Machine learning for improvement of upper-tropospheric relative humidity in ERA5 weather model data
Knowledge of humidity in the upper troposphere and lower stratosphere (UTLS) is of special interest due to its importance for cirrus cloud formation and its climate impact. However, the UTLS water vapor distribution in current weather models is subject to large uncertainties. Here, we develop a dyna...
Saved in:
Published in | Atmospheric chemistry and physics Vol. 25; no. 5; pp. 2845 - 2861 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
07.03.2025
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Knowledge of humidity in the upper troposphere and lower stratosphere (UTLS) is of special interest due to its importance for cirrus cloud formation and its climate impact. However, the UTLS water vapor distribution in current weather models is subject to large uncertainties. Here, we develop a dynamic-based humidity correction method using an artificial neural network (ANN) to improve the relative humidity over ice (RHi) in ECMWF numerical weather predictions. The model is trained with time-dependent thermodynamic and dynamical variables from ECMWF ERA5 and humidity measurements from the In-service Aircraft for a Global Observing System (IAGOS). Previous and current atmospheric variables within ±2 ERA5 pressure layers around the IAGOS flight altitude are used for ANN training. RHi, temperature, and geopotential exhibit the highest impact on ANN results, while other dynamical variables are of low to moderate or high importance. The ANN shows excellent performance, and the predicted RHi in the UT has a mean absolute error (MAE) of 5.7 % and a coefficient of determination (R2) of 0.95, which is significantly improved compared to ERA5 RHi (MAE of 15.8 %; R2 of 0.66). The ANN model also improves the prediction skill for all-sky UT/LS and cloudy UTLS and removes the peak at RHi = 100 %. The contrail predictions are in better agreement with Meteosat Second Generation (MSG) observations of ice optical thickness than the results without humidity correction for a contrail cirrus scene over the Atlantic. The ANN method can be applied to other weather models to improve humidity predictions and to support aviation and climate research applications. |
---|---|
AbstractList | Knowledge of humidity in the upper troposphere and lower stratosphere (UTLS) is of special interest due to its importance for cirrus cloud formation and its climate impact. However, the UTLS water vapor distribution in current weather models is subject to large uncertainties. Here, we develop a dynamic-based humidity correction method using an artificial neural network (ANN) to improve the relative humidity over ice (RHi) in ECMWF numerical weather predictions. The model is trained with time-dependent thermodynamic and dynamical variables from ECMWF ERA5 and humidity measurements from the In-service Aircraft for a Global Observing System (IAGOS). Previous and current atmospheric variables within ±2 ERA5 pressure layers around the IAGOS flight altitude are used for ANN training. RHi, temperature, and geopotential exhibit the highest impact on ANN results, while other dynamical variables are of low to moderate or high importance. The ANN shows excellent performance, and the predicted RHi in the UT has a mean absolute error (MAE) of 5.7 % and a coefficient of determination (R2) of 0.95, which is significantly improved compared to ERA5 RHi (MAE of 15.8 %; R2 of 0.66). The ANN model also improves the prediction skill for all-sky UT/LS and cloudy UTLS and removes the peak at RHi = 100 %. The contrail predictions are in better agreement with Meteosat Second Generation (MSG) observations of ice optical thickness than the results without humidity correction for a contrail cirrus scene over the Atlantic. The ANN method can be applied to other weather models to improve humidity predictions and to support aviation and climate research applications. Knowledge of humidity in the upper troposphere and lower stratosphere (UTLS) is of special interest due to its importance for cirrus cloud formation and its climate impact. However, the UTLS water vapor distribution in current weather models is subject to large uncertainties. Here, we develop a dynamic-based humidity correction method using an artificial neural network (ANN) to improve the relative humidity over ice (RHi) in ECMWF numerical weather predictions. The model is trained with time-dependent thermodynamic and dynamical variables from ECMWF ERA5 and humidity measurements from the In-service Aircraft for a Global Observing System (IAGOS). Previous and current atmospheric variables within ±2 ERA5 pressure layers around the IAGOS flight altitude are used for ANN training. RHi, temperature, and geopotential exhibit the highest impact on ANN results, while other dynamical variables are of low to moderate or high importance. The ANN shows excellent performance, and the predicted RHi in the UT has a mean absolute error (MAE) of 5.7 % and a coefficient of determination (R.sup.2) of 0.95, which is significantly improved compared to ERA5 RHi (MAE of 15.8 %; R.sup.2 of 0.66). The ANN model also improves the prediction skill for all-sky UT/LS and cloudy UTLS and removes the peak at RHi = 100 %. The contrail predictions are in better agreement with Meteosat Second Generation (MSG) observations of ice optical thickness than the results without humidity correction for a contrail cirrus scene over the Atlantic. The ANN method can be applied to other weather models to improve humidity predictions and to support aviation and climate research applications. |
Audience | Academic |
Author | Bugliaro, Luca Wang, Ziming Rohs, Susanne Hegglin, Michaela I. Gierens, Klaus Petzold, Andreas Voigt, Christiane Kaufmann, Stefan |
Author_xml | – sequence: 1 givenname: Ziming orcidid: 0000-0002-0219-1838 surname: Wang fullname: Wang, Ziming – sequence: 2 givenname: Luca orcidid: 0000-0003-4793-0101 surname: Bugliaro fullname: Bugliaro, Luca – sequence: 3 givenname: Klaus orcidid: 0000-0001-6983-5370 surname: Gierens fullname: Gierens, Klaus – sequence: 4 givenname: Michaela I. surname: Hegglin fullname: Hegglin, Michaela I. – sequence: 5 givenname: Susanne orcidid: 0000-0001-5473-2934 surname: Rohs fullname: Rohs, Susanne – sequence: 6 givenname: Andreas orcidid: 0000-0002-2504-1680 surname: Petzold fullname: Petzold, Andreas – sequence: 7 givenname: Stefan orcidid: 0000-0002-0767-1996 surname: Kaufmann fullname: Kaufmann, Stefan – sequence: 8 givenname: Christiane orcidid: 0000-0001-8925-7731 surname: Voigt fullname: Voigt, Christiane |
BookMark | eNptkt1rFDEUxQdpwbb67mPAJx-m5msmk8elVF2oCLV9DreZm90sM5MxybT2vzfrFnVBAkk4_O5JcnPOq5MpTFhV7xi9bJiWH8HONW9q3skyUd68qs5Y29FaCS5P_tm_rs5T2tFCUCbPKvsV7NZPSAaEOPlpQ1yIxI9zDI844pRJcGSZZ4x1jmEOad5i9JZEHCD7RyTbZfS9z8_ET-T6dtWQJ4RcGDKGHgfSQ4Y31amDIeHbl_Wiuv90fXf1pb759nl9tbqprWhFrh1opizlusWOPlAnZG_7TtnWUc3AaatUg1y1ooColBZCcOEUcw-yyFaLi2p98O0D7Mwc_Qjx2QTw5rcQ4sZAzN4OaIA67ERLOXRUStnqlmM5uHM970EDFq_3B6_SiB8Lpmx2YYlTub4RTEnVtKJhf6kNFFM_uZAj2NEna1adKE1WQneFuvwPVUaPo7flG50v-lHBh6OCwmT8mTewpGTW32-PWXpgbQwpRXR_Hs6o2SfDlGQY3ph9Msw-GeIXvxerbA |
Cites_doi | 10.5194/acp-22-15559-2022 10.5194/acp-10-6749-2010 10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2 10.1007/s00382-007-0347-5 10.1175/BAMS-D-15-00213.1 10.3390/app12094450 10.1175/BAMS-D-21-0012.1 10.1126/science.adi2336 10.1175/WAF-D-13-00087.1 10.5194/acp-17-12495-2017 10.5194/acp-24-6071-2024 10.1127/metz/3/1994/51 10.1175/MWR-D-13-00325.1 10.1002/jgrd.50752 10.5194/amt-7-2745-2014 10.1029/2001GL013909 10.1016/j.aeaoa.2024.100298 10.5194/acp-24-3813-2024 10.5194/acp-23-1941-2023 10.5194/acp-14-10803-2014 10.1109/TGRS.2019.2963262 10.1038/s43247-023-01094-9 10.5194/amt-9-939-2016 10.1029/2012JD017751 10.5194/acp-23-15609-2023 10.5194/acp-24-5495-2024 10.1021/acs.est.9b05608 10.5194/acp-20-15379-2020 10.5194/acp-21-7429-2021 10.3402/tellusb.v67.28452 10.1002/qj.2400 10.5194/acp-12-381-2012 10.5194/acp-12-11933-2012 10.5194/acp-23-743-2023 10.1002/qj.3803 10.5194/acp-9-3505-2009 10.1029/2011RG000355 10.1109/ICCV.2015.123 10.5194/acp-22-10919-2022 10.1002/qj.3628 10.1002/2015JD023139 10.1029/2023MS004206 10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2 10.1002/qj.14 10.1175/JCLI-D-19-0467.1 10.5194/gmd-5-543-2012 10.5194/acp-17-403-2017 10.5194/acp-20-787-2020 10.1029/2011MS000105 10.1088/1748-9326/ab71a3 10.5194/acp-18-16729-2018 10.1038/s41467-018-04068-0 10.1029/2021GL092771 10.5194/amt-10-3547-2017 10.1126/science.1171264 10.1127/metz/5/1996/4 10.1256/qj.02.141 10.1127/metz/2023/1187 10.1038/s41561-020-0582-5 10.1002/2013JD020817 10.3390/aerospace7120169 10.1038/ngeo2236 10.1029/2010JD014287 10.1002/qj.2378 10.1038/s41612-018-0046-4 10.5194/acp-24-7559-2024 10.5194/acp-24-7911-2024 10.5194/acp-20-8157-2020 10.1029/98GL01089 10.1002/qj.3763 10.5194/acp-25-157-2025 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 Copernicus GmbH 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 Copernicus GmbH – notice: 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H8D H96 HCIFZ KL. L.G L7M P5Z P62 PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY DOA |
DOI | 10.5194/acp-25-2845-2025 |
DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1680-7324 |
EndPage | 2861 |
ExternalDocumentID | oai_doaj_org_article_a0fe83602a804446962e2968fd2da9ae A830027398 10_5194_acp_25_2845_2025 |
GroupedDBID | 23N 2WC 4P2 5GY 5VS 6J9 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABUWG ACGFO ADBBV AENEX AEUYN AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS ATCPS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z EBS EDH EJD FD6 GROUPED_DOAJ GX1 H13 HCIFZ HH5 IAO IEA ISR ITC K6- KQ8 OK1 OVT P2P P62 PATMY PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PYCSY Q2X RKB RNS TR2 XSB ~02 BBORY PMFND 7QH 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W GNUQQ H8D H96 KL. L.G L7M PKEHL PQEST PQGLB PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c363t-fa917c0296e80b0f34dcd87c6f091af9c775e2763fa9e77933323f71fb4e27c93 |
IEDL.DBID | BENPR |
ISSN | 1680-7324 1680-7316 |
IngestDate | Wed Aug 27 01:15:56 EDT 2025 Sat Aug 23 14:13:40 EDT 2025 Tue Jun 17 22:00:12 EDT 2025 Tue Jun 10 21:09:16 EDT 2025 Fri Jun 27 05:15:28 EDT 2025 Tue Jul 01 05:27:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-fa917c0296e80b0f34dcd87c6f091af9c775e2763fa9e77933323f71fb4e27c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4793-0101 0000-0002-0767-1996 0000-0001-5473-2934 0000-0001-8925-7731 0000-0002-2504-1680 0000-0002-0219-1838 0000-0001-6983-5370 |
OpenAccessLink | https://www.proquest.com/docview/3174756351?pq-origsite=%requestingapplication% |
PQID | 3174756351 |
PQPubID | 105744 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a0fe83602a804446962e2968fd2da9ae proquest_journals_3174756351 gale_infotracmisc_A830027398 gale_infotracacademiconefile_A830027398 gale_incontextgauss_ISR_A830027398 crossref_primary_10_5194_acp_25_2845_2025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-07 |
PublicationDateYYYYMMDD | 2025-03-07 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Atmospheric chemistry and physics |
PublicationYear | 2025 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref35 doi: 10.5194/acp-22-15559-2022 – ident: ref10 doi: 10.5194/acp-10-6749-2010 – ident: ref1 – ident: ref2 doi: 10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2 – ident: ref61 doi: 10.1007/s00382-007-0347-5 – ident: ref5 – ident: ref71 doi: 10.1175/BAMS-D-15-00213.1 – ident: ref76 doi: 10.3390/app12094450 – ident: ref72 doi: 10.1175/BAMS-D-21-0012.1 – ident: ref37 doi: 10.1126/science.adi2336 – ident: ref73 doi: 10.1175/WAF-D-13-00087.1 – ident: ref3 doi: 10.5194/acp-17-12495-2017 – ident: ref66 doi: 10.5194/acp-24-6071-2024 – ident: ref58 doi: 10.1127/metz/3/1994/51 – ident: ref13 doi: 10.1175/MWR-D-13-00325.1 – ident: ref23 doi: 10.1002/jgrd.50752 – ident: ref20 doi: 10.5194/amt-7-2745-2014 – ident: ref15 doi: 10.1029/2001GL013909 – ident: ref33 doi: 10.1016/j.aeaoa.2024.100298 – ident: ref41 doi: 10.5194/acp-24-3813-2024 – ident: ref57 – ident: ref74 doi: 10.5194/acp-23-1941-2023 – ident: ref36 doi: 10.5194/acp-14-10803-2014 – ident: ref40 doi: 10.1109/TGRS.2019.2963262 – ident: ref63 doi: 10.1038/s43247-023-01094-9 – ident: ref31 doi: 10.5194/amt-9-939-2016 – ident: ref46 doi: 10.1029/2012JD017751 – ident: ref59 doi: 10.5194/acp-23-15609-2023 – ident: ref49 doi: 10.5194/acp-24-5495-2024 – ident: ref64 doi: 10.1021/acs.est.9b05608 – ident: ref26 – ident: ref77 doi: 10.5194/acp-20-15379-2020 – ident: ref55 doi: 10.5194/acp-21-7429-2021 – ident: ref43 doi: 10.3402/tellusb.v67.28452 – ident: ref11 doi: 10.1002/qj.2400 – ident: ref38 doi: 10.5194/acp-12-381-2012 – ident: ref12 – ident: ref18 doi: 10.5194/acp-12-11933-2012 – ident: ref80 doi: 10.5194/acp-23-743-2023 – ident: ref25 doi: 10.1002/qj.3803 – ident: ref34 doi: 10.5194/acp-9-3505-2009 – ident: ref17 doi: 10.1029/2011RG000355 – ident: ref22 doi: 10.1109/ICCV.2015.123 – ident: ref65 doi: 10.5194/acp-22-10919-2022 – ident: ref39 doi: 10.1002/qj.3628 – ident: ref9 doi: 10.1002/2015JD023139 – ident: ref56 doi: 10.1029/2023MS004206 – ident: ref67 doi: 10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2 – ident: ref68 doi: 10.1002/qj.14 – ident: ref4 doi: 10.1175/JCLI-D-19-0467.1 – ident: ref70 – ident: ref52 doi: 10.5194/gmd-5-543-2012 – ident: ref53 doi: 10.5194/acp-17-403-2017 – ident: ref45 doi: 10.5194/acp-20-787-2020 – ident: ref7 doi: 10.1029/2011MS000105 – ident: ref16 doi: 10.1088/1748-9326/ab71a3 – ident: ref32 doi: 10.5194/acp-18-16729-2018 – ident: ref30 doi: 10.1038/s41467-018-04068-0 – ident: ref54 doi: 10.1029/2021GL092771 – ident: ref62 doi: 10.5194/amt-10-3547-2017 – ident: ref8 doi: 10.1126/science.1171264 – ident: ref51 doi: 10.1127/metz/5/1996/4 – ident: ref60 doi: 10.1256/qj.02.141 – ident: ref42 – ident: ref47 doi: 10.1127/metz/2023/1187 – ident: ref21 – ident: ref29 doi: 10.1038/s41561-020-0582-5 – ident: ref48 doi: 10.1002/2013JD020817 – ident: ref19 doi: 10.3390/aerospace7120169 – ident: ref24 doi: 10.1038/ngeo2236 – ident: ref50 doi: 10.1029/2010JD014287 – ident: ref79 doi: 10.1002/qj.2378 – ident: ref6 doi: 10.1038/s41612-018-0046-4 – ident: ref75 doi: 10.5194/acp-24-7559-2024 – ident: ref28 doi: 10.5194/acp-24-7911-2024 – ident: ref44 doi: 10.5194/acp-20-8157-2020 – ident: ref27 doi: 10.1029/98GL01089 – ident: ref69 doi: 10.1002/qj.3763 – ident: ref14 – ident: ref78 doi: 10.5194/acp-25-157-2025 |
SSID | ssj0025014 |
Score | 2.4664357 |
Snippet | Knowledge of humidity in the upper troposphere and lower stratosphere (UTLS) is of special interest due to its importance for cirrus cloud formation and its... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 2845 |
SubjectTerms | Aircraft Analysis Artificial intelligence Artificial neural networks Aviation Bias Cirrus clouds Climate Climate and weather Cloud formation Contrails Dynamic height Flight altitude Geopotential Humidity Humidity measurement Ice cover Lower stratosphere Machine learning METEOSAT Neural networks Optical thickness Predictions Relative humidity Satellites Stratosphere Troposphere Upper troposphere Water vapor Water vapor distribution Water vapour Weather Weather forecasting |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYv4xPoiiCgegt2kj_S4irIK62F1YW8hTZO1oN1lt6t_35m0K-5BvHgptJ1C-00e36STbwg5L4DTh8aBB6TLWZTGluWF1YwLFL_KO53MeLXPp6Q3jB5H8ehHqS_MCWvkgRvgrnXoLG404FqitFmSJdzyLJGu4AUqS-PoC3PeMphqQy38W4ahViJDhrWZmh-UwFaia22mjMfwbhEcQiyR_WNC8rr9v43Ofsq53yKbLVek3eYdt8marXZI0AeaO5n51XB6QW_fSuCc_myXmL5PjbS0rQUxpkBJaenXDfwyIJ04uphO7YzVWB1hjpoCpaHNhpYPS18X72UBvJyWFb0bdGP62TBE6gvmUEwn3SPD-7uX2x5rqygwIxJRM6chIjMhYGZlmIdORIUpZGoSB7Bpl5kUHMRhmAFDm0J3FYILl3ZcHsFlk4l9sl5NKntAaGrjpIgj4-Ax8LDOYQSwTkDIkjoZaROQqyWUatqIZSgIMhB2BbArHiuEXSHsAblBrL_tUObaXwDnq9b56i_nB-QMPaVQyKLCTJmxXszn6uF5oLpSeK2eTAbksjVyk3qmjW43HsA3ofbViuXxiiX0NLN6e9kgVNvT5wr4F7RwoG2dw__4oiOygej4LLf0mKzXs4U9AdpT56e-hX8Bg1H9Ow priority: 102 providerName: Directory of Open Access Journals |
Title | Machine learning for improvement of upper-tropospheric relative humidity in ERA5 weather model data |
URI | https://www.proquest.com/docview/3174756351 https://doaj.org/article/a0fe83602a804446962e2968fd2da9ae |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfY9sIL2vgQYaOyEALxYC2N8-E8oW5qGUidoDCxN8tx7BJpS0KSsn-fO8cd9AFeGjVxqvrOPv_ufP4dIa9LwPShtqABYQsWZ4lhRWkUiziSXxXTaa4d2-dlenEVf7pOrn3ArfdplVub6Ax12WiMkZ_COge_BMvj9H37k2HVKNxd9SU09sgBmGABztfB2fzy8-re5cJdM3S5UhEyrNE0blQCaolPlW5ZlMB_jOEjxFLZfy1Mjr__X1baLT2LQ_LIY0Y6G5V8RB6Y-jEJlgB3m85Fxekben5TAfZ0354QvXQpkob6mhBrCtCUVi5-4MKBtLF007amYwNWSeiRW6DSdDzY8svQH5vbqgR8TquazlezhN6NSJG6wjkU00qfkqvF_Nv5BfPVFJjmKR-YVeCZ6TDKUyPCIrQ8LnUpMp1agAzK5joDRUVgbqChyWDach5xm01tEcNtnfNnZL9uavOc0MwkaZnE2sJroGlVgCUwloPrklkRKx2Qd1tRynYkzZDgbKDYJYhdRolEsUsUe0DOUNb37ZDu2t1ourX0s0eq0Bo8bRIpgfx2aZ5GBjoibBmVSC8ekFeoKYmEFjVmzKzVpu_lx68rORPccfbkIiBvfSPbDJ3Syh9AgD4hB9ZOy5OdljDj9O7j7YCQfsb38s_4fPH_x8fkIfbb5bFlJ2R_6DbmJQCboZiQPbH4MPFjGK-L5ZfvExcm-A18QfnV |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcoAL4ikCBSzEQxysZu08Dwgtpcsu7fZQWqk34zj2EqlNQpKl4k_xG5lxksIe4NZLpCSTKBnP0x5_Q8jLHGJ6X1sYgcRmLIhDw7LcKMYFgl9lk0mqHdrnUTQ_DT6fhWdb5Ne4FwbLKkeb6Ax1XmmcI98FPwdvAvc4eV9_Z9g1CldXxxYavVgcmJ-XkLK17xYfYXxfcT7bP9mbs6GrANMiEh2zCjIU7fM0Momf-VYEuc6TWEcWXKeyqY7hgzmoHRCaGMRXCC5sPLFZAJc1gi-Byb8RCJGiRiWzT1cJHq7RYYIXJT7DjlD9sijESMGu0jXjIXAkgIOPjbn_coOuW8C_fIJzdLM75PYQodJpL1J3yZYp7xFvCcF11bg5ePqa7p0XEOm6s_tEL11BpqFDB4oVhUCYFm62wk0-0srSdV2bhnXYk6FFJINC034bzQ9Dv60vihyyAVqUdP94GtLLPi6lrk0PxSLWB-T0Wrj8kGyXVWkeERqbMMrDQFt4DORKZWB3jBWQKMU2CZT2yNuRlbLuITokpDbIdglslzyUyHaJbPfIB-T1FR2Ca7sLVbOSg65K5VuDe1u4ShBNL0ojbuBHEpvzHMHMPfICR0oifEaJ9TkrtW5bufhyLKeJcAhBaeKRNwORrbpGaTVsd4B_QsStDcqdDUrQb715exQIOdiXVv7Rhsf_v_2c3JyfLA_l4eLo4Am5hTxwFXTxDtnumrV5CiFVlz1zckzJ1-tWnN8kNTGR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLaqqYS4sCMCBSzEIg7pZJzNc0Bouow6lKmgULU34zj2MAKSkIUKfhp_hT_De05SGCS49cAlUpKXKHY-v8V-_h4hD1Pw6T1l4A9wk7hBHGo3SbV0mY_kV8loNFaW7fMg2jsKXpyEJ2vke78XBtMqe51oFXWaK5wjH4KdgzeBeRwNTZcW8Wpn-rz47GIFKVxp7ctptBDZ119PIXyrns124F8_Ymy6-3Z7z-0qDLjKj_zaNRKiFeWxcaS5l3jGD1KV8lhFBsyoNGMVw8czGIIgqGOAsu8z38QjkwRwWSERE6j_dR7xkA3I-tZ0_vr4LNzDFTsM9yLuuVgfql0kBY8pGEpVuCyE_gng4GGZ7t-Moq0d8DcLYc3e9DL50XdYm-3yYbOpk0317Q8uyf-zR6-QS503Tift8LlK1nR2jThzCCTy0q430Md0--MSvHp7dp2ouU0-1bSrtrGg4PTTpZ2ZsROtNDe0KQpdujXWn6iQtWGpaLtl6Ium75tPyxQiH7rM6O7hJKSnrQ9ObUkiigm7N8jRubT5JhlkeaZvERrrMErDQBl4DMaQTEDHauNDUBgbHkjlkKc9UETR0pEICOMQVAJAJVgoEFQCQeWQLUTSmRwSidsLebkQnV4S0jMa9_EwyZE5MBpHTENDuElZisTtDnmAOBRIFZIhRBayqSoxe3MoJty3bEhj7pAnnZDJ61Iq2W3tgDYhu9iK5MaKJOgytXq7h6rodGklfuH09r9v3ycXAMDi5exg_w65iF1gkwXjDTKoy0bfBe-xTu51w5SSd-eN458hP36O |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+for+improvement+of+upper-tropospheric+relative+humidity+in+ERA5+weather+model+data&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Wang%2C+Ziming&rft.au=Bugliaro%2C+Luca&rft.au=Gierens%2C+Klaus&rft.au=Hegglin%2C+Michaela+I&rft.date=2025-03-07&rft.pub=Copernicus+GmbH&rft.issn=1680-7316&rft.volume=25&rft.issue=5&rft.spage=2845&rft_id=info:doi/10.5194%2Facp-25-2845-2025&rft.externalDBID=ISR&rft.externalDocID=A830027398 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon |