Non-technical losses detection in energy consumption focusing on energy recovery and explainability
Non-technical losses (NTL) is a problem that many utility companies try to solve, often using black-box supervised classification algorithms. In general, this approach achieves good results. However, in practice, NTL detection faces technical, economic, and transparency challenges that cannot be eas...
Saved in:
Published in | Machine learning Vol. 111; no. 2; pp. 487 - 517 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0885-6125 1573-0565 |
DOI | 10.1007/s10994-021-06051-1 |
Cover
Abstract | Non-technical losses (NTL) is a problem that many utility companies try to solve, often using black-box supervised classification algorithms. In general, this approach achieves good results. However, in practice, NTL detection faces technical, economic, and transparency challenges that cannot be easily solved and which compromise the quality and fairness of the predictions. In this work, we contextualise these problems in an NTL detection system built for an international utility company. We explain how we have mitigated them by moving from classification into a regression system and introducing explanatory techniques to improve its accuracy and understanding. As we show in this work, the regression approach can be a good option to mitigate these technical problems, and can be adjusted in order to capture the most striking NTL cases. Moreover, explainable AI (through Shapley Values) allows us to both validate the correctness of the regression approach in this context beyond benchmarking, and improve the transparency of our system drastically. |
---|---|
AbstractList | Non-technical losses (NTL) is a problem that many utility companies try to solve, often using black-box supervised classification algorithms. In general, this approach achieves good results. However, in practice, NTL detection faces technical, economic, and transparency challenges that cannot be easily solved and which compromise the quality and fairness of the predictions. In this work, we contextualise these problems in an NTL detection system built for an international utility company. We explain how we have mitigated them by moving from classification into a regression system and introducing explanatory techniques to improve its accuracy and understanding. As we show in this work, the regression approach can be a good option to mitigate these technical problems, and can be adjusted in order to capture the most striking NTL cases. Moreover, explainable AI (through Shapley Values) allows us to both validate the correctness of the regression approach in this context beyond benchmarking, and improve the transparency of our system drastically. |
Author | Coma-Puig, Bernat Carmona, Josep |
Author_xml | – sequence: 1 givenname: Bernat orcidid: 0000-0003-3944-797X surname: Coma-Puig fullname: Coma-Puig, Bernat email: bcoma@cs.upc.edu organization: Universitat Politècnica de Catalunya – sequence: 2 givenname: Josep surname: Carmona fullname: Carmona, Josep organization: Universitat Politècnica de Catalunya |
BookMark | eNp9kEtLAzEQgINUsK3-AU8LnqOT7CabPUrxBUUveg7Z7GxN2SY12Yr9925bUfDQ08DMfPP4JmTkg0dCLhlcM4DyJjGoqoICZxQkCEbZCRkzUeYUhBQjMgalBJWMizMySWkJAFwqOSb2OXjao333zpou60JKmLIGh1Tvgs-cz9BjXGwzG3zarNb7bBvsJjm_yMJvOaINnxi3mfFNhl_rzjhvate5fntOTlvTJbz4iVPydn_3Onuk85eHp9ntnNpc5j1t65bXsqyEKRBqaKzAEhFBsoLLugTBhc0LJQtUUjZNxRUU3DAplGo4EyKfkqvD3HUMHxtMvV6GTfTDSs3lMENVvMiHLn7osnF4NmKr19GtTNxqBnonUx9k6kGm3svUbIDUP8i63uxc9NG47jiaH9A07PELjH9XHaG-AZpCjAc |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3295688 crossref_primary_10_1109_ACCESS_2025_3541722 crossref_primary_10_1007_s41403_022_00362_y crossref_primary_10_1016_j_jclepro_2024_142655 crossref_primary_10_1016_j_engappai_2025_110363 crossref_primary_10_3390_en16217460 crossref_primary_10_1016_j_engappai_2023_105904 crossref_primary_10_1109_ACCESS_2024_3426940 |
Cites_doi | 10.1145/1143844.1143874 10.1145/582415.582418 10.1016/j.ijepes.2011.09.009 10.1017/CBO9780511803161 10.1002/ima.20188 10.1016/j.eswa.2011.02.062 10.1109/TCSS.2016.2519506 10.1109/DSAA.2016.19 10.1038/s41551-018-0304-0 10.1109/TSG.2012.2229397 10.1109/CIASG.2014.7011557 10.1016/j.epsr.2018.01.005 10.1109/ICDMW53433.2021.00123 10.1109/TPWRS.2008.926431 10.1007/978-3-319-22264-6_5 10.24251/HICSS.2018.668 10.1145/3167132.3167384 10.1109/ISGTEUROPE.2010.5638852 10.1016/j.patrec.2013.08.030 10.3390/en12091748 10.1109/ISGT-LA.2013.6554383 10.1145/3340531.3412152 10.1109/TPWRS.2010.2051823 10.1109/ICPM49681.2020.00012 10.2991/ijcis.2017.10.1.51 10.1109/TSG.2016.2560801 10.1016/j.ijepes.2012.10.031 10.1016/j.inffus.2019.12.012 10.5121/ijaia.2013.4602 10.1109/TDC.2008.4517232 10.1038/s42256-019-0048-x 10.1145/2382577.2382579 10.1109/TPWRD.2010.2055670 10.1016/j.ijepes.2015.02.037 10.1109/TSG.2018.2807925 10.1109/TPWRD.2009.2030890 10.3390/socsci9030030 10.1080/03610918.2020.1772302 10.1007/978-3-319-33331-1_16 10.1016/j.compeleceng.2011.09.013 10.1109/TPWRD.2011.2161621 10.1080/09528130903010295 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s10994-021-06051-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-0565 |
EndPage | 517 |
ExternalDocumentID | 10_1007_s10994_021_06051_1 |
GrantInformation_xml | – fundername: Universitat Politècnica de Catalunya – fundername: Ministerio de Economía y Competitividad grantid: TIN2017-86727-C2-1-R funderid: http://dx.doi.org/10.13039/501100003329 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAK LLZTM M0N M2P M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF- PQQKQ PROAC PT4 Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WIP WK8 XJT YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z8Z Z91 Z92 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c363t-fbf2b6795a4e0b0dc5e7eee061426b70525c34864e866dd928042a16588d21553 |
IEDL.DBID | 8FG |
ISSN | 0885-6125 |
IngestDate | Fri Jul 25 03:36:21 EDT 2025 Tue Jul 01 00:46:07 EDT 2025 Thu Apr 24 22:58:53 EDT 2025 Fri Feb 21 02:47:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Regression Robustness Non-technical losses Explainability Classification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-fbf2b6795a4e0b0dc5e7eee061426b70525c34864e866dd928042a16588d21553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3944-797X |
OpenAccessLink | https://link.springer.com/10.1007/s10994-021-06051-1 |
PQID | 2642689243 |
PQPubID | 54194 |
PageCount | 31 |
ParticipantIDs | proquest_journals_2642689243 crossref_primary_10_1007_s10994_021_06051_1 crossref_citationtrail_10_1007_s10994_021_06051_1 springer_journals_10_1007_s10994_021_06051_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220200 2022-02-00 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 2 year: 2022 text: 20220200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | Machine learning |
PublicationTitleAbbrev | Mach Learn |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | NagiJYapKSTiongSKAhmedSKNagiFImproving svm-based nontechnical loss detection in power utility using the fuzzy inference systemIEEE Transactions on Power Delivery20112621284128510.1109/TPWRD.2010.2055670 RudinCStop explaining black box machine learning models for high stakes decisions and use interpretable models insteadNature Machine Intelligence20191520621510.1038/s42256-019-0048-x CostaBCAlbertoBLPortelaAMMaduroWElerEOFraud detection in electric power distribution networks using an ann-based knowledge-discovery processInternational Journal of Artificial Intelligence & Applications2013461710.5121/ijaia.2013.4602 MonederoIBiscarriFLeónCGuerreroJIBiscarriJMillánRDetection of frauds and other non-technical losses in a power utility using Pearson coefficient, Bayesian networks and decision treesInternational Journal of Electrical Power & Energy Systems2012341909810.1016/j.ijepes.2011.09.009 PapaJPFalcaoAXSuzukiCTSupervised pattern classification based on optimum-path forestInternational Journal of Imaging Systems and Technology200919212013110.1002/ima.20188 Yapo, A., & Weiss, J. (2018). Ethical implications of bias in machine learning. In Proceedings of the 51st Hawaii international conference on system sciences. PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVVanderplasJPassosACournapeauDBrucherMPerrotMDuchesnayEScikit-learn: Machine learning in PythonJournal of Machine Learning Research2011122825283028543481280.68189 Lundberg, S. M., Erion, G. G., & Lee, S. I. (2018). Consistent individualized feature attribution for tree ensembles. arXiv preprint arXiv:1802.03888. PearlJCausality2009Cambridge University Press1188.6829110.1017/CBO9780511803161 DrummondCJapkowiczNWarning: statistical benchmarking is addictive. Kicking the habit in machine learningJournal of Experimental & Theoretical Artificial Intelligence201022167801192.6851410.1080/09528130903010295 Alvarez-Melis, D., & Jaakkola, T. S. (2018). On the robustness of interpretability methods. arXiv preprint arXiv:1806.08049. Galanti, R., Coma-Puig, B., de Leoni, M., Carmona, J., & Navarin, N. (2020). Explainable predictive process monitoring. Mansoury, M., Abdollahpouri, H., Pechenizkiy, M., Mobasher, B., & Burke, R. (2020). Feedback loop and bias amplification in recommender systems. In Proceedings of the 29th ACM international conference on information & knowledge management (pp. 2145–2148). Zhou, H., Qian, W., & Yang, Y. (2019). Tweedie gradient boosting for extremely unbalanced zero-inflated data. arXiv preprint arXiv: 1811.10192 ShapleyLSA value for n-person gamesContributions to the Theory of Games1953228307317534770050.14404 Coma-PuigBCarmonaJBridging the gap between energy consumption and distribution through non-technical loss detectionEnergies201910.3390/en12091748 Ford, V., Siraj, A., & Eberle, W. (2014). Smart grid energy fraud detection using artificial neural networks. In 2014 IEEE symposium on computational intelligence applications in smart grid (CIASG) (pp. 1–6). https://doi.org/10.1109/CIASG.2014.7011557. Saria, S., & Subbaswamy, A. (2019). Tutorial: Safe and reliable machine learning. arXiv preprint arXiv:1904.07204 RamosCCSouzaANChiachiaGFalcãoAXPapaJPA novel algorithm for feature selection using harmony search and its application for non-technical losses detectionComputers & Electrical Engineering201137688689410.1016/j.compeleceng.2011.09.013 ArrietaABDíaz-RodríguezNDel SerJBennetotATabikSBarbadoAGarcíaSGil-LópezSMolinaDBenjaminsRExplainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible aiInformation Fusion2020588211510.1016/j.inffus.2019.12.012 Molnar, C. (2019). Interpretable machine learning. Retrieved May, 2020 from https://christophm.github.io/interpretable-ml-book/. RamosCCORodriguesDde SouzaANPapaJPOn the study of commercial losses in brazil: A binary black hole algorithm for theft characterizationIEEE Transactions on Smart Grid20189267668310.1109/TSG.2016.2560801 Krishna, V. B., Iyer, R. K., & Sanders, W. H. (2015). Arima-based modeling and validation of consumption readings in power grids. In International conference on critical information infrastructures security (pp. 199–210). Springer. NagiJYapKSTiongSKAhmedSKMohamadMNontechnical loss detection for metered customers in power utility using support vector machinesIEEE Transactions on Power Delivery20092521162117110.1109/TPWRD.2009.2030890 AngelosEWSSaavedraORCortésOACde SouzaANDetection and identification of abnormalities in customer consumptions in power distribution systemsIEEE Transactions on Power Delivery20112642436244210.1109/TPWRD.2011.2161621 Posada-QuinteroHFMolano-VergaraPNParra-HernándezRMPosada-QuinteroJIAnalysis of risk factors and symptoms of burnout syndrome in Colombian school teachers under statutes 2277 and 1278 using machine learning interpretationSocial Sciences2020933010.3390/socsci9030030 Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2019) A survey on bias and fairness in machine learning. arXiv preprint arXiv:1908.09635. Glauner, P., Meira, J. A., Valtchev, P., State, R., & Bettinger, F. (2017/01). The challenge of non-technical loss detection using artificial intelligence: A survey. International Journal of Computational Intelligence Systems,10, 760–775. https://doi.org/10.2991/ijcis.2017.10.1.51. Coma-Puig, B., & Carmona, J. (2018). A quality control method for fraud detection on utility customers without an active contract. In Proceedings of the 33rd annual ACM symposium on applied computing, SAC ’18 (pp. 495–498). ACM, New York, NY, USA. https://doi.org/10.1145/3167132.3167384. NizarADongZWangYPower utility nontechnical loss analysis with extreme learning machine methodIEEE Transactions on Power Systems200823394695510.1109/TPWRS.2008.926431 SouzaRRittnerLLotufoRA comparison between k-optimum path forest and k-nearest neighbors supervised classifiersPattern Recognition Letters20143921010.1016/j.patrec.2013.08.030 Coma-Puig, B., & Carmona, J. (2020). An iterative approach based on explainability to improve the learning of fraud detection models. Cabral, J. E., Pinto, J. O., Martins, E. M., & Pinto, A. M. (2008). Fraud detection in high voltage electricity consumers using data mining. In 2008 IEEE/PES transmission and distribution conference and exposition (pp. 1–5). IEEE. SpirićJVDočićMBStankovićSSFraud detection in registered electricity time seriesInternational Journal of Electrical Power & Energy Systems201571425010.1016/j.ijepes.2015.02.037 KaufmanSRossetSPerlichCStitelmanOLeakage in data mining: Formulation, detection, and avoidanceACM Transactions on Knowledge Discovery from Data (TKDD)2012641510.1145/2382577.2382579 TsymbalAThe problem of concept drift: Definitions and related workComputer Science Department, Trinity College Dublin2004106258 BuzauMMTejedor-AguileraJCruz-RomeroPGómez-ExpósitoADetection of non-technical losses using smart meter data and supervised learningIEEE Transactions on Smart Grid201810.1109/TSG.2018.2807925 Pereira, L. A. M., Afonso, L. C. S., Papa, J. P., Vale, Z. A., Ramos, C. C. O., Gastaldello, D. S., & Souza, A. N. (2013). Multilayer perceptron neural networks training through charged system search and its application for non-technical losses detection. (pp. 1–6). https://doi.org/10.1109/ISGT-LA.2013.6554383. XiaoZXiaoYDuDHCExploring malicious meter inspection in neighborhood area smart gridsIEEE Transactions on Smart Grid20134121422610.1109/TSG.2012.2229397 Badrinath KrishnaVWeaverGASandersWHCamposJHaverkortBRPca-based method for detecting integrity attacks on advanced metering infrastructureQuantitative Evaluation of Systems2015Springer708510.1007/978-3-319-22264-6_5 Lundberg, S., & Lee, S.I. (2017) A unified approach to interpreting model predictions. DepuruSSSRWangLDevabhaktuniVGreenRCHigh performance computing for detection of electricity theftInternational Journal of Electrical Power & Energy Systems201347213010.1016/j.ijepes.2012.10.031 LundbergSMNairBVavilalaMSHoribeMEissesMJAdamsTListonDELowDKWNewmanSFKimJExplainable machine-learning predictions for the prevention of hypoxaemia during surgeryNature Biomedical Engineering201821074910.1038/s41551-018-0304-0 Davis, J., & Goadrich, M. (2006). The relationship between precision-recall and roc curves. In Proceedings of the 23rd international conference on Machine learning (pp. 233–240). BurgesCJFrom ranknet to lambdarank to lambdamart: An overviewLearning20101123–58181 Coma-Puig, B., Carmona, J., Gavalda, R., Alcoverro, S., & Martin, V. (2016). Fraud detection in energy consumption: A supervised approach. In 2016 IEEE international conference on data science and advanced analytics (DSAA) (pp. 120–129). IEEE. PearlJMackenzieDThe book of why: The new science of cause and effect2018Basic Books1416.62026 LeónCBiscarriFMonederoIGuerreroJIBiscarriJMillánRIntegrated expert system applied to the analysis of non-technical losses in power utilitiesExpert Systems with Applications2011388102741028510.1016/j.eswa.2011.02.062 RamosCCOde SousaANPapaJPFalcaoAXA new approach for nontechnical losses detection based on optimum-path forestIEEE Transactions on Power Systems201126118118910.1109/TPWRS.2010.2051823 Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. Quionero-CandelaJSugiyamaMSchwaighoferALawrenceNDDataset shift in machine learning2009The MIT Press MessinisGMHatziargyriouNDReview of non-technical loss detection methodsElectric Power Systems Research201815825026610.1016/j.epsr.2018.01.005 Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2017). Catboost: Unbiased boosting with categorical features. JärvelinKKekäläinenJCumulated gain-based evaluation of ir techniquesACM Transactions on Information Systems (TOIS)200220442244610.1145/582415.582418 LiuYHuSCyberthreat analysis and detection for energy theft in social networking of smart homesIEEE Transactions on Computational Social Systems20152414815810.1109/TCSS.2016.2519506 Kadurek, P., Blom, J., Cobben CJ Burges (6051_CR5) 2010; 11 EWS Angelos (6051_CR2) 2011; 26 J Quionero-Candela (6051_CR44) 2009 CCO Ramos (6051_CR46) 2011; 26 Z Xiao (6051_CR54) 2013; 4 V Badrinath Krishna (6051_CR4) 2015 HF Posada-Quintero (6051_CR42) 2020; 9 K Järvelin (6051_CR20) 2002; 20 S Kaufman (6051_CR22) 2012; 6 LS Shapley (6051_CR50) 1953; 2 Y Liu (6051_CR25) 2015; 2 6051_CR30 6051_CR32 I Monedero (6051_CR33) 2012; 34 CCO Ramos (6051_CR47) 2018; 9 MM Buzau (6051_CR6) 2018 6051_CR49 A Nizar (6051_CR36) 2008; 23 SSSR Depuru (6051_CR14) 2013; 47 6051_CR8 J Pearl (6051_CR38) 2009 6051_CR41 6051_CR43 B Coma-Puig (6051_CR9) 2019 6051_CR1 6051_CR7 BC Costa (6051_CR12) 2013; 4 SM Lundberg (6051_CR28) 2018; 2 R Souza (6051_CR51) 2014; 39 6051_CR56 6051_CR11 6051_CR55 6051_CR13 6051_CR15 6051_CR18 6051_CR17 C Rudin (6051_CR48) 2019; 1 JP Papa (6051_CR37) 2009; 19 6051_CR10 CC Ramos (6051_CR45) 2011; 37 C León (6051_CR24) 2011; 38 C Drummond (6051_CR16) 2010; 22 6051_CR19 J Nagi (6051_CR34) 2009; 25 J Nagi (6051_CR35) 2011; 26 A Tsymbal (6051_CR53) 2004; 106 JV Spirić (6051_CR52) 2015; 71 F Pedregosa (6051_CR40) 2011; 12 6051_CR23 6051_CR27 6051_CR26 6051_CR29 J Pearl (6051_CR39) 2018 6051_CR21 AB Arrieta (6051_CR3) 2020; 58 GM Messinis (6051_CR31) 2018; 158 |
References_xml | – reference: RamosCCOde SousaANPapaJPFalcaoAXA new approach for nontechnical losses detection based on optimum-path forestIEEE Transactions on Power Systems201126118118910.1109/TPWRS.2010.2051823 – reference: RamosCCSouzaANChiachiaGFalcãoAXPapaJPA novel algorithm for feature selection using harmony search and its application for non-technical losses detectionComputers & Electrical Engineering201137688689410.1016/j.compeleceng.2011.09.013 – reference: Coma-PuigBCarmonaJBridging the gap between energy consumption and distribution through non-technical loss detectionEnergies201910.3390/en12091748 – reference: Coma-Puig, B., & Carmona, J. (2020). An iterative approach based on explainability to improve the learning of fraud detection models. – reference: Posada-QuinteroHFMolano-VergaraPNParra-HernándezRMPosada-QuinteroJIAnalysis of risk factors and symptoms of burnout syndrome in Colombian school teachers under statutes 2277 and 1278 using machine learning interpretationSocial Sciences2020933010.3390/socsci9030030 – reference: PearlJMackenzieDThe book of why: The new science of cause and effect2018Basic Books1416.62026 – reference: Molnar, C. (2019). Interpretable machine learning. Retrieved May, 2020 from https://christophm.github.io/interpretable-ml-book/. – reference: RamosCCORodriguesDde SouzaANPapaJPOn the study of commercial losses in brazil: A binary black hole algorithm for theft characterizationIEEE Transactions on Smart Grid20189267668310.1109/TSG.2016.2560801 – reference: DepuruSSSRWangLDevabhaktuniVGreenRCHigh performance computing for detection of electricity theftInternational Journal of Electrical Power & Energy Systems201347213010.1016/j.ijepes.2012.10.031 – reference: BurgesCJFrom ranknet to lambdarank to lambdamart: An overviewLearning20101123–58181 – reference: NizarADongZWangYPower utility nontechnical loss analysis with extreme learning machine methodIEEE Transactions on Power Systems200823394695510.1109/TPWRS.2008.926431 – reference: SouzaRRittnerLLotufoRA comparison between k-optimum path forest and k-nearest neighbors supervised classifiersPattern Recognition Letters20143921010.1016/j.patrec.2013.08.030 – reference: Pereira, L. A. M., Afonso, L. C. S., Papa, J. P., Vale, Z. A., Ramos, C. C. O., Gastaldello, D. S., & Souza, A. N. (2013). Multilayer perceptron neural networks training through charged system search and its application for non-technical losses detection. (pp. 1–6). https://doi.org/10.1109/ISGT-LA.2013.6554383. – reference: LundbergSMNairBVavilalaMSHoribeMEissesMJAdamsTListonDELowDKWNewmanSFKimJExplainable machine-learning predictions for the prevention of hypoxaemia during surgeryNature Biomedical Engineering201821074910.1038/s41551-018-0304-0 – reference: MessinisGMHatziargyriouNDReview of non-technical loss detection methodsElectric Power Systems Research201815825026610.1016/j.epsr.2018.01.005 – reference: Cabral, J. E., Pinto, J. O., Martins, E. M., & Pinto, A. M. (2008). Fraud detection in high voltage electricity consumers using data mining. In 2008 IEEE/PES transmission and distribution conference and exposition (pp. 1–5). IEEE. – reference: AngelosEWSSaavedraORCortésOACde SouzaANDetection and identification of abnormalities in customer consumptions in power distribution systemsIEEE Transactions on Power Delivery20112642436244210.1109/TPWRD.2011.2161621 – reference: Krishna, V. B., Iyer, R. K., & Sanders, W. H. (2015). Arima-based modeling and validation of consumption readings in power grids. In International conference on critical information infrastructures security (pp. 199–210). Springer. – reference: SpirićJVDočićMBStankovićSSFraud detection in registered electricity time seriesInternational Journal of Electrical Power & Energy Systems201571425010.1016/j.ijepes.2015.02.037 – reference: RudinCStop explaining black box machine learning models for high stakes decisions and use interpretable models insteadNature Machine Intelligence20191520621510.1038/s42256-019-0048-x – reference: XiaoZXiaoYDuDHCExploring malicious meter inspection in neighborhood area smart gridsIEEE Transactions on Smart Grid20134121422610.1109/TSG.2012.2229397 – reference: Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2019) A survey on bias and fairness in machine learning. arXiv preprint arXiv:1908.09635. – reference: Alvarez-Melis, D., & Jaakkola, T. S. (2018). On the robustness of interpretability methods. arXiv preprint arXiv:1806.08049. – reference: ShapleyLSA value for n-person gamesContributions to the Theory of Games1953228307317534770050.14404 – reference: Lundberg, S. M., Erion, G. G., & Lee, S. I. (2018). Consistent individualized feature attribution for tree ensembles. arXiv preprint arXiv:1802.03888. – reference: Davis, J., & Goadrich, M. (2006). The relationship between precision-recall and roc curves. In Proceedings of the 23rd international conference on Machine learning (pp. 233–240). – reference: MonederoIBiscarriFLeónCGuerreroJIBiscarriJMillánRDetection of frauds and other non-technical losses in a power utility using Pearson coefficient, Bayesian networks and decision treesInternational Journal of Electrical Power & Energy Systems2012341909810.1016/j.ijepes.2011.09.009 – reference: KaufmanSRossetSPerlichCStitelmanOLeakage in data mining: Formulation, detection, and avoidanceACM Transactions on Knowledge Discovery from Data (TKDD)2012641510.1145/2382577.2382579 – reference: Lundberg, S., & Lee, S.I. (2017) A unified approach to interpreting model predictions. – reference: Zhou, H., Qian, W., & Yang, Y. (2019). Tweedie gradient boosting for extremely unbalanced zero-inflated data. arXiv preprint arXiv: 1811.10192 – reference: Saria, S., & Subbaswamy, A. (2019). Tutorial: Safe and reliable machine learning. arXiv preprint arXiv:1904.07204 – reference: Mansoury, M., Abdollahpouri, H., Pechenizkiy, M., Mobasher, B., & Burke, R. (2020). Feedback loop and bias amplification in recommender systems. In Proceedings