A novel explainable machine learning approach for EEG-based brain-computer interface systems
Electroencephalographic (EEG) recordings can be of great help in decoding the open/close hand’s motion preparation. To this end, cortical EEG source signals in the motor cortex (evaluated in the 1-s window preceding movement onset) are extracted by solving inverse problem through beamforming. EEG so...
Saved in:
Published in | Neural computing & applications Vol. 34; no. 14; pp. 11347 - 11360 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.07.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electroencephalographic (EEG) recordings can be of great help in decoding the open/close hand’s motion preparation. To this end, cortical EEG source signals in the motor cortex (evaluated in the 1-s window preceding movement onset) are extracted by solving inverse problem through beamforming. EEG sources epochs are used as source-time maps input to a custom deep convolutional neural network (CNN) that is trained to perform 2-ways classification tasks: pre-hand close (HC) versus resting state (RE) and pre-hand open (HO) versus RE. The developed deep CNN works well (accuracy rates up to
89.65
±
5.29
%
for HC versus RE and
90.50
±
5.35
%
for HO versus RE), but the core of the present study was to explore the interpretability of the deep CNN to provide further insights into the activation mechanism of cortical sources during the preparation of hands’ sub-movements. Specifically,
occlusion sensitivity analysis
was carried out to investigate which cortical areas are more relevant in the classification procedure. Experimental results show a recurrent trend of spatial cortical activation across subjects. In particular, the central region (close to the longitudinal fissure) and the right temporal zone of the premotor together with the primary motor cortex appear to be primarily involved. Such findings encourage an in-depth study of cortical areas that seem to play a key role in hand’s open/close preparation. |
---|---|
AbstractList | Electroencephalographic (EEG) recordings can be of great help in decoding the open/close hand’s motion preparation. To this end, cortical EEG source signals in the motor cortex (evaluated in the 1-s window preceding movement onset) are extracted by solving inverse problem through beamforming. EEG sources epochs are used as source-time maps input to a custom deep convolutional neural network (CNN) that is trained to perform 2-ways classification tasks: pre-hand close (HC) versus resting state (RE) and pre-hand open (HO) versus RE. The developed deep CNN works well (accuracy rates up to 89.65±5.29% for HC versus RE and 90.50±5.35% for HO versus RE), but the core of the present study was to explore the interpretability of the deep CNN to provide further insights into the activation mechanism of cortical sources during the preparation of hands’ sub-movements. Specifically, occlusion sensitivity analysis was carried out to investigate which cortical areas are more relevant in the classification procedure. Experimental results show a recurrent trend of spatial cortical activation across subjects. In particular, the central region (close to the longitudinal fissure) and the right temporal zone of the premotor together with the primary motor cortex appear to be primarily involved. Such findings encourage an in-depth study of cortical areas that seem to play a key role in hand’s open/close preparation. Electroencephalographic (EEG) recordings can be of great help in decoding the open/close hand’s motion preparation. To this end, cortical EEG source signals in the motor cortex (evaluated in the 1-s window preceding movement onset) are extracted by solving inverse problem through beamforming. EEG sources epochs are used as source-time maps input to a custom deep convolutional neural network (CNN) that is trained to perform 2-ways classification tasks: pre-hand close (HC) versus resting state (RE) and pre-hand open (HO) versus RE. The developed deep CNN works well (accuracy rates up to 89.65 ± 5.29 % for HC versus RE and 90.50 ± 5.35 % for HO versus RE), but the core of the present study was to explore the interpretability of the deep CNN to provide further insights into the activation mechanism of cortical sources during the preparation of hands’ sub-movements. Specifically, occlusion sensitivity analysis was carried out to investigate which cortical areas are more relevant in the classification procedure. Experimental results show a recurrent trend of spatial cortical activation across subjects. In particular, the central region (close to the longitudinal fissure) and the right temporal zone of the premotor together with the primary motor cortex appear to be primarily involved. Such findings encourage an in-depth study of cortical areas that seem to play a key role in hand’s open/close preparation. |
Author | Hussain, Amir Mammone, Nadia Ieracitano, Cosimo Morabito, Francesco Carlo |
Author_xml | – sequence: 1 givenname: Cosimo orcidid: 0000-0001-7890-2897 surname: Ieracitano fullname: Ieracitano, Cosimo email: cosimo.ieracitano@unirc.it organization: DICEAM University Mediterranea of Reggio Calabria – sequence: 2 givenname: Nadia surname: Mammone fullname: Mammone, Nadia organization: DICEAM University Mediterranea of Reggio Calabria – sequence: 3 givenname: Amir surname: Hussain fullname: Hussain, Amir organization: School of Computing, Edinburgh Napier University – sequence: 4 givenname: Francesco Carlo surname: Morabito fullname: Morabito, Francesco Carlo organization: DICEAM University Mediterranea of Reggio Calabria |
BookMark | eNp9kEtOwzAQhi1UJNrCBVhFYm0YP-Iky6oqBakSG9hiOY5TUiVOsFNKb9Oz9GQYgoTEohuPPPN_8_gnaGRbaxC6JnBLAJI7DxBTgoEChlhQjndnaEw4Y5hBnI7QGDIeyoKzCzTxfgMAXKTxGL3OItt-mPp4MJ9drSqr8tpEjdJvlTVRbZSzlV1HqutcG5LHQ9m6aLFY4lx5U0S5CwjWbdNte-Oiyoa3VNpEfu970_hLdF6q2pur3zhFL_eL5_kDXj0tH-ezFdZMsB6XijJNeaY4SfMio2nGTZIzJqAEQZiiZWyEyMOPBk1MSKJpUgAvdMGgUMCm6GboG9Z83xrfy027dTaMlFSkWZYmnIugSgeVdq33zpRSV73qq9b24Y5aEpDfbsrBTRnclD9uyl1A6T-0c1Wj3P40xAbIB7FdG_e31QnqC_rai-Q |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3322294 crossref_primary_10_1080_17538947_2024_2390457 crossref_primary_10_3390_make3040042 crossref_primary_10_1007_s42600_022_00215_1 crossref_primary_10_1142_S0129065723500685 crossref_primary_10_1155_2023_4459198 crossref_primary_10_1016_j_bspc_2022_104397 crossref_primary_10_1088_1741_2552_ad6593 crossref_primary_10_3390_s21093155 crossref_primary_10_3390_sym13101892 crossref_primary_10_1007_s12559_021_09901_1 crossref_primary_10_1016_j_neucom_2023_126387 crossref_primary_10_1016_j_aei_2024_102697 crossref_primary_10_4015_S101623722450039X crossref_primary_10_1109_JBHI_2023_3243698 crossref_primary_10_29109_gujsc_1083912 crossref_primary_10_1016_j_bios_2025_117321 crossref_primary_10_1007_s00521_021_06737_6 crossref_primary_10_1002_jdn_10388 crossref_primary_10_1088_1361_6501_ad1157 crossref_primary_10_3390_bioengineering11100967 crossref_primary_10_1016_j_bea_2025_100156 crossref_primary_10_1186_s12911_023_02320_2 crossref_primary_10_3390_bioengineering10091076 crossref_primary_10_1007_s00521_022_07809_x crossref_primary_10_3390_s21134519 crossref_primary_10_1007_s12559_021_09910_0 crossref_primary_10_3390_e24010102 crossref_primary_10_1016_j_knosys_2024_112270 crossref_primary_10_1016_j_neucom_2025_129701 crossref_primary_10_1007_s12559_021_09926_6 crossref_primary_10_1007_s00521_022_07397_w crossref_primary_10_1007_s12559_023_10120_z crossref_primary_10_2174_2666255815666220516141153 crossref_primary_10_3389_fncom_2022_1010770 crossref_primary_10_1002_aisy_202300094 crossref_primary_10_1080_10255842_2023_2187662 crossref_primary_10_1155_2021_1970769 crossref_primary_10_1177_15500594221148285 |
Cites_doi | 10.1016/j.neucom.2018.09.071 10.1007/s12559-020-09744-2 10.1007/s12559-018-9621-6 10.1016/j.neunet.2014.01.006 10.1155/2011/879716 10.3389/fnins.2019.01346 10.1007/978-3-319-10590-1_53 10.1093/acprof:oso/9780195050387.001.0001 10.1016/j.brainres.2018.09.004 10.1088/1741-2552/aab2f2 10.1007/978-3-642-15825-4_10 10.1007/s12559-018-9580-y 10.1186/1743-0003-5-25 10.1007/s12559-020-09745-1 10.1007/s12559-019-09656-w 10.1007/s00521-019-04096-x 10.1007/s12559-019-09654-y 10.1177/1545968311420845 10.1016/j.neunet.2020.01.027 10.1155/2015/346217 10.1007/s00521-019-04086-z 10.1088/1741-2560/8/2/025007 10.1007/s10548-016-0498-y 10.1016/j.neunet.2019.12.006 10.1007/s12559-019-09637-z 10.1007/s12559-019-09670-y 10.1038/s41598-019-43594-9 10.1109/TBME.2015.2467312 10.1093/brain/awx270 10.1002/hbm.20345 10.1007/s12559-019-09688-2 10.1038/nature14539 10.1088/1741-2552/ab0ab5 10.1109/TNNLS.2015.2475618 10.1007/s12559-018-9563-z 10.1007/s12559-019-09699-z 10.1186/1743-0003-4-46 10.1007/s12559-019-09639-x 10.1093/acprof:oso/9780195058239.001.0001 10.3390/e16126553 10.1088/1741-2552/ab260c 10.1007/s00521-019-04700-0 10.1038/srep16438 10.1007/978-3-662-57715-8 10.1007/978-3-642-35289-8_26 10.1016/j.dsp.2017.10.011 10.1007/s12559-017-9517-x 10.1016/bs.pbr.2016.04.017 10.1016/j.neucom.2004.01.180 10.1109/TBME.2008.2009768 10.1371/journal.pone.0182578 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/s00521-020-05624-w |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1433-3058 |
EndPage | 11360 |
ExternalDocumentID | 10_1007_s00521_020_05624_w |
GrantInformation_xml | – fundername: European Commission, the European Social Fund and the Calabria Region grantid: C39B18000080002 – fundername: UK Engineering and Physical Sciences Research Council grantid: EP/M026981/1; EP/T021063/1; EP/T024917/1 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c363t-fa23c249a418bd92894e7b3360f0613a2f5e66b0f029a45117c27d04dcd30da03 |
IEDL.DBID | U2A |
ISSN | 0941-0643 |
IngestDate | Fri Jul 25 07:37:31 EDT 2025 Thu Apr 24 23:11:45 EDT 2025 Tue Jul 01 01:46:59 EDT 2025 Fri Feb 21 02:45:24 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | Deep learning Beamforming Brain–computer interface Explainable machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-fa23c249a418bd92894e7b3360f0613a2f5e66b0f029a45117c27d04dcd30da03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7890-2897 |
OpenAccessLink | http://researchrepository.napier.ac.uk/Output/2761855 |
PQID | 2689987446 |
PQPubID | 2043988 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2689987446 crossref_citationtrail_10_1007_s00521_020_05624_w crossref_primary_10_1007_s00521_020_05624_w springer_journals_10_1007_s00521_020_05624_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220700 2022-07-00 20220701 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 7 year: 2022 text: 20220700 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Neural computing & applications |
PublicationTitleAbbrev | Neural Comput & Applic |
PublicationYear | 2022 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | IeracitanoCMammoneNHussainAMorabitoFCA novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementiaNeural Netw202012317619010.1016/j.neunet.2019.12.006 NunezPLSrinivasanRElectric fields of the brain, the neurophysics of EEG2006New YorkOxford University Press10.1093/acprof:oso/9780195050387.001.0001 MaXLiuWTaoDZhouYEnsemble p-laplacian regularization for scene image recognitionCogn Comput201911684185410.1007/s12559-019-09637-z CraikAHeYContreras-VidalJLDeep learning for electroencephalogram (EEG) classification tasks: a reviewJ Neural Eng201916303100110.1088/1741-2552/ab0ab5 Haufe S, Huang Y, Parra LC (2015) A highly detailed FEM volume conductor model based on the ICBM152 average head template for EEG source imaging and TCS targeting. In: Conference poceedings of IEEE engineering medicine and biological society GaoFHuangTSunJWangJHussainAYangEA new algorithm for sar image target recognition based on an improved deep convolutional neural networkCogn Comput201911680982410.1007/s12559-018-9563-z KasabovNKNeucube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain dataNeural Netw201452627610.1016/j.neunet.2014.01.006 Tang W, Zou D, Yang S, Shi J, Dan J, Song G (2020) A two-stage approach for automatic liver segmentation with faster R-CNN and deeplab. Neural Comput Appl, pp 1–10 Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci, p 8 Liu L, Chen S, Zhang F, Wu FX, Pan Y, Wang J (2019) Deep convolutional neural network for automatically segmenting acute ischemic stroke lesion in multi-modality MRI. Neural Comput Appl, pp 1–14 BrodmannKBrodmann’s: localisation in the cerebral cortex2007BerlinSpringer IeracitanoCMammoneNBramantiAHussainAMorabitoFCA convolutional neural network approach for classification of dementia stages based on 2d-spectral representation of EEG recordingsNeurocomputing20193239610710.1016/j.neucom.2018.09.071 Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: European conference on computer vision. Springer, pp 818–833 Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 LotteFBougrainLCichockiAClercMCongedoMRakotomamonjyAYgerFA review of classification algorithms for EEG-based brain–computer interfaces: a 10 year updateJ Neural Eng201815303100510.1088/1741-2552/aab2f2 WangZHealyGSmeatonAFWardTEUse of neural signals to evaluate the quality of generative adversarial network performance in facial image generationCognit Comput2020121132410.1007/s12559-019-09670-y EdelmanBJBaxterBHeBEEG source imaging enhances the decoding of complex right-hand motor imagery tasksIEEE Trans Biomed Eng201563141410.1109/TBME.2015.2467312 WagstaffKCardieCRogersSSchrödlSConstrained k-means clustering with background knowledgeIcml20011577584 Ramirez-Quintana JA, Madrid-Herrera L, Chacon-Murguia MI, Corral-Martinez LF (2020) Brain–computer interface system based on p300 processing with convolutional neural network, novel speller, and low number of electrodes. Cogn Comput, pp 1–17 SunXLvMFacial expression recognition based on a hybrid model combining deep and shallow featuresCogn Comput201911458759710.1007/s12559-019-09654-y Chen H, Ding G, Lin Z, Guo Y, Shan C, Han J (2019) Image captioning with memorized knowledge. Cogn Comput 1–14 PowersDMEvaluation: from precision, recall and f-measure to ROC, informedness, markedness and correlationJ Mach Learn Technol20112137632815363 VecchiatoGDel VecchioMAscariLAntopolskiySDeonFKubinLAmbeck-MadsenJRizzolattiGAvanziniPElectroencephalographic time-frequency patterns of braking and acceleration movement preparation in car driving simulationBrain Res20191716162610.1016/j.brainres.2018.09.004 BiXZhaoXHuangHChenDMaYFunctional brain network classification for alzheimer’s disease detection with deep features and extreme learning machineCogn Comput202012351352710.1007/s12559-019-09688-2 OfnerPSchwarzAPereiraJMüller-PutzGRUpper limb movements can be decoded from the time-domain of low-frequency EEGPLoS ONE2017128e018257810.1371/journal.pone.0182578 KasabovNKTime-space, spiking neural networks and brain-inspired artificial intelligence2019BerlinSpringer10.1007/978-3-662-57715-8 Chen X, Xie H (2020) A structural topic modeling-based bibliometric study of sentiment analysis literature. Cogn Comput 1–33 ZamaTShimadaSSimultaneous measurement of electroencephalography and near-infrared spectroscopy during voluntary motor preparationSci Rep2015511910.1038/srep16438 CataniMA little man of some importanceBrain2017140113055306110.1093/brain/awx270 Bengio Y (2012) Practical recommendations for gradient-based training of deep architectures. In: Neural networks: tricks of the trade, pp 437–478 VatoABonzanoLChiappaloneMCiceroSMorabitoFNovellinoAStilloGSpike manager: a new tool for spontaneous and evoked neuronal networks activity characterizationNeurocomputing2004581153116110.1016/j.neucom.2004.01.180 FellousJMSapiroGRossiAMaybergHSFerranteMExplainable artificial intelligence for neuroscience: behavioral neurostimulationFront Neurosci201913134610.3389/fnins.2019.01346 RoyYBanvilleHAlbuquerqueIGramfortAFalkTHFaubertJDeep learning-based electroencephalography analysis: a systematic reviewJ Neural Eng201916505100110.1088/1741-2552/ab260c MammoneNMorabitoFCEnhanced automatic wavelet independent component analysis for electroencephalographic artifact removalEntropy201416126553657210.3390/e16126553 Shakeel A, Navid MS, Anwar MN, Mazhar S, Jochumsen M, Niazi IK (2015) A review of techniques for detection of movement intention using movement-related cortical potentials. Comput Math Methods Med, p 346217 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105 Müller-PutzGRSchwarzAPereiraJOfnerPFrom classic motor imagery to complex movement intention decoding: the noninvasive Graz-BCI approachProg Brain Res2016228397010.1016/bs.pbr.2016.04.017Elsevier MammoneNIeracitanoCMorabitoFCA deep CNN approach to decode motor preparation of upper limbs from time-frequency maps of EEG signals at source levelNeural Netw202012435737210.1016/j.neunet.2020.01.027 Scherer D, Müller A, Behnke S (2010) Evaluation of pooling operations in convolutional architectures for object recognition. In: International conference on artificial neural networks. Springer, pp 92–101 Goshvarpour A, Goshvarpour A (2019) A novel approach for EEG electrode selection in automated emotion recognition based on lagged poincare’s indices and sloreta. Cogn Comput 1–17 LancasterJLTordesillas-GutiérrezDMartinezMSalinasFEvansAZillesKMazziottaJCFoxPTBias between MNI and Talairach coordinates analyzed using the ICBM-152 brain templateHum Brain Map200728111194120510.1002/hbm.20345 Lotte F, Jeunet C (2017) Online classification accuracy is a poor metric to study mental imagery-based BCI user learning: an experimental demonstration and new metrics. In: 7th international BCI conference, pp hal–01519478 LeCunYBengioYHintonGDeep learningNature2015521755343610.1038/nature14539 MalmivuoJPlonseyRBioelectromagnetism, principles and applications of bioelectric and biomagnetic fields1995New YorkOxford University Press10.1093/acprof:oso/9780195058239.001.0001 KantakSSStinearJWBuchERCohenLGRewiring the brain: potential role of the premotor cortex in motor control, learning, and recovery of function following brain injuryNeurorehabilit Neural Repair201226328229210.1177/1545968311420845 GrechRCassarTMuscatJCamilleriKPFabriSGZervakisMXanthopoulosPSakkalisVVanrumsteBReview on solving the inverse problem in EEG source analysisJ Neuroeng Rehabilit2008512510.1186/1743-0003-5-25 CaiZShaoLRgb-d scene classification via multi-modal feature learningCogn Comput201911682584010.1007/s12559-018-9580-y Grosse-WentrupMLiefholdCGramannKBussMBeamforming in noninvasive brain–computer interfacesIEEE Trans Biomed Eng20095641209121910.1109/TBME.2008.2009768 DoborjehZGDoborjehMGKasabovNAttentional bias pattern recognition in spiking neural networks from spatio-temporal EEG dataCogn Comput2018101354810.1007/s12559-017-9517-x MontavonGSamekWMüllerKRMethods for interpreting and understanding deep neural networksDigit Signal Proc201873115373787010.1016/j.dsp.2017.10.011 Yue Z, Gao F, Xiong Q, Wang J, Huang T, Yang E, Zhou H (2019) A novel semi-supervised convolutional neural network method for synthetic aperture radar image recognition. Cognit Comput, pp 1–12 ZengHSongAOptimizing single-trial EEG classification by stationary matrix logistic regression in brain–computer interfaceIEEE Trans Neural Netw Learn Syst2016271123012313357160710.1109/TNNLS.2015.2475618 HermesDVansteenselMJAlbersAMBleichnerMGBenedictusMROrellanaCMAarnoutseERamseyNFunctional MRI-based identification of brain areas involved in motor imagery for implantable brain–computer interfacesJ Neural Eng20118202500710.1088/1741-2560/8/2/025007 OfnerPSchwarzAPereiraJWyssDWildburgerRMüller-PutzGRAttempted arm and hand movements can be decoded from low-frequency EEG from persons with spinal cord injurySci Rep201991713410.1038/s41598-019-43594-9 HallezHVanrumsteBGrechRMuscatJDe ClercqWVergultAD’AsselerYCamilleriKPFabriSGVan HuffelSReview on solving the forward problem in EEG source analysisJ Neuroeng Rehabilit2007414610.1186/1743-0003-4-46 Haufe S, Ewald A (2016) A simulation framework for benchmarking EEG-based brain connectivity estimation methodologies. Brain Topogr, pp 1–18 Liang Z, Shao J, Zhang D, Gao L (2019) Traffic sign detection and recognition based on pyramidal convolutional networks. Neural Comput Appl, 1–11 ZhengJCaiFChenWFengCChenHHierarchical neural representation for document classificationCogn Comput201911231732710.1007/s12559-018-9621-6 Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10), 5624_CR6 N Mammone (5624_CR35) 2020; 124 5624_CR7 G Vecchiato (5624_CR52) 2019; 1716 J Zheng (5624_CR59) 2019; 11 J Malmivuo (5624_CR34) 1995 5624_CR39 5624_CR1 Z Cai (5624_CR4) 2019; 11 5624_CR30 5624_CR32 ZG Doborjeh (5624_CR9) 2018; 10 Y LeCun (5624_CR28) 2015; 521 NK Kasabov (5624_CR23) 2014; 52 BJ Edelman (5624_CR10) 2015; 63 A Vato (5624_CR51) 2004; 58 5624_CR29 F Lotte (5624_CR31) 2018; 15 X Bi (5624_CR2) 2020; 12 C Ieracitano (5624_CR21) 2020; 123 5624_CR25 5624_CR26 P Ofner (5624_CR41) 2017; 12 R Grech (5624_CR14) 2008; 5 M Grosse-Wentrup (5624_CR15) 2009; 56 A Craik (5624_CR8) 2019; 16 X Sun (5624_CR48) 2019; 11 5624_CR17 5624_CR18 GR Müller-Putz (5624_CR38) 2016; 228 Z Wang (5624_CR54) 2020; 12 5624_CR55 Y Roy (5624_CR45) 2019; 16 5624_CR13 X Ma (5624_CR33) 2019; 11 5624_CR57 JM Fellous (5624_CR11) 2019; 13 F Gao (5624_CR12) 2019; 11 M Catani (5624_CR5) 2017; 140 G Montavon (5624_CR37) 2018; 73 H Zeng (5624_CR58) 2016; 27 NK Kasabov (5624_CR24) 2019 SS Kantak (5624_CR22) 2012; 26 5624_CR50 T Zama (5624_CR56) 2015; 5 D Hermes (5624_CR19) 2011; 8 N Mammone (5624_CR36) 2014; 16 C Ieracitano (5624_CR20) 2019; 323 5624_CR49 JL Lancaster (5624_CR27) 2007; 28 5624_CR44 DM Powers (5624_CR43) 2011; 2 H Hallez (5624_CR16) 2007; 4 5624_CR46 P Ofner (5624_CR42) 2019; 9 5624_CR47 PL Nunez (5624_CR40) 2006 K Brodmann (5624_CR3) 2007 K Wagstaff (5624_CR53) 2001; 1 |
References_xml | – reference: LancasterJLTordesillas-GutiérrezDMartinezMSalinasFEvansAZillesKMazziottaJCFoxPTBias between MNI and Talairach coordinates analyzed using the ICBM-152 brain templateHum Brain Map200728111194120510.1002/hbm.20345 – reference: Haufe S, Ewald A (2016) A simulation framework for benchmarking EEG-based brain connectivity estimation methodologies. Brain Topogr, pp 1–18 – reference: RoyYBanvilleHAlbuquerqueIGramfortAFalkTHFaubertJDeep learning-based electroencephalography analysis: a systematic reviewJ Neural Eng201916505100110.1088/1741-2552/ab260c – reference: VecchiatoGDel VecchioMAscariLAntopolskiySDeonFKubinLAmbeck-MadsenJRizzolattiGAvanziniPElectroencephalographic time-frequency patterns of braking and acceleration movement preparation in car driving simulationBrain Res20191716162610.1016/j.brainres.2018.09.004 – reference: GrechRCassarTMuscatJCamilleriKPFabriSGZervakisMXanthopoulosPSakkalisVVanrumsteBReview on solving the inverse problem in EEG source analysisJ Neuroeng Rehabilit2008512510.1186/1743-0003-5-25 – reference: KantakSSStinearJWBuchERCohenLGRewiring the brain: potential role of the premotor cortex in motor control, learning, and recovery of function following brain injuryNeurorehabilit Neural Repair201226328229210.1177/1545968311420845 – reference: CraikAHeYContreras-VidalJLDeep learning for electroencephalogram (EEG) classification tasks: a reviewJ Neural Eng201916303100110.1088/1741-2552/ab0ab5 – reference: Bengio Y (2012) Practical recommendations for gradient-based training of deep architectures. In: Neural networks: tricks of the trade, pp 437–478 – reference: Grosse-WentrupMLiefholdCGramannKBussMBeamforming in noninvasive brain–computer interfacesIEEE Trans Biomed Eng20095641209121910.1109/TBME.2008.2009768 – reference: OfnerPSchwarzAPereiraJWyssDWildburgerRMüller-PutzGRAttempted arm and hand movements can be decoded from low-frequency EEG from persons with spinal cord injurySci Rep201991713410.1038/s41598-019-43594-9 – reference: KasabovNKNeucube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain dataNeural Netw201452627610.1016/j.neunet.2014.01.006 – reference: Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci, p 8 – reference: ZhengJCaiFChenWFengCChenHHierarchical neural representation for document classificationCogn Comput201911231732710.1007/s12559-018-9621-6 – reference: IeracitanoCMammoneNHussainAMorabitoFCA novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementiaNeural Netw202012317619010.1016/j.neunet.2019.12.006 – reference: DoborjehZGDoborjehMGKasabovNAttentional bias pattern recognition in spiking neural networks from spatio-temporal EEG dataCogn Comput2018101354810.1007/s12559-017-9517-x – reference: WangZHealyGSmeatonAFWardTEUse of neural signals to evaluate the quality of generative adversarial network performance in facial image generationCognit Comput2020121132410.1007/s12559-019-09670-y – reference: Scherer D, Müller A, Behnke S (2010) Evaluation of pooling operations in convolutional architectures for object recognition. In: International conference on artificial neural networks. Springer, pp 92–101 – reference: Chen H, Ding G, Lin Z, Guo Y, Shan C, Han J (2019) Image captioning with memorized knowledge. Cogn Comput 1–14 – reference: MammoneNIeracitanoCMorabitoFCA deep CNN approach to decode motor preparation of upper limbs from time-frequency maps of EEG signals at source levelNeural Netw202012435737210.1016/j.neunet.2020.01.027 – reference: ZengHSongAOptimizing single-trial EEG classification by stationary matrix logistic regression in brain–computer interfaceIEEE Trans Neural Netw Learn Syst2016271123012313357160710.1109/TNNLS.2015.2475618 – reference: Ramirez-Quintana JA, Madrid-Herrera L, Chacon-Murguia MI, Corral-Martinez LF (2020) Brain–computer interface system based on p300 processing with convolutional neural network, novel speller, and low number of electrodes. Cogn Comput, pp 1–17 – reference: Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105 – reference: BrodmannKBrodmann’s: localisation in the cerebral cortex2007BerlinSpringer – reference: Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10), pp 807–814 – reference: Shakeel A, Navid MS, Anwar MN, Mazhar S, Jochumsen M, Niazi IK (2015) A review of techniques for detection of movement intention using movement-related cortical potentials. Comput Math Methods Med, p 346217 – reference: WagstaffKCardieCRogersSSchrödlSConstrained k-means clustering with background knowledgeIcml20011577584 – reference: Müller-PutzGRSchwarzAPereiraJOfnerPFrom classic motor imagery to complex movement intention decoding: the noninvasive Graz-BCI approachProg Brain Res2016228397010.1016/bs.pbr.2016.04.017Elsevier – reference: MontavonGSamekWMüllerKRMethods for interpreting and understanding deep neural networksDigit Signal Proc201873115373787010.1016/j.dsp.2017.10.011 – reference: Yue Z, Gao F, Xiong Q, Wang J, Huang T, Yang E, Zhou H (2019) A novel semi-supervised convolutional neural network method for synthetic aperture radar image recognition. Cognit Comput, pp 1–12 – reference: BiXZhaoXHuangHChenDMaYFunctional brain network classification for alzheimer’s disease detection with deep features and extreme learning machineCogn Comput202012351352710.1007/s12559-019-09688-2 – reference: KasabovNKTime-space, spiking neural networks and brain-inspired artificial intelligence2019BerlinSpringer10.1007/978-3-662-57715-8 – reference: Lotte F, Jeunet C (2017) Online classification accuracy is a poor metric to study mental imagery-based BCI user learning: an experimental demonstration and new metrics. In: 7th international BCI conference, pp hal–01519478 – reference: GaoFHuangTSunJWangJHussainAYangEA new algorithm for sar image target recognition based on an improved deep convolutional neural networkCogn Comput201911680982410.1007/s12559-018-9563-z – reference: LotteFBougrainLCichockiAClercMCongedoMRakotomamonjyAYgerFA review of classification algorithms for EEG-based brain–computer interfaces: a 10 year updateJ Neural Eng201815303100510.1088/1741-2552/aab2f2 – reference: EdelmanBJBaxterBHeBEEG source imaging enhances the decoding of complex right-hand motor imagery tasksIEEE Trans Biomed Eng201563141410.1109/TBME.2015.2467312 – reference: Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: European conference on computer vision. Springer, pp 818–833 – reference: Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 – reference: Goshvarpour A, Goshvarpour A (2019) A novel approach for EEG electrode selection in automated emotion recognition based on lagged poincare’s indices and sloreta. Cogn Comput 1–17 – reference: Liu L, Chen S, Zhang F, Wu FX, Pan Y, Wang J (2019) Deep convolutional neural network for automatically segmenting acute ischemic stroke lesion in multi-modality MRI. Neural Comput Appl, pp 1–14 – reference: MaXLiuWTaoDZhouYEnsemble p-laplacian regularization for scene image recognitionCogn Comput201911684185410.1007/s12559-019-09637-z – reference: CaiZShaoLRgb-d scene classification via multi-modal feature learningCogn Comput201911682584010.1007/s12559-018-9580-y – reference: NunezPLSrinivasanRElectric fields of the brain, the neurophysics of EEG2006New YorkOxford University Press10.1093/acprof:oso/9780195050387.001.0001 – reference: MalmivuoJPlonseyRBioelectromagnetism, principles and applications of bioelectric and biomagnetic fields1995New YorkOxford University Press10.1093/acprof:oso/9780195058239.001.0001 – reference: SunXLvMFacial expression recognition based on a hybrid model combining deep and shallow featuresCogn Comput201911458759710.1007/s12559-019-09654-y – reference: Liang Z, Shao J, Zhang D, Gao L (2019) Traffic sign detection and recognition based on pyramidal convolutional networks. Neural Comput Appl, 1–11 – reference: ZamaTShimadaSSimultaneous measurement of electroencephalography and near-infrared spectroscopy during voluntary motor preparationSci Rep2015511910.1038/srep16438 – reference: VatoABonzanoLChiappaloneMCiceroSMorabitoFNovellinoAStilloGSpike manager: a new tool for spontaneous and evoked neuronal networks activity characterizationNeurocomputing2004581153116110.1016/j.neucom.2004.01.180 – reference: PowersDMEvaluation: from precision, recall and f-measure to ROC, informedness, markedness and correlationJ Mach Learn Technol20112137632815363 – reference: MammoneNMorabitoFCEnhanced automatic wavelet independent component analysis for electroencephalographic artifact removalEntropy201416126553657210.3390/e16126553 – reference: HermesDVansteenselMJAlbersAMBleichnerMGBenedictusMROrellanaCMAarnoutseERamseyNFunctional MRI-based identification of brain areas involved in motor imagery for implantable brain–computer interfacesJ Neural Eng20118202500710.1088/1741-2560/8/2/025007 – reference: CataniMA little man of some importanceBrain2017140113055306110.1093/brain/awx270 – reference: Chen X, Xie H (2020) A structural topic modeling-based bibliometric study of sentiment analysis literature. Cogn Comput 1–33 – reference: LeCunYBengioYHintonGDeep learningNature2015521755343610.1038/nature14539 – reference: Tang W, Zou D, Yang S, Shi J, Dan J, Song G (2020) A two-stage approach for automatic liver segmentation with faster R-CNN and deeplab. Neural Comput Appl, pp 1–10 – reference: OfnerPSchwarzAPereiraJMüller-PutzGRUpper limb movements can be decoded from the time-domain of low-frequency EEGPLoS ONE2017128e018257810.1371/journal.pone.0182578 – reference: HallezHVanrumsteBGrechRMuscatJDe ClercqWVergultAD’AsselerYCamilleriKPFabriSGVan HuffelSReview on solving the forward problem in EEG source analysisJ Neuroeng Rehabilit2007414610.1186/1743-0003-4-46 – reference: Haufe S, Huang Y, Parra LC (2015) A highly detailed FEM volume conductor model based on the ICBM152 average head template for EEG source imaging and TCS targeting. In: Conference poceedings of IEEE engineering medicine and biological society – reference: FellousJMSapiroGRossiAMaybergHSFerranteMExplainable artificial intelligence for neuroscience: behavioral neurostimulationFront Neurosci201913134610.3389/fnins.2019.01346 – reference: IeracitanoCMammoneNBramantiAHussainAMorabitoFCA convolutional neural network approach for classification of dementia stages based on 2d-spectral representation of EEG recordingsNeurocomputing20193239610710.1016/j.neucom.2018.09.071 – volume-title: Brodmann’s: localisation in the cerebral cortex year: 2007 ident: 5624_CR3 – volume: 323 start-page: 96 year: 2019 ident: 5624_CR20 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.071 – ident: 5624_CR44 doi: 10.1007/s12559-020-09744-2 – volume: 11 start-page: 317 issue: 2 year: 2019 ident: 5624_CR59 publication-title: Cogn Comput doi: 10.1007/s12559-018-9621-6 – volume: 52 start-page: 62 year: 2014 ident: 5624_CR23 publication-title: Neural Netw doi: 10.1016/j.neunet.2014.01.006 – ident: 5624_CR49 doi: 10.1155/2011/879716 – volume: 13 start-page: 1346 year: 2019 ident: 5624_CR11 publication-title: Front Neurosci doi: 10.3389/fnins.2019.01346 – ident: 5624_CR57 doi: 10.1007/978-3-319-10590-1_53 – volume-title: Electric fields of the brain, the neurophysics of EEG year: 2006 ident: 5624_CR40 doi: 10.1093/acprof:oso/9780195050387.001.0001 – volume: 1 start-page: 577 year: 2001 ident: 5624_CR53 publication-title: Icml – volume: 1716 start-page: 16 year: 2019 ident: 5624_CR52 publication-title: Brain Res doi: 10.1016/j.brainres.2018.09.004 – ident: 5624_CR18 – volume: 15 start-page: 031005 issue: 3 year: 2018 ident: 5624_CR31 publication-title: J Neural Eng doi: 10.1088/1741-2552/aab2f2 – ident: 5624_CR46 doi: 10.1007/978-3-642-15825-4_10 – volume: 11 start-page: 825 issue: 6 year: 2019 ident: 5624_CR4 publication-title: Cogn Comput doi: 10.1007/s12559-018-9580-y – volume: 5 start-page: 25 issue: 1 year: 2008 ident: 5624_CR14 publication-title: J Neuroeng Rehabilit doi: 10.1186/1743-0003-5-25 – ident: 5624_CR7 doi: 10.1007/s12559-020-09745-1 – ident: 5624_CR6 doi: 10.1007/s12559-019-09656-w – ident: 5624_CR30 doi: 10.1007/s00521-019-04096-x – volume: 11 start-page: 587 issue: 4 year: 2019 ident: 5624_CR48 publication-title: Cogn Comput doi: 10.1007/s12559-019-09654-y – volume: 26 start-page: 282 issue: 3 year: 2012 ident: 5624_CR22 publication-title: Neurorehabilit Neural Repair doi: 10.1177/1545968311420845 – volume: 124 start-page: 357 year: 2020 ident: 5624_CR35 publication-title: Neural Netw doi: 10.1016/j.neunet.2020.01.027 – ident: 5624_CR47 doi: 10.1155/2015/346217 – ident: 5624_CR29 doi: 10.1007/s00521-019-04086-z – volume: 8 start-page: 025007 issue: 2 year: 2011 ident: 5624_CR19 publication-title: J Neural Eng doi: 10.1088/1741-2560/8/2/025007 – ident: 5624_CR17 doi: 10.1007/s10548-016-0498-y – volume: 123 start-page: 176 year: 2020 ident: 5624_CR21 publication-title: Neural Netw doi: 10.1016/j.neunet.2019.12.006 – volume: 11 start-page: 841 issue: 6 year: 2019 ident: 5624_CR33 publication-title: Cogn Comput doi: 10.1007/s12559-019-09637-z – volume: 12 start-page: 13 issue: 1 year: 2020 ident: 5624_CR54 publication-title: Cognit Comput doi: 10.1007/s12559-019-09670-y – volume: 9 start-page: 7134 issue: 1 year: 2019 ident: 5624_CR42 publication-title: Sci Rep doi: 10.1038/s41598-019-43594-9 – volume: 63 start-page: 4 issue: 1 year: 2015 ident: 5624_CR10 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2015.2467312 – volume: 140 start-page: 3055 issue: 11 year: 2017 ident: 5624_CR5 publication-title: Brain doi: 10.1093/brain/awx270 – volume: 28 start-page: 1194 issue: 11 year: 2007 ident: 5624_CR27 publication-title: Hum Brain Map doi: 10.1002/hbm.20345 – volume: 12 start-page: 513 issue: 3 year: 2020 ident: 5624_CR2 publication-title: Cogn Comput doi: 10.1007/s12559-019-09688-2 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 5624_CR28 publication-title: Nature doi: 10.1038/nature14539 – ident: 5624_CR25 – volume: 2 start-page: 37 issue: 1 year: 2011 ident: 5624_CR43 publication-title: J Mach Learn Technol – volume: 16 start-page: 031001 issue: 3 year: 2019 ident: 5624_CR8 publication-title: J Neural Eng doi: 10.1088/1741-2552/ab0ab5 – volume: 27 start-page: 2301 issue: 11 year: 2016 ident: 5624_CR58 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2015.2475618 – volume: 11 start-page: 809 issue: 6 year: 2019 ident: 5624_CR12 publication-title: Cogn Comput doi: 10.1007/s12559-018-9563-z – ident: 5624_CR13 doi: 10.1007/s12559-019-09699-z – ident: 5624_CR39 – volume: 4 start-page: 46 issue: 1 year: 2007 ident: 5624_CR16 publication-title: J Neuroeng Rehabilit doi: 10.1186/1743-0003-4-46 – ident: 5624_CR55 doi: 10.1007/s12559-019-09639-x – volume-title: Bioelectromagnetism, principles and applications of bioelectric and biomagnetic fields year: 1995 ident: 5624_CR34 doi: 10.1093/acprof:oso/9780195058239.001.0001 – volume: 16 start-page: 6553 issue: 12 year: 2014 ident: 5624_CR36 publication-title: Entropy doi: 10.3390/e16126553 – volume: 16 start-page: 051001 issue: 5 year: 2019 ident: 5624_CR45 publication-title: J Neural Eng doi: 10.1088/1741-2552/ab260c – ident: 5624_CR26 – ident: 5624_CR32 – ident: 5624_CR50 doi: 10.1007/s00521-019-04700-0 – volume: 5 start-page: 1 issue: 1 year: 2015 ident: 5624_CR56 publication-title: Sci Rep doi: 10.1038/srep16438 – volume-title: Time-space, spiking neural networks and brain-inspired artificial intelligence year: 2019 ident: 5624_CR24 doi: 10.1007/978-3-662-57715-8 – ident: 5624_CR1 doi: 10.1007/978-3-642-35289-8_26 – volume: 73 start-page: 1 year: 2018 ident: 5624_CR37 publication-title: Digit Signal Proc doi: 10.1016/j.dsp.2017.10.011 – volume: 10 start-page: 35 issue: 1 year: 2018 ident: 5624_CR9 publication-title: Cogn Comput doi: 10.1007/s12559-017-9517-x – volume: 228 start-page: 39 year: 2016 ident: 5624_CR38 publication-title: Prog Brain Res doi: 10.1016/bs.pbr.2016.04.017 – volume: 58 start-page: 1153 year: 2004 ident: 5624_CR51 publication-title: Neurocomputing doi: 10.1016/j.neucom.2004.01.180 – volume: 56 start-page: 1209 issue: 4 year: 2009 ident: 5624_CR15 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2008.2009768 – volume: 12 start-page: e0182578 issue: 8 year: 2017 ident: 5624_CR41 publication-title: PLoS ONE doi: 10.1371/journal.pone.0182578 |
SSID | ssj0004685 |
Score | 2.5696654 |
Snippet | Electroencephalographic (EEG) recordings can be of great help in decoding the open/close hand’s motion preparation. To this end, cortical EEG source signals in... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 11347 |
SubjectTerms | Accuracy Artificial Intelligence Artificial neural networks Beamforming Brain research Classification Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Deep learning Electroencephalography Hands Human-computer interface Image Processing and Computer Vision Inverse problems Investigations Machine learning Neural networks Occlusion Probability and Statistics in Computer Science S.I. : Healthcare Analytics Sensitivity analysis |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8MgFCe6Xbz4bZxOw8GbEikw2p7MNJ2LiYsxLtnBpAEKXmY3t-n88wVGNzXRS5MW-g4PeF-8934AnJlUJiZhLUQINogx3UIyIgJxogyLIsUEd8XJ9z3e7bO7QWsQAm7TkFZZyUQvqIuRcjHyS8KdZxBb7-Vq_IYcapS7XQ0QGuugbkVwYp2v-nXWe3j8VhnpQTmtD-PyexgNZTO-eM5FRO1X4i6DOWFo_lM1rezNX1ekXvN0tsFmMBlhe7HGO2BNl7tgq4JjgOF07oHnNixHH3oI9ed4GIqi4KtPltQwoEO8wKqJOLTWKsyyW-T0WAGlg4pAqiLqukhMjFAaLlo9T_dBv5M93XRRAE9AinI6Q0YQqqxvJViUyCK1fhXTsaSUY-NUuCCmpTmX9o3YOdbsihWJC8wKVVBcCEwPQK0clfoQQGtx6ERjLonmjDORshTbR0RjLJhI4gaIKr7lKnQWdwAXw3zZE9nzOre8zj2v83kDnC__GS_6avw7u1ktRx7O2DRf7YgGuKiWaDX8N7Wj_6kdgw3iahx8Tm4T1GaTd31iLY-ZPA3b6wsglNOb priority: 102 providerName: ProQuest |
Title | A novel explainable machine learning approach for EEG-based brain-computer interface systems |
URI | https://link.springer.com/article/10.1007/s00521-020-05624-w https://www.proquest.com/docview/2689987446 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1PT8IwFH8RuHjxvxFF0oM3bbK1XTeOoAOikRgjCV5cuq7zgkAAxY_DZ-GT2Y4O1KiJlzXL3t7htd17v_X93gM4S2txkAbMw4Q4KWZMeTh2icCcyJS5rmSCG3LybYe3u-y65_UsKWySZ7vnR5LZl3pFdjN_MDX0JebwlhOGZwUoeQa761XcJfVPbMisEafGLSanh1FLlflZx1d3tI4xvx2LZt6muQNbNkxE9eW87sKGGuzBdt6CAdkduQ9PdTQYvqn-Yq7eR33LhEIvWYakQrYlxDPKK4cv5jpGRWHYwsZ7JSg2DSKwzNWa2hHjVEiFlgWeJwfQbYYPl21sWyZgSTmd4lQQKjWiEswN4qSm0RRTfkwpd1LjuAVJPcV5rO-IltHBli-JnzgskQl1EuHQQygOhgN1BEjHGSpQDo-J4owzUWM1R19c6juCicAvg5tbLpK2nrhpa9GPVpWQM2tH2tpRZu1oVobz1TujZTWNP6Ur-YREdmdNIsINQvQ1ii3DRT5J68e_azv-n_gJbBLDdMgycytQnI5f1amOP6ZxFQpBs1WFUr1x1WiasfV4E-qxEXbu7qvZYvwAsNbXbA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGGDhjSgU8AATWCS26yQDQhW0tLRlAokBKTiOw1LaQguFP8VvxHZjCkh06xIprxvOZ9-dfd99AAdZlIRZyEqYEC_DjKkSTnwiMCcyY74vmeAGnNy65rVbdnVXupuBT4eFMWWVbk20C3XalWaP_IRwkxkEOns56z1jwxplTlcdhcbILBrqY6hTtv5p_UKP7yEh1crNeQ3nrAJYUk4HOBOESp10COaHSRrphIOpIKGUe5nxbYJkJcV5ou-I_kbHI4EkQeqxVKbUS4VHtdxZmGeURmZGhdXLHzhMSwGqMyZTTcRoDtKxUD2z_6qfEnP0zAnDw9-OcBzd_jmQtX6uugJLeYCKyiOLWoUZ1VmDZUf-gPK1YB3uy6jTfVNtpN577RyChZ5saaZCORfFI3Ity5GOjVGlcomN10xRYogpsHRCTc-Kl0xIhUaNpfsbcDsVpW7CXKfbUVuAdHyjQuXxhCjOOBMRizx98WngCSbCoAC-01ss8z7mhk6jHX93YLa6jrWuY6vreFiAo-9_eqMuHhO_LrrhiPMZ3Y_H9leAYzdE49f_S9ueLG0fFmo3rWbcrF83dmCRGHSFrQYuwtzg5VXt6phnkOxZQ0PwMG3L_gJhvg32 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSIiFN6JQwAMbWE1sx0nGClreFQOVOmE5js1S0qoNlJ_T39Jfhp1HWxAgsUSKcvFwZ-fucvd9B8CpDqNAB9RDGDsaUao8FLlYIIalpq4rqWAWnPzQZtcdetv1ugso_qzbvSxJ5pgGy9KUpPVBrOsz4Jv9m2nSYGwLuQxTNF4GK-Zz7Np93cGNBWRkNpTT5DC2v4eSAjbz8xpfXdM83vxWIs08T2sTrBchI2zkNt4CSyrZBhvlOAZYnM4d8NyASf9d9aYT9THoFago-Jp1SypYjId4gSWL-HRi4lXYbF4h68liGNlhEUiWy1oeiaEWUsGc7Hm0Czqt5tPFNSrGJyBJGEmRFphIk10J6gZRHJrMiio_IoQ52jpxgbWnGIvMHTYyJvDyJfZjh8YyJk4sHLIHKkk_UfsAmphDBcphEVaMMipCGjrm4hLfEVQEfhW4pea4LLjF7YiLHp-xImfa5kbbPNM2H1fB2eydQc6s8ad0rTQIL07ZiGNms0XfZLRVcF4aaf7499UO_id-AlYfL1v8_qZ9dwjWsAVAZA27NVBJh2_qyIQlaXSc7bxPQd3ZFQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel%C2%A0explainable+machine+learning+approach%C2%A0for+EEG-based+brain-computer+interface+systems&rft.jtitle=Neural+computing+%26+applications&rft.au=Ieracitano%2C+Cosimo&rft.au=Mammone%2C+Nadia&rft.au=Hussain%2C+Amir&rft.au=Morabito%2C+Francesco+Carlo&rft.date=2022-07-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=34&rft.issue=14&rft.spage=11347&rft.epage=11360&rft_id=info:doi/10.1007%2Fs00521-020-05624-w&rft.externalDocID=10_1007_s00521_020_05624_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |