Investigation of the effects of pulse width modulation on the laser sintering of LATP for all-solid-state batteries

Inorganic solid electrolytes are the most important component for realizing all-solid-state batteries with lithium metal anodes and enable safe battery cells with high energy densities. Their synthesis and processing are the subject of current research, especially the NASICON-type Li 1+x AlxTi 2-x (...

Full description

Saved in:
Bibliographic Details
Published inApplied physics. A, Materials science & processing Vol. 128; no. 10
Main Authors Wehbe, H., Schmidt, L. O., Kandula, M. W., Dilger, K.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Inorganic solid electrolytes are the most important component for realizing all-solid-state batteries with lithium metal anodes and enable safe battery cells with high energy densities. Their synthesis and processing are the subject of current research, especially the NASICON-type Li 1+x AlxTi 2-x (PO 4 ) 3 (LATP). Herein, the ability of sintering with electro-magnetic irradiation is investigated and correlated with different properties of prepared LATP pellets. First of all, an infrared camera records the temperature of the surface during the treatment. Second, the effect of the pulse fluence is investigated in terms of the topology and morphology of the pellets. Here, the arithmetic surface roughness Ra is the main parameter. Then, the depth of the radiation interaction in the pellet is measured. The focus of this paper is on the different pulse widths of the laser sources, and therefore, similar pulse and hatch overlap ensure equivalent areal energy input in both cases. As a summarized result, treatment with a shorter pulse width generates high peak pulse powers, resulting in higher temperatures, rougher surfaces and affecting deeper layers of the pellets compared to treatment with longer pulse width. On the contrary, excessive power leads to the ablation of the material up to destruction.
AbstractList Inorganic solid electrolytes are the most important component for realizing all-solid-state batteries with lithium metal anodes and enable safe battery cells with high energy densities. Their synthesis and processing are the subject of current research, especially the NASICON-type Li1+xAlxTi2-x(PO4)3 (LATP). Herein, the ability of sintering with electro-magnetic irradiation is investigated and correlated with different properties of prepared LATP pellets. First of all, an infrared camera records the temperature of the surface during the treatment. Second, the effect of the pulse fluence is investigated in terms of the topology and morphology of the pellets. Here, the arithmetic surface roughness Ra is the main parameter. Then, the depth of the radiation interaction in the pellet is measured. The focus of this paper is on the different pulse widths of the laser sources, and therefore, similar pulse and hatch overlap ensure equivalent areal energy input in both cases. As a summarized result, treatment with a shorter pulse width generates high peak pulse powers, resulting in higher temperatures, rougher surfaces and affecting deeper layers of the pellets compared to treatment with longer pulse width. On the contrary, excessive power leads to the ablation of the material up to destruction.
Inorganic solid electrolytes are the most important component for realizing all-solid-state batteries with lithium metal anodes and enable safe battery cells with high energy densities. Their synthesis and processing are the subject of current research, especially the NASICON-type Li 1+x AlxTi 2-x (PO 4 ) 3 (LATP). Herein, the ability of sintering with electro-magnetic irradiation is investigated and correlated with different properties of prepared LATP pellets. First of all, an infrared camera records the temperature of the surface during the treatment. Second, the effect of the pulse fluence is investigated in terms of the topology and morphology of the pellets. Here, the arithmetic surface roughness Ra is the main parameter. Then, the depth of the radiation interaction in the pellet is measured. The focus of this paper is on the different pulse widths of the laser sources, and therefore, similar pulse and hatch overlap ensure equivalent areal energy input in both cases. As a summarized result, treatment with a shorter pulse width generates high peak pulse powers, resulting in higher temperatures, rougher surfaces and affecting deeper layers of the pellets compared to treatment with longer pulse width. On the contrary, excessive power leads to the ablation of the material up to destruction.
ArticleNumber 889
Author Wehbe, H.
Dilger, K.
Schmidt, L. O.
Kandula, M. W.
Author_xml – sequence: 1
  givenname: H.
  orcidid: 0000-0002-4845-6061
  surname: Wehbe
  fullname: Wehbe, H.
  email: h.wehbe@tu-braunschweig.de
  organization: Institute of Joining and Welding, Technische Universität Braunschweig
– sequence: 2
  givenname: L. O.
  surname: Schmidt
  fullname: Schmidt, L. O.
  organization: Institute of Joining and Welding, Technische Universität Braunschweig
– sequence: 3
  givenname: M. W.
  surname: Kandula
  fullname: Kandula, M. W.
  organization: Institute of Joining and Welding, Technische Universität Braunschweig
– sequence: 4
  givenname: K.
  surname: Dilger
  fullname: Dilger, K.
  organization: Institute of Joining and Welding, Technische Universität Braunschweig
BookMark eNp9kE1LAzEQhoNUsFb_gKeA52i-Nrs5luJHoaCHeg7Z3aRN2W7WJKv4791tC4KHzmUYeN-ZeZ9rMGl9awC4I_iBYJw_RowZkwhTinAmJUXkAkwJZ8MoGJ6AKZY8RwWT4gpcx7jDQ3FKpyAu2y8Tk9vo5HwLvYVpa6Cx1lQpjmPXN9HAb1enLdz7um9OwvYgbHQ0AUbXJhNcuxkNq_n6HVofoG4aFH3jahSTTgaWOo0qE2_ApdXD1ttTn4GP56f14hWt3l6Wi_kKVUywhCzLKprXVtuiotYyToZAAhfCSFtnWlteyFriklDBtTC81lXJ6pIJqbMqN4TNwP1xbxf8Zz-kVDvfh3Y4qWhOMsJIgfmgKo6qKvgYg7GqcukQMgXtGkWwGhGrI2I1IFYHxGo8QP9Zu-D2OvycN7GjKXYjMhP-vjrj-gWaPpII
CitedBy_id crossref_primary_10_1002_celc_202300349
crossref_primary_10_1002_adem_202302112
crossref_primary_10_1002_adma_202301152
Cites_doi 10.2298/PAC1401015R
10.1201/9780429183492
10.1016/j.apsusc.2010.09.089
10.1021/acsami.9b08132
10.1002/ente.201900519
10.1021/acs.chemmater.0c04393
10.1149/1.2096693
10.1007/BF02706446
10.3390/nano12020230
10.1039/C6RA19415J
10.3390/batteries6020024
10.1016/j.jallcom.2019.153237
10.2298/TSCI190811425K
10.1007/s11581-015-1628-3
10.2351/1.5040611
10.2351/1.5138153
10.1016/j.ceramint.2021.04.216
10.1002/aenm.202002689
10.1515/nanoph-2017-0044
10.1007/s10008-011-1592-4
10.1007/s00170-021-07839-0
10.1016/j.ssi.2019.05.016
10.1002/cssc.201900725
10.3390/ma14164737
10.1016/j.jpowsour.2018.04.022
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s00339-022-05992-1
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1432-0630
ExternalDocumentID 10_1007_s00339_022_05992_1
GrantInformation_xml – fundername: Technische Universität Braunschweig (1042)
– fundername: Bundesministerium für Bildung und Forschung
  funderid: http://dx.doi.org/10.13039/501100002347
GroupedDBID -54
-5F
-5G
-BR
-EM
-XW
-XX
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9T
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WH7
WIP
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZE2
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ADHKG
AFDZB
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c363t-f35c27dfaf8c2ff3411436086e9fd5aaf489d90b1264a6e4dacb3db369a5c7e13
IEDL.DBID U2A
ISSN 0947-8396
IngestDate Fri Jul 25 10:54:28 EDT 2025
Tue Jul 01 00:39:36 EDT 2025
Thu Apr 24 23:08:22 EDT 2025
Fri Feb 21 02:44:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Ceramic ion conductor
LATP
All-solid-state batteries
Laser-material interaction
Laser sintering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-f35c27dfaf8c2ff3411436086e9fd5aaf489d90b1264a6e4dacb3db369a5c7e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4845-6061
OpenAccessLink https://link.springer.com/10.1007/s00339-022-05992-1
PQID 2715131804
PQPubID 2043608
ParticipantIDs proquest_journals_2715131804
crossref_citationtrail_10_1007_s00339_022_05992_1
crossref_primary_10_1007_s00339_022_05992_1
springer_journals_10_1007_s00339_022_05992_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Materials Science & Processing
PublicationTitle Applied physics. A, Materials science & processing
PublicationTitleAbbrev Appl. Phys. A
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References LinYLuoNQuattrocchiECiucciFWuJKermaniMDongJHuCGrassoSCeram. Int.2021472198210.1016/j.ceramint.2021.04.216
WaetzigKRostAHeubnerCCoelerMNikolowskiKWolterMSchilmJJ. Alloy. Compd.202081810.1016/j.jallcom.2019.153237
YanGMechanical behavior of solid electrolyte materials for lithium-ion batteries2020RWTH Aachen University
KnezevicDRadojkovicBRisticSPolicSJanicijevicMTomicLJegdicBTherm. Sci.20212556710.2298/TSCI190811425K
JiaXChenYLiuLWangCDuanJNanomaterials (Basel Switzerland)20221223010.3390/nano12020230
LiuYLiuJSunQWangDAdairKRLiangJZhangCZhangLLuSHuangHSongXSunXACS Appl. Mater. Interfaces2019112789010.1021/acsami.9b08132
HabedankJBEndresJSchmitzPZaehMFHuberHPJ. Laser Appl.2018303220510.2351/1.5040611
NamdarSFChiniforushNTabatabaeMHArami SakinehJ. Dent.201411233
PflegingWNanophotonics2018754910.1515/nanoph-2017-0044
DeWeesRWangHChemsuschem201912371310.1002/cssc.201900725
GrabmannSKrieglerJHarstFGünterFJZaehMFInt. J. Adv. Manuf. Technol.2022118257110.1007/s00170-021-07839-0
KimpaMIMayzanMZHEsaFYabagiJANmayaMMAgamMAJ. Sci. Technol.20179106
SomanSIwaiYKawamuraJKulkarniAJ. Solid State Electrochem.201216176110.1007/s10008-011-1592-4
HamaoNYamaguchiYHamamotoKMaterials (Basel, Switzerland)20211447372021Mate...14.4737H10.3390/ma14164737
T. Hupfer, Herstellung von LATP für den Einsatz als Festkörperelektrolyt und dessen Eigenschaften (2017)
T. Mühler, Laser-Materie-Wechselwirkung beim Selektiven Laser Sintern von Keramik (Technischen Universität Clausthal, 2017)
ZhaoEMaFGuoYJinYRSC Adv.20166925792016RSCAd...692579Z10.1039/C6RA19415J
JansenTKandulaMWBlassDHartwigSHaselriederWDilgerKEnergy Technol.20208190051910.1002/ente.201900519
WebbCJonesJDHandbook of laser technology and applications2020CRC Press10.1201/9780429183492
BaraiPFisterTLiangYLiberaJWolfmanMWangXGarciaJIddirHSrinivasanVChem. Mater.202133433710.1021/acs.chemmater.0c04393
SolaDEscartínACasesRPeñaJIAppl. Surf. Sci.201125754132011ApSS..257.5413S10.1016/j.apsusc.2010.09.089
HollatzSKremerSÜnlübayirCSauerDUOlowinskyAGillnerABatteries202062410.3390/batteries6020024
Dutta MajumdarJMannaISadhana20032849510.1007/BF02706446
BucharskyECSchellKGHupferTHoffmannMJRohdeMSeifertHJIonics201622104310.1007/s11581-015-1628-3
ZhengFKotobukiMSongSLaiMOLuLJ. Power Sources20183891982018JPS...389..198Z10.1016/j.jpowsour.2018.04.022
DavaasurenBTietzFSolid State Ionics201933814410.1016/j.ssi.2019.05.016
L. Schmidt, H. Wehbe, M.W. Kandula, K. Dilger, in Tagungsband 4. Symposium Materialtechnik (Shaker Verlag Düren, 2021), p. 521
AonoHSugimotoESadaokaYImanakaNAdachiGJ. Electrochem. Soc.19891365901989JElS..136..590A10.1149/1.2096693
RisticSPolicSRadojkovicBStriberJPAC201481510.2298/PAC1401015R
JansenTHartwigSBlassDDilgerKInternational congress on applications of lasers and electro-optics2017Laser Institute of America60210.2351/1.5138153
KimKJBalaishMWadaguchiMKongLRuppJLMAdv. Energy Mater.202111200268910.1002/aenm.202002689
5992_CR29
SF Namdar (5992_CR25) 2014; 11
S Grabmann (5992_CR13) 2022; 118
G Yan (5992_CR6) 2020
R DeWees (5992_CR5) 2019; 12
5992_CR22
D Sola (5992_CR23) 2011; 257
MI Kimpa (5992_CR31) 2017; 9
W Pfleging (5992_CR11) 2018; 7
S Soman (5992_CR28) 2012; 16
H Aono (5992_CR1) 1989; 136
Y Lin (5992_CR30) 2021; 47
K Waetzig (5992_CR8) 2020; 818
JB Habedank (5992_CR15) 2018; 30
KJ Kim (5992_CR3) 2021; 11
S Hollatz (5992_CR12) 2020; 6
T Jansen (5992_CR17) 2017
E Zhao (5992_CR7) 2016; 6
C Webb (5992_CR19) 2020
T Jansen (5992_CR14) 2020; 8
P Barai (5992_CR4) 2021; 33
N Hamao (5992_CR10) 2021; 14
X Jia (5992_CR24) 2022; 12
EC Bucharsky (5992_CR27) 2016; 22
F Zheng (5992_CR2) 2018; 389
Y Liu (5992_CR9) 2019; 11
5992_CR16
J Dutta Majumdar (5992_CR18) 2003; 28
B Davaasuren (5992_CR26) 2019; 338
D Knezevic (5992_CR21) 2021; 25
S Ristic (5992_CR20) 2014; 8
References_xml – reference: RisticSPolicSRadojkovicBStriberJPAC201481510.2298/PAC1401015R
– reference: NamdarSFChiniforushNTabatabaeMHArami SakinehJ. Dent.201411233
– reference: JiaXChenYLiuLWangCDuanJNanomaterials (Basel Switzerland)20221223010.3390/nano12020230
– reference: T. Hupfer, Herstellung von LATP für den Einsatz als Festkörperelektrolyt und dessen Eigenschaften (2017)
– reference: Dutta MajumdarJMannaISadhana20032849510.1007/BF02706446
– reference: WebbCJonesJDHandbook of laser technology and applications2020CRC Press10.1201/9780429183492
– reference: YanGMechanical behavior of solid electrolyte materials for lithium-ion batteries2020RWTH Aachen University
– reference: DavaasurenBTietzFSolid State Ionics201933814410.1016/j.ssi.2019.05.016
– reference: HollatzSKremerSÜnlübayirCSauerDUOlowinskyAGillnerABatteries202062410.3390/batteries6020024
– reference: KimKJBalaishMWadaguchiMKongLRuppJLMAdv. Energy Mater.202111200268910.1002/aenm.202002689
– reference: ZhaoEMaFGuoYJinYRSC Adv.20166925792016RSCAd...692579Z10.1039/C6RA19415J
– reference: L. Schmidt, H. Wehbe, M.W. Kandula, K. Dilger, in Tagungsband 4. Symposium Materialtechnik (Shaker Verlag Düren, 2021), p. 521
– reference: DeWeesRWangHChemsuschem201912371310.1002/cssc.201900725
– reference: LiuYLiuJSunQWangDAdairKRLiangJZhangCZhangLLuSHuangHSongXSunXACS Appl. Mater. Interfaces2019112789010.1021/acsami.9b08132
– reference: HamaoNYamaguchiYHamamotoKMaterials (Basel, Switzerland)20211447372021Mate...14.4737H10.3390/ma14164737
– reference: T. Mühler, Laser-Materie-Wechselwirkung beim Selektiven Laser Sintern von Keramik (Technischen Universität Clausthal, 2017)
– reference: JansenTKandulaMWBlassDHartwigSHaselriederWDilgerKEnergy Technol.20208190051910.1002/ente.201900519
– reference: KimpaMIMayzanMZHEsaFYabagiJANmayaMMAgamMAJ. Sci. Technol.20179106
– reference: LinYLuoNQuattrocchiECiucciFWuJKermaniMDongJHuCGrassoSCeram. Int.2021472198210.1016/j.ceramint.2021.04.216
– reference: SomanSIwaiYKawamuraJKulkarniAJ. Solid State Electrochem.201216176110.1007/s10008-011-1592-4
– reference: SolaDEscartínACasesRPeñaJIAppl. Surf. Sci.201125754132011ApSS..257.5413S10.1016/j.apsusc.2010.09.089
– reference: AonoHSugimotoESadaokaYImanakaNAdachiGJ. Electrochem. Soc.19891365901989JElS..136..590A10.1149/1.2096693
– reference: WaetzigKRostAHeubnerCCoelerMNikolowskiKWolterMSchilmJJ. Alloy. Compd.202081810.1016/j.jallcom.2019.153237
– reference: PflegingWNanophotonics2018754910.1515/nanoph-2017-0044
– reference: KnezevicDRadojkovicBRisticSPolicSJanicijevicMTomicLJegdicBTherm. Sci.20212556710.2298/TSCI190811425K
– reference: ZhengFKotobukiMSongSLaiMOLuLJ. Power Sources20183891982018JPS...389..198Z10.1016/j.jpowsour.2018.04.022
– reference: BaraiPFisterTLiangYLiberaJWolfmanMWangXGarciaJIddirHSrinivasanVChem. Mater.202133433710.1021/acs.chemmater.0c04393
– reference: BucharskyECSchellKGHupferTHoffmannMJRohdeMSeifertHJIonics201622104310.1007/s11581-015-1628-3
– reference: GrabmannSKrieglerJHarstFGünterFJZaehMFInt. J. Adv. Manuf. Technol.2022118257110.1007/s00170-021-07839-0
– reference: HabedankJBEndresJSchmitzPZaehMFHuberHPJ. Laser Appl.2018303220510.2351/1.5040611
– reference: JansenTHartwigSBlassDDilgerKInternational congress on applications of lasers and electro-optics2017Laser Institute of America60210.2351/1.5138153
– volume: 8
  start-page: 15
  year: 2014
  ident: 5992_CR20
  publication-title: PAC
  doi: 10.2298/PAC1401015R
– volume-title: Handbook of laser technology and applications
  year: 2020
  ident: 5992_CR19
  doi: 10.1201/9780429183492
– volume: 257
  start-page: 5413
  year: 2011
  ident: 5992_CR23
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2010.09.089
– volume: 11
  start-page: 27890
  year: 2019
  ident: 5992_CR9
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b08132
– volume: 8
  start-page: 1900519
  year: 2020
  ident: 5992_CR14
  publication-title: Energy Technol.
  doi: 10.1002/ente.201900519
– volume: 9
  start-page: 106
  year: 2017
  ident: 5992_CR31
  publication-title: J. Sci. Technol.
– volume-title: Mechanical behavior of solid electrolyte materials for lithium-ion batteries
  year: 2020
  ident: 5992_CR6
– volume: 33
  start-page: 4337
  year: 2021
  ident: 5992_CR4
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c04393
– volume: 136
  start-page: 590
  year: 1989
  ident: 5992_CR1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2096693
– volume: 28
  start-page: 495
  year: 2003
  ident: 5992_CR18
  publication-title: Sadhana
  doi: 10.1007/BF02706446
– volume: 12
  start-page: 230
  year: 2022
  ident: 5992_CR24
  publication-title: Nanomaterials (Basel Switzerland)
  doi: 10.3390/nano12020230
– volume: 6
  start-page: 92579
  year: 2016
  ident: 5992_CR7
  publication-title: RSC Adv.
  doi: 10.1039/C6RA19415J
– volume: 6
  start-page: 24
  year: 2020
  ident: 5992_CR12
  publication-title: Batteries
  doi: 10.3390/batteries6020024
– ident: 5992_CR22
– volume: 818
  year: 2020
  ident: 5992_CR8
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2019.153237
– ident: 5992_CR16
– volume: 25
  start-page: 567
  year: 2021
  ident: 5992_CR21
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI190811425K
– volume: 22
  start-page: 1043
  year: 2016
  ident: 5992_CR27
  publication-title: Ionics
  doi: 10.1007/s11581-015-1628-3
– volume: 11
  start-page: 233
  year: 2014
  ident: 5992_CR25
  publication-title: J. Dent.
– volume: 30
  start-page: 32205
  year: 2018
  ident: 5992_CR15
  publication-title: J. Laser Appl.
  doi: 10.2351/1.5040611
– start-page: 602
  volume-title: International congress on applications of lasers and electro-optics
  year: 2017
  ident: 5992_CR17
  doi: 10.2351/1.5138153
– volume: 47
  start-page: 21982
  year: 2021
  ident: 5992_CR30
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2021.04.216
– volume: 11
  start-page: 2002689
  year: 2021
  ident: 5992_CR3
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002689
– volume: 7
  start-page: 549
  year: 2018
  ident: 5992_CR11
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2017-0044
– ident: 5992_CR29
– volume: 16
  start-page: 1761
  year: 2012
  ident: 5992_CR28
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-011-1592-4
– volume: 118
  start-page: 2571
  year: 2022
  ident: 5992_CR13
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-021-07839-0
– volume: 338
  start-page: 144
  year: 2019
  ident: 5992_CR26
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2019.05.016
– volume: 12
  start-page: 3713
  year: 2019
  ident: 5992_CR5
  publication-title: Chemsuschem
  doi: 10.1002/cssc.201900725
– volume: 14
  start-page: 4737
  year: 2021
  ident: 5992_CR10
  publication-title: Materials (Basel, Switzerland)
  doi: 10.3390/ma14164737
– volume: 389
  start-page: 198
  year: 2018
  ident: 5992_CR2
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.04.022
SSID ssj0000422
Score 2.4044533
Snippet Inorganic solid electrolytes are the most important component for realizing all-solid-state batteries with lithium metal anodes and enable safe battery cells...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Applied physics
Characterization and Evaluation of Materials
COLA 2021/2022
Condensed Matter Physics
Electrolytic cells
Fluence
Infrared cameras
Investigations
Laser sintering
Lithium
Machines
Magnetic properties
Manufacturing
Materials science
Molten salt electrolytes
Nanotechnology
Optical and Electronic Materials
Pellets
Physics
Physics and Astronomy
Processes
Pulse duration modulation
S.i. : Cola 2021/2022
Solid electrolytes
Solid state
Surface roughness
Surfaces and Interfaces
Thin Films
Topology
Title Investigation of the effects of pulse width modulation on the laser sintering of LATP for all-solid-state batteries
URI https://link.springer.com/article/10.1007/s00339-022-05992-1
https://www.proquest.com/docview/2715131804
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60RdCDaFWs1rIHb7pg82yOaW0tvvDQQj2F7AsLNSlNin_f2W3SVlFBCISwmw3sTGa-YWe-AbjUlHG8HQiK2NrDAMVHO-hYgiqh-125fqBMMubTszcYOfdjd1wUhWVltnt5JGks9arYTbcdC6jOPtecIhbFmKfq6tgdtXhkhWv76yzPDgIHv2sHXlEq8_MaX93RGmN-OxY13qZ_APsFTCThUq6HsCWTGuxtkAfWYMckb_LsCLINsow0IakiiOpIkamhH2cLdIDkYyLyN_KeiqJjF8FLT0T8LOck08QRemX9wmM4fCEIZ0k8nVLUzomgpvKIMEPHidH1MYz6vWF3QItmCpTbnp1TZbvc8oWKVZtbSqHzQil5GNDIQAk3jpWDEgtuWAsRUuxJR8Sc2YLZXhC73Jct-wQqSZrIUyBM-zTGcZBjdN2WGAQhkPG5zzjuqmR1aJV7GvGCaVw3vJhGK45kI4cI5RAZOUStOlyt3pkteTb-nN0oRRUV_1wWWT6iFzRRN04drkvxrYd_X-3sf9PPYdfSGmQy-hpQyecLeYHIJGdNqIad205f3-9eH3pN2O563aZRz08st9xx
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SEfUgWhXrMwdvGuhu9tEcS7FUbYuHFnpbNi8s1N3S3eLfd5KmD4sKwl6WTLKQL5v5hky-QejeSMaJBpMEuHUEAUoM-2DgS6KlqXcVxkzbZMxeP-oMg5dROHIyOeYuzNb5vRH7pJQRk3NulER8ApHObgCRsknfa0Wt9a4bLE4MWABfoyxyF2R-HuO7E1ozy63DUOtj2sfoyJFD3FygeYJ2VFZFhxuSgVW0Z1M2RXGKig2JjDzDucbA5bDLzzCv0zm4Pfw5luU7_silq9OF4TGGwJrVDBdGLsKMbDp0m4M3DCQWp5MJgTU5lsTeN8LcinBCTH2Ghu2nQatDXAkFImhES6JpKPxY6lQ3hK81uCzAJoIwRjEtwzTVAeDE6twDXpRGKpCp4FRyGrE0FLHy6DmqZHmmLhDmxpNxAY0CYuqGgtAH6EssYi5gVhWvIW85p4lw-uKmzMUkWSkjWxwSwCGxOCReDT2s-kwX6hp_Wl8voUrcn1YkfgycBTamelBDj0v41s2_j3b5P_M7tN8Z9LpJ97n_eoUOfLOabE7fNaqUs7m6AW5S8lu7KL8AzvrXYA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iKHoQrYrVqjl409B2n82xVEvVWnpoobeweWGh7pbuFv--k-xuW0UFYS9LHiz5splvyMw3CN0ayTjRopIAtw7AQQnhHPQcSbQ09a78kGobjPk6CHpj73niTzay-G20e3klmec0GJWmOKvPpa6vEt9MCTJKTCS60RdxCPg_O-Cp2IvaTtBZn8Vefo9APfgGlwZF2szPc3w1TWu--e2K1Fqe7hE6LCgjbucYH6MtFVfQwYaQYAXt2kBOkZ6gdEM4I4lxojEwPFxEbZjX-RKMIf6YyuwNvyeyqN6F4TEdgUurBU6NiISZ2Qzot0dDDNQWR7MZgZ06lcRmIWFupTnB0z5F4-7jqNMjRWEFItzAzYh2feGEUke6JRytwZABYgE4N4pq6UeR9gA92uBNYEtRoDwZCe5K7gY08kWomu4Z2o6TWJ0jzI194wIaBXjaLQUOEZCaUIRcwKoqXkXNck2ZKFTHTfGLGVvpJVscGODALA6sWUV3qzHzXHPjz961EipW_H8pc0JgMnBcNbwqui_hWzf_PtvF_7rfoL3hQ5f1nwYvl2jfMZvJBvrV0Ha2WKorICwZv7Z78hN55N-n
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+the+effects+of+pulse+width+modulation+on+the+laser+sintering+of+LATP+for+all-solid-state+batteries&rft.jtitle=Applied+physics.+A%2C+Materials+science+%26+processing&rft.au=Wehbe%2C+H.&rft.au=Schmidt%2C+L.+O.&rft.au=Kandula%2C+M.+W.&rft.au=Dilger%2C+K.&rft.date=2022-10-01&rft.issn=0947-8396&rft.eissn=1432-0630&rft.volume=128&rft.issue=10&rft_id=info:doi/10.1007%2Fs00339-022-05992-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00339_022_05992_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-8396&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-8396&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-8396&client=summon