of the 29th ACM international conference on information & knowledge management (pp. 2145–2148). – reference: BuzauMMTejedor-AguileraJCruz-RomeroPGómez-ExpósitoADetection of non-technical losses using smart meter data and supervised learningIEEE Transactions on Smart Grid201810.1109/TSG.2018.2807925 – reference: JärvelinKKekäläinenJCumulated gain-based evaluation of ir techniquesACM Transactions on Information Systems (TOIS)200220442244610.1145/582415.582418 – reference: NagiJYapKSTiongSKAhmedSKMohamadMNontechnical loss detection for metered customers in power utility using support vector machinesIEEE Transactions on Power Delivery20092521162117110.1109/TPWRD.2009.2030890 – reference: NagiJYapKSTiongSKAhmedSKNagiFImproving svm-based nontechnical loss detection in power utility using the fuzzy inference systemIEEE Transactions on Power Delivery20112621284128510.1109/TPWRD.2010.2055670 – reference: Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. – reference: Ford, V., Siraj, A., & Eberle, W. (2014). Smart grid energy fraud detection using artificial neural networks. In 2014 IEEE symposium on computational intelligence applications in smart grid (CIASG) (pp. 1–6). https://doi.org/10.1109/CIASG.2014.7011557. – reference: DrummondCJapkowiczNWarning: statistical benchmarking is addictive. Kicking the habit in machine learningJournal of Experimental & Theoretical Artificial Intelligence201022167801192.6851410.1080/09528130903010295 – reference: LeónCBiscarriFMonederoIGuerreroJIBiscarriJMillánRIntegrated expert system applied to the analysis of non-technical losses in power utilitiesExpert Systems with Applications2011388102741028510.1016/j.eswa.2011.02.062 – reference: Badrinath KrishnaVWeaverGASandersWHCamposJHaverkortBRPca-based method for detecting integrity attacks on advanced metering infrastructureQuantitative Evaluation of Systems2015Springer708510.1007/978-3-319-22264-6_5 – reference: Galanti, R., Coma-Puig, B., de Leoni, M., Carmona, J., & Navarin, N. (2020). Explainable predictive process monitoring. – reference: Quionero-CandelaJSugiyamaMSchwaighoferALawrenceNDDataset shift in machine learning2009The MIT Press – reference: LiuYHuSCyberthreat analysis and detection for energy theft in social networking of smart homesIEEE Transactions on Computational Social Systems20152414815810.1109/TCSS.2016.2519506 – reference: Kadurek, P., Blom, J., Cobben, J., & Kling, W. L. (2010). Theft detection and smart metering practices and expectations in the netherlands. In 2010 IEEE PES innovative smart grid technologies conference Europe (ISGT Europe) (pp. 1–6). IEEE. – reference: Yapo, A., & Weiss, J. (2018). Ethical implications of bias in machine learning. In Proceedings of the 51st Hawaii international conference on system sciences. – reference: Glauner, P., Meira, J. A., Valtchev, P., State, R., & Bettinger, F. (2017/01). The challenge of non-technical loss detection using artificial intelligence: A survey. International Journal of Computational Intelligence Systems,10, 760–775. https://doi.org/10.2991/ijcis.2017.10.1.51. – reference: CostaBCAlbertoBLPortelaAMMaduroWElerEOFraud detection in electric power distribution networks using an ann-based knowledge-discovery processInternational Journal of Artificial Intelligence & Applications2013461710.5121/ijaia.2013.4602 – reference: TsymbalAThe problem of concept drift: Definitions and related workComputer Science Department, Trinity College Dublin2004106258 – reference: Coma-Puig, B., & Carmona, J. (2018). A quality control method for fraud detection on utility customers without an active contract. In Proceedings of the 33rd annual ACM symposium on applied computing, SAC ’18 (pp. 495–498). ACM, New York, NY, USA. https://doi.org/10.1145/3167132.3167384. – reference: PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVVanderplasJPassosACournapeauDBrucherMPerrotMDuchesnayEScikit-learn: Machine learning in PythonJournal of Machine Learning Research2011122825283028543481280.68189 – reference: PearlJCausality2009Cambridge University Press1188.6829110.1017/CBO9780511803161 – reference: Coma-Puig, B., Carmona, J., Gavalda, R., Alcoverro, S., & Martin, V. (2016). Fraud detection in energy consumption: A supervised approach. In 2016 IEEE international conference on data science and advanced analytics (DSAA) (pp. 120–129). IEEE. – reference: ArrietaABDíaz-RodríguezNDel SerJBennetotATabikSBarbadoAGarcíaSGil-LópezSMolinaDBenjaminsRExplainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible aiInformation Fusion2020588211510.1016/j.inffus.2019.12.012 – reference: Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2017). Catboost: Unbiased boosting with categorical features. – reference: PapaJPFalcaoAXSuzukiCTSupervised pattern classification based on optimum-path forestInternational Journal of Imaging Systems and Technology200919212013110.1002/ima.20188 – ident: 6051_CR13 doi: 10.1145/1143844.1143874 – volume: 20 start-page: 422 issue: 4 year: 2002 ident: 6051_CR20 publication-title: ACM Transactions on Information Systems (TOIS) doi: 10.1145/582415.582418 – volume: 34 start-page: 90 issue: 1 year: 2012 ident: 6051_CR33 publication-title: International Journal of Electrical Power & Energy Systems doi: 10.1016/j.ijepes.2011.09.009 – volume: 11 start-page: 81 issue: 23–581 year: 2010 ident: 6051_CR5 publication-title: Learning – volume-title: Causality year: 2009 ident: 6051_CR38 doi: 10.1017/CBO9780511803161 – volume: 106 start-page: 58 issue: 2 year: 2004 ident: 6051_CR53 publication-title: Computer Science Department, Trinity College Dublin – volume: 19 start-page: 120 issue: 2 year: 2009 ident: 6051_CR37 publication-title: International Journal of Imaging Systems and Technology doi: 10.1002/ima.20188 – volume: 38 start-page: 10274 issue: 8 year: 2011 ident: 6051_CR24 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.02.062 – volume: 2 start-page: 148 issue: 4 year: 2015 ident: 6051_CR25 publication-title: IEEE Transactions on Computational Social Systems doi: 10.1109/TCSS.2016.2519506 – ident: 6051_CR11 doi: 10.1109/DSAA.2016.19 – volume: 2 start-page: 749 issue: 10 year: 2018 ident: 6051_CR28 publication-title: Nature Biomedical Engineering doi: 10.1038/s41551-018-0304-0 – volume: 4 start-page: 214 issue: 1 year: 2013 ident: 6051_CR54 publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2012.2229397 – ident: 6051_CR17 doi: 10.1109/CIASG.2014.7011557 – volume: 158 start-page: 250 year: 2018 ident: 6051_CR31 publication-title: Electric Power Systems Research doi: 10.1016/j.epsr.2018.01.005 – ident: 6051_CR1 – ident: 6051_CR10 doi: 10.1109/ICDMW53433.2021.00123 – volume: 23 start-page: 946 issue: 3 year: 2008 ident: 6051_CR36 publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2008.926431 – start-page: 70 volume-title: Quantitative Evaluation of Systems year: 2015 ident: 6051_CR4 doi: 10.1007/978-3-319-22264-6_5 – ident: 6051_CR55 doi: 10.24251/HICSS.2018.668 – ident: 6051_CR8 doi: 10.1145/3167132.3167384 – volume-title: Dataset shift in machine learning year: 2009 ident: 6051_CR44 – ident: 6051_CR21 doi: 10.1109/ISGTEUROPE.2010.5638852 – volume: 39 start-page: 2 year: 2014 ident: 6051_CR51 publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2013.08.030 – ident: 6051_CR49 – year: 2019 ident: 6051_CR9 publication-title: Energies doi: 10.3390/en12091748 – ident: 6051_CR41 doi: 10.1109/ISGT-LA.2013.6554383 – ident: 6051_CR29 doi: 10.1145/3340531.3412152 – volume: 26 start-page: 181 issue: 1 year: 2011 ident: 6051_CR46 publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2010.2051823 – ident: 6051_CR18 doi: 10.1109/ICPM49681.2020.00012 – ident: 6051_CR19 doi: 10.2991/ijcis.2017.10.1.51 – volume: 9 start-page: 676 issue: 2 year: 2018 ident: 6051_CR47 publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2016.2560801 – volume: 47 start-page: 21 year: 2013 ident: 6051_CR14 publication-title: International Journal of Electrical Power & Energy Systems doi: 10.1016/j.ijepes.2012.10.031 – ident: 6051_CR30 – volume: 58 start-page: 82 year: 2020 ident: 6051_CR3 publication-title: Information Fusion doi: 10.1016/j.inffus.2019.12.012 – volume: 4 start-page: 17 issue: 6 year: 2013 ident: 6051_CR12 publication-title: International Journal of Artificial Intelligence & Applications doi: 10.5121/ijaia.2013.4602 – ident: 6051_CR7 doi: 10.1109/TDC.2008.4517232 – volume: 1 start-page: 206 issue: 5 year: 2019 ident: 6051_CR48 publication-title: Nature Machine Intelligence doi: 10.1038/s42256-019-0048-x – volume: 6 start-page: 15 issue: 4 year: 2012 ident: 6051_CR22 publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD) doi: 10.1145/2382577.2382579 – ident: 6051_CR27 – volume: 26 start-page: 1284 issue: 2 year: 2011 ident: 6051_CR35 publication-title: IEEE Transactions on Power Delivery doi: 10.1109/TPWRD.2010.2055670 – volume: 71 start-page: 42 year: 2015 ident: 6051_CR52 publication-title: International Journal of Electrical Power & Energy Systems doi: 10.1016/j.ijepes.2015.02.037 – year: 2018 ident: 6051_CR6 publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2018.2807925 – volume: 25 start-page: 1162 issue: 2 year: 2009 ident: 6051_CR34 publication-title: IEEE Transactions on Power Delivery doi: 10.1109/TPWRD.2009.2030890 – volume: 12 start-page: 2825 year: 2011 ident: 6051_CR40 publication-title: Journal of Machine Learning Research – volume-title: The book of why: The new science of cause and effect year: 2018 ident: 6051_CR39 – volume: 9 start-page: 30 issue: 3 year: 2020 ident: 6051_CR42 publication-title: Social Sciences doi: 10.3390/socsci9030030 – ident: 6051_CR56 doi: 10.1080/03610918.2020.1772302 – ident: 6051_CR15 – ident: 6051_CR32 – ident: 6051_CR23 doi: 10.1007/978-3-319-33331-1_16 – volume: 37 start-page: 886 issue: 6 year: 2011 ident: 6051_CR45 publication-title: Computers & Electrical Engineering doi: 10.1016/j.compeleceng.2011.09.013 – volume: 2 start-page: 307 issue: 28 year: 1953 ident: 6051_CR50 publication-title: Contributions to the Theory of Games – volume: 26 start-page: 2436 issue: 4 year: 2011 ident: 6051_CR2 publication-title: IEEE Transactions on Power Delivery doi: 10.1109/TPWRD.2011.2161621 – ident: 6051_CR26 – volume: 22 start-page: 67 issue: 1 year: 2010 ident: 6051_CR16 publication-title: Journal of Experimental & Theoretical Artificial Intelligence doi: 10.1080/09528130903010295 – ident: 6051_CR43 |
SSID | ssj0002686 |
Score | 2.4197476 |
Snippet | Non-technical losses (NTL) is a problem that many utility companies try to solve, often using black-box supervised classification algorithms. In general, this... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 487 |
SubjectTerms | Algorithms Artificial Intelligence Classification Coma Computer Science Control Customers Energy consumption Energy industry Energy recovery Machine Learning Mechatronics Natural Language Processing (NLP) Neural networks Public utilities Regression Robotics Simulation and Modeling Special Issue: Foundations of Data Science Support vector machines |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQWVh4IwoFeWADS4kdO8lYIaqKoROVukV-BSFVSUWDRP89d27SAgIkZj-GO9_5zv6-O0JusixxOdc5k9rga5WXTMe5ZjqJytgoj0-RiLaYqPE0eZzJWUsKW3Zo9-5LMnjqT2S3UMaWI1IHjhKDnGdXQu6O5jjlw43_5Sr0dwTzkQzv75Yq8_MeX6-jbYz57Vs03DajQ7Lfhol0uNbrEdnx1TE56Fow0NYiT4id1BVb12EFYdN5jX-41PkmIKwq-lJRH9h91AauZXAQtKwt4t2fab0ZxsQYTvWK6spR_76YB1YVAmdXp2Q6eni6H7O2bwKzQomGlabkRqW51ImPTOSs9Kn3HnM_rkyKneusSDKV-EwpB6rKwHJ1DLFI5jj2ETojvaqu_DmhDuIb7vIot6lIhI6MLW0mUxdH2llhTJ_EnfgK2xYVx94W82JbDhlFXoDIiyDyIu6T282axbqkxp-zB51Wita8lgVEcaBlSB1Fn9x1mtoO_77bxf-mX5I9jnSHgNIekF7z-uavIAhpzHU4cx9n09Jh priority: 102 providerName: Springer Nature |
Title | Non-technical losses detection in energy consumption focusing on energy recovery and explainability |
URI | https://link.springer.com/article/10.1007/s10994-021-06051-1 https://www.proquest.com/docview/2642689243 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gXLjwRgwGyoEbRLRpm6YntE0bCKQJISaNU5VXEdLUDjYk9u-Js3QTSOzSHNLkYDu243y2EbrkPNYZFRlJhIRolUmICDNBRBwUoWQGQpGAthiw-2H8MEpGPuA29bDKWic6Ra0rBTHyG2u4KeP2thDdTj4IdI2C11XfQmMTbYXW0oCc8_7dUhPbBWzhRSYELLlPmvGpc64oLgXcjxVMEv42TCtv888DqbM7_T204x1G3F5weB9tmPIA7dbNGLA_m4dIDaqSLCqyWrLjcQWvuVibmcNalfi9xMbl-WHlsi6dqsBFpQD5_oar5TRcka18z7EoNTbfk7HLrwII7fwIDfu9l-498R0UiIpYNCOFLKhkaZaI2AQy0CoxqTEGboGUyRR62Kko5iw2nDFtmcbtGRah9Uq4ptBR6Bg1yqo0Jwhr6-lQnQWZSqM4EoFUheJJqsNAaBVJ2URhTb5c-fLi0OVinK8KIwPJc0vy3JE8D5voarlmsiiusfbvVs2V3B-0ab4Siya6rjm1mv5_t9P1u52hbQqJDg6f3UKN2eeXObfux0xeOBm7QFvtfqczgPHu9bFnx05v8PRsZ7usa79D2v4BH_rb_A |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9FAu9AVqoI890BNdYa_ttX1ACGiihJSoqhIpN7MvV5UiO9CgNn-qv5GdtZ2oldpbzmuv7JnZeezMNwPwMUlCnTKR0khIvK0yERV-KqgIvdyX3OBVJFZbDHlvHP6cRJMNeGiwMFhW2ehEp6h1qfCO_LM13IwnNloIvs7-UJwahdnVZoRGJRYDs7izIdvtl_655e8pY93O6EeP1lMFqAp4MKe5zJnkcRqJ0HjS0yoysTEGIyPGZYxz3VQQJjw0Cefa_khi5Vr41lInmuGUHbvvK9gMEdHags3vneHl1VL320_kld8aUfQdaphODdZzbXgZVhrZo0D9x6Zw5d8-Sck6S9fdgTe1i0q-VTK1Cxum2IPtZvwDqbXBPqhhWdCqB6xlNJmWmD8m2sxddVdBbgpiHLKQKIfzdMqJ5KXCWvtrUi6XMSi3J2pBRKGJuZ9NHaILi3YXb2G8Fuq-g1ZRFuYAiLa-FdOpl6o4CAPhSZWrJIq17wmtAinb4Dfky1Td0BznakyzVStmJHlmSZ45kmd-Gz4t35lV7TxefPqw4UpWH-3bbCWIbThrOLVafn639y_vdgJbvdGvi-yiPxx8gNcMYRauOvwQWvO__8yRdX7m8riWOAK_1y3k_wEAchJC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7RIFW9QGmpCE3LHtpTWcVe2-v1oaqqQkiginoAKTd3X0ZIkR1IEM1f49d1Z20nKlK55bz2yp6ZncfONzMAn4SITcZkRhOp8LbKJlSGmaQyDopQcYtXkYi2GPPhVXw-SSZb8NjWwiCsstWJXlGbSuMded8ZbsaFixaiftHAIn6dDL7NbilOkMJMaztOoxaRC7t8cOHb_OvoxPH6M2OD08sfQ9pMGKA64tGCFqpgiqdZImMbqMDoxKbWWoySGFcpznjTUSx4bAXnxv2UcDIuQ2e1hWE4ccft-wK20yjNMPATg7OVFXAfy2sPNqHoRTQFO03Znm_IyxBz5A4FDf81imtP90ly1tu8wWvYaZxV8r2Wrj3YsuUb2G0HQZBGL7wFPa5KWneDdSwn0wozycTYhcd5leSmJNbXGBLtKz69miJFpRF1f02q1TKG5-5sLYksDbF_ZlNf24Xw3eU-XG2Etu-gU1alPQBinJfFTBZkOo3iSAZKF1okqQkDaXSkVBfClny5blqb44SNab5uyowkzx3Jc0_yPOzCl9U7s7qxx7NP91qu5M0hn-drkezCccup9fL_dzt8frcjeOlEO_85Gl-8h1cM6y08TLwHncXdvf3gvKCF-ujFjcDvTcv3XwyhFRI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-technical+losses+detection+in+energy+consumption+focusing+on+energy+recovery+and+explainability&rft.jtitle=Machine+learning&rft.au=Coma-Puig%2C+Bernat&rft.au=Carmona%2C+Josep&rft.date=2022-02-01&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=111&rft.issue=2&rft.spage=487&rft.epage=517&rft_id=info:doi/10.1007%2Fs10994-021-06051-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10994_021_06051_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |