Coalescence of Geodesics and the BKS Midpoint Problem in Planar First-Passage Percolation
We consider first-passage percolation on with independent and identically distributed weights whose common distribution is absolutely continuous with a finite exponential moment. Under the assumption that the limit shape has more than 32 extreme points, we prove that geodesics with nearby starting a...
Saved in:
Published in | Geometric and functional analysis Vol. 34; no. 3; pp. 733 - 797 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.06.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1016-443X 1420-8970 |
DOI | 10.1007/s00039-024-00672-z |
Cover
Loading…
Abstract | We consider first-passage percolation on
with independent and identically distributed weights whose common distribution is absolutely continuous with a finite exponential moment. Under the assumption that the limit shape has more than 32 extreme points, we prove that geodesics with nearby starting and ending points have significant overlap, coalescing on all but small portions near their endpoints. The statement is quantified, with power-law dependence of the involved quantities on the length of the geodesics.
The result leads to a quantitative resolution of the Benjamini–Kalai–Schramm midpoint problem. It is shown that the probability that the geodesic between two given points passes through a given edge is smaller than a power of the distance between the points and the edge.
We further prove that the limit shape assumption is satisfied for a specific family of distributions.
Lastly, related to the 1965 Hammersley–Welsh highways and byways problem, we prove that the expected fraction of the square {−
n
,…,
n
}
2
which is covered by infinite geodesics starting at the origin is at most an inverse power of
n
. This result is obtained without explicit limit shape assumptions. |
---|---|
AbstractList | We consider first-passage percolation on with independent and identically distributed weights whose common distribution is absolutely continuous with a finite exponential moment. Under the assumption that the limit shape has more than 32 extreme points, we prove that geodesics with nearby starting and ending points have significant overlap, coalescing on all but small portions near their endpoints. The statement is quantified, with power-law dependence of the involved quantities on the length of the geodesics.The result leads to a quantitative resolution of the Benjamini–Kalai–Schramm midpoint problem. It is shown that the probability that the geodesic between two given points passes through a given edge is smaller than a power of the distance between the points and the edge.We further prove that the limit shape assumption is satisfied for a specific family of distributions.Lastly, related to the 1965 Hammersley–Welsh highways and byways problem, we prove that the expected fraction of the square {−n,…,n}2 which is covered by infinite geodesics starting at the origin is at most an inverse power of n. This result is obtained without explicit limit shape assumptions. We consider first-passage percolation on with independent and identically distributed weights whose common distribution is absolutely continuous with a finite exponential moment. Under the assumption that the limit shape has more than 32 extreme points, we prove that geodesics with nearby starting and ending points have significant overlap, coalescing on all but small portions near their endpoints. The statement is quantified, with power-law dependence of the involved quantities on the length of the geodesics. The result leads to a quantitative resolution of the Benjamini–Kalai–Schramm midpoint problem. It is shown that the probability that the geodesic between two given points passes through a given edge is smaller than a power of the distance between the points and the edge. We further prove that the limit shape assumption is satisfied for a specific family of distributions. Lastly, related to the 1965 Hammersley–Welsh highways and byways problem, we prove that the expected fraction of the square {− n ,…, n } 2 which is covered by infinite geodesics starting at the origin is at most an inverse power of n . This result is obtained without explicit limit shape assumptions. We consider first-passage percolation on $\mathbb{Z}^{2}$ with independent and identically distributed weights whose common distribution is absolutely continuous with a finite exponential moment. Under the assumption that the limit shape has more than 32 extreme points, we prove that geodesics with nearby starting and ending points have significant overlap, coalescing on all but small portions near their endpoints. The statement is quantified, with power-law dependence of the involved quantities on the length of the geodesics. The result leads to a quantitative resolution of the Benjamini–Kalai–Schramm midpoint problem. It is shown that the probability that the geodesic between two given points passes through a given edge is smaller than a power of the distance between the points and the edge. We further prove that the limit shape assumption is satisfied for a specific family of distributions. Lastly, related to the 1965 Hammersley–Welsh highways and byways problem, we prove that the expected fraction of the square {− n ,…, n } 2 which is covered by infinite geodesics starting at the origin is at most an inverse power of n . This result is obtained without explicit limit shape assumptions. |
Author | Peled, Ron Elboim, Dor Dembin, Barbara |
Author_xml | – sequence: 1 givenname: Barbara surname: Dembin fullname: Dembin, Barbara organization: D-MATH, ETH Zürich – sequence: 2 givenname: Dor surname: Elboim fullname: Elboim, Dor organization: Department of Mathematics, Princeton University – sequence: 3 givenname: Ron surname: Peled fullname: Peled, Ron email: peledron@tauex.tau.ac.il organization: School of Mathematical Sciences, Tel Aviv University, Institute for Advanced Study and Princeton University |
BookMark | eNp9kM1KAzEURoNUsK2-gKuA62j-JjOz1GKrWHFABV2FNJOpKdOkJunCPr1jRxBcdHXv4jv3fpwRGDjvDADnBF8SjPOriDFmJcKUI4xFTtHuCAwJpxgVZY4H3Y6JQJyztxMwinHVxbOMZ0PwPvGqNVEbpw30DZwZX5todYTK1TB9GHjz8Awfbb3x1iVYBb9ozRpaB6tWORXg1IaYUKViVEsDKxO0b1Wy3p2C40a10Zz9zjF4nd6-TO7Q_Gl2P7meI80ES6jJStyQ2jCuBSlyTYXiuaGCaE6IKCkVNS-aRSY0zZuG6rJQnOlCkZyUWakKNgYX_d1N8J9bE5Nc-W1w3UvJcEYFFSUnXaroUzr4GINppLZp3zMFZVtJsPwRKXuRshMp9yLlrkPpP3QT7FqFr8MQ66HYhd3ShL9WB6hv5OuHPA |
CitedBy_id | crossref_primary_10_1214_24_AOP1715 |
Cites_doi | 10.1007/s004400050105 10.1007/978-3-0348-9078-6_94 10.1214/aop/1176988171 10.1007/BF01609432 10.1017/9781108591034 10.1007/BF02699376 10.1214/aop/1022855423 10.1214/20-EJP489 10.1214/17-EJP115 10.1214/21-EJP639 10.1214/aop/1042644722 10.1007/BF01314921 10.1007/978-1-4612-0063-5_8 10.1007/s00440-023-01252-2 10.1007/BFb0074919 10.1007/s00220-016-2743-3 10.1007/s00220-009-0798-0 10.1007/s00440-021-01035-7 10.1214/aop/1024404277 10.1016/0020-0190(90)90214-I 10.1007/s00220-015-2419-4 10.1214/13-AAP999 10.1214/105051604000000729 10.1007/BF02181495 10.1214/22-AAP1795 10.1017/S0305004100034241 10.1214/18-AOP1304 10.1214/aoap/1031863179 10.1214/07-AAP510 10.1017/fms.2020.31 10.1007/s00440-014-0591-7 10.1007/s00220-013-1875-y 10.1007/s00220-021-04246-0 10.1007/BF01942060 10.2307/j.ctvd58v18 10.1214/12-AAP864 10.1017/9781316882603 10.1007/BF01609854 10.1007/s00220-007-0274-7 10.1007/978-981-15-0294-1_10 10.1063/1.5093799 10.1090/ulect/068 10.1214/19-AIHP1016 10.1007/978-3-0348-8912-4 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s00039-024-00672-z |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (Selected full-text) url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1420-8970 |
EndPage | 797 |
ExternalDocumentID | 10_1007_s00039_024_00672_z |
GrantInformation_xml | – fundername: Tel Aviv University |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 29H 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 692 6NX 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KQ8 LAS LLZTM LO0 M4Y MA- MBV N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OK1 P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I REI RHV RNI ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c363t-f590f1de34c6187c26a47e261c41169226d48fb56c27ff2c98a43c8a171959a83 |
IEDL.DBID | U2A |
ISSN | 1016-443X |
IngestDate | Fri Jul 25 11:19:52 EDT 2025 Tue Jul 01 02:31:08 EDT 2025 Thu Apr 24 22:57:49 EDT 2025 Fri Feb 21 02:39:06 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-f590f1de34c6187c26a47e261c41169226d48fb56c27ff2c98a43c8a171959a83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/10.1007/s00039-024-00672-z |
PQID | 3052626941 |
PQPubID | 2044207 |
PageCount | 65 |
ParticipantIDs | proquest_journals_3052626941 crossref_citationtrail_10_1007_s00039_024_00672_z crossref_primary_10_1007_s00039_024_00672_z springer_journals_10_1007_s00039_024_00672_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationSubtitle | GAFA |
PublicationTitle | Geometric and functional analysis |
PublicationTitleAbbrev | Geom. Funct. Anal |
PublicationYear | 2024 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | BalázsM.BusaniO.SeppäläinenT.Local stationarity in exponential last-passage percolationProbab. Theory Relat. Fields202118011131624265019 Bassan, M., Gilboa, S., Peled, R.: Non-constant ground configurations in the disordered ferromagnet (2023). ArXiv preprint. arXiv:2309.06437 KozmaG.PeledR.Power-law decay of weights and recurrence of the two-dimensional VRJPElectron. J. Probab.2021261194278593 AuffingerA.DamronM.HansonJ.Limiting geodesics for first-passage percolation on subsets of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{Z}^{2}$\end{document}Ann. Appl. Probab.20152513734053297776 Dembin, B., Elboim, D., Hadas, D., Peled, R.: Minimal surfaces in random environment (2024). ArXiv preprint. arXiv:2401.06768 MarchandR.Strict inequalities for the time constant in first passage percolationAnn. Appl. Probab.2002123100110381925450 SeppäläinenT.Existence, uniqueness and coalescence of directed planar geodesics: proof via the increment-stationary growth processAnn. Inst. Henri Poincaré Probab. Stat.2020563177517914116707 DamronM.HansonJ.Busemann functions and infinite geodesics in two-dimensional first-passage percolationCommun. Math. Phys.201432539179633152744 KestenH.Aspects of first passage percolationÉcole D’été de Probabilités de Saint-Flour, XIV—19841986BerlinSpringer125264 MiłośP.PeledR.Delocalization of two-dimensional random surfaces with hard-core constraintsCommun. Math. Phys.201534011463395146 FriedliS.VelenikY.Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction2017CambridgeCambridge University Press PfisterC.E.On the symmetry of the Gibbs states in two-dimensional lattice systemsCommun. Math. Phys.1981792181188612247 WüthrichM.V.Asymptotic behaviour of semi-infinite geodesics for maximal increasing subsequences in the planeAnd Out of Equilibrium2002BerlinSpringer205226 Elboim, D., Schmid, D.: Mixing times and cutoff for the tasep in the high and low density phase (2022). ArXiv preprint. arXiv:2208.08306 LiceaC.NewmanC.M.Geodesics in two-dimensional first-passage percolationAnn. Probab.19962413994101387641 Seppäläinen, T., Sorensen, E.: Global structure of semi-infinite geodesics and competition interfaces in Brownian last-passage percolation (2021). ArXiv preprint. arXiv:2112.10729 Groathouse, S., Janjigian, C., Rassoul-Agha, F.: Non-existence of non-trivial bi-infinite geodesics in geometric last passage percolation (2021). ArXiv preprint. arXiv:2112.00161 SchenkerJ.Eigenvector localization for random band matrices with power law band widthCommun. Math. Phys.20092903106510972525652 Dembin, B., Garban, C.: Superconcentration for minimal surfaces in first passage percolation and disordered Ising ferromagnets. Probab. Theory Relat. Fields, 1–28 (2024) DamronM.HansonJ.Bigeodesics in first-passage percolationCommun. Math. Phys.201734927537763595369 BalázsM.BusaniO.SeppäläinenT.Non-existence of bi-infinite geodesics in the exponential corner growth modelForum Math. Sigma202084176750 Theodore CoxJ.DurrettR.Some limit theorems for percolation processes with necessary and sufficient conditionsAnn. Probab.198194583603624685 HoffmanC.Coexistence for Richardson type competing spatial growth modelsAnn. Appl. Probab.2005151B7397472114988 BatesE.GangulyS.HammondA.Hausdorff dimensions for shared endpoints of disjoint geodesics in the directed landscapeElectron. J. Probab.2022271444361743 HagerupT.RübC.A guided tour of Chernoff boundsInf. Process. Lett.19903363053081045520 HammersleyJ.M.WelshD.J.A.First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theoryProc. Internat. Res. Semin., Statist. Lab., Univ. California, Berkeley, Calif1965New YorkSpringer61110 Schmid, D.: Mixing times for the TASEP in the maximal current phase (2021). ArXiv preprint. arXiv:2104.12745 Janjigian, C., Rassoul-Agha, F., Seppäläinen, T.: Geometry of geodesics through Busemann measures in directed last-passage percolation (2019). ArXiv preprint. arXiv:1908.09040 McBryanO.A.SpencerT.On the decay of correlations in SO(n)-symmetric ferromagnetsCommun. Math. Phys.1977533299302441179 SeppäläinenT.ShenX.Coalescence estimates for the corner growth model with exponential weightsElectron. J. Probab.2020251314125790 Dembin, B., Elboim, D., Peled, R.: On the influence of edges in first-passage percolation on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{Z} ^{d}$\end{document} (2023). ArXiv preprint. arXiv:2307.01162 Schmid, D., Sly, A.: Mixing times for the TASEP on the circle. (2022). ArXiv preprint. arXiv:2203.11896 TalagrandM.Concentration of measure and isoperimetric inequalities in product spacesPubl. Math. IHÉS1995811732051361756 SteinE.M.ShakarchiR.Real Analysis2009PrincetonPrinceton University Press Ahlberg, D., Hanson, J., Hoffman, C.: The number of geodesics in planar first-passage percolation grows sublinearly (2022). ArXiv preprint. arXiv:2208.11576 Ahlberg, D., Hoffman, C.: Random coalescing geodesics in first-passage percolation (2019). ArXiv preprint. arXiv:1609.02447 BasuR.HoffmanC.SlyA.Nonexistence of bigeodesics in planar exponential last passage percolationCommun. Math. Phys.202238911304365136 PimentelLeandro P.R.Duality between coalescence times and exit points in last-passage percolation modelsAnn. Probab.2016445318732063551194 Elboim, D., Klartag, B.: Long lines in subsets of large measure in high dimension (2022). ArXiv preprint. arXiv:2202.02836 DobrushinR.L.ShlosmanS.B.Absence of breakdown of continuous symmetry in two-dimensional models of statistical physicsCommun. Math. Phys.19754213140424106 AuffingerA.DamronM.HansonJ.50 Years of First-Passage Percolation2017ProvidenceAMS AlexanderK.S.Approximation of subadditive functions and convergence rates in limiting-shape resultsAnn. Probab.199725130551428498 HarrisT.E.A lower bound for the critical probability in a certain percolation processMath. Proc. Camb. Philos. Soc.19605611320115221 WehrJ.AizenmanM.Fluctuations of extensive functions of quenched random couplingsJ. Stat. Phys.19906032873061069633 WehrJ.WooJ.Absence of geodesics in first-passage percolation on a half-planeAnn. Probab.19982613583671617053 DobrushinR.L.ShlosmanS.B.Nonexistence of one- and two-dimensional Gibbs fields with noncompact group of continuous symmetriesMulticompon. Random Syst.19806199210599536 Basdevant, A.-L., Gouéré, J.-B., Théret, M.: First-order behavior of the time constant in Bernoulli first-passage percolation (2021). ArXiv preprint. arXiv:2106.12266 Newman, C.M., Piza, M.S.: Divergence of shape fluctuations in two dimensions. Ann. Probab., 977–1005 (1995) BenjaminiI.KalaiG.SchrammO.First passage percolation has sublinear distance varianceAnn. Probab.200331197019782016607 NewmanC.M.Topics in Disordered Systems1997BerlinSpringer RichthammerT.Translation-invariance of two-dimensional Gibbsian point processesCommun. Math. Phys.20072741811222318849 ZhangL.Optimal exponent for coalescence of finite geodesics in exponential last passage percolationElectron. Commun. Probab.2020251144167385 NewmanC.M.A surface view of first-passage percolationProceedings of the International Congress of Mathematicians1995BerlinSpringer10171023 Hoffman, C.: Geodesics in first passage percolation. Ann. Appl. Probab., 1944–1969 (2008) HowardC.D.NewmanC.M.Euclidean models of first-passage percolationProbab. Theory Relat. Fields19971081531701452554 DamronM.HochmanM.Examples of nonpolygonal limit shapes in i.i.d. first-passage percolation and infinite coexistence in spatial growth modelsAnn. Appl. Probab.2013233107410853076678 PeledR.SpinkaY.Lectures on the spin and loop O(n) modelsSojourns in Probability Theory and Statistical Physics-i2019BerlinSpringer246320 ChatterjeeS.A general method for lower bounds on fluctuations of random variablesAnn. Probab.2019474214021713980917 BasuR.SarkarS.SlyA.Coalescence of geodesics in exactly solvable models of last passage percolationJ. Math. Phys.20196094002528 Coupier, D.: Sublinearity of the number of semi-infinite branches for geometric random trees (2018) WehrJ.On the number of infinite geodesics and ground states in disordered systemsJ. Stat. Phys.19978714394471453745 Alexander, K.S.: Geodesics, bigeodesics, and coalescence in first passage percolation in general dimension (2020). ArXiv preprint. arXiv:2001.08736 DurrettR.Probability: Theory and Examples2019CambridgeCambridge University Press DamronM.HansonJ.SosoeP.Sublinear variance in first-passage percolation for general distributionsProbab. Theory Relat. Fields201516312232583405617 Seppäläinen, T., Sorensen, E.: Busemann process and semi-infinite geodesics in Brownian last-passage percolation (2021). ArXiv preprint. arXiv:2103.01172 O.A. McBryan (672_CR43) 1977; 53 672_CR47 G. Kozma (672_CR40) 2021; 26 M. Balázs (672_CR8) 2021; 180 C. Hoffman (672_CR35) 2005; 15 C. Licea (672_CR41) 1996; 24 T. Seppäläinen (672_CR55) 2020; 25 M. Balázs (672_CR7) 2020; 8 M. Damron (672_CR19) 2017; 349 E.M. Stein (672_CR59) 2009 672_CR53 R. Durrett (672_CR27) 2019 C.M. Newman (672_CR46) 1997 R. Peled (672_CR48) 2019 672_CR56 672_CR10 672_CR54 672_CR4 672_CR38 672_CR2 672_CR36 672_CR1 E. Bates (672_CR13) 2022; 27 C.D. Howard (672_CR37) 1997; 108 J. Schenker (672_CR52) 2009; 290 C.M. Newman (672_CR45) 1995 672_CR9 P. Miłoś (672_CR44) 2015; 340 T. Hagerup (672_CR32) 1990; 33 J. Theodore Cox (672_CR17) 1981; 9 S. Chatterjee (672_CR15) 2019; 47 M. Damron (672_CR21) 2013; 23 I. Benjamini (672_CR14) 2003; 31 J. Wehr (672_CR63) 1998; 26 T. Seppäläinen (672_CR57) 2020; 56 S. Friedli (672_CR30) 2017 M. Talagrand (672_CR60) 1995; 81 672_CR28 R. Basu (672_CR12) 2019; 60 M. Damron (672_CR18) 2014; 325 C.E. Pfister (672_CR49) 1981; 79 R.L. Dobrushin (672_CR25) 1975; 42 672_CR29 M. Damron (672_CR20) 2015; 163 L. Zhang (672_CR65) 2020; 25 A. Auffinger (672_CR5) 2015; 25 672_CR31 J. Wehr (672_CR61) 1997; 87 T.E. Harris (672_CR34) 1960; 56 J. Wehr (672_CR62) 1990; 60 672_CR16 672_CR58 H. Kesten (672_CR39) 1986 T. Richthammer (672_CR51) 2007; 274 M.V. Wüthrich (672_CR64) 2002 J.M. Hammersley (672_CR33) 1965 R. Marchand (672_CR42) 2002; 12 A. Auffinger (672_CR6) 2017 R. Basu (672_CR11) 2022; 389 K.S. Alexander (672_CR3) 1997; 25 672_CR23 Leandro P.R. Pimentel (672_CR50) 2016; 44 672_CR24 672_CR22 R.L. Dobrushin (672_CR26) 1980; 6 |
References_xml | – reference: Elboim, D., Klartag, B.: Long lines in subsets of large measure in high dimension (2022). ArXiv preprint. arXiv:2202.02836 – reference: AlexanderK.S.Approximation of subadditive functions and convergence rates in limiting-shape resultsAnn. Probab.199725130551428498 – reference: Janjigian, C., Rassoul-Agha, F., Seppäläinen, T.: Geometry of geodesics through Busemann measures in directed last-passage percolation (2019). ArXiv preprint. arXiv:1908.09040 – reference: DobrushinR.L.ShlosmanS.B.Nonexistence of one- and two-dimensional Gibbs fields with noncompact group of continuous symmetriesMulticompon. Random Syst.19806199210599536 – reference: HarrisT.E.A lower bound for the critical probability in a certain percolation processMath. Proc. Camb. Philos. Soc.19605611320115221 – reference: Dembin, B., Garban, C.: Superconcentration for minimal surfaces in first passage percolation and disordered Ising ferromagnets. Probab. Theory Relat. Fields, 1–28 (2024) – reference: Schmid, D.: Mixing times for the TASEP in the maximal current phase (2021). ArXiv preprint. arXiv:2104.12745 – reference: TalagrandM.Concentration of measure and isoperimetric inequalities in product spacesPubl. Math. IHÉS1995811732051361756 – reference: MiłośP.PeledR.Delocalization of two-dimensional random surfaces with hard-core constraintsCommun. Math. Phys.201534011463395146 – reference: DamronM.HansonJ.SosoeP.Sublinear variance in first-passage percolation for general distributionsProbab. Theory Relat. Fields201516312232583405617 – reference: Coupier, D.: Sublinearity of the number of semi-infinite branches for geometric random trees (2018) – reference: PimentelLeandro P.R.Duality between coalescence times and exit points in last-passage percolation modelsAnn. Probab.2016445318732063551194 – reference: BatesE.GangulyS.HammondA.Hausdorff dimensions for shared endpoints of disjoint geodesics in the directed landscapeElectron. J. Probab.2022271444361743 – reference: LiceaC.NewmanC.M.Geodesics in two-dimensional first-passage percolationAnn. Probab.19962413994101387641 – reference: PeledR.SpinkaY.Lectures on the spin and loop O(n) modelsSojourns in Probability Theory and Statistical Physics-i2019BerlinSpringer246320 – reference: Alexander, K.S.: Geodesics, bigeodesics, and coalescence in first passage percolation in general dimension (2020). ArXiv preprint. arXiv:2001.08736 – reference: KestenH.Aspects of first passage percolationÉcole D’été de Probabilités de Saint-Flour, XIV—19841986BerlinSpringer125264 – reference: DamronM.HansonJ.Bigeodesics in first-passage percolationCommun. Math. Phys.201734927537763595369 – reference: AuffingerA.DamronM.HansonJ.Limiting geodesics for first-passage percolation on subsets of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{Z}^{2}$\end{document}Ann. Appl. Probab.20152513734053297776 – reference: FriedliS.VelenikY.Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction2017CambridgeCambridge University Press – reference: DamronM.HansonJ.Busemann functions and infinite geodesics in two-dimensional first-passage percolationCommun. Math. Phys.201432539179633152744 – reference: PfisterC.E.On the symmetry of the Gibbs states in two-dimensional lattice systemsCommun. Math. Phys.1981792181188612247 – reference: HowardC.D.NewmanC.M.Euclidean models of first-passage percolationProbab. Theory Relat. Fields19971081531701452554 – reference: Schmid, D., Sly, A.: Mixing times for the TASEP on the circle. (2022). ArXiv preprint. arXiv:2203.11896 – reference: HammersleyJ.M.WelshD.J.A.First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theoryProc. Internat. Res. Semin., Statist. Lab., Univ. California, Berkeley, Calif1965New YorkSpringer61110 – reference: SeppäläinenT.Existence, uniqueness and coalescence of directed planar geodesics: proof via the increment-stationary growth processAnn. Inst. Henri Poincaré Probab. Stat.2020563177517914116707 – reference: Newman, C.M., Piza, M.S.: Divergence of shape fluctuations in two dimensions. Ann. Probab., 977–1005 (1995) – reference: Basdevant, A.-L., Gouéré, J.-B., Théret, M.: First-order behavior of the time constant in Bernoulli first-passage percolation (2021). ArXiv preprint. arXiv:2106.12266 – reference: McBryanO.A.SpencerT.On the decay of correlations in SO(n)-symmetric ferromagnetsCommun. Math. Phys.1977533299302441179 – reference: HagerupT.RübC.A guided tour of Chernoff boundsInf. Process. Lett.19903363053081045520 – reference: Groathouse, S., Janjigian, C., Rassoul-Agha, F.: Non-existence of non-trivial bi-infinite geodesics in geometric last passage percolation (2021). ArXiv preprint. arXiv:2112.00161 – reference: BenjaminiI.KalaiG.SchrammO.First passage percolation has sublinear distance varianceAnn. Probab.200331197019782016607 – reference: Dembin, B., Elboim, D., Peled, R.: On the influence of edges in first-passage percolation on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{Z} ^{d}$\end{document} (2023). ArXiv preprint. arXiv:2307.01162 – reference: Bassan, M., Gilboa, S., Peled, R.: Non-constant ground configurations in the disordered ferromagnet (2023). ArXiv preprint. arXiv:2309.06437 – reference: WehrJ.WooJ.Absence of geodesics in first-passage percolation on a half-planeAnn. Probab.19982613583671617053 – reference: WüthrichM.V.Asymptotic behaviour of semi-infinite geodesics for maximal increasing subsequences in the planeAnd Out of Equilibrium2002BerlinSpringer205226 – reference: BalázsM.BusaniO.SeppäläinenT.Local stationarity in exponential last-passage percolationProbab. Theory Relat. Fields202118011131624265019 – reference: DurrettR.Probability: Theory and Examples2019CambridgeCambridge University Press – reference: HoffmanC.Coexistence for Richardson type competing spatial growth modelsAnn. Appl. Probab.2005151B7397472114988 – reference: BasuR.SarkarS.SlyA.Coalescence of geodesics in exactly solvable models of last passage percolationJ. Math. Phys.20196094002528 – reference: Theodore CoxJ.DurrettR.Some limit theorems for percolation processes with necessary and sufficient conditionsAnn. Probab.198194583603624685 – reference: RichthammerT.Translation-invariance of two-dimensional Gibbsian point processesCommun. Math. Phys.20072741811222318849 – reference: Seppäläinen, T., Sorensen, E.: Busemann process and semi-infinite geodesics in Brownian last-passage percolation (2021). ArXiv preprint. arXiv:2103.01172 – reference: Elboim, D., Schmid, D.: Mixing times and cutoff for the tasep in the high and low density phase (2022). ArXiv preprint. arXiv:2208.08306 – reference: BalázsM.BusaniO.SeppäläinenT.Non-existence of bi-infinite geodesics in the exponential corner growth modelForum Math. Sigma202084176750 – reference: DobrushinR.L.ShlosmanS.B.Absence of breakdown of continuous symmetry in two-dimensional models of statistical physicsCommun. Math. Phys.19754213140424106 – reference: AuffingerA.DamronM.HansonJ.50 Years of First-Passage Percolation2017ProvidenceAMS – reference: SeppäläinenT.ShenX.Coalescence estimates for the corner growth model with exponential weightsElectron. J. Probab.2020251314125790 – reference: DamronM.HochmanM.Examples of nonpolygonal limit shapes in i.i.d. first-passage percolation and infinite coexistence in spatial growth modelsAnn. Appl. Probab.2013233107410853076678 – reference: NewmanC.M.Topics in Disordered Systems1997BerlinSpringer – reference: SchenkerJ.Eigenvector localization for random band matrices with power law band widthCommun. Math. Phys.20092903106510972525652 – reference: ZhangL.Optimal exponent for coalescence of finite geodesics in exponential last passage percolationElectron. Commun. Probab.2020251144167385 – reference: MarchandR.Strict inequalities for the time constant in first passage percolationAnn. Appl. Probab.2002123100110381925450 – reference: WehrJ.AizenmanM.Fluctuations of extensive functions of quenched random couplingsJ. Stat. Phys.19906032873061069633 – reference: NewmanC.M.A surface view of first-passage percolationProceedings of the International Congress of Mathematicians1995BerlinSpringer10171023 – reference: Dembin, B., Elboim, D., Hadas, D., Peled, R.: Minimal surfaces in random environment (2024). ArXiv preprint. arXiv:2401.06768 – reference: KozmaG.PeledR.Power-law decay of weights and recurrence of the two-dimensional VRJPElectron. J. Probab.2021261194278593 – reference: SteinE.M.ShakarchiR.Real Analysis2009PrincetonPrinceton University Press – reference: Ahlberg, D., Hoffman, C.: Random coalescing geodesics in first-passage percolation (2019). ArXiv preprint. arXiv:1609.02447 – reference: BasuR.HoffmanC.SlyA.Nonexistence of bigeodesics in planar exponential last passage percolationCommun. Math. Phys.202238911304365136 – reference: ChatterjeeS.A general method for lower bounds on fluctuations of random variablesAnn. Probab.2019474214021713980917 – reference: Seppäläinen, T., Sorensen, E.: Global structure of semi-infinite geodesics and competition interfaces in Brownian last-passage percolation (2021). ArXiv preprint. arXiv:2112.10729 – reference: Ahlberg, D., Hanson, J., Hoffman, C.: The number of geodesics in planar first-passage percolation grows sublinearly (2022). ArXiv preprint. arXiv:2208.11576 – reference: Hoffman, C.: Geodesics in first passage percolation. Ann. Appl. Probab., 1944–1969 (2008) – reference: WehrJ.On the number of infinite geodesics and ground states in disordered systemsJ. Stat. Phys.19978714394471453745 – ident: 672_CR31 – volume: 108 start-page: 153 year: 1997 ident: 672_CR37 publication-title: Probab. Theory Relat. Fields doi: 10.1007/s004400050105 – start-page: 1017 volume-title: Proceedings of the International Congress of Mathematicians year: 1995 ident: 672_CR45 doi: 10.1007/978-3-0348-9078-6_94 – volume: 31 start-page: 1970 year: 2003 ident: 672_CR14 publication-title: Ann. Probab. – ident: 672_CR47 doi: 10.1214/aop/1176988171 – volume: 42 start-page: 31 issue: 1 year: 1975 ident: 672_CR25 publication-title: Commun. Math. Phys. doi: 10.1007/BF01609432 – volume-title: Probability: Theory and Examples year: 2019 ident: 672_CR27 doi: 10.1017/9781108591034 – ident: 672_CR29 – volume: 81 start-page: 73 issue: 1 year: 1995 ident: 672_CR60 publication-title: Publ. Math. IHÉS doi: 10.1007/BF02699376 – ident: 672_CR2 – volume: 26 start-page: 358 issue: 1 year: 1998 ident: 672_CR63 publication-title: Ann. Probab. doi: 10.1214/aop/1022855423 – volume: 25 start-page: 1 year: 2020 ident: 672_CR55 publication-title: Electron. J. Probab. doi: 10.1214/20-EJP489 – ident: 672_CR16 doi: 10.1214/17-EJP115 – ident: 672_CR58 – ident: 672_CR54 – volume: 26 start-page: 1 year: 2021 ident: 672_CR40 publication-title: Electron. J. Probab. doi: 10.1214/21-EJP639 – volume: 24 start-page: 399 issue: 1 year: 1996 ident: 672_CR41 publication-title: Ann. Probab. doi: 10.1214/aop/1042644722 – volume: 60 start-page: 287 issue: 3 year: 1990 ident: 672_CR62 publication-title: J. Stat. Phys. doi: 10.1007/BF01314921 – ident: 672_CR28 – volume: 44 start-page: 3187 issue: 5 year: 2016 ident: 672_CR50 publication-title: Ann. Probab. – start-page: 205 volume-title: And Out of Equilibrium year: 2002 ident: 672_CR64 doi: 10.1007/978-1-4612-0063-5_8 – ident: 672_CR24 doi: 10.1007/s00440-023-01252-2 – start-page: 125 volume-title: École D’été de Probabilités de Saint-Flour, XIV—1984 year: 1986 ident: 672_CR39 doi: 10.1007/BFb0074919 – volume: 349 start-page: 753 issue: 2 year: 2017 ident: 672_CR19 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-016-2743-3 – volume: 290 start-page: 1065 issue: 3 year: 2009 ident: 672_CR52 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-009-0798-0 – volume: 27 start-page: 1 year: 2022 ident: 672_CR13 publication-title: Electron. J. Probab. – volume: 25 start-page: 1 year: 2020 ident: 672_CR65 publication-title: Electron. Commun. Probab. – volume: 180 start-page: 113 issue: 1 year: 2021 ident: 672_CR8 publication-title: Probab. Theory Relat. Fields doi: 10.1007/s00440-021-01035-7 – volume: 25 start-page: 30 issue: 1 year: 1997 ident: 672_CR3 publication-title: Ann. Probab. doi: 10.1214/aop/1024404277 – volume: 33 start-page: 305 issue: 6 year: 1990 ident: 672_CR32 publication-title: Inf. Process. Lett. doi: 10.1016/0020-0190(90)90214-I – ident: 672_CR38 – volume: 340 start-page: 1 issue: 1 year: 2015 ident: 672_CR44 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-015-2419-4 – ident: 672_CR56 – volume: 25 start-page: 373 issue: 1 year: 2015 ident: 672_CR5 publication-title: Ann. Appl. Probab. doi: 10.1214/13-AAP999 – volume: 15 start-page: 739 issue: 1B year: 2005 ident: 672_CR35 publication-title: Ann. Appl. Probab. doi: 10.1214/105051604000000729 – volume: 87 start-page: 439 issue: 1 year: 1997 ident: 672_CR61 publication-title: J. Stat. Phys. doi: 10.1007/BF02181495 – ident: 672_CR9 doi: 10.1214/22-AAP1795 – volume: 56 start-page: 13 issue: 1 year: 1960 ident: 672_CR34 publication-title: Math. Proc. Camb. Philos. Soc. doi: 10.1017/S0305004100034241 – ident: 672_CR10 – volume: 47 start-page: 2140 issue: 4 year: 2019 ident: 672_CR15 publication-title: Ann. Probab. doi: 10.1214/18-AOP1304 – volume: 12 start-page: 1001 issue: 3 year: 2002 ident: 672_CR42 publication-title: Ann. Appl. Probab. doi: 10.1214/aoap/1031863179 – ident: 672_CR23 – ident: 672_CR36 doi: 10.1214/07-AAP510 – volume: 8 year: 2020 ident: 672_CR7 publication-title: Forum Math. Sigma doi: 10.1017/fms.2020.31 – volume: 163 start-page: 223 issue: 1 year: 2015 ident: 672_CR20 publication-title: Probab. Theory Relat. Fields doi: 10.1007/s00440-014-0591-7 – volume: 325 start-page: 917 issue: 3 year: 2014 ident: 672_CR18 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-013-1875-y – volume: 389 start-page: 1 issue: 1 year: 2022 ident: 672_CR11 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-021-04246-0 – volume: 9 start-page: 583 issue: 4 year: 1981 ident: 672_CR17 publication-title: Ann. Probab. – volume: 6 start-page: 199 year: 1980 ident: 672_CR26 publication-title: Multicompon. Random Syst. – volume: 79 start-page: 181 issue: 2 year: 1981 ident: 672_CR49 publication-title: Commun. Math. Phys. doi: 10.1007/BF01942060 – volume-title: Real Analysis year: 2009 ident: 672_CR59 doi: 10.2307/j.ctvd58v18 – volume: 23 start-page: 1074 issue: 3 year: 2013 ident: 672_CR21 publication-title: Ann. Appl. Probab. doi: 10.1214/12-AAP864 – volume-title: Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction year: 2017 ident: 672_CR30 doi: 10.1017/9781316882603 – start-page: 61 volume-title: Proc. Internat. Res. Semin., Statist. Lab., Univ. California, Berkeley, Calif year: 1965 ident: 672_CR33 – volume: 53 start-page: 299 issue: 3 year: 1977 ident: 672_CR43 publication-title: Commun. Math. Phys. doi: 10.1007/BF01609854 – volume: 274 start-page: 81 issue: 1 year: 2007 ident: 672_CR51 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-007-0274-7 – ident: 672_CR4 – start-page: 246 volume-title: Sojourns in Probability Theory and Statistical Physics-i year: 2019 ident: 672_CR48 doi: 10.1007/978-981-15-0294-1_10 – ident: 672_CR1 – volume: 60 issue: 9 year: 2019 ident: 672_CR12 publication-title: J. Math. Phys. doi: 10.1063/1.5093799 – ident: 672_CR22 – volume-title: 50 Years of First-Passage Percolation year: 2017 ident: 672_CR6 doi: 10.1090/ulect/068 – volume: 56 start-page: 1775 issue: 3 year: 2020 ident: 672_CR57 publication-title: Ann. Inst. Henri Poincaré Probab. Stat. doi: 10.1214/19-AIHP1016 – ident: 672_CR53 – volume-title: Topics in Disordered Systems year: 1997 ident: 672_CR46 doi: 10.1007/978-3-0348-8912-4 |
SSID | ssj0005545 |
Score | 2.4136236 |
Snippet | We consider first-passage percolation on
with independent and identically distributed weights whose common distribution is absolutely continuous with a finite... We consider first-passage percolation on $\mathbb{Z}^{2}$ with independent and identically distributed weights whose common distribution is absolutely... We consider first-passage percolation on with independent and identically distributed weights whose common distribution is absolutely continuous with a finite... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 733 |
SubjectTerms | Analysis Coalescing Geodesy Mathematics Mathematics and Statistics Percolation |
Title | Coalescence of Geodesics and the BKS Midpoint Problem in Planar First-Passage Percolation |
URI | https://link.springer.com/article/10.1007/s00039-024-00672-z https://www.proquest.com/docview/3052626941 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED4BXWDgjSiUygMbWGriR5KxjRoQVVElqFSmyHVsqRJKUBMWfj22m7QCARJThtge7s6-73y-7wCu_XlGFAsCzJmWmEY9gkOPaKx7JAtERLhQ9mpg_Mjvp_RhxmZ1UVjZvHZvUpLupF4Xu7k6Umx8Cnb5Q_yxDS1mYndr11O_v3nYwVxrYhuWYkrJrC6V-XmNr-5ogzG_pUWdt0kOYb-Giai_0usRbKn8GA5qyIjqDVkew954TbtansBLXIgVP5NUqNDoThWZMmookcgzZAaiwegJjRfZW7HIKzRZNZNBixzZ3kViiZKFAYN4YgC1OWbQRC2NmTjVncI0GT7H97junYAl4aTCmkU97WWKUMm9MJA-FzRQJlyS1PN4ZEBXRkM9Z1z6gda-jEJBiQyFF1i2GRGSM9jJi1ydA-JZxJkMeRRoE0xqIiLFeWhmMca1AZBt8BoRprImFrf9LV7TNSWyE3tqxJ46sacfbbhZz3lb0Wr8ObrTaCatt1iZEstU4-pw23DbaGvz-_fVLv43_BJ2fWcw9ualAzvV8l1dGSBSzbvQ6ieDwaP93r2Mhl3Yjnncddb4CZoo1eo |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCBN6I8PbCBURM_koyAKIVSVAkqlSlyHVuqQAlqwtJfj-M4rUCAxJyz5fjOvu9s33cAp_4oIYoFAeZMS0yjFsGhRzTWLZIEIiJcqPJooPfIOwN6P2RDlxSW16_d6ytJu1PPkt1sHik2PgXb-0M8XYQlamJw1oCly9uX7s38aQezxYnLwBRTSoYuWebnXr46pDnK_HYxav1Nex0G9UirZyavFx_F6EJOv5E4_vdXNmDNAVB0WVnMJiyodAvWHRhFbqnnW7DamxG65tvwcp2JivlJKpRpdKuyRBkF50ikCTKC6Kr7hHrj5D0bpwXqV2Vq0DhFZVUkMUHtsYGZuG-gutnAUF9NjAFao9iBQfvm-bqDXVUGLAknBdYsamkvUYRK7oWB9LmggTKBmKSexyMD5xIa6hHj0g-09mUUCkpkKLyg5LERIdmFRpqlag8QTyLOZMijQJswVRMRKc5D04oxrg00bYJXqyaWjrK8rJzxFs_Ilu1MxmYmYzuT8bQJZ7M27xVhx5_Sh7XGY7d485iUHDg2w7cJ57UC559_723_f-InsNx57j3ED3eP3QNY8a09lOc7h9AoJh_qyMCdYnTsrPsTsPHyIw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xSAgO7IhCAR-4gUUTL0mOZSlrUSWoVE6R60WqhJKqDRe-HttJW0CAxNljH2Zsz_Py3gAch31FNIsizJmRmCYNguOAGGwaREUiIVxodzXQfuQ3XXrXY71PLH7_233yJFlyGpxKU1acDZU5mxLfPKcU2_yC_Vsifp-HRbsdB-5TVzdszj55MF-m2B1RMaWkV9Fmfh7ja2qa4c1vT6Q-87TWYbWCjKhZxngD5nS2CWsVfETV4hxvwkp7KsE63oKXi1yUWk1So9yga50rbUMyRiJTyBqi8_sn1B6oYT7ICtQpC8ugQYZcHSMxQq2BBYa4Y8G13XJQR4_slPFh3IZu6-r54gZXdRSwJJwU2LCkYQKlCZU8iCMZckEjbY9OkgYBTywAUzQ2fcZlGBkTyiQWlMhYBJFTnhEx2YGFLM_0LiCuEs5kzJPI2IOlISLRnMe2F2PcWDBZg2DiwlRWIuOu1sVrOpVH9m5PrdtT7_b0vQYn0z7DUmLjT-v6JDJptdzGKXGqNZ6TW4PTSbRmzb-Ptvc_8yNY6ly20ofbx_t9WA793HEXMnVYKEZv-sDik6J_6KfgBwR02Sw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coalescence+of+Geodesics+and+the+BKS+Midpoint+Problem+in+Planar+First-Passage+Percolation&rft.jtitle=Geometric+and+functional+analysis&rft.au=Dembin%2C+Barbara&rft.au=Elboim%2C+Dor&rft.au=Peled%2C+Ron&rft.date=2024-06-01&rft.pub=Springer+International+Publishing&rft.issn=1016-443X&rft.eissn=1420-8970&rft.volume=34&rft.issue=3&rft.spage=733&rft.epage=797&rft_id=info:doi/10.1007%2Fs00039-024-00672-z&rft.externalDocID=10_1007_s00039_024_00672_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-443X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-443X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-443X&client=summon |