galanti, R., Coma-Puig, B., de Leoni, M., Carmona, J., & Navarin, N. (2020). Explainable predictive process monitoring.
Mansoury, M., Abdollahpouri, H., Pechenizkiy, M., Mobasher, B., & Burke, R. (2020). Feedback loop and bias amplification in recommender systems. In Proceedings of the 29th ACM international conference on information & knowledge management (pp. 2145–2148).
Zhou, H., Qian, W., & Yang, Y. (2019). Tweedie gradient boosting for extremely unbalanced zero-inflated data. arXiv preprint arXiv: 1811.10192
ShapleyLSA value for n-person gamesContributions to the Theory of Games1953228307317534770050.14404
Coma-PuigBCarmonaJBridging the gap between energy consumption and distribution through non-technical loss detectionEnergies201910.3390/en12091748
Ford, V., Siraj, A., & Eberle, W. (2014). Smart grid energy fraud detection using artificial neural networks. In 2014 IEEE symposium on computational intelligence applications in smart grid (CIASG) (pp. 1–6). https://doi.org/10.1109/CIASG.2014.7011557.
Saria, S., & Subbaswamy, A. (2019). Tutorial: Safe and reliable machine learning. arXiv preprint arXiv:1904.07204
RamosCCSouzaANChiachiaGFalcãoAXPapaJPA novel algorithm for feature selection using harmony search and its application for non-technical losses detectionComputers & Electrical Engineering201137688689410.1016/j.compeleceng.2011.09.013
ArrietaABDíaz-RodríguezNDel SerJBennetotATabikSBarbadoAGarcíaSGil-LópezSMolinaDBenjaminsRExplainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible aiInformation Fusion2020588211510.1016/j.inffus.2019.12.012
Molnar, C. (2019). Interpretable machine learning. Retrieved May, 2020 from https://christophm.github.io/interpretable-ml-book/.
RamosCCORodriguesDde SouzaANPapaJPOn the study of commercial losses in brazil: A binary black hole algorithm for theft characterizationIEEE Transactions on Smart Grid20189267668310.1109/TSG.2016.2560801
Krishna, V. B., Iyer, R. K., & Sanders, W. H. (2015). Arima-based modeling and validation of consumption readings in power grids. In International conference on critical information infrastructures security (pp. 199–210). Springer.
NagiJYapKSTiongSKAhmedSKMohamadMNontechnical loss detection for metered customers in power utility using support vector machinesIEEE Transactions on Power Delivery20092521162117110.1109/TPWRD.2009.2030890
AngelosEWSSaavedraORCortésOACde SouzaANDetection and identification of abnormalities in customer consumptions in power distribution systemsIEEE Transactions on Power Delivery20112642436244210.1109/TPWRD.2011.2161621
Posada-QuinteroHFMolano-VergaraPNParra-HernándezRMPosada-QuinteroJIAnalysis of risk factors and symptoms of burnout syndrome in Colombian school teachers under statutes 2277 and 1278 using machine learning interpretationSocial Sciences2020933010.3390/socsci9030030
Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2019) A survey on bias and fairness in machine learning. arXiv preprint arXiv:1908.09635.
Glauner, P., Meira, J. A., Valtchev, P., State, R., & Bettinger, F. (2017/01). The challenge of non-technical loss detection using artificial intelligence: A survey. International Journal of Computational Intelligence Systems,10, 760–775. https://doi.org/10.2991/ijcis.2017.10.1.51.
Coma-Puig, B., & Carmona, J. (2018). A quality control method for fraud detection on utility customers without an active contract. In Proceedings of the 33rd annual ACM symposium on applied computing, SAC ’18 (pp. 495–498). ACM, New York, NY, USA. https://doi.org/10.1145/3167132.3167384.
NizarADongZWangYPower utility nontechnical loss analysis with extreme learning machine methodIEEE Transactions on Power Systems200823394695510.1109/TPWRS.2008.926431
SouzaRRittnerLLotufoRA comparison between k-optimum path forest and k-nearest neighbors supervised classifiersPattern Recognition Letters20143921010.1016/j.patrec.2013.08.030
Coma-Puig, B., & Carmona, J. (2020). An iterative approach based on explainability to improve the learning of fraud detection models.
Cabral, J. E., Pinto, J. O., Martins, E. M., & Pinto, A. M. (2008). Fraud detection in high voltage electricity consumers using data mining. In 2008 IEEE/PES transmission and distribution conference and exposition (pp. 1–5). IEEE.
SpirićJVDočićMBStankovićSSFraud detection in registered electricity time seriesInternational Journal of Electrical Power & Energy Systems201571425010.1016/j.ijepes.2015.02.037
KaufmanSRossetSPerlichCStitelmanOLeakage in data mining: Formulation, detection, and avoidanceACM Transactions on Knowledge Discovery from Data (TKDD)2012641510.1145/2382577.2382579
TsymbalAThe problem of concept drift: Definitions and related workComputer Science Department, Trinity College Dublin2004106258
BuzauMMTejedor-AguileraJCruz-RomeroPGómez-ExpósitoADetection of non-technical losses using smart meter data and supervised learningIEEE Transactions on Smart Grid201810.1109/TSG.2018.2807925
Pereira, L. A. M., Afonso, L. C. S., Papa, J. P., Vale, Z. A., Ramos, C. C. O., Gastaldello, D. S., & Souza, A. N. (2013). Multilayer perceptron neural networks training through charged system search and its application for non-technical losses detection. (pp. 1–6). https://doi.org/10.1109/ISGT-LA.2013.6554383.
XiaoZXiaoYDuDHCExploring malicious meter inspection in neighborhood area smart gridsIEEE Transactions on Smart Grid20134121422610.1109/TSG.2012.2229397
Badrinath KrishnaVWeaverGASandersWHCamposJHaverkortBRPca-based method for detecting integrity attacks on advanced metering infrastructureQuantitative Evaluation of Systems2015Springer708510.1007/978-3-319-22264-6_5
Lundberg, S., & Lee, S.I. (2017) A unified approach to interpreting model predictions.
DepuruSSSRWangLDevabhaktuniVGreenRCHigh performance computing for detection of electricity theftInternational Journal of Electrical Power & Energy Systems201347213010.1016/j.ijepes.2012.10.031
LundbergSMNairBVavilalaMSHoribeMEissesMJAdamsTListonDELowDKWNewmanSFKimJExplainable machine-learning predictions for the prevention of hypoxaemia during surgeryNature Biomedical Engineering201821074910.1038/s41551-018-0304-0
Davis, J., & Goadrich, M. (2006). The relationship between precision-recall and roc curves. In Proceedings of the 23rd international conference on Machine learning (pp. 233–240).
BurgesCJFrom ranknet to lambdarank to lambdamart: An overviewLearning20101123–58181
Coma-Puig, B., Carmona, J., Gavalda, R., Alcoverro, S., & Martin, V. (2016). Fraud detection in energy consumption: A supervised approach. In 2016 IEEE international conference on data science and advanced analytics (DSAA) (pp. 120–129). IEEE.
PearlJMackenzieDThe book of why: The new science of cause and effect2018Basic Books1416.62026
LeónCBiscarriFMonederoIGuerreroJIBiscarriJMillánRIntegrated expert system applied to the analysis of non-technical losses in power utilitiesExpert Systems with Applications2011388102741028510.1016/j.eswa.2011.02.062
RamosCCOde SousaANPapaJPFalcaoAXA new approach for nontechnical losses detection based on optimum-path forestIEEE Transactions on Power Systems201126118118910.1109/TPWRS.2010.2051823
Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning.
Quionero-CandelaJSugiyamaMSchwaighoferALawrenceNDDataset shift in machine learning2009The MIT Press
MessinisGMHatziargyriouNDReview of non-technical loss detection methodsElectric Power Systems Research201815825026610.1016/j.epsr.2018.01.005
Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2017). Catboost: Unbiased boosting with categorical features.
JärvelinKKekäläinenJCumulated gain-based evaluation of ir techniquesACM Transactions on Information Systems (TOIS)200220442244610.1145/582415.582418
LiuYHuSCyberthreat analysis and detection for energy theft in social networking of smart homesIEEE Transactions on Computational Social Systems20152414815810.1109/TCSS.2016.2519506
Kadurek, P., Blom, J., Cobben
CJ Burges (6051_CR5) 2010; 11
EWS Angelos (6051_CR2) 2011; 26
J Quionero-Candela (6051_CR44) 2009
CCO Ramos (6051_CR46) 2011; 26
Z Xiao (6051_CR54) 2013; 4
V Badrinath Krishna (6051_CR4) 2015
HF Posada-Quintero (6051_CR42) 2020; 9
K Järvelin (6051_CR20) 2002; 20
S Kaufman (6051_CR22) 2012; 6
LS Shapley (6051_CR50) 1953; 2
Y Liu (6051_CR25) 2015; 2
6051_CR30
6051_CR32
I Monedero (6051_CR33) 2012; 34
CCO Ramos (6051_CR47) 2018; 9
MM Buzau (6051_CR6) 2018
6051_CR49
A Nizar (6051_CR36) 2008; 23
SSSR Depuru (6051_CR14) 2013; 47
6051_CR8
J Pearl (6051_CR38) 2009
6051_CR41
6051_CR43
B Coma-Puig (6051_CR9) 2019
6051_CR1
6051_CR7
BC Costa (6051_CR12) 2013; 4
SM Lundberg (6051_CR28) 2018; 2
R Souza (6051_CR51) 2014; 39
6051_CR56
6051_CR11
6051_CR55
6051_CR13
6051_CR15
6051_CR18
6051_CR17
C Rudin (6051_CR48) 2019; 1
JP Papa (6051_CR37) 2009; 19
6051_CR10
CC Ramos (6051_CR45) 2011; 37
C León (6051_CR24) 2011; 38
C Drummond (6051_CR16) 2010; 22
6051_CR19
J Nagi (6051_CR34) 2009; 25
J Nagi (6051_CR35) 2011; 26
A Tsymbal (6051_CR53) 2004; 106
JV Spirić (6051_CR52) 2015; 71
F Pedregosa (6051_CR40) 2011; 12
6051_CR23
6051_CR27
6051_CR26
6051_CR29
J Pearl (6051_CR39) 2018
6051_CR21
AB Arrieta (6051_CR3) 2020; 58
GM Messinis (6051_CR31) 2018; 158
References_xml – reference: RamosCCOde SousaANPapaJPFalcaoAXA new approach for nontechnical losses detection based on optimum-path forestIEEE Transactions on Power Systems201126118118910.1109/TPWRS.2010.2051823
– reference: RamosCCSouzaANChiachiaGFalcãoAXPapaJPA novel algorithm for feature selection using harmony search and its application for non-technical losses detectionComputers & Electrical Engineering201137688689410.1016/j.compeleceng.2011.09.013
– reference: Coma-PuigBCarmonaJBridging the gap between energy consumption and distribution through non-technical loss detectionEnergies201910.3390/en12091748
– reference: Coma-Puig, B., & Carmona, J. (2020). An iterative approach based on explainability to improve the learning of fraud detection models.
– reference: Posada-QuinteroHFMolano-VergaraPNParra-HernándezRMPosada-QuinteroJIAnalysis of risk factors and symptoms of burnout syndrome in Colombian school teachers under statutes 2277 and 1278 using machine learning interpretationSocial Sciences2020933010.3390/socsci9030030
– reference: PearlJMackenzieDThe book of why: The new science of cause and effect2018Basic Books1416.62026
– reference: Molnar, C. (2019). Interpretable machine learning. Retrieved May, 2020 from https://christophm.github.io/interpretable-ml-book/.
– reference: RamosCCORodriguesDde SouzaANPapaJPOn the study of commercial losses in brazil: A binary black hole algorithm for theft characterizationIEEE Transactions on Smart Grid20189267668310.1109/TSG.2016.2560801
– reference: DepuruSSSRWangLDevabhaktuniVGreenRCHigh performance computing for detection of electricity theftInternational Journal of Electrical Power & Energy Systems201347213010.1016/j.ijepes.2012.10.031
– reference: BurgesCJFrom ranknet to lambdarank to lambdamart: An overviewLearning20101123–58181
– reference: NizarADongZWangYPower utility nontechnical loss analysis with extreme learning machine methodIEEE Transactions on Power Systems200823394695510.1109/TPWRS.2008.926431
– reference: SouzaRRittnerLLotufoRA comparison between k-optimum path forest and k-nearest neighbors supervised classifiersPattern Recognition Letters20143921010.1016/j.patrec.2013.08.030
– reference: Pereira, L. A. M., Afonso, L. C. S., Papa, J. P., Vale, Z. A., Ramos, C. C. O., Gastaldello, D. S., & Souza, A. N. (2013). Multilayer perceptron neural networks training through charged system search and its application for non-technical losses detection. (pp. 1–6). https://doi.org/10.1109/ISGT-LA.2013.6554383.
– reference: LundbergSMNairBVavilalaMSHoribeMEissesMJAdamsTListonDELowDKWNewmanSFKimJExplainable machine-learning predictions for the prevention of hypoxaemia during surgeryNature Biomedical Engineering201821074910.1038/s41551-018-0304-0
– reference: MessinisGMHatziargyriouNDReview of non-technical loss detection methodsElectric Power Systems Research201815825026610.1016/j.epsr.2018.01.005
– reference: Cabral, J. E., Pinto, J. O., Martins, E. M., & Pinto, A. M. (2008). Fraud detection in high voltage electricity consumers using data mining. In 2008 IEEE/PES transmission and distribution conference and exposition (pp. 1–5). IEEE.
– reference: AngelosEWSSaavedraORCortésOACde SouzaANDetection and identification of abnormalities in customer consumptions in power distribution systemsIEEE Transactions on Power Delivery20112642436244210.1109/TPWRD.2011.2161621
– reference: Krishna, V. B., Iyer, R. K., & Sanders, W. H. (2015). Arima-based modeling and validation of consumption readings in power grids. In International conference on critical information infrastructures security (pp. 199–210). Springer.
– reference: SpirićJVDočićMBStankovićSSFraud detection in registered electricity time seriesInternational Journal of Electrical Power & Energy Systems201571425010.1016/j.ijepes.2015.02.037
– reference: RudinCStop explaining black box machine learning models for high stakes decisions and use interpretable models insteadNature Machine Intelligence20191520621510.1038/s42256-019-0048-x
– reference: XiaoZXiaoYDuDHCExploring malicious meter inspection in neighborhood area smart gridsIEEE Transactions on Smart Grid20134121422610.1109/TSG.2012.2229397
– reference: Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2019) A survey on bias and fairness in machine learning. arXiv preprint arXiv:1908.09635.
– reference: Alvarez-Melis, D., & Jaakkola, T. S. (2018). On the robustness of interpretability methods. arXiv preprint arXiv:1806.08049.
– reference: ShapleyLSA value for n-person gamesContributions to the Theory of Games1953228307317534770050.14404
– reference: Lundberg, S. M., Erion, G. G., & Lee, S. I. (2018). Consistent individualized feature attribution for tree ensembles. arXiv preprint arXiv:1802.03888.
– reference: Davis, J., & Goadrich, M. (2006). The relationship between precision-recall and roc curves. In Proceedings of the 23rd international conference on Machine learning (pp. 233–240).
– reference: MonederoIBiscarriFLeónCGuerreroJIBiscarriJMillánRDetection of frauds and other non-technical losses in a power utility using Pearson coefficient, Bayesian networks and decision treesInternational Journal of Electrical Power & Energy Systems2012341909810.1016/j.ijepes.2011.09.009
– reference: KaufmanSRossetSPerlichCStitelmanOLeakage in data mining: Formulation, detection, and avoidanceACM Transactions on Knowledge Discovery from Data (TKDD)2012641510.1145/2382577.2382579
– reference: Lundberg, S., & Lee, S.I. (2017) A unified approach to interpreting model predictions.
– reference: Zhou, H., Qian, W., & Yang, Y. (2019). Tweedie gradient boosting for extremely unbalanced zero-inflated data. arXiv preprint arXiv: 1811.10192
– reference: Saria, S., & Subbaswamy, A. (2019). Tutorial: Safe and reliable machine learning. arXiv preprint arXiv:1904.07204
– reference: Mansoury, M., Abdollahpouri, H., Pechenizkiy, M., Mobasher, B., & Burke, R. (2020). Feedback loop and bias amplification in recommender systems. In Proceedings of the 29th ACM international conference on information & knowledge management (pp. 2145–2148).
– reference: BuzauMMTejedor-AguileraJCruz-RomeroPGómez-ExpósitoADetection of non-technical losses using smart meter data and supervised learningIEEE Transactions on Smart Grid201810.1109/TSG.2018.2807925
– reference: JärvelinKKekäläinenJCumulated gain-based evaluation of ir techniquesACM Transactions on Information Systems (TOIS)200220442244610.1145/582415.582418
– reference: NagiJYapKSTiongSKAhmedSKMohamadMNontechnical loss detection for metered customers in power utility using support vector machinesIEEE Transactions on Power Delivery20092521162117110.1109/TPWRD.2009.2030890
– reference: NagiJYapKSTiongSKAhmedSKNagiFImproving svm-based nontechnical loss detection in power utility using the fuzzy inference systemIEEE Transactions on Power Delivery20112621284128510.1109/TPWRD.2010.2055670
– reference: Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning.
– reference: Ford, V., Siraj, A., & Eberle, W. (2014). Smart grid energy fraud detection using artificial neural networks. In 2014 IEEE symposium on computational intelligence applications in smart grid (CIASG) (pp. 1–6). https://doi.org/10.1109/CIASG.2014.7011557.
– reference: DrummondCJapkowiczNWarning: statistical benchmarking is addictive. Kicking the habit in machine learningJournal of Experimental & Theoretical Artificial Intelligence201022167801192.6851410.1080/09528130903010295
– reference: LeónCBiscarriFMonederoIGuerreroJIBiscarriJMillánRIntegrated expert system applied to the analysis of non-technical losses in power utilitiesExpert Systems with Applications2011388102741028510.1016/j.eswa.2011.02.062
– reference: Badrinath KrishnaVWeaverGASandersWHCamposJHaverkortBRPca-based method for detecting integrity attacks on advanced metering infrastructureQuantitative Evaluation of Systems2015Springer708510.1007/978-3-319-22264-6_5
– reference: Galanti, R., Coma-Puig, B., de Leoni, M., Carmona, J., & Navarin, N. (2020). Explainable predictive process monitoring.
– reference: Quionero-CandelaJSugiyamaMSchwaighoferALawrenceNDDataset shift in machine learning2009The MIT Press
– reference: LiuYHuSCyberthreat analysis and detection for energy theft in social networking of smart homesIEEE Transactions on Computational Social Systems20152414815810.1109/TCSS.2016.2519506
– reference: Kadurek, P., Blom, J., Cobben, J., & Kling, W. L. (2010). Theft detection and smart metering practices and expectations in the netherlands. In 2010 IEEE PES innovative smart grid technologies conference Europe (ISGT Europe) (pp. 1–6). IEEE.
– reference: Yapo, A., & Weiss, J. (2018). Ethical implications of bias in machine learning. In Proceedings of the 51st Hawaii international conference on system sciences.
– reference: Glauner, P., Meira, J. A., Valtchev, P., State, R., & Bettinger, F. (2017/01). The challenge of non-technical loss detection using artificial intelligence: A survey. International Journal of Computational Intelligence Systems,10, 760–775. https://doi.org/10.2991/ijcis.2017.10.1.51.
– reference: CostaBCAlbertoBLPortelaAMMaduroWElerEOFraud detection in electric power distribution networks using an ann-based knowledge-discovery processInternational Journal of Artificial Intelligence & Applications2013461710.5121/ijaia.2013.4602
– reference: TsymbalAThe problem of concept drift: Definitions and related workComputer Science Department, Trinity College Dublin2004106258
– reference: Coma-Puig, B., & Carmona, J. (2018). A quality control method for fraud detection on utility customers without an active contract. In Proceedings of the 33rd annual ACM symposium on applied computing, SAC ’18 (pp. 495–498). ACM, New York, NY, USA. https://doi.org/10.1145/3167132.3167384.
– reference: PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVVanderplasJPassosACournapeauDBrucherMPerrotMDuchesnayEScikit-learn: Machine learning in PythonJournal of Machine Learning Research2011122825283028543481280.68189
– reference: PearlJCausality2009Cambridge University Press1188.6829110.1017/CBO9780511803161
– reference: Coma-Puig, B., Carmona, J., Gavalda, R., Alcoverro, S., & Martin, V. (2016). Fraud detection in energy consumption: A supervised approach. In 2016 IEEE international conference on data science and advanced analytics (DSAA) (pp. 120–129). IEEE.
– reference: ArrietaABDíaz-RodríguezNDel SerJBennetotATabikSBarbadoAGarcíaSGil-LópezSMolinaDBenjaminsRExplainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible aiInformation Fusion2020588211510.1016/j.inffus.2019.12.012
– reference: Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2017). Catboost: Unbiased boosting with categorical features.
– reference: PapaJPFalcaoAXSuzukiCTSupervised pattern classification based on optimum-path forestInternational Journal of Imaging Systems and Technology200919212013110.1002/ima.20188
– ident: 6051_CR13
  doi: 10.1145/1143844.1143874
– volume: 20
  start-page: 422
  issue: 4
  year: 2002
  ident: 6051_CR20
  publication-title: ACM Transactions on Information Systems (TOIS)
  doi: 10.1145/582415.582418
– volume: 34
  start-page: 90
  issue: 1
  year: 2012
  ident: 6051_CR33
  publication-title: International Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2011.09.009
– volume: 11
  start-page: 81
  issue: 23–581
  year: 2010
  ident: 6051_CR5
  publication-title: Learning
– volume-title: Causality
  year: 2009
  ident: 6051_CR38
  doi: 10.1017/CBO9780511803161
– volume: 106
  start-page: 58
  issue: 2
  year: 2004
  ident: 6051_CR53
  publication-title: Computer Science Department, Trinity College Dublin
– volume: 19
  start-page: 120
  issue: 2
  year: 2009
  ident: 6051_CR37
  publication-title: International Journal of Imaging Systems and Technology
  doi: 10.1002/ima.20188
– volume: 38
  start-page: 10274
  issue: 8
  year: 2011
  ident: 6051_CR24
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.02.062
– volume: 2
  start-page: 148
  issue: 4
  year: 2015
  ident: 6051_CR25
  publication-title: IEEE Transactions on Computational Social Systems
  doi: 10.1109/TCSS.2016.2519506
– ident: 6051_CR11
  doi: 10.1109/DSAA.2016.19
– volume: 2
  start-page: 749
  issue: 10
  year: 2018
  ident: 6051_CR28
  publication-title: Nature Biomedical Engineering
  doi: 10.1038/s41551-018-0304-0
– volume: 4
  start-page: 214
  issue: 1
  year: 2013
  ident: 6051_CR54
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2012.2229397
– ident: 6051_CR17
  doi: 10.1109/CIASG.2014.7011557
– volume: 158
  start-page: 250
  year: 2018
  ident: 6051_CR31
  publication-title: Electric Power Systems Research
  doi: 10.1016/j.epsr.2018.01.005
– ident: 6051_CR1
– ident: 6051_CR10
  doi: 10.1109/ICDMW53433.2021.00123
– volume: 23
  start-page: 946
  issue: 3
  year: 2008
  ident: 6051_CR36
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2008.926431
– start-page: 70
  volume-title: Quantitative Evaluation of Systems
  year: 2015
  ident: 6051_CR4
  doi: 10.1007/978-3-319-22264-6_5
– ident: 6051_CR55
  doi: 10.24251/HICSS.2018.668
– ident: 6051_CR8
  doi: 10.1145/3167132.3167384
– volume-title: Dataset shift in machine learning
  year: 2009
  ident: 6051_CR44
– ident: 6051_CR21
  doi: 10.1109/ISGTEUROPE.2010.5638852
– volume: 39
  start-page: 2
  year: 2014
  ident: 6051_CR51
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2013.08.030
– ident: 6051_CR49
– year: 2019
  ident: 6051_CR9
  publication-title: Energies
  doi: 10.3390/en12091748
– ident: 6051_CR41
  doi: 10.1109/ISGT-LA.2013.6554383
– ident: 6051_CR29
  doi: 10.1145/3340531.3412152
– volume: 26
  start-page: 181
  issue: 1
  year: 2011
  ident: 6051_CR46
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2010.2051823
– ident: 6051_CR18
  doi: 10.1109/ICPM49681.2020.00012
– ident: 6051_CR19
  doi: 10.2991/ijcis.2017.10.1.51
– volume: 9
  start-page: 676
  issue: 2
  year: 2018
  ident: 6051_CR47
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2016.2560801
– volume: 47
  start-page: 21
  year: 2013
  ident: 6051_CR14
  publication-title: International Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2012.10.031
– ident: 6051_CR30
– volume: 58
  start-page: 82
  year: 2020
  ident: 6051_CR3
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2019.12.012
– volume: 4
  start-page: 17
  issue: 6
  year: 2013
  ident: 6051_CR12
  publication-title: International Journal of Artificial Intelligence & Applications
  doi: 10.5121/ijaia.2013.4602
– ident: 6051_CR7
  doi: 10.1109/TDC.2008.4517232
– volume: 1
  start-page: 206
  issue: 5
  year: 2019
  ident: 6051_CR48
  publication-title: Nature Machine Intelligence
  doi: 10.1038/s42256-019-0048-x
– volume: 6
  start-page: 15
  issue: 4
  year: 2012
  ident: 6051_CR22
  publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD)
  doi: 10.1145/2382577.2382579
– ident: 6051_CR27
– volume: 26
  start-page: 1284
  issue: 2
  year: 2011
  ident: 6051_CR35
  publication-title: IEEE Transactions on Power Delivery
  doi: 10.1109/TPWRD.2010.2055670
– volume: 71
  start-page: 42
  year: 2015
  ident: 6051_CR52
  publication-title: International Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2015.02.037
– year: 2018
  ident: 6051_CR6
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2018.2807925
– volume: 25
  start-page: 1162
  issue: 2
  year: 2009
  ident: 6051_CR34
  publication-title: IEEE Transactions on Power Delivery
  doi: 10.1109/TPWRD.2009.2030890
– volume: 12
  start-page: 2825
  year: 2011
  ident: 6051_CR40
  publication-title: Journal of Machine Learning Research
– volume-title: The book of why: The new science of cause and effect
  year: 2018
  ident: 6051_CR39
– volume: 9
  start-page: 30
  issue: 3
  year: 2020
  ident: 6051_CR42
  publication-title: Social Sciences
  doi: 10.3390/socsci9030030
– ident: 6051_CR56
  doi: 10.1080/03610918.2020.1772302
– ident: 6051_CR15
– ident: 6051_CR32
– ident: 6051_CR23
  doi: 10.1007/978-3-319-33331-1_16
– volume: 37
  start-page: 886
  issue: 6
  year: 2011
  ident: 6051_CR45
  publication-title: Computers & Electrical Engineering
  doi: 10.1016/j.compeleceng.2011.09.013
– volume: 2
  start-page: 307
  issue: 28
  year: 1953
  ident: 6051_CR50
  publication-title: Contributions to the Theory of Games
– volume: 26
  start-page: 2436
  issue: 4
  year: 2011
  ident: 6051_CR2
  publication-title: IEEE Transactions on Power Delivery
  doi: 10.1109/TPWRD.2011.2161621
– ident: 6051_CR26
– volume: 22
  start-page: 67
  issue: 1
  year: 2010
  ident: 6051_CR16
  publication-title: Journal of Experimental & Theoretical Artificial Intelligence
  doi: 10.1080/09528130903010295
– ident: 6051_CR43
SSID ssj0002686
Score 2.4197476
Snippet Non-technical losses (NTL) is a problem that many utility companies try to solve, often using black-box supervised classification algorithms. In general, this...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 487
SubjectTerms Algorithms
Artificial Intelligence
Classification
Coma
Computer Science
Control
Customers
Energy consumption
Energy industry
Energy recovery
Machine Learning
Mechatronics
Natural Language Processing (NLP)
Neural networks
Public utilities
Regression
Robotics
Simulation and Modeling
Special Issue: Foundations of Data Science
Support vector machines
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQWVh4IwoFeWADS4kdO8lYIaqKoROVukV-BSFVSUWDRP89d27SAgIkZj-GO9_5zv6-O0JusixxOdc5k9rga5WXTMe5ZjqJytgoj0-RiLaYqPE0eZzJWUsKW3Zo9-5LMnjqT2S3UMaWI1IHjhKDnGdXQu6O5jjlw43_5Sr0dwTzkQzv75Yq8_MeX6-jbYz57Vs03DajQ7Lfhol0uNbrEdnx1TE56Fow0NYiT4id1BVb12EFYdN5jX-41PkmIKwq-lJRH9h91AauZXAQtKwt4t2fab0ZxsQYTvWK6spR_76YB1YVAmdXp2Q6eni6H7O2bwKzQomGlabkRqW51ImPTOSs9Kn3HnM_rkyKneusSDKV-EwpB6rKwHJ1DLFI5jj2ETojvaqu_DmhDuIb7vIot6lIhI6MLW0mUxdH2llhTJ_EnfgK2xYVx94W82JbDhlFXoDIiyDyIu6T282axbqkxp-zB51Wita8lgVEcaBlSB1Fn9x1mtoO_77bxf-mX5I9jnSHgNIekF7z-uavIAhpzHU4cx9n09Jh
  priority: 102
  providerName: Springer Nature
Title Non-technical losses detection in energy consumption focusing on energy recovery and explainability
URI https://link.springer.com/article/10.1007/s10994-021-06051-1
https://www.proquest.com/docview/2642689243
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gXLjwRgwGyoEbRLRpm6YntE0bCKQJISaNU5VXEdLUDjYk9u-Js3QTSOzSHNLkYDu243y2EbrkPNYZFRlJhIRolUmICDNBRBwUoWQGQpGAthiw-2H8MEpGPuA29bDKWic6Ra0rBTHyG2u4KeP2thDdTj4IdI2C11XfQmMTbYXW0oCc8_7dUhPbBWzhRSYELLlPmvGpc64oLgXcjxVMEv42TCtv888DqbM7_T204x1G3F5weB9tmPIA7dbNGLA_m4dIDaqSLCqyWrLjcQWvuVibmcNalfi9xMbl-WHlsi6dqsBFpQD5_oar5TRcka18z7EoNTbfk7HLrwII7fwIDfu9l-498R0UiIpYNCOFLKhkaZaI2AQy0CoxqTEGboGUyRR62Kko5iw2nDFtmcbtGRah9Uq4ptBR6Bg1yqo0Jwhr6-lQnQWZSqM4EoFUheJJqsNAaBVJ2URhTb5c-fLi0OVinK8KIwPJc0vy3JE8D5voarlmsiiusfbvVs2V3B-0ab4Siya6rjm1mv5_t9P1u52hbQqJDg6f3UKN2eeXObfux0xeOBm7QFvtfqczgPHu9bFnx05v8PRsZ7usa79D2v4BH_rb_A
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9FAu9AVqoI890BNdYa_ttX1ACGiihJSoqhIpN7MvV5UiO9CgNn-qv5GdtZ2oldpbzmuv7JnZeezMNwPwMUlCnTKR0khIvK0yERV-KqgIvdyX3OBVJFZbDHlvHP6cRJMNeGiwMFhW2ehEp6h1qfCO_LM13IwnNloIvs7-UJwahdnVZoRGJRYDs7izIdvtl_655e8pY93O6EeP1lMFqAp4MKe5zJnkcRqJ0HjS0yoysTEGIyPGZYxz3VQQJjw0Cefa_khi5Vr41lInmuGUHbvvK9gMEdHags3vneHl1VL320_kld8aUfQdaphODdZzbXgZVhrZo0D9x6Zw5d8-Sck6S9fdgTe1i0q-VTK1Cxum2IPtZvwDqbXBPqhhWdCqB6xlNJmWmD8m2sxddVdBbgpiHLKQKIfzdMqJ5KXCWvtrUi6XMSi3J2pBRKGJuZ9NHaILi3YXb2G8Fuq-g1ZRFuYAiLa-FdOpl6o4CAPhSZWrJIq17wmtAinb4Dfky1Td0BznakyzVStmJHlmSZ45kmd-Gz4t35lV7TxefPqw4UpWH-3bbCWIbThrOLVafn639y_vdgJbvdGvi-yiPxx8gNcMYRauOvwQWvO__8yRdX7m8riWOAK_1y3k_wEAchJC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7RIFW9QGmpCE3LHtpTWcVe2-v1oaqqQkiginoAKTd3X0ZIkR1IEM1f49d1Z20nKlK55bz2yp6ZncfONzMAn4SITcZkRhOp8LbKJlSGmaQyDopQcYtXkYi2GPPhVXw-SSZb8NjWwiCsstWJXlGbSuMded8ZbsaFixaiftHAIn6dDL7NbilOkMJMaztOoxaRC7t8cOHb_OvoxPH6M2OD08sfQ9pMGKA64tGCFqpgiqdZImMbqMDoxKbWWoySGFcpznjTUSx4bAXnxv2UcDIuQ2e1hWE4ccft-wK20yjNMPATg7OVFXAfy2sPNqHoRTQFO03Znm_IyxBz5A4FDf81imtP90ly1tu8wWvYaZxV8r2Wrj3YsuUb2G0HQZBGL7wFPa5KWneDdSwn0wozycTYhcd5leSmJNbXGBLtKz69miJFpRF1f02q1TKG5-5sLYksDbF_ZlNf24Xw3eU-XG2Etu-gU1alPQBinJfFTBZkOo3iSAZKF1okqQkDaXSkVBfClny5blqb44SNab5uyowkzx3Jc0_yPOzCl9U7s7qxx7NP91qu5M0hn-drkezCccup9fL_dzt8frcjeOlEO_85Gl-8h1cM6y08TLwHncXdvf3gvKCF-ujFjcDvTcv3XwyhFRI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-technical+losses+detection+in+energy+consumption+focusing+on+energy+recovery+and+explainability&rft.jtitle=Machine+learning&rft.au=Coma-Puig%2C+Bernat&rft.au=Carmona%2C+Josep&rft.date=2022-02-01&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=111&rft.issue=2&rft.spage=487&rft.epage=517&rft_id=info:doi/10.1007%2Fs10994-021-06051-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10994_021_06051_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon