Continental-scale assessment of the African offshore wind energy potential: Spatial analysis of an under-appreciated renewable energy resource

Offshore wind energy is rapidly becoming a technology that developing countries could consider because project costs have recently fallen substantially. Further reductions are expected as the industry matures. For most African coastal states, specific information about their offshore wind potential...

Full description

Saved in:
Bibliographic Details
Published inRenewable & sustainable energy reviews Vol. 104; pp. 394 - 407
Main Author Elsner, Paul
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Offshore wind energy is rapidly becoming a technology that developing countries could consider because project costs have recently fallen substantially. Further reductions are expected as the industry matures. For most African coastal states, specific information about their offshore wind potential is not available. This study aims to address this shortcoming by evaluating the technical offshore wind potential of the entire continent using spatially explicit models and long-term satellite data. Two different scenarios were developed to reflect different levels of technological maturity in the wind industry: The shallow-water, near-coast scenario 1 represented the conservative assumption that technology will not improve beyond what is available already now. The deep-water, full-exclusive economic zone (EEZ) scenario 2 assumes the operational availability of floating platforms that would allow it to access wind resources at much deeper water depths across the entire EEZ. It is emphasized that the model results are subject to a number of uncertainties and therefore should be treated as first order estimates only. Both scenarios indicate very good technical offshore wind energy potential for one third of the African coastal states, with Mozambique, South Africa, Somalia, Madagascar and Morocco exhibiting particularly good resources. More than 90% of the offshore wind resources are concentrated in coastal zones associated to three African Power Pools. These are the Southern African Power Pool (SAPP), the Eastern African Power Pool (EAPP), and the Comité Maghrébin de l′Electricité (COMELEC). A joint and integrated development within these power pools could offer a promising approach to utilising offshore wind energy in Africa. •Analysis of offshore wind energy potential for the entire African continent.•Results presented for all African coastal states.•One third of coastal states have very good offshore wind potential.•More than 90% of offshore resources concentrated in three African Power Pools.•Offshore wind energy could play important role in Africa's energy future.
AbstractList Offshore wind energy is rapidly becoming a technology that developing countries could consider because project costs have recently fallen substantially. Further reductions are expected as the industry matures. For most African coastal states, specific information about their offshore wind potential is not available. This study aims to address this shortcoming by evaluating the technical offshore wind potential of the entire continent using spatially explicit models and long-term satellite data. Two different scenarios were developed to reflect different levels of technological maturity in the wind industry: The shallow-water, near-coast scenario 1 represented the conservative assumption that technology will not improve beyond what is available already now. The deep-water, full-exclusive economic zone (EEZ) scenario 2 assumes the operational availability of floating platforms that would allow it to access wind resources at much deeper water depths across the entire EEZ. It is emphasized that the model results are subject to a number of uncertainties and therefore should be treated as first order estimates only. Both scenarios indicate very good technical offshore wind energy potential for one third of the African coastal states, with Mozambique, South Africa, Somalia, Madagascar and Morocco exhibiting particularly good resources. More than 90% of the offshore wind resources are concentrated in coastal zones associated to three African Power Pools. These are the Southern African Power Pool (SAPP), the Eastern African Power Pool (EAPP), and the Comité Maghrébin de l′Electricité (COMELEC). A joint and integrated development within these power pools could offer a promising approach to utilising offshore wind energy in Africa. •Analysis of offshore wind energy potential for the entire African continent.•Results presented for all African coastal states.•One third of coastal states have very good offshore wind potential.•More than 90% of offshore resources concentrated in three African Power Pools.•Offshore wind energy could play important role in Africa's energy future.
Author Elsner, Paul
Author_xml – sequence: 1
  givenname: Paul
  surname: Elsner
  fullname: Elsner, Paul
  email: p.elsner@bbk.ac.uk
  organization: Birkbeck, University of London, Malet Street, London WC1E 7HX, United Kingdom
BookMark eNp9kE1OwzAQRi1UJNrCBVj5AgnjmLoJYlNV_ElILGBvTewJdZU6kZ2CegnOjCO6YtGVx2O_GX1vxia-88TYtYBcgFA32zxECnkBospB5CBvz9hUlMsqA1XBJNVS3WYgC3HBZjFuAcSiXMop-1l3fnCe_IBtFg22xDFGinGXWrxr-LAhvmqCM-jTtYmbLhD_dt5y8hQ-D7zvhvTVYXvH33scC44e20N0ceQTtveWQoZ9H8g4HMjykNhvrNOy45BAsdsHQ5fsvME20tXxnLOPx4eP9XP2-vb0sl69ZkYqOWQNVJUCtChhKVNC1YhaLiproQZZlopqhaaSBAsj65KUtWaRAotCIlVGyTkr_saa0MUYqNF9cDsMBy1Aj0L1Vo9C9ShUg9BJaILKf5BxQwqcBAZ07Wn0_g-llOnLpddoHHlD1iUng7adO4X_ApHZl-k
CitedBy_id crossref_primary_10_1016_j_oceaneng_2023_114458
crossref_primary_10_1177_01445987241302424
crossref_primary_10_14710_ijred_2023_52563
crossref_primary_10_1016_j_seta_2022_101997
crossref_primary_10_1088_2515_7620_ad17d4
crossref_primary_10_1016_j_envdev_2020_100548
crossref_primary_10_1016_j_rser_2023_113836
crossref_primary_10_1038_s41598_024_77765_0
crossref_primary_10_1016_j_energy_2021_120364
crossref_primary_10_2139_ssrn_4007106
crossref_primary_10_3390_su13137013
crossref_primary_10_1063_1_5131560
crossref_primary_10_1016_j_egyai_2022_100189
crossref_primary_10_1016_j_energy_2019_116299
crossref_primary_10_3390_jmse12030460
crossref_primary_10_1016_j_spc_2021_08_006
crossref_primary_10_3390_su14053075
crossref_primary_10_3390_su13147702
crossref_primary_10_1088_1755_1315_730_1_012036
crossref_primary_10_1016_j_jclepro_2021_127933
crossref_primary_10_1680_jcien_21_00253
crossref_primary_10_1007_s11367_022_02055_8
crossref_primary_10_3390_su16156614
crossref_primary_10_1016_j_renene_2020_05_185
crossref_primary_10_1029_2024EF004575
crossref_primary_10_1186_s40807_024_00104_4
crossref_primary_10_3390_app10186398
crossref_primary_10_3390_resources8020084
crossref_primary_10_17159_2413_3051_2020_v31i4a7940
crossref_primary_10_1016_j_rser_2020_110167
crossref_primary_10_1155_2024_8825472
crossref_primary_10_1029_2023JD039569
crossref_primary_10_1016_j_ecmx_2021_100103
crossref_primary_10_1016_j_egyr_2020_04_036
crossref_primary_10_1016_j_ijhydene_2024_08_142
crossref_primary_10_1016_j_horiz_2023_100081
crossref_primary_10_1108_IJBPA_09_2020_0082
crossref_primary_10_1016_j_oceaneng_2023_113820
crossref_primary_10_1016_j_rser_2025_115559
crossref_primary_10_1080_23311916_2019_1654659
crossref_primary_10_1016_j_rser_2021_111794
crossref_primary_10_3390_jmse8080550
crossref_primary_10_1002_met_2093
crossref_primary_10_1016_j_apenergy_2024_124464
crossref_primary_10_1051_e3sconf_202346900025
crossref_primary_10_1016_j_rser_2023_113699
crossref_primary_10_1007_s00703_022_00880_y
crossref_primary_10_1016_j_marpol_2021_104514
crossref_primary_10_1016_j_rser_2020_109984
crossref_primary_10_1016_j_renene_2022_03_110
crossref_primary_10_1016_j_rser_2022_112603
crossref_primary_10_2139_ssrn_4569920
crossref_primary_10_3390_su15053927
crossref_primary_10_1016_j_sciaf_2024_e02480
crossref_primary_10_1080_15567036_2023_2222679
crossref_primary_10_1016_j_esd_2024_101565
crossref_primary_10_1016_j_rser_2024_114452
crossref_primary_10_1016_j_sciaf_2022_e01388
crossref_primary_10_1088_1748_9326_abed7a
crossref_primary_10_1016_j_rser_2023_113667
crossref_primary_10_1038_s41598_024_66800_9
crossref_primary_10_1016_j_adapen_2023_100158
crossref_primary_10_1016_j_rser_2025_115563
crossref_primary_10_1007_s10661_020_08603_9
crossref_primary_10_1016_j_renene_2021_03_026
crossref_primary_10_1016_j_apenergy_2023_122218
crossref_primary_10_1007_s12053_024_10213_0
crossref_primary_10_1016_j_rser_2020_109916
crossref_primary_10_3390_en15124367
crossref_primary_10_3390_en13215618
Cites_doi 10.1029/2006GL027086
10.1007/978-3-319-66420-0_5
10.1016/j.renene.2011.11.029
10.1002/wene.123
10.1016/j.renene.2014.02.024
10.1016/j.rse.2014.07.017
10.1016/j.renene.2015.09.021
10.1016/j.renene.2014.12.009
10.1016/j.rser.2018.02.005
10.1175/WAF-D-12-00086.1
10.1002/2015EA000107
10.1016/j.rser.2015.04.092
10.1063/1.5009948
10.1029/2002JD002076
10.1080/01490419.2014.902881
10.1016/j.enpol.2009.04.055
10.1787/weo-2014-en
10.1016/j.energy.2018.08.153
10.1029/2004JD005462
10.1016/j.apenergy.2016.12.162
10.1016/j.jup.2011.11.002
10.1109/JOE.2016.2565018
10.1016/j.rser.2010.08.005
10.1016/j.apenergy.2016.05.046
10.3390/en9060437
10.1029/2009JD012679
10.1016/j.renene.2009.11.022
10.1175/BAMS-D-13-00108.1
10.1016/j.renene.2015.07.078
10.3390/en10122153
10.1016/j.energy.2017.07.032
10.1016/j.rser.2018.04.044
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.rser.2019.01.034
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0690
EndPage 407
ExternalDocumentID 10_1016_j_rser_2019_01_034
S1364032119300449
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
Y6R
ZCA
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c363t-f09960ada30730696f1b359dd0b03886eb6ac93e05c3b8e6ddc5158123ae9c63
IEDL.DBID .~1
ISSN 1364-0321
IngestDate Thu Apr 24 23:02:02 EDT 2025
Tue Jul 01 03:18:00 EDT 2025
Fri Feb 23 02:32:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Energy and development
Offshore wind energy
Resource potential analysis
Africa
Energy poverty
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-f09960ada30730696f1b359dd0b03886eb6ac93e05c3b8e6ddc5158123ae9c63
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_rser_2019_01_034
crossref_citationtrail_10_1016_j_rser_2019_01_034
elsevier_sciencedirect_doi_10_1016_j_rser_2019_01_034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Renewable & sustainable energy reviews
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Soukissian, Papadopoulos (bib34) 2015; 77
World Bank (bib4) 2016
Rodrigues, Restrepo, Kontos, Teixeira Pinto, Bauer (bib5) 2015; 49
Martin, Lazakis, Barbouchi, Johanning (bib53) 2016; 85
Chamberlain K. Offshore wind opex set to fall 40% by 2030 as suppliers dig deep | New Energy Update; 2017.
Veum, Cameron, Huertas, Korpaas (bib15) 2011
Archer, Colle, Delle Monache, Dvorak, Lundquist, Bailey (bib52) 2014; 95
Martín Mederos, Medina Padrón, Feijóo Lorenzo (bib24) 2011; 15
Ouedraogo (bib9) 2017; 190
Brown, Beiter, Heimiller, Davidson, Denholm, Melius (bib26) 2015
Cavazzi, Dutton (bib18) 2016; 87
Dvorak, Archer, Jacobson (bib21) 2010; 35
Sheridan, Baker, Pearre, Firestone, Kempton (bib22) 2012; 43
Archer, Jacobson (bib33) 2005; 110
International Renewable Energy Agency (bib48) 2016
Musial, Heimiller, Beiter, Scott, Draxl (bib20) 2016
Carvalho, Rocha, Gómez-Gesteira, Silva Santos (bib51) 2014; 152
Gadad, Deka (bib25) 2016; 176
GWEC. 8th National Renewable Energy Forum, Global Wind Report 2016. GWEC Global Wind Energy Council; 2017.
Masters (bib36) 2013
Suarez (bib42) 2008
Keivanpour, Ramudhin, Ait Kadi (bib11) 2017; 9
Lacal-Arántegui, Yusta, Domínguez-Navarro (bib6) 2018; 92
UNEP-WCMC (bib45) 2016
U.S. Department of Energy (DOE) (bib50) 2015
.
Oh, Nam, Ryu, Kim, Epureanu (bib47) 2018; 88
Yamaguchi, Ishihara (bib23) 2014; 69
Lopez, Roberts, Heimiller, Blair, Porro (bib28) 2012
Bañuelos-Ruedas, Camacho, Rios-Marcuello (bib35) 2011
[accessed 29 December 2018].
Poulsen, Hasager (bib60) 2016; 9
Simuyemba (bib2) 2015
[accessed 7 December 2018]; 2018.
Appleyard D. Falling offshore prices reveal UK supply chain, grid build savings | New Energy Update; 2017.
Bazilian, Nussbaumer, Rogner, Brew-Hammond, Foster, Pachauri (bib10) 2012; 20
Hasager CB, Madsen PH, Giebel G, Réthoré P-E, Hansen KS, Badger J, et al. Design tool for offshore wind farm cluster planning Design tool for offshore wind farm cluster planning. Proc EWEA Annu Event Exhib 2015 2015.
Bosch, Staffell, Hawkes (bib13) 2018; 163
Weatherall, Marks, Jakobsson, Schmitt, Tani, Arndt (bib41) 2015; 2
Eberhard, Foster, Briceño-Garmendia, Ouedraogo, Camos, Shkaratan (bib57) 2008
Ward S, Walsh V. Cape Town Energy Case Study. Energy Large Cities Report. World Energy Congr.
Nagababu, Kachhwaha, Savsani (bib19) 2017; 138
Claus, De Hauwere, Vanhoorne, Souza Dias, Oset García, Hernandez (bib44) 2017
[accessed 7 January 2018].
International Energy Agency (bib3) 2014
Poudineh R, Brown C, Foley B. Current Support Policies to Promote Offshore Wind Power. Econ. Offshore Wind Power, Palgrave Macmillan; 2017, p. 65–90.
Andrews, Jelley (bib37) 2007
Equinor. World’s first floating wind farm has started production - World’s first floating wind farm has started production - equinor.com n.d.
Peng, Zhang, Frank, Bidlot, Higaki, Stevens (bib29) 2013; 28
EIA (bib55) 2018
Baldock, Jacquemin (bib14) 2009
Equinor. World class performance by world’s first floating wind farm.
Soukissian, Karathanasi, Axaopoulos (bib17) 2017; 42
Soukissian, Papadopoulos (bib16) 2015; 77
Zhang, Bates, Reynolds (bib31) 2006; 33
Beiter, Musial (bib27) 2016
Africa Progress Panel (bib1) 2015
Capps, Zender (bib12) 2010; 115
Archer, Jacobson (bib38) 2003; 108
Yue, Yang (bib32) 2009; 37
Claus, De Hauwere, Vanhoorne, Deckers, Souza Dias, Hernandez (bib43) 2014
Poulsen, Hasager (bib56) 2017; 10
IRENA (bib46) 2016
Hasager (bib30) 2014; 3
Bazilian (10.1016/j.rser.2019.01.034_bib10) 2012; 20
Sheridan (10.1016/j.rser.2019.01.034_bib22) 2012; 43
UNEP-WCMC (10.1016/j.rser.2019.01.034_bib45) 2016
10.1016/j.rser.2019.01.034_bib40
Peng (10.1016/j.rser.2019.01.034_bib29) 2013; 28
Poulsen (10.1016/j.rser.2019.01.034_bib60) 2016; 9
10.1016/j.rser.2019.01.034_bib49
Soukissian (10.1016/j.rser.2019.01.034_bib16) 2015; 77
Suarez (10.1016/j.rser.2019.01.034_bib42) 2008
Baldock (10.1016/j.rser.2019.01.034_bib14) 2009
Nagababu (10.1016/j.rser.2019.01.034_bib19) 2017; 138
Zhang (10.1016/j.rser.2019.01.034_bib31) 2006; 33
Masters (10.1016/j.rser.2019.01.034_bib36) 2013
Cavazzi (10.1016/j.rser.2019.01.034_bib18) 2016; 87
Dvorak (10.1016/j.rser.2019.01.034_bib21) 2010; 35
10.1016/j.rser.2019.01.034_bib7
10.1016/j.rser.2019.01.034_bib54
Martín Mederos (10.1016/j.rser.2019.01.034_bib24) 2011; 15
Rodrigues (10.1016/j.rser.2019.01.034_bib5) 2015; 49
10.1016/j.rser.2019.01.034_bib58
Archer (10.1016/j.rser.2019.01.034_bib33) 2005; 110
10.1016/j.rser.2019.01.034_bib59
Poulsen (10.1016/j.rser.2019.01.034_bib56) 2017; 10
Beiter (10.1016/j.rser.2019.01.034_bib27) 2016
Musial (10.1016/j.rser.2019.01.034_bib20) 2016
10.1016/j.rser.2019.01.034_bib8
Gadad (10.1016/j.rser.2019.01.034_bib25) 2016; 176
Oh (10.1016/j.rser.2019.01.034_bib47) 2018; 88
Ouedraogo (10.1016/j.rser.2019.01.034_bib9) 2017; 190
Brown (10.1016/j.rser.2019.01.034_bib26) 2015
Veum (10.1016/j.rser.2019.01.034_bib15) 2011
Yamaguchi (10.1016/j.rser.2019.01.034_bib23) 2014; 69
International Renewable Energy Agency (10.1016/j.rser.2019.01.034_bib48) 2016
Carvalho (10.1016/j.rser.2019.01.034_bib51) 2014; 152
Capps (10.1016/j.rser.2019.01.034_bib12) 2010; 115
U.S. Department of Energy (DOE) (10.1016/j.rser.2019.01.034_bib50) 2015
Africa Progress Panel (10.1016/j.rser.2019.01.034_bib1) 2015
Claus (10.1016/j.rser.2019.01.034_bib44) 2017
International Energy Agency (10.1016/j.rser.2019.01.034_bib3) 2014
Soukissian (10.1016/j.rser.2019.01.034_bib34) 2015; 77
Keivanpour (10.1016/j.rser.2019.01.034_bib11) 2017; 9
Claus (10.1016/j.rser.2019.01.034_bib43) 2014
IRENA (10.1016/j.rser.2019.01.034_bib46) 2016
Martin (10.1016/j.rser.2019.01.034_bib53) 2016; 85
EIA (10.1016/j.rser.2019.01.034_bib55) 2018
Archer (10.1016/j.rser.2019.01.034_bib38) 2003; 108
Bosch (10.1016/j.rser.2019.01.034_bib13) 2018; 163
Bañuelos-Ruedas (10.1016/j.rser.2019.01.034_bib35) 2011
Yue (10.1016/j.rser.2019.01.034_bib32) 2009; 37
Simuyemba (10.1016/j.rser.2019.01.034_bib2) 2015
10.1016/j.rser.2019.01.034_bib39
Lacal-Arántegui (10.1016/j.rser.2019.01.034_bib6) 2018; 92
Andrews (10.1016/j.rser.2019.01.034_bib37) 2007
Soukissian (10.1016/j.rser.2019.01.034_bib17) 2017; 42
Eberhard (10.1016/j.rser.2019.01.034_bib57) 2008
World Bank (10.1016/j.rser.2019.01.034_bib4) 2016
Weatherall (10.1016/j.rser.2019.01.034_bib41) 2015; 2
Lopez (10.1016/j.rser.2019.01.034_bib28) 2012
Hasager (10.1016/j.rser.2019.01.034_bib30) 2014; 3
Archer (10.1016/j.rser.2019.01.034_bib52) 2014; 95
References_xml – reference: [accessed 29 December 2018].
– volume: 110
  start-page: D12110
  year: 2005
  ident: bib33
  article-title: Evaluation of global wind power
  publication-title: J Geophys Res
– year: 2015
  ident: bib2
  publication-title: The Programme for Infrastructure Development in Africa: transforming Africa through modern infrastructure
– volume: 138
  start-page: 79
  year: 2017
  end-page: 91
  ident: bib19
  article-title: Estimation of technical and economic potential of offshore wind along the coast of India
  publication-title: Energy
– year: 2016
  ident: bib45
  publication-title: World database on protected areas
– volume: 9
  year: 2016
  ident: bib60
  article-title: How expensive is expensive enough? Opportunities for cost reductions in offshore Wind energy logistics
  publication-title: Energies
– volume: 20
  start-page: 1
  year: 2012
  end-page: 16
  ident: bib10
  article-title: Energy access scenarios to 2030 for the power sector in sub-Saharan Africa
  publication-title: Util Policy
– year: 2016
  ident: bib20
  article-title: Offshore wind energy resource assessment for the United States
– volume: 42
  start-page: 73
  year: 2017
  end-page: 86
  ident: bib17
  article-title: Satellite-based offshore wind resource assessment in the Mediterranean Sea
  publication-title: IEEE J Ocean Eng
– reference: Equinor. World class performance by world’s first floating wind farm.
– volume: 88
  start-page: 16
  year: 2018
  end-page: 36
  ident: bib47
  article-title: A review of foundations of offshore wind energy convertors: current status and future perspectives
  publication-title: Renew Sustain Energy Rev
– year: 2014
  ident: bib3
  publication-title: Africa energy outlook
– reference: Appleyard D. Falling offshore prices reveal UK supply chain, grid build savings | New Energy Update; 2017.
– volume: 163
  start-page: 766
  year: 2018
  end-page: 781
  ident: bib13
  article-title: Temporally explicit and spatially resolved global offshore wind energy potentials
  publication-title: Energy
– year: 2017
  ident: bib44
  article-title: Marine regions
– volume: 190
  start-page: 1047
  year: 2017
  end-page: 1067
  ident: bib9
  article-title: Modeling sustainable long-term electricity supply-demand in Africa
  publication-title: Appl Energy
– reference: [accessed 7 January 2018].
– reference: GWEC. 8th National Renewable Energy Forum, Global Wind Report 2016. GWEC Global Wind Energy Council; 2017.
– start-page: 1
  year: 2016
  end-page: 8
  ident: bib48
  publication-title: Floating foundations: a game changer for offshore wind power
– year: 2008
  ident: bib57
  article-title: Underpowered : The State of the Power Sector in Sub-Saharan Africa
– volume: 95
  start-page: 515
  year: 2014
  end-page: 519
  ident: bib52
  article-title: Meteorology for coastal/offshore wind energy in the United States: recommendations and research needs for the next 10 years
  publication-title: Bull Am Meteorol Soc
– reference: 〉.
– volume: 85
  start-page: 1226
  year: 2016
  end-page: 1236
  ident: bib53
  article-title: Sensitivity analysis of offshore wind farm operation and maintenance cost and availability
  publication-title: Renew Energy
– volume: 28
  start-page: 1281
  year: 2013
  end-page: 1303
  ident: bib29
  article-title: Evaluation of various surface wind products with OceanSITES buoy measurements
  publication-title: Weather Forecast
– year: 2016
  ident: bib4
  publication-title: World development indicators 2016
– year: 2012
  ident: bib28
  article-title: Renewable energy Technical potentials: a GIS-based analysis
– year: 2016
  ident: bib46
  publication-title: Innovation outlook: offshore wind
– volume: 87
  start-page: 212
  year: 2016
  end-page: 228
  ident: bib18
  article-title: An Offshore Wind Energy Geographic Information System (OWE-GIS) for assessment of the UK's offshore wind energy potential
  publication-title: Renew Energy
– volume: 10
  start-page: 2153
  year: 2017
  ident: bib56
  article-title: The (R)evolution of China: offshore Wind Diffusion
  publication-title: Energies
– start-page: 246
  year: 2011
  ident: bib35
  article-title: Methodologies used in the extrapolation of wind speed data at different heights and its impact in the wind energy resource assessment in a region
  publication-title: Wind Farm - Tech. Regul. Potential Estim. Siting Assess.
– start-page: 350
  year: 2015
  ident: bib50
  publication-title: Wind Vision. A new era for wind power in the United States
– volume: 115
  start-page: 1
  year: 2010
  end-page: 13
  ident: bib12
  article-title: Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting
  publication-title: J Geophys Res Atmos
– year: 2011
  ident: bib15
  publication-title: Roadmap to the deployment of offshore wind energy in the central and Southern North Sea (2020–2030)
– year: 2016
  ident: bib27
  article-title: Terminology guideline for classifying offshore wind energy resources terminology guideline for classifying offshore wind energy resources Philipp Beiter and Walt Musial
– volume: 108
  year: 2003
  ident: bib38
  article-title: Spatial and temporal distributions of U.S. winds and wind power at 80 m derived from measurements
  publication-title: J Geophys Res Atmos
– reference: Poudineh R, Brown C, Foley B. Current Support Policies to Promote Offshore Wind Power. Econ. Offshore Wind Power, Palgrave Macmillan; 2017, p. 65–90. 〈
– year: 2015
  ident: bib1
  publication-title: Lights power action: electrifying Africa
– volume: 69
  start-page: 506
  year: 2014
  end-page: 515
  ident: bib23
  article-title: Assessment of offshore wind energy potential using mesoscale model and geographic information system
  publication-title: Renew Energy
– year: 2014
  ident: bib43
  article-title: Marine regions: towards a global standard for georeferenced marine names and boundaries
  publication-title: Mar Geod
– volume: 49
  start-page: 1114
  year: 2015
  end-page: 1135
  ident: bib5
  article-title: Trends of offshore wind projects
  publication-title: Renew Sustain Energy Rev
– reference: Ward S, Walsh V. Cape Town Energy Case Study. Energy Large Cities Report. World Energy Congr.
– year: 2018
  ident: bib55
  publication-title: South Africa country analysis brief
– volume: 37
  start-page: 3925
  year: 2009
  end-page: 3940
  ident: bib32
  article-title: Exploring the potential of wind energy for a coastal state
  publication-title: Energy Policy
– volume: 2
  start-page: 331
  year: 2015
  end-page: 345
  ident: bib41
  article-title: A new digital bathymetric model of the world's oceans
  publication-title: Earth Sp Sci
– volume: 77
  start-page: 101
  year: 2015
  end-page: 114
  ident: bib34
  article-title: Effects of different wind data sources in offshore wind power assessment
  publication-title: Renew Energy
– year: 2009
  ident: bib14
  publication-title: Inventory of wind potential based on sea depth, wind speed, distance from shore
– reference: Equinor. World’s first floating wind farm has started production - World’s first floating wind farm has started production - equinor.com n.d.
– volume: 35
  start-page: 1244
  year: 2010
  end-page: 1254
  ident: bib21
  article-title: California offshore wind energy potential
  publication-title: Renew Energy
– volume: 43
  start-page: 224
  year: 2012
  end-page: 233
  ident: bib22
  article-title: Calculating the offshore wind power resource: robust assessment methods applied to the U.S. Atlantic Coast
  publication-title: Renew Energy
– start-page: 1
  year: 2015
  end-page: 154
  ident: bib26
  article-title: Estimating renewable energy economic potential in the United States: methodology and initial results
– year: 2008
  ident: bib42
  article-title: The outer limits of the continental shelf: legal aspects of their establishment
– volume: 92
  start-page: 133
  year: 2018
  end-page: 145
  ident: bib6
  article-title: Offshore wind installation: analysing the evidence behind improvements in installation time
  publication-title: Renew Sustain Energy Rev
– volume: 176
  start-page: 157
  year: 2016
  end-page: 170
  ident: bib25
  article-title: Offshore wind power resource assessment using Oceansat-2 scatterometer data at a regional scale
  publication-title: Appl Energy
– year: 2013
  ident: bib36
  publication-title: Renewable and efficient electric power systems
– volume: 3
  start-page: 594
  year: 2014
  end-page: 603
  ident: bib30
  article-title: Offshore winds mapped from satellite remote sensing
  publication-title: Wiley Interdiscip Rev Energy Environ
– year: 2007
  ident: bib37
  article-title: Energy science: principles, technologies, and impacts
– reference: [accessed 7 December 2018]; 2018.
– volume: 152
  start-page: 480
  year: 2014
  end-page: 492
  ident: bib51
  article-title: Comparison of reanalyzed, analyzed, satellite-retrieved and NWP modelled winds with buoy data along the Iberian Peninsula coast
  publication-title: Remote Sens Environ
– volume: 77
  start-page: 101
  year: 2015
  end-page: 114
  ident: bib16
  article-title: Effects of different wind data sources in offshore wind power assessment
  publication-title: Renew Energy
– volume: 15
  start-page: 612
  year: 2011
  end-page: 620
  ident: bib24
  article-title: An offshore wind atlas for the Canary Islands
  publication-title: Renew Sustain Energy Rev
– volume: 9
  year: 2017
  ident: bib11
  article-title: The sustainable worldwide offshore wind energy potential: a systematic review
  publication-title: J Renew Sustain Energy
– volume: 33
  start-page: 1
  year: 2006
  end-page: 5
  ident: bib31
  article-title: Assessment of composite global sampling: sea surface wind speed
  publication-title: Geophys Res Lett
– reference: Chamberlain K. Offshore wind opex set to fall 40% by 2030 as suppliers dig deep | New Energy Update; 2017.
– reference: Hasager CB, Madsen PH, Giebel G, Réthoré P-E, Hansen KS, Badger J, et al. Design tool for offshore wind farm cluster planning Design tool for offshore wind farm cluster planning. Proc EWEA Annu Event Exhib 2015 2015.
– ident: 10.1016/j.rser.2019.01.034_bib8
– volume: 33
  start-page: 1
  year: 2006
  ident: 10.1016/j.rser.2019.01.034_bib31
  article-title: Assessment of composite global sampling: sea surface wind speed
  publication-title: Geophys Res Lett
  doi: 10.1029/2006GL027086
– ident: 10.1016/j.rser.2019.01.034_bib58
  doi: 10.1007/978-3-319-66420-0_5
– year: 2016
  ident: 10.1016/j.rser.2019.01.034_bib27
– volume: 43
  start-page: 224
  year: 2012
  ident: 10.1016/j.rser.2019.01.034_bib22
  article-title: Calculating the offshore wind power resource: robust assessment methods applied to the U.S. Atlantic Coast
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2011.11.029
– volume: 3
  start-page: 594
  year: 2014
  ident: 10.1016/j.rser.2019.01.034_bib30
  article-title: Offshore winds mapped from satellite remote sensing
  publication-title: Wiley Interdiscip Rev Energy Environ
  doi: 10.1002/wene.123
– volume: 69
  start-page: 506
  year: 2014
  ident: 10.1016/j.rser.2019.01.034_bib23
  article-title: Assessment of offshore wind energy potential using mesoscale model and geographic information system
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2014.02.024
– volume: 152
  start-page: 480
  year: 2014
  ident: 10.1016/j.rser.2019.01.034_bib51
  article-title: Comparison of reanalyzed, analyzed, satellite-retrieved and NWP modelled winds with buoy data along the Iberian Peninsula coast
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2014.07.017
– start-page: 350
  year: 2015
  ident: 10.1016/j.rser.2019.01.034_bib50
– volume: 87
  start-page: 212
  year: 2016
  ident: 10.1016/j.rser.2019.01.034_bib18
  article-title: An Offshore Wind Energy Geographic Information System (OWE-GIS) for assessment of the UK's offshore wind energy potential
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.09.021
– year: 2016
  ident: 10.1016/j.rser.2019.01.034_bib45
– volume: 77
  start-page: 101
  year: 2015
  ident: 10.1016/j.rser.2019.01.034_bib16
  article-title: Effects of different wind data sources in offshore wind power assessment
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2014.12.009
– volume: 88
  start-page: 16
  year: 2018
  ident: 10.1016/j.rser.2019.01.034_bib47
  article-title: A review of foundations of offshore wind energy convertors: current status and future perspectives
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.02.005
– year: 2008
  ident: 10.1016/j.rser.2019.01.034_bib57
– year: 2011
  ident: 10.1016/j.rser.2019.01.034_bib15
– volume: 28
  start-page: 1281
  year: 2013
  ident: 10.1016/j.rser.2019.01.034_bib29
  article-title: Evaluation of various surface wind products with OceanSITES buoy measurements
  publication-title: Weather Forecast
  doi: 10.1175/WAF-D-12-00086.1
– ident: 10.1016/j.rser.2019.01.034_bib40
– start-page: 246
  year: 2011
  ident: 10.1016/j.rser.2019.01.034_bib35
  article-title: Methodologies used in the extrapolation of wind speed data at different heights and its impact in the wind energy resource assessment in a region
– year: 2007
  ident: 10.1016/j.rser.2019.01.034_bib37
– ident: 10.1016/j.rser.2019.01.034_bib7
– start-page: 1
  year: 2015
  ident: 10.1016/j.rser.2019.01.034_bib26
– year: 2008
  ident: 10.1016/j.rser.2019.01.034_bib42
– volume: 2
  start-page: 331
  year: 2015
  ident: 10.1016/j.rser.2019.01.034_bib41
  article-title: A new digital bathymetric model of the world's oceans
  publication-title: Earth Sp Sci
  doi: 10.1002/2015EA000107
– volume: 49
  start-page: 1114
  year: 2015
  ident: 10.1016/j.rser.2019.01.034_bib5
  article-title: Trends of offshore wind projects
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.04.092
– volume: 77
  start-page: 101
  year: 2015
  ident: 10.1016/j.rser.2019.01.034_bib34
  article-title: Effects of different wind data sources in offshore wind power assessment
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2014.12.009
– volume: 9
  year: 2017
  ident: 10.1016/j.rser.2019.01.034_bib11
  article-title: The sustainable worldwide offshore wind energy potential: a systematic review
  publication-title: J Renew Sustain Energy
  doi: 10.1063/1.5009948
– volume: 108
  year: 2003
  ident: 10.1016/j.rser.2019.01.034_bib38
  article-title: Spatial and temporal distributions of U.S. winds and wind power at 80 m derived from measurements
  publication-title: J Geophys Res Atmos
  doi: 10.1029/2002JD002076
– year: 2016
  ident: 10.1016/j.rser.2019.01.034_bib20
– year: 2015
  ident: 10.1016/j.rser.2019.01.034_bib1
– year: 2014
  ident: 10.1016/j.rser.2019.01.034_bib43
  article-title: Marine regions: towards a global standard for georeferenced marine names and boundaries
  publication-title: Mar Geod
  doi: 10.1080/01490419.2014.902881
– year: 2012
  ident: 10.1016/j.rser.2019.01.034_bib28
– ident: 10.1016/j.rser.2019.01.034_bib49
– volume: 37
  start-page: 3925
  year: 2009
  ident: 10.1016/j.rser.2019.01.034_bib32
  article-title: Exploring the potential of wind energy for a coastal state
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2009.04.055
– year: 2015
  ident: 10.1016/j.rser.2019.01.034_bib2
– year: 2016
  ident: 10.1016/j.rser.2019.01.034_bib46
– ident: 10.1016/j.rser.2019.01.034_bib59
– start-page: 1
  year: 2016
  ident: 10.1016/j.rser.2019.01.034_bib48
– year: 2014
  ident: 10.1016/j.rser.2019.01.034_bib3
  doi: 10.1787/weo-2014-en
– volume: 163
  start-page: 766
  year: 2018
  ident: 10.1016/j.rser.2019.01.034_bib13
  article-title: Temporally explicit and spatially resolved global offshore wind energy potentials
  publication-title: Energy
  doi: 10.1016/j.energy.2018.08.153
– volume: 110
  start-page: D12110
  year: 2005
  ident: 10.1016/j.rser.2019.01.034_bib33
  article-title: Evaluation of global wind power
  publication-title: J Geophys Res
  doi: 10.1029/2004JD005462
– volume: 190
  start-page: 1047
  year: 2017
  ident: 10.1016/j.rser.2019.01.034_bib9
  article-title: Modeling sustainable long-term electricity supply-demand in Africa
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.12.162
– year: 2017
  ident: 10.1016/j.rser.2019.01.034_bib44
– year: 2018
  ident: 10.1016/j.rser.2019.01.034_bib55
– year: 2009
  ident: 10.1016/j.rser.2019.01.034_bib14
– ident: 10.1016/j.rser.2019.01.034_bib39
– volume: 20
  start-page: 1
  year: 2012
  ident: 10.1016/j.rser.2019.01.034_bib10
  article-title: Energy access scenarios to 2030 for the power sector in sub-Saharan Africa
  publication-title: Util Policy
  doi: 10.1016/j.jup.2011.11.002
– volume: 42
  start-page: 73
  year: 2017
  ident: 10.1016/j.rser.2019.01.034_bib17
  article-title: Satellite-based offshore wind resource assessment in the Mediterranean Sea
  publication-title: IEEE J Ocean Eng
  doi: 10.1109/JOE.2016.2565018
– volume: 15
  start-page: 612
  year: 2011
  ident: 10.1016/j.rser.2019.01.034_bib24
  article-title: An offshore wind atlas for the Canary Islands
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2010.08.005
– volume: 176
  start-page: 157
  year: 2016
  ident: 10.1016/j.rser.2019.01.034_bib25
  article-title: Offshore wind power resource assessment using Oceansat-2 scatterometer data at a regional scale
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.05.046
– volume: 9
  year: 2016
  ident: 10.1016/j.rser.2019.01.034_bib60
  article-title: How expensive is expensive enough? Opportunities for cost reductions in offshore Wind energy logistics
  publication-title: Energies
  doi: 10.3390/en9060437
– volume: 115
  start-page: 1
  year: 2010
  ident: 10.1016/j.rser.2019.01.034_bib12
  article-title: Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting
  publication-title: J Geophys Res Atmos
  doi: 10.1029/2009JD012679
– ident: 10.1016/j.rser.2019.01.034_bib54
– volume: 35
  start-page: 1244
  year: 2010
  ident: 10.1016/j.rser.2019.01.034_bib21
  article-title: California offshore wind energy potential
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2009.11.022
– volume: 95
  start-page: 515
  year: 2014
  ident: 10.1016/j.rser.2019.01.034_bib52
  article-title: Meteorology for coastal/offshore wind energy in the United States: recommendations and research needs for the next 10 years
  publication-title: Bull Am Meteorol Soc
  doi: 10.1175/BAMS-D-13-00108.1
– year: 2016
  ident: 10.1016/j.rser.2019.01.034_bib4
– volume: 85
  start-page: 1226
  year: 2016
  ident: 10.1016/j.rser.2019.01.034_bib53
  article-title: Sensitivity analysis of offshore wind farm operation and maintenance cost and availability
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.07.078
– volume: 10
  start-page: 2153
  year: 2017
  ident: 10.1016/j.rser.2019.01.034_bib56
  article-title: The (R)evolution of China: offshore Wind Diffusion
  publication-title: Energies
  doi: 10.3390/en10122153
– volume: 138
  start-page: 79
  year: 2017
  ident: 10.1016/j.rser.2019.01.034_bib19
  article-title: Estimation of technical and economic potential of offshore wind along the coast of India
  publication-title: Energy
  doi: 10.1016/j.energy.2017.07.032
– year: 2013
  ident: 10.1016/j.rser.2019.01.034_bib36
– volume: 92
  start-page: 133
  year: 2018
  ident: 10.1016/j.rser.2019.01.034_bib6
  article-title: Offshore wind installation: analysing the evidence behind improvements in installation time
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.04.044
SSID ssj0015873
Score 2.5405426
Snippet Offshore wind energy is rapidly becoming a technology that developing countries could consider because project costs have recently fallen substantially....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 394
SubjectTerms Africa
Energy and development
Energy poverty
Offshore wind energy
Resource potential analysis
Title Continental-scale assessment of the African offshore wind energy potential: Spatial analysis of an under-appreciated renewable energy resource
URI https://dx.doi.org/10.1016/j.rser.2019.01.034
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3oQn_gse_Ama5PuZpt4K0WpT8QH9Bb2iZXSlrTSmz_B3-xMsikK4sFTsmEnhJ3NzIR83zeEnKTaOciLgkGxbplItWU68y3W8m1rYi64Ech3vruXvRdx3U_6S6Rbc2EQVhlifxXTy2gdrjTDajYng0HzKeZSRBwVylA1SiCJT4g27vKzjwXMI07S8i8zTmY4OxBnKoxXAW5GeFdWSndy8Xty-pZwLjfIeqgUaad6mE2y5EZbZO2bfuA2-URtKRgio5FNYbUdVQulTTr2FKo7WnUCGsHQT1_HhaNz-AynruT80cl4hnAhNTyn2JwYTqgKMiVoD2ZIMisYSo9jo3qoTymKYM6RcVXfpAi_AHbI8-XFc7fHQoMFZrjkM-Yj1GZRVpUvusykjzVPMmsjjSIx0mmpTMZdlBiuUyetNVD-QEnAlcuM5LtkeTQeuT1CI68jG_nU2UwJzyGaS6PTFrep4tqq9j6J64XNTRAfxx4Yw7xGmb3l6IwcnZFHcQ7O2CenC5tJJb3x5-yk9lf-YwPlkBv-sDv4p90hWcVRBeI5Isuz4t0dQ30y041yAzbISqf7ePuAx6ub3v0XzHDq_Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB3RcGh7QNCCylfZQ2_VKnZ2vbG5IQQKBXJpKnFb7acAoSQyQfkX_GZm7HVEJcSBm9f2WNbOeuZZO-8NwK_ShoB5UXIE657L0npuqzjggzj0LhdSOEl85-uxGv2Tf26KmzU47bgwVFaZYn8b05tonc7002z253d3_b-5UDITpFBGqlGy-gTrpE5V9GD95OJyNF5tJhRls9FM93MySNyZtsyrRk9ThVfVqHcK-XZ-epVzzjdhI4FFdtK-zxashek3-PpKQvA7PJO8FA6J1MgfccIDMyuxTTaLDAEea5sBTXEYH29ndWBL_BNnoaH9sflsQRVD5uGYUX9iPGAmKZWQPZoRz6zmpD5OveoRojLSwVwS6ap7SJ12AbZhcn42OR3x1GOBO6HEgseM5FmMN823rioVcyuKyvvMkk6MClYZV4mQFU7YMijvHSIgRAXChMopsQO96WwafgDLos18FsvgKyOjwICunC0HwpdGWG-Gu5B3E6td0h-nNhgPuis0u9fkDE3O0Fmu0Rm78HtlM2_VN969u-j8pf9bQxrTwzt2ex-0O4LPo8n1lb66GF_uwxe60tb0HEBvUT-FQ4QrC_szLccXdezsGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continental-scale+assessment+of+the+African+offshore+wind+energy+potential%3A+Spatial+analysis+of+an+under-appreciated+renewable+energy+resource&rft.jtitle=Renewable+%26+sustainable+energy+reviews&rft.au=Elsner%2C+Paul&rft.date=2019-04-01&rft.pub=Elsevier+Ltd&rft.issn=1364-0321&rft.eissn=1879-0690&rft.volume=104&rft.spage=394&rft.epage=407&rft_id=info:doi/10.1016%2Fj.rser.2019.01.034&rft.externalDocID=S1364032119300449
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-0321&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-0321&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-0321&client=summon