Coalescence of Geodesics and the BKS Midpoint Problem in Planar First-Passage Percolation

We consider first-passage percolation on with independent and identically distributed weights whose common distribution is absolutely continuous with a finite exponential moment. Under the assumption that the limit shape has more than 32 extreme points, we prove that geodesics with nearby starting a...

Full description

Saved in:
Bibliographic Details
Published inGeometric and functional analysis Vol. 34; no. 3; pp. 733 - 797
Main Authors Dembin, Barbara, Elboim, Dor, Peled, Ron
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1016-443X
1420-8970
DOI10.1007/s00039-024-00672-z

Cover

Loading…
Abstract We consider first-passage percolation on with independent and identically distributed weights whose common distribution is absolutely continuous with a finite exponential moment. Under the assumption that the limit shape has more than 32 extreme points, we prove that geodesics with nearby starting and ending points have significant overlap, coalescing on all but small portions near their endpoints. The statement is quantified, with power-law dependence of the involved quantities on the length of the geodesics. The result leads to a quantitative resolution of the Benjamini–Kalai–Schramm midpoint problem. It is shown that the probability that the geodesic between two given points passes through a given edge is smaller than a power of the distance between the points and the edge. We further prove that the limit shape assumption is satisfied for a specific family of distributions. Lastly, related to the 1965 Hammersley–Welsh highways and byways problem, we prove that the expected fraction of the square {− n ,…, n } 2 which is covered by infinite geodesics starting at the origin is at most an inverse power of n . This result is obtained without explicit limit shape assumptions.
AbstractList We consider first-passage percolation on with independent and identically distributed weights whose common distribution is absolutely continuous with a finite exponential moment. Under the assumption that the limit shape has more than 32 extreme points, we prove that geodesics with nearby starting and ending points have significant overlap, coalescing on all but small portions near their endpoints. The statement is quantified, with power-law dependence of the involved quantities on the length of the geodesics.The result leads to a quantitative resolution of the Benjamini–Kalai–Schramm midpoint problem. It is shown that the probability that the geodesic between two given points passes through a given edge is smaller than a power of the distance between the points and the edge.We further prove that the limit shape assumption is satisfied for a specific family of distributions.Lastly, related to the 1965 Hammersley–Welsh highways and byways problem, we prove that the expected fraction of the square {−n,…,n}2 which is covered by infinite geodesics starting at the origin is at most an inverse power of n. This result is obtained without explicit limit shape assumptions.
We consider first-passage percolation on with independent and identically distributed weights whose common distribution is absolutely continuous with a finite exponential moment. Under the assumption that the limit shape has more than 32 extreme points, we prove that geodesics with nearby starting and ending points have significant overlap, coalescing on all but small portions near their endpoints. The statement is quantified, with power-law dependence of the involved quantities on the length of the geodesics. The result leads to a quantitative resolution of the Benjamini–Kalai–Schramm midpoint problem. It is shown that the probability that the geodesic between two given points passes through a given edge is smaller than a power of the distance between the points and the edge. We further prove that the limit shape assumption is satisfied for a specific family of distributions. Lastly, related to the 1965 Hammersley–Welsh highways and byways problem, we prove that the expected fraction of the square {− n ,…, n } 2 which is covered by infinite geodesics starting at the origin is at most an inverse power of n . This result is obtained without explicit limit shape assumptions.
We consider first-passage percolation on $\mathbb{Z}^{2}$ with independent and identically distributed weights whose common distribution is absolutely continuous with a finite exponential moment. Under the assumption that the limit shape has more than 32 extreme points, we prove that geodesics with nearby starting and ending points have significant overlap, coalescing on all but small portions near their endpoints. The statement is quantified, with power-law dependence of the involved quantities on the length of the geodesics. The result leads to a quantitative resolution of the Benjamini–Kalai–Schramm midpoint problem. It is shown that the probability that the geodesic between two given points passes through a given edge is smaller than a power of the distance between the points and the edge. We further prove that the limit shape assumption is satisfied for a specific family of distributions. Lastly, related to the 1965 Hammersley–Welsh highways and byways problem, we prove that the expected fraction of the square {− n ,…, n } 2 which is covered by infinite geodesics starting at the origin is at most an inverse power of n . This result is obtained without explicit limit shape assumptions.
Author Peled, Ron
Elboim, Dor
Dembin, Barbara
Author_xml – sequence: 1
  givenname: Barbara
  surname: Dembin
  fullname: Dembin, Barbara
  organization: D-MATH, ETH Zürich
– sequence: 2
  givenname: Dor
  surname: Elboim
  fullname: Elboim, Dor
  organization: Department of Mathematics, Princeton University
– sequence: 3
  givenname: Ron
  surname: Peled
  fullname: Peled, Ron
  email: peledron@tauex.tau.ac.il
  organization: School of Mathematical Sciences, Tel Aviv University, Institute for Advanced Study and Princeton University
BookMark eNp9kM1KAzEURoNUsK2-gKuA62j-JjOz1GKrWHFABV2FNJOpKdOkJunCPr1jRxBcdHXv4jv3fpwRGDjvDADnBF8SjPOriDFmJcKUI4xFTtHuCAwJpxgVZY4H3Y6JQJyztxMwinHVxbOMZ0PwPvGqNVEbpw30DZwZX5todYTK1TB9GHjz8Awfbb3x1iVYBb9ozRpaB6tWORXg1IaYUKViVEsDKxO0b1Wy3p2C40a10Zz9zjF4nd6-TO7Q_Gl2P7meI80ES6jJStyQ2jCuBSlyTYXiuaGCaE6IKCkVNS-aRSY0zZuG6rJQnOlCkZyUWakKNgYX_d1N8J9bE5Nc-W1w3UvJcEYFFSUnXaroUzr4GINppLZp3zMFZVtJsPwRKXuRshMp9yLlrkPpP3QT7FqFr8MQ66HYhd3ShL9WB6hv5OuHPA
CitedBy_id crossref_primary_10_1214_24_AOP1715
Cites_doi 10.1007/s004400050105
10.1007/978-3-0348-9078-6_94
10.1214/aop/1176988171
10.1007/BF01609432
10.1017/9781108591034
10.1007/BF02699376
10.1214/aop/1022855423
10.1214/20-EJP489
10.1214/17-EJP115
10.1214/21-EJP639
10.1214/aop/1042644722
10.1007/BF01314921
10.1007/978-1-4612-0063-5_8
10.1007/s00440-023-01252-2
10.1007/BFb0074919
10.1007/s00220-016-2743-3
10.1007/s00220-009-0798-0
10.1007/s00440-021-01035-7
10.1214/aop/1024404277
10.1016/0020-0190(90)90214-I
10.1007/s00220-015-2419-4
10.1214/13-AAP999
10.1214/105051604000000729
10.1007/BF02181495
10.1214/22-AAP1795
10.1017/S0305004100034241
10.1214/18-AOP1304
10.1214/aoap/1031863179
10.1214/07-AAP510
10.1017/fms.2020.31
10.1007/s00440-014-0591-7
10.1007/s00220-013-1875-y
10.1007/s00220-021-04246-0
10.1007/BF01942060
10.2307/j.ctvd58v18
10.1214/12-AAP864
10.1017/9781316882603
10.1007/BF01609854
10.1007/s00220-007-0274-7
10.1007/978-981-15-0294-1_10
10.1063/1.5093799
10.1090/ulect/068
10.1214/19-AIHP1016
10.1007/978-3-0348-8912-4
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s00039-024-00672-z
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (Selected full-text)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1420-8970
EndPage 797
ExternalDocumentID 10_1007_s00039_024_00672_z
GrantInformation_xml – fundername: Tel Aviv University
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
29H
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
692
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KQ8
LAS
LLZTM
LO0
M4Y
MA-
MBV
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OK1
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RNI
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c363t-f590f1de34c6187c26a47e261c41169226d48fb56c27ff2c98a43c8a171959a83
IEDL.DBID U2A
ISSN 1016-443X
IngestDate Fri Jul 25 11:19:52 EDT 2025
Tue Jul 01 02:31:08 EDT 2025
Thu Apr 24 22:57:49 EDT 2025
Fri Feb 21 02:39:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-f590f1de34c6187c26a47e261c41169226d48fb56c27ff2c98a43c8a171959a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s00039-024-00672-z
PQID 3052626941
PQPubID 2044207
PageCount 65
ParticipantIDs proquest_journals_3052626941
crossref_citationtrail_10_1007_s00039_024_00672_z
crossref_primary_10_1007_s00039_024_00672_z
springer_journals_10_1007_s00039_024_00672_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationSubtitle GAFA
PublicationTitle Geometric and functional analysis
PublicationTitleAbbrev Geom. Funct. Anal
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References BalázsM.BusaniO.SeppäläinenT.Local stationarity in exponential last-passage percolationProbab. Theory Relat. Fields202118011131624265019
Bassan, M., Gilboa, S., Peled, R.: Non-constant ground configurations in the disordered ferromagnet (2023). ArXiv preprint. arXiv:2309.06437
KozmaG.PeledR.Power-law decay of weights and recurrence of the two-dimensional VRJPElectron. J. Probab.2021261194278593
AuffingerA.DamronM.HansonJ.Limiting geodesics for first-passage percolation on subsets of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{Z}^{2}$\end{document}Ann. Appl. Probab.20152513734053297776
Dembin, B., Elboim, D., Hadas, D., Peled, R.: Minimal surfaces in random environment (2024). ArXiv preprint. arXiv:2401.06768
MarchandR.Strict inequalities for the time constant in first passage percolationAnn. Appl. Probab.2002123100110381925450
SeppäläinenT.Existence, uniqueness and coalescence of directed planar geodesics: proof via the increment-stationary growth processAnn. Inst. Henri Poincaré Probab. Stat.2020563177517914116707
DamronM.HansonJ.Busemann functions and infinite geodesics in two-dimensional first-passage percolationCommun. Math. Phys.201432539179633152744
KestenH.Aspects of first passage percolationÉcole D’été de Probabilités de Saint-Flour, XIV—19841986BerlinSpringer125264
MiłośP.PeledR.Delocalization of two-dimensional random surfaces with hard-core constraintsCommun. Math. Phys.201534011463395146
FriedliS.VelenikY.Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction2017CambridgeCambridge University Press
PfisterC.E.On the symmetry of the Gibbs states in two-dimensional lattice systemsCommun. Math. Phys.1981792181188612247
WüthrichM.V.Asymptotic behaviour of semi-infinite geodesics for maximal increasing subsequences in the planeAnd Out of Equilibrium2002BerlinSpringer205226
Elboim, D., Schmid, D.: Mixing times and cutoff for the tasep in the high and low density phase (2022). ArXiv preprint. arXiv:2208.08306
LiceaC.NewmanC.M.Geodesics in two-dimensional first-passage percolationAnn. Probab.19962413994101387641
Seppäläinen, T., Sorensen, E.: Global structure of semi-infinite geodesics and competition interfaces in Brownian last-passage percolation (2021). ArXiv preprint. arXiv:2112.10729
Groathouse, S., Janjigian, C., Rassoul-Agha, F.: Non-existence of non-trivial bi-infinite geodesics in geometric last passage percolation (2021). ArXiv preprint. arXiv:2112.00161
SchenkerJ.Eigenvector localization for random band matrices with power law band widthCommun. Math. Phys.20092903106510972525652
Dembin, B., Garban, C.: Superconcentration for minimal surfaces in first passage percolation and disordered Ising ferromagnets. Probab. Theory Relat. Fields, 1–28 (2024)
DamronM.HansonJ.Bigeodesics in first-passage percolationCommun. Math. Phys.201734927537763595369
BalázsM.BusaniO.SeppäläinenT.Non-existence of bi-infinite geodesics in the exponential corner growth modelForum Math. Sigma202084176750
Theodore CoxJ.DurrettR.Some limit theorems for percolation processes with necessary and sufficient conditionsAnn. Probab.198194583603624685
HoffmanC.Coexistence for Richardson type competing spatial growth modelsAnn. Appl. Probab.2005151B7397472114988
BatesE.GangulyS.HammondA.Hausdorff dimensions for shared endpoints of disjoint geodesics in the directed landscapeElectron. J. Probab.2022271444361743
HagerupT.RübC.A guided tour of Chernoff boundsInf. Process. Lett.19903363053081045520
HammersleyJ.M.WelshD.J.A.First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theoryProc. Internat. Res. Semin., Statist. Lab., Univ. California, Berkeley, Calif1965New YorkSpringer61110
Schmid, D.: Mixing times for the TASEP in the maximal current phase (2021). ArXiv preprint. arXiv:2104.12745
Janjigian, C., Rassoul-Agha, F., Seppäläinen, T.: Geometry of geodesics through Busemann measures in directed last-passage percolation (2019). ArXiv preprint. arXiv:1908.09040
McBryanO.A.SpencerT.On the decay of correlations in SO(n)-symmetric ferromagnetsCommun. Math. Phys.1977533299302441179
SeppäläinenT.ShenX.Coalescence estimates for the corner growth model with exponential weightsElectron. J. Probab.2020251314125790
Dembin, B., Elboim, D., Peled, R.: On the influence of edges in first-passage percolation on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{Z} ^{d}$\end{document} (2023). ArXiv preprint. arXiv:2307.01162
Schmid, D., Sly, A.: Mixing times for the TASEP on the circle. (2022). ArXiv preprint. arXiv:2203.11896
TalagrandM.Concentration of measure and isoperimetric inequalities in product spacesPubl. Math. IHÉS1995811732051361756
SteinE.M.ShakarchiR.Real Analysis2009PrincetonPrinceton University Press
Ahlberg, D., Hanson, J., Hoffman, C.: The number of geodesics in planar first-passage percolation grows sublinearly (2022). ArXiv preprint. arXiv:2208.11576
Ahlberg, D., Hoffman, C.: Random coalescing geodesics in first-passage percolation (2019). ArXiv preprint. arXiv:1609.02447
BasuR.HoffmanC.SlyA.Nonexistence of bigeodesics in planar exponential last passage percolationCommun. Math. Phys.202238911304365136
PimentelLeandro P.R.Duality between coalescence times and exit points in last-passage percolation modelsAnn. Probab.2016445318732063551194
Elboim, D., Klartag, B.: Long lines in subsets of large measure in high dimension (2022). ArXiv preprint. arXiv:2202.02836
DobrushinR.L.ShlosmanS.B.Absence of breakdown of continuous symmetry in two-dimensional models of statistical physicsCommun. Math. Phys.19754213140424106
AuffingerA.DamronM.HansonJ.50 Years of First-Passage Percolation2017ProvidenceAMS
AlexanderK.S.Approximation of subadditive functions and convergence rates in limiting-shape resultsAnn. Probab.199725130551428498
HarrisT.E.A lower bound for the critical probability in a certain percolation processMath. Proc. Camb. Philos. Soc.19605611320115221
WehrJ.AizenmanM.Fluctuations of extensive functions of quenched random couplingsJ. Stat. Phys.19906032873061069633
WehrJ.WooJ.Absence of geodesics in first-passage percolation on a half-planeAnn. Probab.19982613583671617053
DobrushinR.L.ShlosmanS.B.Nonexistence of one- and two-dimensional Gibbs fields with noncompact group of continuous symmetriesMulticompon. Random Syst.19806199210599536
Basdevant, A.-L., Gouéré, J.-B., Théret, M.: First-order behavior of the time constant in Bernoulli first-passage percolation (2021). ArXiv preprint. arXiv:2106.12266
Newman, C.M., Piza, M.S.: Divergence of shape fluctuations in two dimensions. Ann. Probab., 977–1005 (1995)
BenjaminiI.KalaiG.SchrammO.First passage percolation has sublinear distance varianceAnn. Probab.200331197019782016607
NewmanC.M.Topics in Disordered Systems1997BerlinSpringer
RichthammerT.Translation-invariance of two-dimensional Gibbsian point processesCommun. Math. Phys.20072741811222318849
ZhangL.Optimal exponent for coalescence of finite geodesics in exponential last passage percolationElectron. Commun. Probab.2020251144167385
NewmanC.M.A surface view of first-passage percolationProceedings of the International Congress of Mathematicians1995BerlinSpringer10171023
Hoffman, C.: Geodesics in first passage percolation. Ann. Appl. Probab., 1944–1969 (2008)
HowardC.D.NewmanC.M.Euclidean models of first-passage percolationProbab. Theory Relat. Fields19971081531701452554
DamronM.HochmanM.Examples of nonpolygonal limit shapes in i.i.d. first-passage percolation and infinite coexistence in spatial growth modelsAnn. Appl. Probab.2013233107410853076678
PeledR.SpinkaY.Lectures on the spin and loop O(n) modelsSojourns in Probability Theory and Statistical Physics-i2019BerlinSpringer246320
ChatterjeeS.A general method for lower bounds on fluctuations of random variablesAnn. Probab.2019474214021713980917
BasuR.SarkarS.SlyA.Coalescence of geodesics in exactly solvable models of last passage percolationJ. Math. Phys.20196094002528
Coupier, D.: Sublinearity of the number of semi-infinite branches for geometric random trees (2018)
WehrJ.On the number of infinite geodesics and ground states in disordered systemsJ. Stat. Phys.19978714394471453745
Alexander, K.S.: Geodesics, bigeodesics, and coalescence in first passage percolation in general dimension (2020). ArXiv preprint. arXiv:2001.08736
DurrettR.Probability: Theory and Examples2019CambridgeCambridge University Press
DamronM.HansonJ.SosoeP.Sublinear variance in first-passage percolation for general distributionsProbab. Theory Relat. Fields201516312232583405617
Seppäläinen, T., Sorensen, E.: Busemann process and semi-infinite geodesics in Brownian last-passage percolation (2021). ArXiv preprint. arXiv:2103.01172
O.A. McBryan (672_CR43) 1977; 53
672_CR47
G. Kozma (672_CR40) 2021; 26
M. Balázs (672_CR8) 2021; 180
C. Hoffman (672_CR35) 2005; 15
C. Licea (672_CR41) 1996; 24
T. Seppäläinen (672_CR55) 2020; 25
M. Balázs (672_CR7) 2020; 8
M. Damron (672_CR19) 2017; 349
E.M. Stein (672_CR59) 2009
672_CR53
R. Durrett (672_CR27) 2019
C.M. Newman (672_CR46) 1997
R. Peled (672_CR48) 2019
672_CR56
672_CR10
672_CR54
672_CR4
672_CR38
672_CR2
672_CR36
672_CR1
E. Bates (672_CR13) 2022; 27
C.D. Howard (672_CR37) 1997; 108
J. Schenker (672_CR52) 2009; 290
C.M. Newman (672_CR45) 1995
672_CR9
P. Miłoś (672_CR44) 2015; 340
T. Hagerup (672_CR32) 1990; 33
J. Theodore Cox (672_CR17) 1981; 9
S. Chatterjee (672_CR15) 2019; 47
M. Damron (672_CR21) 2013; 23
I. Benjamini (672_CR14) 2003; 31
J. Wehr (672_CR63) 1998; 26
T. Seppäläinen (672_CR57) 2020; 56
S. Friedli (672_CR30) 2017
M. Talagrand (672_CR60) 1995; 81
672_CR28
R. Basu (672_CR12) 2019; 60
M. Damron (672_CR18) 2014; 325
C.E. Pfister (672_CR49) 1981; 79
R.L. Dobrushin (672_CR25) 1975; 42
672_CR29
M. Damron (672_CR20) 2015; 163
L. Zhang (672_CR65) 2020; 25
A. Auffinger (672_CR5) 2015; 25
672_CR31
J. Wehr (672_CR61) 1997; 87
T.E. Harris (672_CR34) 1960; 56
J. Wehr (672_CR62) 1990; 60
672_CR16
672_CR58
H. Kesten (672_CR39) 1986
T. Richthammer (672_CR51) 2007; 274
M.V. Wüthrich (672_CR64) 2002
J.M. Hammersley (672_CR33) 1965
R. Marchand (672_CR42) 2002; 12
A. Auffinger (672_CR6) 2017
R. Basu (672_CR11) 2022; 389
K.S. Alexander (672_CR3) 1997; 25
672_CR23
Leandro P.R. Pimentel (672_CR50) 2016; 44
672_CR24
672_CR22
R.L. Dobrushin (672_CR26) 1980; 6
References_xml – reference: Elboim, D., Klartag, B.: Long lines in subsets of large measure in high dimension (2022). ArXiv preprint. arXiv:2202.02836
– reference: AlexanderK.S.Approximation of subadditive functions and convergence rates in limiting-shape resultsAnn. Probab.199725130551428498
– reference: Janjigian, C., Rassoul-Agha, F., Seppäläinen, T.: Geometry of geodesics through Busemann measures in directed last-passage percolation (2019). ArXiv preprint. arXiv:1908.09040
– reference: DobrushinR.L.ShlosmanS.B.Nonexistence of one- and two-dimensional Gibbs fields with noncompact group of continuous symmetriesMulticompon. Random Syst.19806199210599536
– reference: HarrisT.E.A lower bound for the critical probability in a certain percolation processMath. Proc. Camb. Philos. Soc.19605611320115221
– reference: Dembin, B., Garban, C.: Superconcentration for minimal surfaces in first passage percolation and disordered Ising ferromagnets. Probab. Theory Relat. Fields, 1–28 (2024)
– reference: Schmid, D.: Mixing times for the TASEP in the maximal current phase (2021). ArXiv preprint. arXiv:2104.12745
– reference: TalagrandM.Concentration of measure and isoperimetric inequalities in product spacesPubl. Math. IHÉS1995811732051361756
– reference: MiłośP.PeledR.Delocalization of two-dimensional random surfaces with hard-core constraintsCommun. Math. Phys.201534011463395146
– reference: DamronM.HansonJ.SosoeP.Sublinear variance in first-passage percolation for general distributionsProbab. Theory Relat. Fields201516312232583405617
– reference: Coupier, D.: Sublinearity of the number of semi-infinite branches for geometric random trees (2018)
– reference: PimentelLeandro P.R.Duality between coalescence times and exit points in last-passage percolation modelsAnn. Probab.2016445318732063551194
– reference: BatesE.GangulyS.HammondA.Hausdorff dimensions for shared endpoints of disjoint geodesics in the directed landscapeElectron. J. Probab.2022271444361743
– reference: LiceaC.NewmanC.M.Geodesics in two-dimensional first-passage percolationAnn. Probab.19962413994101387641
– reference: PeledR.SpinkaY.Lectures on the spin and loop O(n) modelsSojourns in Probability Theory and Statistical Physics-i2019BerlinSpringer246320
– reference: Alexander, K.S.: Geodesics, bigeodesics, and coalescence in first passage percolation in general dimension (2020). ArXiv preprint. arXiv:2001.08736
– reference: KestenH.Aspects of first passage percolationÉcole D’été de Probabilités de Saint-Flour, XIV—19841986BerlinSpringer125264
– reference: DamronM.HansonJ.Bigeodesics in first-passage percolationCommun. Math. Phys.201734927537763595369
– reference: AuffingerA.DamronM.HansonJ.Limiting geodesics for first-passage percolation on subsets of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{Z}^{2}$\end{document}Ann. Appl. Probab.20152513734053297776
– reference: FriedliS.VelenikY.Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction2017CambridgeCambridge University Press
– reference: DamronM.HansonJ.Busemann functions and infinite geodesics in two-dimensional first-passage percolationCommun. Math. Phys.201432539179633152744
– reference: PfisterC.E.On the symmetry of the Gibbs states in two-dimensional lattice systemsCommun. Math. Phys.1981792181188612247
– reference: HowardC.D.NewmanC.M.Euclidean models of first-passage percolationProbab. Theory Relat. Fields19971081531701452554
– reference: Schmid, D., Sly, A.: Mixing times for the TASEP on the circle. (2022). ArXiv preprint. arXiv:2203.11896
– reference: HammersleyJ.M.WelshD.J.A.First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theoryProc. Internat. Res. Semin., Statist. Lab., Univ. California, Berkeley, Calif1965New YorkSpringer61110
– reference: SeppäläinenT.Existence, uniqueness and coalescence of directed planar geodesics: proof via the increment-stationary growth processAnn. Inst. Henri Poincaré Probab. Stat.2020563177517914116707
– reference: Newman, C.M., Piza, M.S.: Divergence of shape fluctuations in two dimensions. Ann. Probab., 977–1005 (1995)
– reference: Basdevant, A.-L., Gouéré, J.-B., Théret, M.: First-order behavior of the time constant in Bernoulli first-passage percolation (2021). ArXiv preprint. arXiv:2106.12266
– reference: McBryanO.A.SpencerT.On the decay of correlations in SO(n)-symmetric ferromagnetsCommun. Math. Phys.1977533299302441179
– reference: HagerupT.RübC.A guided tour of Chernoff boundsInf. Process. Lett.19903363053081045520
– reference: Groathouse, S., Janjigian, C., Rassoul-Agha, F.: Non-existence of non-trivial bi-infinite geodesics in geometric last passage percolation (2021). ArXiv preprint. arXiv:2112.00161
– reference: BenjaminiI.KalaiG.SchrammO.First passage percolation has sublinear distance varianceAnn. Probab.200331197019782016607
– reference: Dembin, B., Elboim, D., Peled, R.: On the influence of edges in first-passage percolation on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{Z} ^{d}$\end{document} (2023). ArXiv preprint. arXiv:2307.01162
– reference: Bassan, M., Gilboa, S., Peled, R.: Non-constant ground configurations in the disordered ferromagnet (2023). ArXiv preprint. arXiv:2309.06437
– reference: WehrJ.WooJ.Absence of geodesics in first-passage percolation on a half-planeAnn. Probab.19982613583671617053
– reference: WüthrichM.V.Asymptotic behaviour of semi-infinite geodesics for maximal increasing subsequences in the planeAnd Out of Equilibrium2002BerlinSpringer205226
– reference: BalázsM.BusaniO.SeppäläinenT.Local stationarity in exponential last-passage percolationProbab. Theory Relat. Fields202118011131624265019
– reference: DurrettR.Probability: Theory and Examples2019CambridgeCambridge University Press
– reference: HoffmanC.Coexistence for Richardson type competing spatial growth modelsAnn. Appl. Probab.2005151B7397472114988
– reference: BasuR.SarkarS.SlyA.Coalescence of geodesics in exactly solvable models of last passage percolationJ. Math. Phys.20196094002528
– reference: Theodore CoxJ.DurrettR.Some limit theorems for percolation processes with necessary and sufficient conditionsAnn. Probab.198194583603624685
– reference: RichthammerT.Translation-invariance of two-dimensional Gibbsian point processesCommun. Math. Phys.20072741811222318849
– reference: Seppäläinen, T., Sorensen, E.: Busemann process and semi-infinite geodesics in Brownian last-passage percolation (2021). ArXiv preprint. arXiv:2103.01172
– reference: Elboim, D., Schmid, D.: Mixing times and cutoff for the tasep in the high and low density phase (2022). ArXiv preprint. arXiv:2208.08306
– reference: BalázsM.BusaniO.SeppäläinenT.Non-existence of bi-infinite geodesics in the exponential corner growth modelForum Math. Sigma202084176750
– reference: DobrushinR.L.ShlosmanS.B.Absence of breakdown of continuous symmetry in two-dimensional models of statistical physicsCommun. Math. Phys.19754213140424106
– reference: AuffingerA.DamronM.HansonJ.50 Years of First-Passage Percolation2017ProvidenceAMS
– reference: SeppäläinenT.ShenX.Coalescence estimates for the corner growth model with exponential weightsElectron. J. Probab.2020251314125790
– reference: DamronM.HochmanM.Examples of nonpolygonal limit shapes in i.i.d. first-passage percolation and infinite coexistence in spatial growth modelsAnn. Appl. Probab.2013233107410853076678
– reference: NewmanC.M.Topics in Disordered Systems1997BerlinSpringer
– reference: SchenkerJ.Eigenvector localization for random band matrices with power law band widthCommun. Math. Phys.20092903106510972525652
– reference: ZhangL.Optimal exponent for coalescence of finite geodesics in exponential last passage percolationElectron. Commun. Probab.2020251144167385
– reference: MarchandR.Strict inequalities for the time constant in first passage percolationAnn. Appl. Probab.2002123100110381925450
– reference: WehrJ.AizenmanM.Fluctuations of extensive functions of quenched random couplingsJ. Stat. Phys.19906032873061069633
– reference: NewmanC.M.A surface view of first-passage percolationProceedings of the International Congress of Mathematicians1995BerlinSpringer10171023
– reference: Dembin, B., Elboim, D., Hadas, D., Peled, R.: Minimal surfaces in random environment (2024). ArXiv preprint. arXiv:2401.06768
– reference: KozmaG.PeledR.Power-law decay of weights and recurrence of the two-dimensional VRJPElectron. J. Probab.2021261194278593
– reference: SteinE.M.ShakarchiR.Real Analysis2009PrincetonPrinceton University Press
– reference: Ahlberg, D., Hoffman, C.: Random coalescing geodesics in first-passage percolation (2019). ArXiv preprint. arXiv:1609.02447
– reference: BasuR.HoffmanC.SlyA.Nonexistence of bigeodesics in planar exponential last passage percolationCommun. Math. Phys.202238911304365136
– reference: ChatterjeeS.A general method for lower bounds on fluctuations of random variablesAnn. Probab.2019474214021713980917
– reference: Seppäläinen, T., Sorensen, E.: Global structure of semi-infinite geodesics and competition interfaces in Brownian last-passage percolation (2021). ArXiv preprint. arXiv:2112.10729
– reference: Ahlberg, D., Hanson, J., Hoffman, C.: The number of geodesics in planar first-passage percolation grows sublinearly (2022). ArXiv preprint. arXiv:2208.11576
– reference: Hoffman, C.: Geodesics in first passage percolation. Ann. Appl. Probab., 1944–1969 (2008)
– reference: WehrJ.On the number of infinite geodesics and ground states in disordered systemsJ. Stat. Phys.19978714394471453745
– ident: 672_CR31
– volume: 108
  start-page: 153
  year: 1997
  ident: 672_CR37
  publication-title: Probab. Theory Relat. Fields
  doi: 10.1007/s004400050105
– start-page: 1017
  volume-title: Proceedings of the International Congress of Mathematicians
  year: 1995
  ident: 672_CR45
  doi: 10.1007/978-3-0348-9078-6_94
– volume: 31
  start-page: 1970
  year: 2003
  ident: 672_CR14
  publication-title: Ann. Probab.
– ident: 672_CR47
  doi: 10.1214/aop/1176988171
– volume: 42
  start-page: 31
  issue: 1
  year: 1975
  ident: 672_CR25
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01609432
– volume-title: Probability: Theory and Examples
  year: 2019
  ident: 672_CR27
  doi: 10.1017/9781108591034
– ident: 672_CR29
– volume: 81
  start-page: 73
  issue: 1
  year: 1995
  ident: 672_CR60
  publication-title: Publ. Math. IHÉS
  doi: 10.1007/BF02699376
– ident: 672_CR2
– volume: 26
  start-page: 358
  issue: 1
  year: 1998
  ident: 672_CR63
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1022855423
– volume: 25
  start-page: 1
  year: 2020
  ident: 672_CR55
  publication-title: Electron. J. Probab.
  doi: 10.1214/20-EJP489
– ident: 672_CR16
  doi: 10.1214/17-EJP115
– ident: 672_CR58
– ident: 672_CR54
– volume: 26
  start-page: 1
  year: 2021
  ident: 672_CR40
  publication-title: Electron. J. Probab.
  doi: 10.1214/21-EJP639
– volume: 24
  start-page: 399
  issue: 1
  year: 1996
  ident: 672_CR41
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1042644722
– volume: 60
  start-page: 287
  issue: 3
  year: 1990
  ident: 672_CR62
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01314921
– ident: 672_CR28
– volume: 44
  start-page: 3187
  issue: 5
  year: 2016
  ident: 672_CR50
  publication-title: Ann. Probab.
– start-page: 205
  volume-title: And Out of Equilibrium
  year: 2002
  ident: 672_CR64
  doi: 10.1007/978-1-4612-0063-5_8
– ident: 672_CR24
  doi: 10.1007/s00440-023-01252-2
– start-page: 125
  volume-title: École D’été de Probabilités de Saint-Flour, XIV—1984
  year: 1986
  ident: 672_CR39
  doi: 10.1007/BFb0074919
– volume: 349
  start-page: 753
  issue: 2
  year: 2017
  ident: 672_CR19
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-016-2743-3
– volume: 290
  start-page: 1065
  issue: 3
  year: 2009
  ident: 672_CR52
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-009-0798-0
– volume: 27
  start-page: 1
  year: 2022
  ident: 672_CR13
  publication-title: Electron. J. Probab.
– volume: 25
  start-page: 1
  year: 2020
  ident: 672_CR65
  publication-title: Electron. Commun. Probab.
– volume: 180
  start-page: 113
  issue: 1
  year: 2021
  ident: 672_CR8
  publication-title: Probab. Theory Relat. Fields
  doi: 10.1007/s00440-021-01035-7
– volume: 25
  start-page: 30
  issue: 1
  year: 1997
  ident: 672_CR3
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1024404277
– volume: 33
  start-page: 305
  issue: 6
  year: 1990
  ident: 672_CR32
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(90)90214-I
– ident: 672_CR38
– volume: 340
  start-page: 1
  issue: 1
  year: 2015
  ident: 672_CR44
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-015-2419-4
– ident: 672_CR56
– volume: 25
  start-page: 373
  issue: 1
  year: 2015
  ident: 672_CR5
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/13-AAP999
– volume: 15
  start-page: 739
  issue: 1B
  year: 2005
  ident: 672_CR35
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/105051604000000729
– volume: 87
  start-page: 439
  issue: 1
  year: 1997
  ident: 672_CR61
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF02181495
– ident: 672_CR9
  doi: 10.1214/22-AAP1795
– volume: 56
  start-page: 13
  issue: 1
  year: 1960
  ident: 672_CR34
  publication-title: Math. Proc. Camb. Philos. Soc.
  doi: 10.1017/S0305004100034241
– ident: 672_CR10
– volume: 47
  start-page: 2140
  issue: 4
  year: 2019
  ident: 672_CR15
  publication-title: Ann. Probab.
  doi: 10.1214/18-AOP1304
– volume: 12
  start-page: 1001
  issue: 3
  year: 2002
  ident: 672_CR42
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/aoap/1031863179
– ident: 672_CR23
– ident: 672_CR36
  doi: 10.1214/07-AAP510
– volume: 8
  year: 2020
  ident: 672_CR7
  publication-title: Forum Math. Sigma
  doi: 10.1017/fms.2020.31
– volume: 163
  start-page: 223
  issue: 1
  year: 2015
  ident: 672_CR20
  publication-title: Probab. Theory Relat. Fields
  doi: 10.1007/s00440-014-0591-7
– volume: 325
  start-page: 917
  issue: 3
  year: 2014
  ident: 672_CR18
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-013-1875-y
– volume: 389
  start-page: 1
  issue: 1
  year: 2022
  ident: 672_CR11
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-021-04246-0
– volume: 9
  start-page: 583
  issue: 4
  year: 1981
  ident: 672_CR17
  publication-title: Ann. Probab.
– volume: 6
  start-page: 199
  year: 1980
  ident: 672_CR26
  publication-title: Multicompon. Random Syst.
– volume: 79
  start-page: 181
  issue: 2
  year: 1981
  ident: 672_CR49
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01942060
– volume-title: Real Analysis
  year: 2009
  ident: 672_CR59
  doi: 10.2307/j.ctvd58v18
– volume: 23
  start-page: 1074
  issue: 3
  year: 2013
  ident: 672_CR21
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/12-AAP864
– volume-title: Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction
  year: 2017
  ident: 672_CR30
  doi: 10.1017/9781316882603
– start-page: 61
  volume-title: Proc. Internat. Res. Semin., Statist. Lab., Univ. California, Berkeley, Calif
  year: 1965
  ident: 672_CR33
– volume: 53
  start-page: 299
  issue: 3
  year: 1977
  ident: 672_CR43
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01609854
– volume: 274
  start-page: 81
  issue: 1
  year: 2007
  ident: 672_CR51
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-007-0274-7
– ident: 672_CR4
– start-page: 246
  volume-title: Sojourns in Probability Theory and Statistical Physics-i
  year: 2019
  ident: 672_CR48
  doi: 10.1007/978-981-15-0294-1_10
– ident: 672_CR1
– volume: 60
  issue: 9
  year: 2019
  ident: 672_CR12
  publication-title: J. Math. Phys.
  doi: 10.1063/1.5093799
– ident: 672_CR22
– volume-title: 50 Years of First-Passage Percolation
  year: 2017
  ident: 672_CR6
  doi: 10.1090/ulect/068
– volume: 56
  start-page: 1775
  issue: 3
  year: 2020
  ident: 672_CR57
  publication-title: Ann. Inst. Henri Poincaré Probab. Stat.
  doi: 10.1214/19-AIHP1016
– ident: 672_CR53
– volume-title: Topics in Disordered Systems
  year: 1997
  ident: 672_CR46
  doi: 10.1007/978-3-0348-8912-4
SSID ssj0005545
Score 2.4136236
Snippet We consider first-passage percolation on with independent and identically distributed weights whose common distribution is absolutely continuous with a finite...
We consider first-passage percolation on $\mathbb{Z}^{2}$ with independent and identically distributed weights whose common distribution is absolutely...
We consider first-passage percolation on with independent and identically distributed weights whose common distribution is absolutely continuous with a finite...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 733
SubjectTerms Analysis
Coalescing
Geodesy
Mathematics
Mathematics and Statistics
Percolation
Title Coalescence of Geodesics and the BKS Midpoint Problem in Planar First-Passage Percolation
URI https://link.springer.com/article/10.1007/s00039-024-00672-z
https://www.proquest.com/docview/3052626941
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED4BXWDgjSiUygMbWGriR5KxjRoQVVElqFSmyHVsqRJKUBMWfj22m7QCARJThtge7s6-73y-7wCu_XlGFAsCzJmWmEY9gkOPaKx7JAtERLhQ9mpg_Mjvp_RhxmZ1UVjZvHZvUpLupF4Xu7k6Umx8Cnb5Q_yxDS1mYndr11O_v3nYwVxrYhuWYkrJrC6V-XmNr-5ogzG_pUWdt0kOYb-Giai_0usRbKn8GA5qyIjqDVkew954TbtansBLXIgVP5NUqNDoThWZMmookcgzZAaiwegJjRfZW7HIKzRZNZNBixzZ3kViiZKFAYN4YgC1OWbQRC2NmTjVncI0GT7H97junYAl4aTCmkU97WWKUMm9MJA-FzRQJlyS1PN4ZEBXRkM9Z1z6gda-jEJBiQyFF1i2GRGSM9jJi1ydA-JZxJkMeRRoE0xqIiLFeWhmMca1AZBt8BoRprImFrf9LV7TNSWyE3tqxJ46sacfbbhZz3lb0Wr8ObrTaCatt1iZEstU4-pw23DbaGvz-_fVLv43_BJ2fWcw9ualAzvV8l1dGSBSzbvQ6ieDwaP93r2Mhl3Yjnncddb4CZoo1eo
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCBN6I8PbCBURM_koyAKIVSVAkqlSlyHVuqQAlqwtJfj-M4rUCAxJyz5fjOvu9s33cAp_4oIYoFAeZMS0yjFsGhRzTWLZIEIiJcqPJooPfIOwN6P2RDlxSW16_d6ytJu1PPkt1sHik2PgXb-0M8XYQlamJw1oCly9uX7s38aQezxYnLwBRTSoYuWebnXr46pDnK_HYxav1Nex0G9UirZyavFx_F6EJOv5E4_vdXNmDNAVB0WVnMJiyodAvWHRhFbqnnW7DamxG65tvwcp2JivlJKpRpdKuyRBkF50ikCTKC6Kr7hHrj5D0bpwXqV2Vq0DhFZVUkMUHtsYGZuG-gutnAUF9NjAFao9iBQfvm-bqDXVUGLAknBdYsamkvUYRK7oWB9LmggTKBmKSexyMD5xIa6hHj0g-09mUUCkpkKLyg5LERIdmFRpqlag8QTyLOZMijQJswVRMRKc5D04oxrg00bYJXqyaWjrK8rJzxFs_Ilu1MxmYmYzuT8bQJZ7M27xVhx5_Sh7XGY7d485iUHDg2w7cJ57UC559_723_f-InsNx57j3ED3eP3QNY8a09lOc7h9AoJh_qyMCdYnTsrPsTsPHyIw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xSAgO7IhCAR-4gUUTL0mOZSlrUSWoVE6R60WqhJKqDRe-HttJW0CAxNljH2Zsz_Py3gAch31FNIsizJmRmCYNguOAGGwaREUiIVxodzXQfuQ3XXrXY71PLH7_233yJFlyGpxKU1acDZU5mxLfPKcU2_yC_Vsifp-HRbsdB-5TVzdszj55MF-m2B1RMaWkV9Fmfh7ja2qa4c1vT6Q-87TWYbWCjKhZxngD5nS2CWsVfETV4hxvwkp7KsE63oKXi1yUWk1So9yga50rbUMyRiJTyBqi8_sn1B6oYT7ICtQpC8ugQYZcHSMxQq2BBYa4Y8G13XJQR4_slPFh3IZu6-r54gZXdRSwJJwU2LCkYQKlCZU8iCMZckEjbY9OkgYBTywAUzQ2fcZlGBkTyiQWlMhYBJFTnhEx2YGFLM_0LiCuEs5kzJPI2IOlISLRnMe2F2PcWDBZg2DiwlRWIuOu1sVrOpVH9m5PrdtT7_b0vQYn0z7DUmLjT-v6JDJptdzGKXGqNZ6TW4PTSbRmzb-Ptvc_8yNY6ly20ofbx_t9WA793HEXMnVYKEZv-sDik6J_6KfgBwR02Sw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coalescence+of+Geodesics+and+the+BKS+Midpoint+Problem+in+Planar+First-Passage+Percolation&rft.jtitle=Geometric+and+functional+analysis&rft.au=Dembin%2C+Barbara&rft.au=Elboim%2C+Dor&rft.au=Peled%2C+Ron&rft.date=2024-06-01&rft.pub=Springer+International+Publishing&rft.issn=1016-443X&rft.eissn=1420-8970&rft.volume=34&rft.issue=3&rft.spage=733&rft.epage=797&rft_id=info:doi/10.1007%2Fs00039-024-00672-z&rft.externalDocID=10_1007_s00039_024_00672_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-443X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-443X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-443X&client=summon