Machine learning for improvement of upper-tropospheric relative humidity in ERA5 weather model data

Knowledge of humidity in the upper troposphere and lower stratosphere (UTLS) is of special interest due to its importance for cirrus cloud formation and its climate impact. However, the UTLS water vapor distribution in current weather models is subject to large uncertainties. Here, we develop a dyna...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric chemistry and physics Vol. 25; no. 5; pp. 2845 - 2861
Main Authors Wang, Ziming, Bugliaro, Luca, Gierens, Klaus, Hegglin, Michaela I., Rohs, Susanne, Petzold, Andreas, Kaufmann, Stefan, Voigt, Christiane
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 07.03.2025
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Knowledge of humidity in the upper troposphere and lower stratosphere (UTLS) is of special interest due to its importance for cirrus cloud formation and its climate impact. However, the UTLS water vapor distribution in current weather models is subject to large uncertainties. Here, we develop a dynamic-based humidity correction method using an artificial neural network (ANN) to improve the relative humidity over ice (RHi) in ECMWF numerical weather predictions. The model is trained with time-dependent thermodynamic and dynamical variables from ECMWF ERA5 and humidity measurements from the In-service Aircraft for a Global Observing System (IAGOS). Previous and current atmospheric variables within ±2 ERA5 pressure layers around the IAGOS flight altitude are used for ANN training. RHi, temperature, and geopotential exhibit the highest impact on ANN results, while other dynamical variables are of low to moderate or high importance. The ANN shows excellent performance, and the predicted RHi in the UT has a mean absolute error (MAE) of 5.7 % and a coefficient of determination (R2) of 0.95, which is significantly improved compared to ERA5 RHi (MAE of 15.8 %; R2 of 0.66). The ANN model also improves the prediction skill for all-sky UT/LS and cloudy UTLS and removes the peak at RHi = 100 %. The contrail predictions are in better agreement with Meteosat Second Generation (MSG) observations of ice optical thickness than the results without humidity correction for a contrail cirrus scene over the Atlantic. The ANN method can be applied to other weather models to improve humidity predictions and to support aviation and climate research applications.
AbstractList Knowledge of humidity in the upper troposphere and lower stratosphere (UTLS) is of special interest due to its importance for cirrus cloud formation and its climate impact. However, the UTLS water vapor distribution in current weather models is subject to large uncertainties. Here, we develop a dynamic-based humidity correction method using an artificial neural network (ANN) to improve the relative humidity over ice (RHi) in ECMWF numerical weather predictions. The model is trained with time-dependent thermodynamic and dynamical variables from ECMWF ERA5 and humidity measurements from the In-service Aircraft for a Global Observing System (IAGOS). Previous and current atmospheric variables within ±2 ERA5 pressure layers around the IAGOS flight altitude are used for ANN training. RHi, temperature, and geopotential exhibit the highest impact on ANN results, while other dynamical variables are of low to moderate or high importance. The ANN shows excellent performance, and the predicted RHi in the UT has a mean absolute error (MAE) of 5.7 % and a coefficient of determination (R2) of 0.95, which is significantly improved compared to ERA5 RHi (MAE of 15.8 %; R2 of 0.66). The ANN model also improves the prediction skill for all-sky UT/LS and cloudy UTLS and removes the peak at RHi = 100 %. The contrail predictions are in better agreement with Meteosat Second Generation (MSG) observations of ice optical thickness than the results without humidity correction for a contrail cirrus scene over the Atlantic. The ANN method can be applied to other weather models to improve humidity predictions and to support aviation and climate research applications.
Knowledge of humidity in the upper troposphere and lower stratosphere (UTLS) is of special interest due to its importance for cirrus cloud formation and its climate impact. However, the UTLS water vapor distribution in current weather models is subject to large uncertainties. Here, we develop a dynamic-based humidity correction method using an artificial neural network (ANN) to improve the relative humidity over ice (RHi) in ECMWF numerical weather predictions. The model is trained with time-dependent thermodynamic and dynamical variables from ECMWF ERA5 and humidity measurements from the In-service Aircraft for a Global Observing System (IAGOS). Previous and current atmospheric variables within ±2 ERA5 pressure layers around the IAGOS flight altitude are used for ANN training. RHi, temperature, and geopotential exhibit the highest impact on ANN results, while other dynamical variables are of low to moderate or high importance. The ANN shows excellent performance, and the predicted RHi in the UT has a mean absolute error (MAE) of 5.7 % and a coefficient of determination (R.sup.2) of 0.95, which is significantly improved compared to ERA5 RHi (MAE of 15.8 %; R.sup.2 of 0.66). The ANN model also improves the prediction skill for all-sky UT/LS and cloudy UTLS and removes the peak at RHi = 100 %. The contrail predictions are in better agreement with Meteosat Second Generation (MSG) observations of ice optical thickness than the results without humidity correction for a contrail cirrus scene over the Atlantic. The ANN method can be applied to other weather models to improve humidity predictions and to support aviation and climate research applications.
Audience Academic
Author Bugliaro, Luca
Wang, Ziming
Rohs, Susanne
Hegglin, Michaela I.
Gierens, Klaus
Petzold, Andreas
Voigt, Christiane
Kaufmann, Stefan
Author_xml – sequence: 1
  givenname: Ziming
  orcidid: 0000-0002-0219-1838
  surname: Wang
  fullname: Wang, Ziming
– sequence: 2
  givenname: Luca
  orcidid: 0000-0003-4793-0101
  surname: Bugliaro
  fullname: Bugliaro, Luca
– sequence: 3
  givenname: Klaus
  orcidid: 0000-0001-6983-5370
  surname: Gierens
  fullname: Gierens, Klaus
– sequence: 4
  givenname: Michaela I.
  surname: Hegglin
  fullname: Hegglin, Michaela I.
– sequence: 5
  givenname: Susanne
  orcidid: 0000-0001-5473-2934
  surname: Rohs
  fullname: Rohs, Susanne
– sequence: 6
  givenname: Andreas
  orcidid: 0000-0002-2504-1680
  surname: Petzold
  fullname: Petzold, Andreas
– sequence: 7
  givenname: Stefan
  orcidid: 0000-0002-0767-1996
  surname: Kaufmann
  fullname: Kaufmann, Stefan
– sequence: 8
  givenname: Christiane
  orcidid: 0000-0001-8925-7731
  surname: Voigt
  fullname: Voigt, Christiane
BookMark eNptkt1rFDEUxQdpwbb67mPAJx-m5msmk8elVF2oCLV9DreZm90sM5MxybT2vzfrFnVBAkk4_O5JcnPOq5MpTFhV7xi9bJiWH8HONW9q3skyUd68qs5Y29FaCS5P_tm_rs5T2tFCUCbPKvsV7NZPSAaEOPlpQ1yIxI9zDI844pRJcGSZZ4x1jmEOad5i9JZEHCD7RyTbZfS9z8_ET-T6dtWQJ4RcGDKGHgfSQ4Y31amDIeHbl_Wiuv90fXf1pb759nl9tbqprWhFrh1opizlusWOPlAnZG_7TtnWUc3AaatUg1y1ooColBZCcOEUcw-yyFaLi2p98O0D7Mwc_Qjx2QTw5rcQ4sZAzN4OaIA67ERLOXRUStnqlmM5uHM970EDFq_3B6_SiB8Lpmx2YYlTub4RTEnVtKJhf6kNFFM_uZAj2NEna1adKE1WQneFuvwPVUaPo7flG50v-lHBh6OCwmT8mTewpGTW32-PWXpgbQwpRXR_Hs6o2SfDlGQY3ph9Msw-GeIXvxerbA
Cites_doi 10.5194/acp-22-15559-2022
10.5194/acp-10-6749-2010
10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2
10.1007/s00382-007-0347-5
10.1175/BAMS-D-15-00213.1
10.3390/app12094450
10.1175/BAMS-D-21-0012.1
10.1126/science.adi2336
10.1175/WAF-D-13-00087.1
10.5194/acp-17-12495-2017
10.5194/acp-24-6071-2024
10.1127/metz/3/1994/51
10.1175/MWR-D-13-00325.1
10.1002/jgrd.50752
10.5194/amt-7-2745-2014
10.1029/2001GL013909
10.1016/j.aeaoa.2024.100298
10.5194/acp-24-3813-2024
10.5194/acp-23-1941-2023
10.5194/acp-14-10803-2014
10.1109/TGRS.2019.2963262
10.1038/s43247-023-01094-9
10.5194/amt-9-939-2016
10.1029/2012JD017751
10.5194/acp-23-15609-2023
10.5194/acp-24-5495-2024
10.1021/acs.est.9b05608
10.5194/acp-20-15379-2020
10.5194/acp-21-7429-2021
10.3402/tellusb.v67.28452
10.1002/qj.2400
10.5194/acp-12-381-2012
10.5194/acp-12-11933-2012
10.5194/acp-23-743-2023
10.1002/qj.3803
10.5194/acp-9-3505-2009
10.1029/2011RG000355
10.1109/ICCV.2015.123
10.5194/acp-22-10919-2022
10.1002/qj.3628
10.1002/2015JD023139
10.1029/2023MS004206
10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2
10.1002/qj.14
10.1175/JCLI-D-19-0467.1
10.5194/gmd-5-543-2012
10.5194/acp-17-403-2017
10.5194/acp-20-787-2020
10.1029/2011MS000105
10.1088/1748-9326/ab71a3
10.5194/acp-18-16729-2018
10.1038/s41467-018-04068-0
10.1029/2021GL092771
10.5194/amt-10-3547-2017
10.1126/science.1171264
10.1127/metz/5/1996/4
10.1256/qj.02.141
10.1127/metz/2023/1187
10.1038/s41561-020-0582-5
10.1002/2013JD020817
10.3390/aerospace7120169
10.1038/ngeo2236
10.1029/2010JD014287
10.1002/qj.2378
10.1038/s41612-018-0046-4
10.5194/acp-24-7559-2024
10.5194/acp-24-7911-2024
10.5194/acp-20-8157-2020
10.1029/98GL01089
10.1002/qj.3763
10.5194/acp-25-157-2025
ContentType Journal Article
Copyright COPYRIGHT 2025 Copernicus GmbH
2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 Copernicus GmbH
– notice: 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
DOA
DOI 10.5194/acp-25-2845-2025
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1680-7324
EndPage 2861
ExternalDocumentID oai_doaj_org_article_a0fe83602a804446962e2968fd2da9ae
A830027398
10_5194_acp_25_2845_2025
GroupedDBID 23N
2WC
4P2
5GY
5VS
6J9
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABUWG
ACGFO
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATCPS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
EBS
EDH
EJD
FD6
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
IAO
IEA
ISR
ITC
K6-
KQ8
OK1
OVT
P2P
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PYCSY
Q2X
RKB
RNS
TR2
XSB
~02
BBORY
PMFND
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
GNUQQ
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c363t-fa917c0296e80b0f34dcd87c6f091af9c775e2763fa9e77933323f71fb4e27c93
IEDL.DBID BENPR
ISSN 1680-7324
1680-7316
IngestDate Wed Aug 27 01:15:56 EDT 2025
Sat Aug 23 14:13:40 EDT 2025
Tue Jun 17 22:00:12 EDT 2025
Tue Jun 10 21:09:16 EDT 2025
Fri Jun 27 05:15:28 EDT 2025
Tue Jul 01 05:27:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-fa917c0296e80b0f34dcd87c6f091af9c775e2763fa9e77933323f71fb4e27c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4793-0101
0000-0002-0767-1996
0000-0001-5473-2934
0000-0001-8925-7731
0000-0002-2504-1680
0000-0002-0219-1838
0000-0001-6983-5370
OpenAccessLink https://www.proquest.com/docview/3174756351?pq-origsite=%requestingapplication%
PQID 3174756351
PQPubID 105744
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_a0fe83602a804446962e2968fd2da9ae
proquest_journals_3174756351
gale_infotracmisc_A830027398
gale_infotracacademiconefile_A830027398
gale_incontextgauss_ISR_A830027398
crossref_primary_10_5194_acp_25_2845_2025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-07
PublicationDateYYYYMMDD 2025-03-07
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-07
  day: 07
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric chemistry and physics
PublicationYear 2025
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref35
  doi: 10.5194/acp-22-15559-2022
– ident: ref10
  doi: 10.5194/acp-10-6749-2010
– ident: ref1
– ident: ref2
  doi: 10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2
– ident: ref61
  doi: 10.1007/s00382-007-0347-5
– ident: ref5
– ident: ref71
  doi: 10.1175/BAMS-D-15-00213.1
– ident: ref76
  doi: 10.3390/app12094450
– ident: ref72
  doi: 10.1175/BAMS-D-21-0012.1
– ident: ref37
  doi: 10.1126/science.adi2336
– ident: ref73
  doi: 10.1175/WAF-D-13-00087.1
– ident: ref3
  doi: 10.5194/acp-17-12495-2017
– ident: ref66
  doi: 10.5194/acp-24-6071-2024
– ident: ref58
  doi: 10.1127/metz/3/1994/51
– ident: ref13
  doi: 10.1175/MWR-D-13-00325.1
– ident: ref23
  doi: 10.1002/jgrd.50752
– ident: ref20
  doi: 10.5194/amt-7-2745-2014
– ident: ref15
  doi: 10.1029/2001GL013909
– ident: ref33
  doi: 10.1016/j.aeaoa.2024.100298
– ident: ref41
  doi: 10.5194/acp-24-3813-2024
– ident: ref57
– ident: ref74
  doi: 10.5194/acp-23-1941-2023
– ident: ref36
  doi: 10.5194/acp-14-10803-2014
– ident: ref40
  doi: 10.1109/TGRS.2019.2963262
– ident: ref63
  doi: 10.1038/s43247-023-01094-9
– ident: ref31
  doi: 10.5194/amt-9-939-2016
– ident: ref46
  doi: 10.1029/2012JD017751
– ident: ref59
  doi: 10.5194/acp-23-15609-2023
– ident: ref49
  doi: 10.5194/acp-24-5495-2024
– ident: ref64
  doi: 10.1021/acs.est.9b05608
– ident: ref26
– ident: ref77
  doi: 10.5194/acp-20-15379-2020
– ident: ref55
  doi: 10.5194/acp-21-7429-2021
– ident: ref43
  doi: 10.3402/tellusb.v67.28452
– ident: ref11
  doi: 10.1002/qj.2400
– ident: ref38
  doi: 10.5194/acp-12-381-2012
– ident: ref12
– ident: ref18
  doi: 10.5194/acp-12-11933-2012
– ident: ref80
  doi: 10.5194/acp-23-743-2023
– ident: ref25
  doi: 10.1002/qj.3803
– ident: ref34
  doi: 10.5194/acp-9-3505-2009
– ident: ref17
  doi: 10.1029/2011RG000355
– ident: ref22
  doi: 10.1109/ICCV.2015.123
– ident: ref65
  doi: 10.5194/acp-22-10919-2022
– ident: ref39
  doi: 10.1002/qj.3628
– ident: ref9
  doi: 10.1002/2015JD023139
– ident: ref56
  doi: 10.1029/2023MS004206
– ident: ref67
  doi: 10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2
– ident: ref68
  doi: 10.1002/qj.14
– ident: ref4
  doi: 10.1175/JCLI-D-19-0467.1
– ident: ref70
– ident: ref52
  doi: 10.5194/gmd-5-543-2012
– ident: ref53
  doi: 10.5194/acp-17-403-2017
– ident: ref45
  doi: 10.5194/acp-20-787-2020
– ident: ref7
  doi: 10.1029/2011MS000105
– ident: ref16
  doi: 10.1088/1748-9326/ab71a3
– ident: ref32
  doi: 10.5194/acp-18-16729-2018
– ident: ref30
  doi: 10.1038/s41467-018-04068-0
– ident: ref54
  doi: 10.1029/2021GL092771
– ident: ref62
  doi: 10.5194/amt-10-3547-2017
– ident: ref8
  doi: 10.1126/science.1171264
– ident: ref51
  doi: 10.1127/metz/5/1996/4
– ident: ref60
  doi: 10.1256/qj.02.141
– ident: ref42
– ident: ref47
  doi: 10.1127/metz/2023/1187
– ident: ref21
– ident: ref29
  doi: 10.1038/s41561-020-0582-5
– ident: ref48
  doi: 10.1002/2013JD020817
– ident: ref19
  doi: 10.3390/aerospace7120169
– ident: ref24
  doi: 10.1038/ngeo2236
– ident: ref50
  doi: 10.1029/2010JD014287
– ident: ref79
  doi: 10.1002/qj.2378
– ident: ref6
  doi: 10.1038/s41612-018-0046-4
– ident: ref75
  doi: 10.5194/acp-24-7559-2024
– ident: ref28
  doi: 10.5194/acp-24-7911-2024
– ident: ref44
  doi: 10.5194/acp-20-8157-2020
– ident: ref27
  doi: 10.1029/98GL01089
– ident: ref69
  doi: 10.1002/qj.3763
– ident: ref14
– ident: ref78
  doi: 10.5194/acp-25-157-2025
SSID ssj0025014
Score 2.4664357
Snippet Knowledge of humidity in the upper troposphere and lower stratosphere (UTLS) is of special interest due to its importance for cirrus cloud formation and its...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 2845
SubjectTerms Aircraft
Analysis
Artificial intelligence
Artificial neural networks
Aviation
Bias
Cirrus clouds
Climate
Climate and weather
Cloud formation
Contrails
Dynamic height
Flight altitude
Geopotential
Humidity
Humidity measurement
Ice cover
Lower stratosphere
Machine learning
METEOSAT
Neural networks
Optical thickness
Predictions
Relative humidity
Satellites
Stratosphere
Troposphere
Upper troposphere
Water vapor
Water vapor distribution
Water vapour
Weather
Weather forecasting
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYv4xPoiiCgegt2kj_S4irIK62F1YW8hTZO1oN1lt6t_35m0K-5BvHgptJ1C-00e36STbwg5L4DTh8aBB6TLWZTGluWF1YwLFL_KO53MeLXPp6Q3jB5H8ehHqS_MCWvkgRvgrnXoLG404FqitFmSJdzyLJGu4AUqS-PoC3PeMphqQy38W4ahViJDhrWZmh-UwFaia22mjMfwbhEcQiyR_WNC8rr9v43Ofsq53yKbLVek3eYdt8marXZI0AeaO5n51XB6QW_fSuCc_myXmL5PjbS0rQUxpkBJaenXDfwyIJ04uphO7YzVWB1hjpoCpaHNhpYPS18X72UBvJyWFb0bdGP62TBE6gvmUEwn3SPD-7uX2x5rqygwIxJRM6chIjMhYGZlmIdORIUpZGoSB7Bpl5kUHMRhmAFDm0J3FYILl3ZcHsFlk4l9sl5NKntAaGrjpIgj4-Ax8LDOYQSwTkDIkjoZaROQqyWUatqIZSgIMhB2BbArHiuEXSHsAblBrL_tUObaXwDnq9b56i_nB-QMPaVQyKLCTJmxXszn6uF5oLpSeK2eTAbksjVyk3qmjW43HsA3ofbViuXxiiX0NLN6e9kgVNvT5wr4F7RwoG2dw__4oiOygej4LLf0mKzXs4U9AdpT56e-hX8Bg1H9Ow
  priority: 102
  providerName: Directory of Open Access Journals
Title Machine learning for improvement of upper-tropospheric relative humidity in ERA5 weather model data
URI https://www.proquest.com/docview/3174756351
https://doaj.org/article/a0fe83602a804446962e2968fd2da9ae
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfY9sIL2vgQYaOyEALxYC2N8-E8oW5qGUidoDCxN8tx7BJpS0KSsn-fO8cd9AFeGjVxqvrOPv_ufP4dIa9LwPShtqABYQsWZ4lhRWkUiziSXxXTaa4d2-dlenEVf7pOrn3ArfdplVub6Ax12WiMkZ_COge_BMvj9H37k2HVKNxd9SU09sgBmGABztfB2fzy8-re5cJdM3S5UhEyrNE0blQCaolPlW5ZlMB_jOEjxFLZfy1Mjr__X1baLT2LQ_LIY0Y6G5V8RB6Y-jEJlgB3m85Fxekben5TAfZ0354QvXQpkob6mhBrCtCUVi5-4MKBtLF007amYwNWSeiRW6DSdDzY8svQH5vbqgR8TquazlezhN6NSJG6wjkU00qfkqvF_Nv5BfPVFJjmKR-YVeCZ6TDKUyPCIrQ8LnUpMp1agAzK5joDRUVgbqChyWDach5xm01tEcNtnfNnZL9uavOc0MwkaZnE2sJroGlVgCUwloPrklkRKx2Qd1tRynYkzZDgbKDYJYhdRolEsUsUe0DOUNb37ZDu2t1ourX0s0eq0Bo8bRIpgfx2aZ5GBjoibBmVSC8ekFeoKYmEFjVmzKzVpu_lx68rORPccfbkIiBvfSPbDJ3Syh9AgD4hB9ZOy5OdljDj9O7j7YCQfsb38s_4fPH_x8fkIfbb5bFlJ2R_6DbmJQCboZiQPbH4MPFjGK-L5ZfvExcm-A18QfnV
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcoAL4ikCBSzEQxysZu08Dwgtpcsu7fZQWqk34zj2EqlNQpKl4k_xG5lxksIe4NZLpCSTKBnP0x5_Q8jLHGJ6X1sYgcRmLIhDw7LcKMYFgl9lk0mqHdrnUTQ_DT6fhWdb5Ne4FwbLKkeb6Ax1XmmcI98FPwdvAvc4eV9_Z9g1CldXxxYavVgcmJ-XkLK17xYfYXxfcT7bP9mbs6GrANMiEh2zCjIU7fM0Momf-VYEuc6TWEcWXKeyqY7hgzmoHRCaGMRXCC5sPLFZAJc1gi-Byb8RCJGiRiWzT1cJHq7RYYIXJT7DjlD9sijESMGu0jXjIXAkgIOPjbn_coOuW8C_fIJzdLM75PYQodJpL1J3yZYp7xFvCcF11bg5ePqa7p0XEOm6s_tEL11BpqFDB4oVhUCYFm62wk0-0srSdV2bhnXYk6FFJINC034bzQ9Dv60vihyyAVqUdP94GtLLPi6lrk0PxSLWB-T0Wrj8kGyXVWkeERqbMMrDQFt4DORKZWB3jBWQKMU2CZT2yNuRlbLuITokpDbIdglslzyUyHaJbPfIB-T1FR2Ca7sLVbOSg65K5VuDe1u4ShBNL0ojbuBHEpvzHMHMPfICR0oifEaJ9TkrtW5bufhyLKeJcAhBaeKRNwORrbpGaTVsd4B_QsStDcqdDUrQb715exQIOdiXVv7Rhsf_v_2c3JyfLA_l4eLo4Am5hTxwFXTxDtnumrV5CiFVlz1zckzJ1-tWnN8kNTGR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLaqqYS4sCMCBSzEIg7pZJzNc0Bouow6lKmgULU34zj2MAKSkIUKfhp_hT_De05SGCS49cAlUpKXKHY-v8V-_h4hD1Pw6T1l4A9wk7hBHGo3SbV0mY_kV8loNFaW7fMg2jsKXpyEJ2vke78XBtMqe51oFXWaK5wjH4KdgzeBeRwNTZcW8Wpn-rz47GIFKVxp7ctptBDZ119PIXyrns124F8_Ymy6-3Z7z-0qDLjKj_zaNRKiFeWxcaS5l3jGD1KV8lhFBsyoNGMVw8czGIIgqGOAsu8z38QjkwRwWSERE6j_dR7xkA3I-tZ0_vr4LNzDFTsM9yLuuVgfql0kBY8pGEpVuCyE_gng4GGZ7t-Moq0d8DcLYc3e9DL50XdYm-3yYbOpk0317Q8uyf-zR6-QS503Tift8LlK1nR2jThzCCTy0q430Md0--MSvHp7dp2ouU0-1bSrtrGg4PTTpZ2ZsROtNDe0KQpdujXWn6iQtWGpaLtl6Ium75tPyxQiH7rM6O7hJKSnrQ9ObUkiigm7N8jRubT5JhlkeaZvERrrMErDQBl4DMaQTEDHauNDUBgbHkjlkKc9UETR0pEICOMQVAJAJVgoEFQCQeWQLUTSmRwSidsLebkQnV4S0jMa9_EwyZE5MBpHTENDuElZisTtDnmAOBRIFZIhRBayqSoxe3MoJty3bEhj7pAnnZDJ61Iq2W3tgDYhu9iK5MaKJOgytXq7h6rodGklfuH09r9v3ycXAMDi5exg_w65iF1gkwXjDTKoy0bfBe-xTu51w5SSd-eN458hP36O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+for+improvement+of+upper-tropospheric+relative+humidity+in+ERA5+weather+model+data&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Wang%2C+Ziming&rft.au=Bugliaro%2C+Luca&rft.au=Gierens%2C+Klaus&rft.au=Hegglin%2C+Michaela+I&rft.date=2025-03-07&rft.pub=Copernicus+GmbH&rft.issn=1680-7316&rft.volume=25&rft.issue=5&rft.spage=2845&rft_id=info:doi/10.5194%2Facp-25-2845-2025&rft.externalDBID=ISR&rft.externalDocID=A830027398
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon