A novel explainable machine learning approach for EEG-based brain-computer interface systems

Electroencephalographic (EEG) recordings can be of great help in decoding the open/close hand’s motion preparation. To this end, cortical EEG source signals in the motor cortex (evaluated in the 1-s window preceding movement onset) are extracted by solving inverse problem through beamforming. EEG so...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 34; no. 14; pp. 11347 - 11360
Main Authors Ieracitano, Cosimo, Mammone, Nadia, Hussain, Amir, Morabito, Francesco Carlo
Format Journal Article
LanguageEnglish
Published London Springer London 01.07.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroencephalographic (EEG) recordings can be of great help in decoding the open/close hand’s motion preparation. To this end, cortical EEG source signals in the motor cortex (evaluated in the 1-s window preceding movement onset) are extracted by solving inverse problem through beamforming. EEG sources epochs are used as source-time maps input to a custom deep convolutional neural network (CNN) that is trained to perform 2-ways classification tasks: pre-hand close (HC) versus resting state (RE) and pre-hand open (HO) versus RE. The developed deep CNN works well (accuracy rates up to 89.65 ± 5.29 % for HC versus RE and 90.50 ± 5.35 % for HO versus RE), but the core of the present study was to explore the interpretability of the deep CNN to provide further insights into the activation mechanism of cortical sources during the preparation of hands’ sub-movements. Specifically, occlusion sensitivity analysis was carried out to investigate which cortical areas are more relevant in the classification procedure. Experimental results show a recurrent trend of spatial cortical activation across subjects. In particular, the central region (close to the longitudinal fissure) and the right temporal zone of the premotor together with the primary motor cortex appear to be primarily involved. Such findings encourage an in-depth study of cortical areas that seem to play a key role in hand’s open/close preparation.
AbstractList Electroencephalographic (EEG) recordings can be of great help in decoding the open/close hand’s motion preparation. To this end, cortical EEG source signals in the motor cortex (evaluated in the 1-s window preceding movement onset) are extracted by solving inverse problem through beamforming. EEG sources epochs are used as source-time maps input to a custom deep convolutional neural network (CNN) that is trained to perform 2-ways classification tasks: pre-hand close (HC) versus resting state (RE) and pre-hand open (HO) versus RE. The developed deep CNN works well (accuracy rates up to 89.65±5.29% for HC versus RE and 90.50±5.35% for HO versus RE), but the core of the present study was to explore the interpretability of the deep CNN to provide further insights into the activation mechanism of cortical sources during the preparation of hands’ sub-movements. Specifically, occlusion sensitivity analysis was carried out to investigate which cortical areas are more relevant in the classification procedure. Experimental results show a recurrent trend of spatial cortical activation across subjects. In particular, the central region (close to the longitudinal fissure) and the right temporal zone of the premotor together with the primary motor cortex appear to be primarily involved. Such findings encourage an in-depth study of cortical areas that seem to play a key role in hand’s open/close preparation.
Electroencephalographic (EEG) recordings can be of great help in decoding the open/close hand’s motion preparation. To this end, cortical EEG source signals in the motor cortex (evaluated in the 1-s window preceding movement onset) are extracted by solving inverse problem through beamforming. EEG sources epochs are used as source-time maps input to a custom deep convolutional neural network (CNN) that is trained to perform 2-ways classification tasks: pre-hand close (HC) versus resting state (RE) and pre-hand open (HO) versus RE. The developed deep CNN works well (accuracy rates up to 89.65 ± 5.29 % for HC versus RE and 90.50 ± 5.35 % for HO versus RE), but the core of the present study was to explore the interpretability of the deep CNN to provide further insights into the activation mechanism of cortical sources during the preparation of hands’ sub-movements. Specifically, occlusion sensitivity analysis was carried out to investigate which cortical areas are more relevant in the classification procedure. Experimental results show a recurrent trend of spatial cortical activation across subjects. In particular, the central region (close to the longitudinal fissure) and the right temporal zone of the premotor together with the primary motor cortex appear to be primarily involved. Such findings encourage an in-depth study of cortical areas that seem to play a key role in hand’s open/close preparation.
Author Hussain, Amir
Mammone, Nadia
Ieracitano, Cosimo
Morabito, Francesco Carlo
Author_xml – sequence: 1
  givenname: Cosimo
  orcidid: 0000-0001-7890-2897
  surname: Ieracitano
  fullname: Ieracitano, Cosimo
  email: cosimo.ieracitano@unirc.it
  organization: DICEAM University Mediterranea of Reggio Calabria
– sequence: 2
  givenname: Nadia
  surname: Mammone
  fullname: Mammone, Nadia
  organization: DICEAM University Mediterranea of Reggio Calabria
– sequence: 3
  givenname: Amir
  surname: Hussain
  fullname: Hussain, Amir
  organization: School of Computing, Edinburgh Napier University
– sequence: 4
  givenname: Francesco Carlo
  surname: Morabito
  fullname: Morabito, Francesco Carlo
  organization: DICEAM University Mediterranea of Reggio Calabria
BookMark eNp9kEtOwzAQhi1UJNrCBVhFYm0YP-Iky6oqBakSG9hiOY5TUiVOsFNKb9Oz9GQYgoTEohuPPPN_8_gnaGRbaxC6JnBLAJI7DxBTgoEChlhQjndnaEw4Y5hBnI7QGDIeyoKzCzTxfgMAXKTxGL3OItt-mPp4MJ9drSqr8tpEjdJvlTVRbZSzlV1HqutcG5LHQ9m6aLFY4lx5U0S5CwjWbdNte-Oiyoa3VNpEfu970_hLdF6q2pur3zhFL_eL5_kDXj0tH-ezFdZMsB6XijJNeaY4SfMio2nGTZIzJqAEQZiiZWyEyMOPBk1MSKJpUgAvdMGgUMCm6GboG9Z83xrfy027dTaMlFSkWZYmnIugSgeVdq33zpRSV73qq9b24Y5aEpDfbsrBTRnclD9uyl1A6T-0c1Wj3P40xAbIB7FdG_e31QnqC_rai-Q
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3322294
crossref_primary_10_1080_17538947_2024_2390457
crossref_primary_10_3390_make3040042
crossref_primary_10_1007_s42600_022_00215_1
crossref_primary_10_1142_S0129065723500685
crossref_primary_10_1155_2023_4459198
crossref_primary_10_1016_j_bspc_2022_104397
crossref_primary_10_1088_1741_2552_ad6593
crossref_primary_10_3390_s21093155
crossref_primary_10_3390_sym13101892
crossref_primary_10_1007_s12559_021_09901_1
crossref_primary_10_1016_j_neucom_2023_126387
crossref_primary_10_1016_j_aei_2024_102697
crossref_primary_10_4015_S101623722450039X
crossref_primary_10_1109_JBHI_2023_3243698
crossref_primary_10_29109_gujsc_1083912
crossref_primary_10_1016_j_bios_2025_117321
crossref_primary_10_1007_s00521_021_06737_6
crossref_primary_10_1002_jdn_10388
crossref_primary_10_1088_1361_6501_ad1157
crossref_primary_10_3390_bioengineering11100967
crossref_primary_10_1016_j_bea_2025_100156
crossref_primary_10_1186_s12911_023_02320_2
crossref_primary_10_3390_bioengineering10091076
crossref_primary_10_1007_s00521_022_07809_x
crossref_primary_10_3390_s21134519
crossref_primary_10_1007_s12559_021_09910_0
crossref_primary_10_3390_e24010102
crossref_primary_10_1016_j_knosys_2024_112270
crossref_primary_10_1016_j_neucom_2025_129701
crossref_primary_10_1007_s12559_021_09926_6
crossref_primary_10_1007_s00521_022_07397_w
crossref_primary_10_1007_s12559_023_10120_z
crossref_primary_10_2174_2666255815666220516141153
crossref_primary_10_3389_fncom_2022_1010770
crossref_primary_10_1002_aisy_202300094
crossref_primary_10_1080_10255842_2023_2187662
crossref_primary_10_1155_2021_1970769
crossref_primary_10_1177_15500594221148285
Cites_doi 10.1016/j.neucom.2018.09.071
10.1007/s12559-020-09744-2
10.1007/s12559-018-9621-6
10.1016/j.neunet.2014.01.006
10.1155/2011/879716
10.3389/fnins.2019.01346
10.1007/978-3-319-10590-1_53
10.1093/acprof:oso/9780195050387.001.0001
10.1016/j.brainres.2018.09.004
10.1088/1741-2552/aab2f2
10.1007/978-3-642-15825-4_10
10.1007/s12559-018-9580-y
10.1186/1743-0003-5-25
10.1007/s12559-020-09745-1
10.1007/s12559-019-09656-w
10.1007/s00521-019-04096-x
10.1007/s12559-019-09654-y
10.1177/1545968311420845
10.1016/j.neunet.2020.01.027
10.1155/2015/346217
10.1007/s00521-019-04086-z
10.1088/1741-2560/8/2/025007
10.1007/s10548-016-0498-y
10.1016/j.neunet.2019.12.006
10.1007/s12559-019-09637-z
10.1007/s12559-019-09670-y
10.1038/s41598-019-43594-9
10.1109/TBME.2015.2467312
10.1093/brain/awx270
10.1002/hbm.20345
10.1007/s12559-019-09688-2
10.1038/nature14539
10.1088/1741-2552/ab0ab5
10.1109/TNNLS.2015.2475618
10.1007/s12559-018-9563-z
10.1007/s12559-019-09699-z
10.1186/1743-0003-4-46
10.1007/s12559-019-09639-x
10.1093/acprof:oso/9780195058239.001.0001
10.3390/e16126553
10.1088/1741-2552/ab260c
10.1007/s00521-019-04700-0
10.1038/srep16438
10.1007/978-3-662-57715-8
10.1007/978-3-642-35289-8_26
10.1016/j.dsp.2017.10.011
10.1007/s12559-017-9517-x
10.1016/bs.pbr.2016.04.017
10.1016/j.neucom.2004.01.180
10.1109/TBME.2008.2009768
10.1371/journal.pone.0182578
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-020-05624-w
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 11360
ExternalDocumentID 10_1007_s00521_020_05624_w
GrantInformation_xml – fundername: European Commission, the European Social Fund and the Calabria Region
  grantid: C39B18000080002
– fundername: UK Engineering and Physical Sciences Research Council
  grantid: EP/M026981/1; EP/T021063/1; EP/T024917/1
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c363t-fa23c249a418bd92894e7b3360f0613a2f5e66b0f029a45117c27d04dcd30da03
IEDL.DBID U2A
ISSN 0941-0643
IngestDate Fri Jul 25 07:37:31 EDT 2025
Thu Apr 24 23:11:45 EDT 2025
Tue Jul 01 01:46:59 EDT 2025
Fri Feb 21 02:45:24 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Deep learning
Beamforming
Brain–computer interface
Explainable machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-fa23c249a418bd92894e7b3360f0613a2f5e66b0f029a45117c27d04dcd30da03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7890-2897
OpenAccessLink http://researchrepository.napier.ac.uk/Output/2761855
PQID 2689987446
PQPubID 2043988
PageCount 14
ParticipantIDs proquest_journals_2689987446
crossref_citationtrail_10_1007_s00521_020_05624_w
crossref_primary_10_1007_s00521_020_05624_w
springer_journals_10_1007_s00521_020_05624_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220700
2022-07-00
20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 7
  year: 2022
  text: 20220700
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2022
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References IeracitanoCMammoneNHussainAMorabitoFCA novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementiaNeural Netw202012317619010.1016/j.neunet.2019.12.006
NunezPLSrinivasanRElectric fields of the brain, the neurophysics of EEG2006New YorkOxford University Press10.1093/acprof:oso/9780195050387.001.0001
MaXLiuWTaoDZhouYEnsemble p-laplacian regularization for scene image recognitionCogn Comput201911684185410.1007/s12559-019-09637-z
CraikAHeYContreras-VidalJLDeep learning for electroencephalogram (EEG) classification tasks: a reviewJ Neural Eng201916303100110.1088/1741-2552/ab0ab5
Haufe S, Huang Y, Parra LC (2015) A highly detailed FEM volume conductor model based on the ICBM152 average head template for EEG source imaging and TCS targeting. In: Conference poceedings of IEEE engineering medicine and biological society
GaoFHuangTSunJWangJHussainAYangEA new algorithm for sar image target recognition based on an improved deep convolutional neural networkCogn Comput201911680982410.1007/s12559-018-9563-z
KasabovNKNeucube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain dataNeural Netw201452627610.1016/j.neunet.2014.01.006
Tang W, Zou D, Yang S, Shi J, Dan J, Song G (2020) A two-stage approach for automatic liver segmentation with faster R-CNN and deeplab. Neural Comput Appl, pp 1–10
Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci, p 8
Liu L, Chen S, Zhang F, Wu FX, Pan Y, Wang J (2019) Deep convolutional neural network for automatically segmenting acute ischemic stroke lesion in multi-modality MRI. Neural Comput Appl, pp 1–14
BrodmannKBrodmann’s: localisation in the cerebral cortex2007BerlinSpringer
IeracitanoCMammoneNBramantiAHussainAMorabitoFCA convolutional neural network approach for classification of dementia stages based on 2d-spectral representation of EEG recordingsNeurocomputing20193239610710.1016/j.neucom.2018.09.071
Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: European conference on computer vision. Springer, pp 818–833
Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
LotteFBougrainLCichockiAClercMCongedoMRakotomamonjyAYgerFA review of classification algorithms for EEG-based brain–computer interfaces: a 10 year updateJ Neural Eng201815303100510.1088/1741-2552/aab2f2
WangZHealyGSmeatonAFWardTEUse of neural signals to evaluate the quality of generative adversarial network performance in facial image generationCognit Comput2020121132410.1007/s12559-019-09670-y
EdelmanBJBaxterBHeBEEG source imaging enhances the decoding of complex right-hand motor imagery tasksIEEE Trans Biomed Eng201563141410.1109/TBME.2015.2467312
WagstaffKCardieCRogersSSchrödlSConstrained k-means clustering with background knowledgeIcml20011577584
Ramirez-Quintana JA, Madrid-Herrera L, Chacon-Murguia MI, Corral-Martinez LF (2020) Brain–computer interface system based on p300 processing with convolutional neural network, novel speller, and low number of electrodes. Cogn Comput, pp 1–17
SunXLvMFacial expression recognition based on a hybrid model combining deep and shallow featuresCogn Comput201911458759710.1007/s12559-019-09654-y
Chen H, Ding G, Lin Z, Guo Y, Shan C, Han J (2019) Image captioning with memorized knowledge. Cogn Comput 1–14
PowersDMEvaluation: from precision, recall and f-measure to ROC, informedness, markedness and correlationJ Mach Learn Technol20112137632815363
VecchiatoGDel VecchioMAscariLAntopolskiySDeonFKubinLAmbeck-MadsenJRizzolattiGAvanziniPElectroencephalographic time-frequency patterns of braking and acceleration movement preparation in car driving simulationBrain Res20191716162610.1016/j.brainres.2018.09.004
BiXZhaoXHuangHChenDMaYFunctional brain network classification for alzheimer’s disease detection with deep features and extreme learning machineCogn Comput202012351352710.1007/s12559-019-09688-2
OfnerPSchwarzAPereiraJMüller-PutzGRUpper limb movements can be decoded from the time-domain of low-frequency EEGPLoS ONE2017128e018257810.1371/journal.pone.0182578
KasabovNKTime-space, spiking neural networks and brain-inspired artificial intelligence2019BerlinSpringer10.1007/978-3-662-57715-8
Chen X, Xie H (2020) A structural topic modeling-based bibliometric study of sentiment analysis literature. Cogn Comput 1–33
ZamaTShimadaSSimultaneous measurement of electroencephalography and near-infrared spectroscopy during voluntary motor preparationSci Rep2015511910.1038/srep16438
CataniMA little man of some importanceBrain2017140113055306110.1093/brain/awx270
Bengio Y (2012) Practical recommendations for gradient-based training of deep architectures. In: Neural networks: tricks of the trade, pp 437–478
VatoABonzanoLChiappaloneMCiceroSMorabitoFNovellinoAStilloGSpike manager: a new tool for spontaneous and evoked neuronal networks activity characterizationNeurocomputing2004581153116110.1016/j.neucom.2004.01.180
FellousJMSapiroGRossiAMaybergHSFerranteMExplainable artificial intelligence for neuroscience: behavioral neurostimulationFront Neurosci201913134610.3389/fnins.2019.01346
RoyYBanvilleHAlbuquerqueIGramfortAFalkTHFaubertJDeep learning-based electroencephalography analysis: a systematic reviewJ Neural Eng201916505100110.1088/1741-2552/ab260c
MammoneNMorabitoFCEnhanced automatic wavelet independent component analysis for electroencephalographic artifact removalEntropy201416126553657210.3390/e16126553
Shakeel A, Navid MS, Anwar MN, Mazhar S, Jochumsen M, Niazi IK (2015) A review of techniques for detection of movement intention using movement-related cortical potentials. Comput Math Methods Med, p 346217
Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
Müller-PutzGRSchwarzAPereiraJOfnerPFrom classic motor imagery to complex movement intention decoding: the noninvasive Graz-BCI approachProg Brain Res2016228397010.1016/bs.pbr.2016.04.017Elsevier
MammoneNIeracitanoCMorabitoFCA deep CNN approach to decode motor preparation of upper limbs from time-frequency maps of EEG signals at source levelNeural Netw202012435737210.1016/j.neunet.2020.01.027
Scherer D, Müller A, Behnke S (2010) Evaluation of pooling operations in convolutional architectures for object recognition. In: International conference on artificial neural networks. Springer, pp 92–101
Goshvarpour A, Goshvarpour A (2019) A novel approach for EEG electrode selection in automated emotion recognition based on lagged poincare’s indices and sloreta. Cogn Comput 1–17
LancasterJLTordesillas-GutiérrezDMartinezMSalinasFEvansAZillesKMazziottaJCFoxPTBias between MNI and Talairach coordinates analyzed using the ICBM-152 brain templateHum Brain Map200728111194120510.1002/hbm.20345
Lotte F, Jeunet C (2017) Online classification accuracy is a poor metric to study mental imagery-based BCI user learning: an experimental demonstration and new metrics. In: 7th international BCI conference, pp hal–01519478
LeCunYBengioYHintonGDeep learningNature2015521755343610.1038/nature14539
MalmivuoJPlonseyRBioelectromagnetism, principles and applications of bioelectric and biomagnetic fields1995New YorkOxford University Press10.1093/acprof:oso/9780195058239.001.0001
KantakSSStinearJWBuchERCohenLGRewiring the brain: potential role of the premotor cortex in motor control, learning, and recovery of function following brain injuryNeurorehabilit Neural Repair201226328229210.1177/1545968311420845
GrechRCassarTMuscatJCamilleriKPFabriSGZervakisMXanthopoulosPSakkalisVVanrumsteBReview on solving the inverse problem in EEG source analysisJ Neuroeng Rehabilit2008512510.1186/1743-0003-5-25
CaiZShaoLRgb-d scene classification via multi-modal feature learningCogn Comput201911682584010.1007/s12559-018-9580-y
Grosse-WentrupMLiefholdCGramannKBussMBeamforming in noninvasive brain–computer interfacesIEEE Trans Biomed Eng20095641209121910.1109/TBME.2008.2009768
DoborjehZGDoborjehMGKasabovNAttentional bias pattern recognition in spiking neural networks from spatio-temporal EEG dataCogn Comput2018101354810.1007/s12559-017-9517-x
MontavonGSamekWMüllerKRMethods for interpreting and understanding deep neural networksDigit Signal Proc201873115373787010.1016/j.dsp.2017.10.011
Yue Z, Gao F, Xiong Q, Wang J, Huang T, Yang E, Zhou H (2019) A novel semi-supervised convolutional neural network method for synthetic aperture radar image recognition. Cognit Comput, pp 1–12
ZengHSongAOptimizing single-trial EEG classification by stationary matrix logistic regression in brain–computer interfaceIEEE Trans Neural Netw Learn Syst2016271123012313357160710.1109/TNNLS.2015.2475618
HermesDVansteenselMJAlbersAMBleichnerMGBenedictusMROrellanaCMAarnoutseERamseyNFunctional MRI-based identification of brain areas involved in motor imagery for implantable brain–computer interfacesJ Neural Eng20118202500710.1088/1741-2560/8/2/025007
OfnerPSchwarzAPereiraJWyssDWildburgerRMüller-PutzGRAttempted arm and hand movements can be decoded from low-frequency EEG from persons with spinal cord injurySci Rep201991713410.1038/s41598-019-43594-9
HallezHVanrumsteBGrechRMuscatJDe ClercqWVergultAD’AsselerYCamilleriKPFabriSGVan HuffelSReview on solving the forward problem in EEG source analysisJ Neuroeng Rehabilit2007414610.1186/1743-0003-4-46
Haufe S, Ewald A (2016) A simulation framework for benchmarking EEG-based brain connectivity estimation methodologies. Brain Topogr, pp 1–18
Liang Z, Shao J, Zhang D, Gao L (2019) Traffic sign detection and recognition based on pyramidal convolutional networks. Neural Comput Appl, 1–11
ZhengJCaiFChenWFengCChenHHierarchical neural representation for document classificationCogn Comput201911231732710.1007/s12559-018-9621-6
Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10),
5624_CR6
N Mammone (5624_CR35) 2020; 124
5624_CR7
G Vecchiato (5624_CR52) 2019; 1716
J Zheng (5624_CR59) 2019; 11
J Malmivuo (5624_CR34) 1995
5624_CR39
5624_CR1
Z Cai (5624_CR4) 2019; 11
5624_CR30
5624_CR32
ZG Doborjeh (5624_CR9) 2018; 10
Y LeCun (5624_CR28) 2015; 521
NK Kasabov (5624_CR23) 2014; 52
BJ Edelman (5624_CR10) 2015; 63
A Vato (5624_CR51) 2004; 58
5624_CR29
F Lotte (5624_CR31) 2018; 15
X Bi (5624_CR2) 2020; 12
C Ieracitano (5624_CR21) 2020; 123
5624_CR25
5624_CR26
P Ofner (5624_CR41) 2017; 12
R Grech (5624_CR14) 2008; 5
M Grosse-Wentrup (5624_CR15) 2009; 56
A Craik (5624_CR8) 2019; 16
X Sun (5624_CR48) 2019; 11
5624_CR17
5624_CR18
GR Müller-Putz (5624_CR38) 2016; 228
Z Wang (5624_CR54) 2020; 12
5624_CR55
Y Roy (5624_CR45) 2019; 16
5624_CR13
X Ma (5624_CR33) 2019; 11
5624_CR57
JM Fellous (5624_CR11) 2019; 13
F Gao (5624_CR12) 2019; 11
M Catani (5624_CR5) 2017; 140
G Montavon (5624_CR37) 2018; 73
H Zeng (5624_CR58) 2016; 27
NK Kasabov (5624_CR24) 2019
SS Kantak (5624_CR22) 2012; 26
5624_CR50
T Zama (5624_CR56) 2015; 5
D Hermes (5624_CR19) 2011; 8
N Mammone (5624_CR36) 2014; 16
C Ieracitano (5624_CR20) 2019; 323
5624_CR49
JL Lancaster (5624_CR27) 2007; 28
5624_CR44
DM Powers (5624_CR43) 2011; 2
H Hallez (5624_CR16) 2007; 4
5624_CR46
P Ofner (5624_CR42) 2019; 9
5624_CR47
PL Nunez (5624_CR40) 2006
K Brodmann (5624_CR3) 2007
K Wagstaff (5624_CR53) 2001; 1
References_xml – reference: LancasterJLTordesillas-GutiérrezDMartinezMSalinasFEvansAZillesKMazziottaJCFoxPTBias between MNI and Talairach coordinates analyzed using the ICBM-152 brain templateHum Brain Map200728111194120510.1002/hbm.20345
– reference: Haufe S, Ewald A (2016) A simulation framework for benchmarking EEG-based brain connectivity estimation methodologies. Brain Topogr, pp 1–18
– reference: RoyYBanvilleHAlbuquerqueIGramfortAFalkTHFaubertJDeep learning-based electroencephalography analysis: a systematic reviewJ Neural Eng201916505100110.1088/1741-2552/ab260c
– reference: VecchiatoGDel VecchioMAscariLAntopolskiySDeonFKubinLAmbeck-MadsenJRizzolattiGAvanziniPElectroencephalographic time-frequency patterns of braking and acceleration movement preparation in car driving simulationBrain Res20191716162610.1016/j.brainres.2018.09.004
– reference: GrechRCassarTMuscatJCamilleriKPFabriSGZervakisMXanthopoulosPSakkalisVVanrumsteBReview on solving the inverse problem in EEG source analysisJ Neuroeng Rehabilit2008512510.1186/1743-0003-5-25
– reference: KantakSSStinearJWBuchERCohenLGRewiring the brain: potential role of the premotor cortex in motor control, learning, and recovery of function following brain injuryNeurorehabilit Neural Repair201226328229210.1177/1545968311420845
– reference: CraikAHeYContreras-VidalJLDeep learning for electroencephalogram (EEG) classification tasks: a reviewJ Neural Eng201916303100110.1088/1741-2552/ab0ab5
– reference: Bengio Y (2012) Practical recommendations for gradient-based training of deep architectures. In: Neural networks: tricks of the trade, pp 437–478
– reference: Grosse-WentrupMLiefholdCGramannKBussMBeamforming in noninvasive brain–computer interfacesIEEE Trans Biomed Eng20095641209121910.1109/TBME.2008.2009768
– reference: OfnerPSchwarzAPereiraJWyssDWildburgerRMüller-PutzGRAttempted arm and hand movements can be decoded from low-frequency EEG from persons with spinal cord injurySci Rep201991713410.1038/s41598-019-43594-9
– reference: KasabovNKNeucube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain dataNeural Netw201452627610.1016/j.neunet.2014.01.006
– reference: Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci, p 8
– reference: ZhengJCaiFChenWFengCChenHHierarchical neural representation for document classificationCogn Comput201911231732710.1007/s12559-018-9621-6
– reference: IeracitanoCMammoneNHussainAMorabitoFCA novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementiaNeural Netw202012317619010.1016/j.neunet.2019.12.006
– reference: DoborjehZGDoborjehMGKasabovNAttentional bias pattern recognition in spiking neural networks from spatio-temporal EEG dataCogn Comput2018101354810.1007/s12559-017-9517-x
– reference: WangZHealyGSmeatonAFWardTEUse of neural signals to evaluate the quality of generative adversarial network performance in facial image generationCognit Comput2020121132410.1007/s12559-019-09670-y
– reference: Scherer D, Müller A, Behnke S (2010) Evaluation of pooling operations in convolutional architectures for object recognition. In: International conference on artificial neural networks. Springer, pp 92–101
– reference: Chen H, Ding G, Lin Z, Guo Y, Shan C, Han J (2019) Image captioning with memorized knowledge. Cogn Comput 1–14
– reference: MammoneNIeracitanoCMorabitoFCA deep CNN approach to decode motor preparation of upper limbs from time-frequency maps of EEG signals at source levelNeural Netw202012435737210.1016/j.neunet.2020.01.027
– reference: ZengHSongAOptimizing single-trial EEG classification by stationary matrix logistic regression in brain–computer interfaceIEEE Trans Neural Netw Learn Syst2016271123012313357160710.1109/TNNLS.2015.2475618
– reference: Ramirez-Quintana JA, Madrid-Herrera L, Chacon-Murguia MI, Corral-Martinez LF (2020) Brain–computer interface system based on p300 processing with convolutional neural network, novel speller, and low number of electrodes. Cogn Comput, pp 1–17
– reference: Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
– reference: BrodmannKBrodmann’s: localisation in the cerebral cortex2007BerlinSpringer
– reference: Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10), pp 807–814
– reference: Shakeel A, Navid MS, Anwar MN, Mazhar S, Jochumsen M, Niazi IK (2015) A review of techniques for detection of movement intention using movement-related cortical potentials. Comput Math Methods Med, p 346217
– reference: WagstaffKCardieCRogersSSchrödlSConstrained k-means clustering with background knowledgeIcml20011577584
– reference: Müller-PutzGRSchwarzAPereiraJOfnerPFrom classic motor imagery to complex movement intention decoding: the noninvasive Graz-BCI approachProg Brain Res2016228397010.1016/bs.pbr.2016.04.017Elsevier
– reference: MontavonGSamekWMüllerKRMethods for interpreting and understanding deep neural networksDigit Signal Proc201873115373787010.1016/j.dsp.2017.10.011
– reference: Yue Z, Gao F, Xiong Q, Wang J, Huang T, Yang E, Zhou H (2019) A novel semi-supervised convolutional neural network method for synthetic aperture radar image recognition. Cognit Comput, pp 1–12
– reference: BiXZhaoXHuangHChenDMaYFunctional brain network classification for alzheimer’s disease detection with deep features and extreme learning machineCogn Comput202012351352710.1007/s12559-019-09688-2
– reference: KasabovNKTime-space, spiking neural networks and brain-inspired artificial intelligence2019BerlinSpringer10.1007/978-3-662-57715-8
– reference: Lotte F, Jeunet C (2017) Online classification accuracy is a poor metric to study mental imagery-based BCI user learning: an experimental demonstration and new metrics. In: 7th international BCI conference, pp hal–01519478
– reference: GaoFHuangTSunJWangJHussainAYangEA new algorithm for sar image target recognition based on an improved deep convolutional neural networkCogn Comput201911680982410.1007/s12559-018-9563-z
– reference: LotteFBougrainLCichockiAClercMCongedoMRakotomamonjyAYgerFA review of classification algorithms for EEG-based brain–computer interfaces: a 10 year updateJ Neural Eng201815303100510.1088/1741-2552/aab2f2
– reference: EdelmanBJBaxterBHeBEEG source imaging enhances the decoding of complex right-hand motor imagery tasksIEEE Trans Biomed Eng201563141410.1109/TBME.2015.2467312
– reference: Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: European conference on computer vision. Springer, pp 818–833
– reference: Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
– reference: Goshvarpour A, Goshvarpour A (2019) A novel approach for EEG electrode selection in automated emotion recognition based on lagged poincare’s indices and sloreta. Cogn Comput 1–17
– reference: Liu L, Chen S, Zhang F, Wu FX, Pan Y, Wang J (2019) Deep convolutional neural network for automatically segmenting acute ischemic stroke lesion in multi-modality MRI. Neural Comput Appl, pp 1–14
– reference: MaXLiuWTaoDZhouYEnsemble p-laplacian regularization for scene image recognitionCogn Comput201911684185410.1007/s12559-019-09637-z
– reference: CaiZShaoLRgb-d scene classification via multi-modal feature learningCogn Comput201911682584010.1007/s12559-018-9580-y
– reference: NunezPLSrinivasanRElectric fields of the brain, the neurophysics of EEG2006New YorkOxford University Press10.1093/acprof:oso/9780195050387.001.0001
– reference: MalmivuoJPlonseyRBioelectromagnetism, principles and applications of bioelectric and biomagnetic fields1995New YorkOxford University Press10.1093/acprof:oso/9780195058239.001.0001
– reference: SunXLvMFacial expression recognition based on a hybrid model combining deep and shallow featuresCogn Comput201911458759710.1007/s12559-019-09654-y
– reference: Liang Z, Shao J, Zhang D, Gao L (2019) Traffic sign detection and recognition based on pyramidal convolutional networks. Neural Comput Appl, 1–11
– reference: ZamaTShimadaSSimultaneous measurement of electroencephalography and near-infrared spectroscopy during voluntary motor preparationSci Rep2015511910.1038/srep16438
– reference: VatoABonzanoLChiappaloneMCiceroSMorabitoFNovellinoAStilloGSpike manager: a new tool for spontaneous and evoked neuronal networks activity characterizationNeurocomputing2004581153116110.1016/j.neucom.2004.01.180
– reference: PowersDMEvaluation: from precision, recall and f-measure to ROC, informedness, markedness and correlationJ Mach Learn Technol20112137632815363
– reference: MammoneNMorabitoFCEnhanced automatic wavelet independent component analysis for electroencephalographic artifact removalEntropy201416126553657210.3390/e16126553
– reference: HermesDVansteenselMJAlbersAMBleichnerMGBenedictusMROrellanaCMAarnoutseERamseyNFunctional MRI-based identification of brain areas involved in motor imagery for implantable brain–computer interfacesJ Neural Eng20118202500710.1088/1741-2560/8/2/025007
– reference: CataniMA little man of some importanceBrain2017140113055306110.1093/brain/awx270
– reference: Chen X, Xie H (2020) A structural topic modeling-based bibliometric study of sentiment analysis literature. Cogn Comput 1–33
– reference: LeCunYBengioYHintonGDeep learningNature2015521755343610.1038/nature14539
– reference: Tang W, Zou D, Yang S, Shi J, Dan J, Song G (2020) A two-stage approach for automatic liver segmentation with faster R-CNN and deeplab. Neural Comput Appl, pp 1–10
– reference: OfnerPSchwarzAPereiraJMüller-PutzGRUpper limb movements can be decoded from the time-domain of low-frequency EEGPLoS ONE2017128e018257810.1371/journal.pone.0182578
– reference: HallezHVanrumsteBGrechRMuscatJDe ClercqWVergultAD’AsselerYCamilleriKPFabriSGVan HuffelSReview on solving the forward problem in EEG source analysisJ Neuroeng Rehabilit2007414610.1186/1743-0003-4-46
– reference: Haufe S, Huang Y, Parra LC (2015) A highly detailed FEM volume conductor model based on the ICBM152 average head template for EEG source imaging and TCS targeting. In: Conference poceedings of IEEE engineering medicine and biological society
– reference: FellousJMSapiroGRossiAMaybergHSFerranteMExplainable artificial intelligence for neuroscience: behavioral neurostimulationFront Neurosci201913134610.3389/fnins.2019.01346
– reference: IeracitanoCMammoneNBramantiAHussainAMorabitoFCA convolutional neural network approach for classification of dementia stages based on 2d-spectral representation of EEG recordingsNeurocomputing20193239610710.1016/j.neucom.2018.09.071
– volume-title: Brodmann’s: localisation in the cerebral cortex
  year: 2007
  ident: 5624_CR3
– volume: 323
  start-page: 96
  year: 2019
  ident: 5624_CR20
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.071
– ident: 5624_CR44
  doi: 10.1007/s12559-020-09744-2
– volume: 11
  start-page: 317
  issue: 2
  year: 2019
  ident: 5624_CR59
  publication-title: Cogn Comput
  doi: 10.1007/s12559-018-9621-6
– volume: 52
  start-page: 62
  year: 2014
  ident: 5624_CR23
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2014.01.006
– ident: 5624_CR49
  doi: 10.1155/2011/879716
– volume: 13
  start-page: 1346
  year: 2019
  ident: 5624_CR11
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2019.01346
– ident: 5624_CR57
  doi: 10.1007/978-3-319-10590-1_53
– volume-title: Electric fields of the brain, the neurophysics of EEG
  year: 2006
  ident: 5624_CR40
  doi: 10.1093/acprof:oso/9780195050387.001.0001
– volume: 1
  start-page: 577
  year: 2001
  ident: 5624_CR53
  publication-title: Icml
– volume: 1716
  start-page: 16
  year: 2019
  ident: 5624_CR52
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2018.09.004
– ident: 5624_CR18
– volume: 15
  start-page: 031005
  issue: 3
  year: 2018
  ident: 5624_CR31
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/aab2f2
– ident: 5624_CR46
  doi: 10.1007/978-3-642-15825-4_10
– volume: 11
  start-page: 825
  issue: 6
  year: 2019
  ident: 5624_CR4
  publication-title: Cogn Comput
  doi: 10.1007/s12559-018-9580-y
– volume: 5
  start-page: 25
  issue: 1
  year: 2008
  ident: 5624_CR14
  publication-title: J Neuroeng Rehabilit
  doi: 10.1186/1743-0003-5-25
– ident: 5624_CR7
  doi: 10.1007/s12559-020-09745-1
– ident: 5624_CR6
  doi: 10.1007/s12559-019-09656-w
– ident: 5624_CR30
  doi: 10.1007/s00521-019-04096-x
– volume: 11
  start-page: 587
  issue: 4
  year: 2019
  ident: 5624_CR48
  publication-title: Cogn Comput
  doi: 10.1007/s12559-019-09654-y
– volume: 26
  start-page: 282
  issue: 3
  year: 2012
  ident: 5624_CR22
  publication-title: Neurorehabilit Neural Repair
  doi: 10.1177/1545968311420845
– volume: 124
  start-page: 357
  year: 2020
  ident: 5624_CR35
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2020.01.027
– ident: 5624_CR47
  doi: 10.1155/2015/346217
– ident: 5624_CR29
  doi: 10.1007/s00521-019-04086-z
– volume: 8
  start-page: 025007
  issue: 2
  year: 2011
  ident: 5624_CR19
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/8/2/025007
– ident: 5624_CR17
  doi: 10.1007/s10548-016-0498-y
– volume: 123
  start-page: 176
  year: 2020
  ident: 5624_CR21
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2019.12.006
– volume: 11
  start-page: 841
  issue: 6
  year: 2019
  ident: 5624_CR33
  publication-title: Cogn Comput
  doi: 10.1007/s12559-019-09637-z
– volume: 12
  start-page: 13
  issue: 1
  year: 2020
  ident: 5624_CR54
  publication-title: Cognit Comput
  doi: 10.1007/s12559-019-09670-y
– volume: 9
  start-page: 7134
  issue: 1
  year: 2019
  ident: 5624_CR42
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-43594-9
– volume: 63
  start-page: 4
  issue: 1
  year: 2015
  ident: 5624_CR10
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2015.2467312
– volume: 140
  start-page: 3055
  issue: 11
  year: 2017
  ident: 5624_CR5
  publication-title: Brain
  doi: 10.1093/brain/awx270
– volume: 28
  start-page: 1194
  issue: 11
  year: 2007
  ident: 5624_CR27
  publication-title: Hum Brain Map
  doi: 10.1002/hbm.20345
– volume: 12
  start-page: 513
  issue: 3
  year: 2020
  ident: 5624_CR2
  publication-title: Cogn Comput
  doi: 10.1007/s12559-019-09688-2
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 5624_CR28
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 5624_CR25
– volume: 2
  start-page: 37
  issue: 1
  year: 2011
  ident: 5624_CR43
  publication-title: J Mach Learn Technol
– volume: 16
  start-page: 031001
  issue: 3
  year: 2019
  ident: 5624_CR8
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/ab0ab5
– volume: 27
  start-page: 2301
  issue: 11
  year: 2016
  ident: 5624_CR58
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2015.2475618
– volume: 11
  start-page: 809
  issue: 6
  year: 2019
  ident: 5624_CR12
  publication-title: Cogn Comput
  doi: 10.1007/s12559-018-9563-z
– ident: 5624_CR13
  doi: 10.1007/s12559-019-09699-z
– ident: 5624_CR39
– volume: 4
  start-page: 46
  issue: 1
  year: 2007
  ident: 5624_CR16
  publication-title: J Neuroeng Rehabilit
  doi: 10.1186/1743-0003-4-46
– ident: 5624_CR55
  doi: 10.1007/s12559-019-09639-x
– volume-title: Bioelectromagnetism, principles and applications of bioelectric and biomagnetic fields
  year: 1995
  ident: 5624_CR34
  doi: 10.1093/acprof:oso/9780195058239.001.0001
– volume: 16
  start-page: 6553
  issue: 12
  year: 2014
  ident: 5624_CR36
  publication-title: Entropy
  doi: 10.3390/e16126553
– volume: 16
  start-page: 051001
  issue: 5
  year: 2019
  ident: 5624_CR45
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/ab260c
– ident: 5624_CR26
– ident: 5624_CR32
– ident: 5624_CR50
  doi: 10.1007/s00521-019-04700-0
– volume: 5
  start-page: 1
  issue: 1
  year: 2015
  ident: 5624_CR56
  publication-title: Sci Rep
  doi: 10.1038/srep16438
– volume-title: Time-space, spiking neural networks and brain-inspired artificial intelligence
  year: 2019
  ident: 5624_CR24
  doi: 10.1007/978-3-662-57715-8
– ident: 5624_CR1
  doi: 10.1007/978-3-642-35289-8_26
– volume: 73
  start-page: 1
  year: 2018
  ident: 5624_CR37
  publication-title: Digit Signal Proc
  doi: 10.1016/j.dsp.2017.10.011
– volume: 10
  start-page: 35
  issue: 1
  year: 2018
  ident: 5624_CR9
  publication-title: Cogn Comput
  doi: 10.1007/s12559-017-9517-x
– volume: 228
  start-page: 39
  year: 2016
  ident: 5624_CR38
  publication-title: Prog Brain Res
  doi: 10.1016/bs.pbr.2016.04.017
– volume: 58
  start-page: 1153
  year: 2004
  ident: 5624_CR51
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2004.01.180
– volume: 56
  start-page: 1209
  issue: 4
  year: 2009
  ident: 5624_CR15
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2008.2009768
– volume: 12
  start-page: e0182578
  issue: 8
  year: 2017
  ident: 5624_CR41
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0182578
SSID ssj0004685
Score 2.5696654
Snippet Electroencephalographic (EEG) recordings can be of great help in decoding the open/close hand’s motion preparation. To this end, cortical EEG source signals in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11347
SubjectTerms Accuracy
Artificial Intelligence
Artificial neural networks
Beamforming
Brain research
Classification
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Deep learning
Electroencephalography
Hands
Human-computer interface
Image Processing and Computer Vision
Inverse problems
Investigations
Machine learning
Neural networks
Occlusion
Probability and Statistics in Computer Science
S.I. : Healthcare Analytics
Sensitivity analysis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8MgFCe6Xbz4bZxOw8GbEikw2p7MNJ2LiYsxLtnBpAEKXmY3t-n88wVGNzXRS5MW-g4PeF-8934AnJlUJiZhLUQINogx3UIyIgJxogyLIsUEd8XJ9z3e7bO7QWsQAm7TkFZZyUQvqIuRcjHyS8KdZxBb7-Vq_IYcapS7XQ0QGuugbkVwYp2v-nXWe3j8VhnpQTmtD-PyexgNZTO-eM5FRO1X4i6DOWFo_lM1rezNX1ekXvN0tsFmMBlhe7HGO2BNl7tgq4JjgOF07oHnNixHH3oI9ed4GIqi4KtPltQwoEO8wKqJOLTWKsyyW-T0WAGlg4pAqiLqukhMjFAaLlo9T_dBv5M93XRRAE9AinI6Q0YQqqxvJViUyCK1fhXTsaSUY-NUuCCmpTmX9o3YOdbsihWJC8wKVVBcCEwPQK0clfoQQGtx6ERjLonmjDORshTbR0RjLJhI4gaIKr7lKnQWdwAXw3zZE9nzOre8zj2v83kDnC__GS_6avw7u1ktRx7O2DRf7YgGuKiWaDX8N7Wj_6kdgw3iahx8Tm4T1GaTd31iLY-ZPA3b6wsglNOb
  priority: 102
  providerName: ProQuest
Title A novel explainable machine learning approach for EEG-based brain-computer interface systems
URI https://link.springer.com/article/10.1007/s00521-020-05624-w
https://www.proquest.com/docview/2689987446
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1PT8IwFH8RuHjxvxFF0oM3bbK1XTeOoAOikRgjCV5cuq7zgkAAxY_DZ-GT2Y4O1KiJlzXL3t7htd17v_X93gM4S2txkAbMw4Q4KWZMeTh2icCcyJS5rmSCG3LybYe3u-y65_UsKWySZ7vnR5LZl3pFdjN_MDX0JebwlhOGZwUoeQa761XcJfVPbMisEafGLSanh1FLlflZx1d3tI4xvx2LZt6muQNbNkxE9eW87sKGGuzBdt6CAdkduQ9PdTQYvqn-Yq7eR33LhEIvWYakQrYlxDPKK4cv5jpGRWHYwsZ7JSg2DSKwzNWa2hHjVEiFlgWeJwfQbYYPl21sWyZgSTmd4lQQKjWiEswN4qSm0RRTfkwpd1LjuAVJPcV5rO-IltHBli-JnzgskQl1EuHQQygOhgN1BEjHGSpQDo-J4owzUWM1R19c6juCicAvg5tbLpK2nrhpa9GPVpWQM2tH2tpRZu1oVobz1TujZTWNP6Ur-YREdmdNIsINQvQ1ii3DRT5J68e_azv-n_gJbBLDdMgycytQnI5f1amOP6ZxFQpBs1WFUr1x1WiasfV4E-qxEXbu7qvZYvwAsNbXbA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGGDhjSgU8AATWCS26yQDQhW0tLRlAokBKTiOw1LaQguFP8VvxHZjCkh06xIprxvOZ9-dfd99AAdZlIRZyEqYEC_DjKkSTnwiMCcyY74vmeAGnNy65rVbdnVXupuBT4eFMWWVbk20C3XalWaP_IRwkxkEOns56z1jwxplTlcdhcbILBrqY6hTtv5p_UKP7yEh1crNeQ3nrAJYUk4HOBOESp10COaHSRrphIOpIKGUe5nxbYJkJcV5ou-I_kbHI4EkQeqxVKbUS4VHtdxZmGeURmZGhdXLHzhMSwGqMyZTTcRoDtKxUD2z_6qfEnP0zAnDw9-OcBzd_jmQtX6uugJLeYCKyiOLWoUZ1VmDZUf-gPK1YB3uy6jTfVNtpN577RyChZ5saaZCORfFI3Ity5GOjVGlcomN10xRYogpsHRCTc-Kl0xIhUaNpfsbcDsVpW7CXKfbUVuAdHyjQuXxhCjOOBMRizx98WngCSbCoAC-01ss8z7mhk6jHX93YLa6jrWuY6vreFiAo-9_eqMuHhO_LrrhiPMZ3Y_H9leAYzdE49f_S9ueLG0fFmo3rWbcrF83dmCRGHSFrQYuwtzg5VXt6phnkOxZQ0PwMG3L_gJhvg32
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSIiFN6JQwAMbWE1sx0nGClreFQOVOmE5js1S0qoNlJ_T39Jfhp1HWxAgsUSKcvFwZ-fucvd9B8CpDqNAB9RDGDsaUao8FLlYIIalpq4rqWAWnPzQZtcdetv1ugso_qzbvSxJ5pgGy9KUpPVBrOsz4Jv9m2nSYGwLuQxTNF4GK-Zz7Np93cGNBWRkNpTT5DC2v4eSAjbz8xpfXdM83vxWIs08T2sTrBchI2zkNt4CSyrZBhvlOAZYnM4d8NyASf9d9aYT9THoFago-Jp1SypYjId4gSWL-HRi4lXYbF4h68liGNlhEUiWy1oeiaEWUsGc7Hm0Czqt5tPFNSrGJyBJGEmRFphIk10J6gZRHJrMiio_IoQ52jpxgbWnGIvMHTYyJvDyJfZjh8YyJk4sHLIHKkk_UfsAmphDBcphEVaMMipCGjrm4hLfEVQEfhW4pea4LLjF7YiLHp-xImfa5kbbPNM2H1fB2eydQc6s8ad0rTQIL07ZiGNms0XfZLRVcF4aaf7499UO_id-AlYfL1v8_qZ9dwjWsAVAZA27NVBJh2_qyIQlaXSc7bxPQd3ZFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel%C2%A0explainable+machine+learning+approach%C2%A0for+EEG-based+brain-computer+interface+systems&rft.jtitle=Neural+computing+%26+applications&rft.au=Ieracitano%2C+Cosimo&rft.au=Mammone%2C+Nadia&rft.au=Hussain%2C+Amir&rft.au=Morabito%2C+Francesco+Carlo&rft.date=2022-07-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=34&rft.issue=14&rft.spage=11347&rft.epage=11360&rft_id=info:doi/10.1007%2Fs00521-020-05624-w&rft.externalDocID=10_1007_s00521_020_05624_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon