Continental-scale assessment of the African offshore wind energy potential: Spatial analysis of an under-appreciated renewable energy resource
Offshore wind energy is rapidly becoming a technology that developing countries could consider because project costs have recently fallen substantially. Further reductions are expected as the industry matures. For most African coastal states, specific information about their offshore wind potential...
Saved in:
Published in | Renewable & sustainable energy reviews Vol. 104; pp. 394 - 407 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Offshore wind energy is rapidly becoming a technology that developing countries could consider because project costs have recently fallen substantially. Further reductions are expected as the industry matures. For most African coastal states, specific information about their offshore wind potential is not available. This study aims to address this shortcoming by evaluating the technical offshore wind potential of the entire continent using spatially explicit models and long-term satellite data. Two different scenarios were developed to reflect different levels of technological maturity in the wind industry: The shallow-water, near-coast scenario 1 represented the conservative assumption that technology will not improve beyond what is available already now. The deep-water, full-exclusive economic zone (EEZ) scenario 2 assumes the operational availability of floating platforms that would allow it to access wind resources at much deeper water depths across the entire EEZ. It is emphasized that the model results are subject to a number of uncertainties and therefore should be treated as first order estimates only. Both scenarios indicate very good technical offshore wind energy potential for one third of the African coastal states, with Mozambique, South Africa, Somalia, Madagascar and Morocco exhibiting particularly good resources. More than 90% of the offshore wind resources are concentrated in coastal zones associated to three African Power Pools. These are the Southern African Power Pool (SAPP), the Eastern African Power Pool (EAPP), and the Comité Maghrébin de l′Electricité (COMELEC). A joint and integrated development within these power pools could offer a promising approach to utilising offshore wind energy in Africa.
•Analysis of offshore wind energy potential for the entire African continent.•Results presented for all African coastal states.•One third of coastal states have very good offshore wind potential.•More than 90% of offshore resources concentrated in three African Power Pools.•Offshore wind energy could play important role in Africa's energy future. |
---|---|
AbstractList | Offshore wind energy is rapidly becoming a technology that developing countries could consider because project costs have recently fallen substantially. Further reductions are expected as the industry matures. For most African coastal states, specific information about their offshore wind potential is not available. This study aims to address this shortcoming by evaluating the technical offshore wind potential of the entire continent using spatially explicit models and long-term satellite data. Two different scenarios were developed to reflect different levels of technological maturity in the wind industry: The shallow-water, near-coast scenario 1 represented the conservative assumption that technology will not improve beyond what is available already now. The deep-water, full-exclusive economic zone (EEZ) scenario 2 assumes the operational availability of floating platforms that would allow it to access wind resources at much deeper water depths across the entire EEZ. It is emphasized that the model results are subject to a number of uncertainties and therefore should be treated as first order estimates only. Both scenarios indicate very good technical offshore wind energy potential for one third of the African coastal states, with Mozambique, South Africa, Somalia, Madagascar and Morocco exhibiting particularly good resources. More than 90% of the offshore wind resources are concentrated in coastal zones associated to three African Power Pools. These are the Southern African Power Pool (SAPP), the Eastern African Power Pool (EAPP), and the Comité Maghrébin de l′Electricité (COMELEC). A joint and integrated development within these power pools could offer a promising approach to utilising offshore wind energy in Africa.
•Analysis of offshore wind energy potential for the entire African continent.•Results presented for all African coastal states.•One third of coastal states have very good offshore wind potential.•More than 90% of offshore resources concentrated in three African Power Pools.•Offshore wind energy could play important role in Africa's energy future. |
Author | Elsner, Paul |
Author_xml | – sequence: 1 givenname: Paul surname: Elsner fullname: Elsner, Paul email: p.elsner@bbk.ac.uk organization: Birkbeck, University of London, Malet Street, London WC1E 7HX, United Kingdom |
BookMark | eNp9kE1OwzAQRi1UJNrCBVj5AgnjmLoJYlNV_ElILGBvTewJdZU6kZ2CegnOjCO6YtGVx2O_GX1vxia-88TYtYBcgFA32zxECnkBospB5CBvz9hUlMsqA1XBJNVS3WYgC3HBZjFuAcSiXMop-1l3fnCe_IBtFg22xDFGinGXWrxr-LAhvmqCM-jTtYmbLhD_dt5y8hQ-D7zvhvTVYXvH33scC44e20N0ceQTtveWQoZ9H8g4HMjykNhvrNOy45BAsdsHQ5fsvME20tXxnLOPx4eP9XP2-vb0sl69ZkYqOWQNVJUCtChhKVNC1YhaLiproQZZlopqhaaSBAsj65KUtWaRAotCIlVGyTkr_saa0MUYqNF9cDsMBy1Aj0L1Vo9C9ShUg9BJaILKf5BxQwqcBAZ07Wn0_g-llOnLpddoHHlD1iUng7adO4X_ApHZl-k |
CitedBy_id | crossref_primary_10_1016_j_oceaneng_2023_114458 crossref_primary_10_1177_01445987241302424 crossref_primary_10_14710_ijred_2023_52563 crossref_primary_10_1016_j_seta_2022_101997 crossref_primary_10_1088_2515_7620_ad17d4 crossref_primary_10_1016_j_envdev_2020_100548 crossref_primary_10_1016_j_rser_2023_113836 crossref_primary_10_1038_s41598_024_77765_0 crossref_primary_10_1016_j_energy_2021_120364 crossref_primary_10_2139_ssrn_4007106 crossref_primary_10_3390_su13137013 crossref_primary_10_1063_1_5131560 crossref_primary_10_1016_j_egyai_2022_100189 crossref_primary_10_1016_j_energy_2019_116299 crossref_primary_10_3390_jmse12030460 crossref_primary_10_1016_j_spc_2021_08_006 crossref_primary_10_3390_su14053075 crossref_primary_10_3390_su13147702 crossref_primary_10_1088_1755_1315_730_1_012036 crossref_primary_10_1016_j_jclepro_2021_127933 crossref_primary_10_1680_jcien_21_00253 crossref_primary_10_1007_s11367_022_02055_8 crossref_primary_10_3390_su16156614 crossref_primary_10_1016_j_renene_2020_05_185 crossref_primary_10_1029_2024EF004575 crossref_primary_10_1186_s40807_024_00104_4 crossref_primary_10_3390_app10186398 crossref_primary_10_3390_resources8020084 crossref_primary_10_17159_2413_3051_2020_v31i4a7940 crossref_primary_10_1016_j_rser_2020_110167 crossref_primary_10_1155_2024_8825472 crossref_primary_10_1029_2023JD039569 crossref_primary_10_1016_j_ecmx_2021_100103 crossref_primary_10_1016_j_egyr_2020_04_036 crossref_primary_10_1016_j_ijhydene_2024_08_142 crossref_primary_10_1016_j_horiz_2023_100081 crossref_primary_10_1108_IJBPA_09_2020_0082 crossref_primary_10_1016_j_oceaneng_2023_113820 crossref_primary_10_1016_j_rser_2025_115559 crossref_primary_10_1080_23311916_2019_1654659 crossref_primary_10_1016_j_rser_2021_111794 crossref_primary_10_3390_jmse8080550 crossref_primary_10_1002_met_2093 crossref_primary_10_1016_j_apenergy_2024_124464 crossref_primary_10_1051_e3sconf_202346900025 crossref_primary_10_1016_j_rser_2023_113699 crossref_primary_10_1007_s00703_022_00880_y crossref_primary_10_1016_j_marpol_2021_104514 crossref_primary_10_1016_j_rser_2020_109984 crossref_primary_10_1016_j_renene_2022_03_110 crossref_primary_10_1016_j_rser_2022_112603 crossref_primary_10_2139_ssrn_4569920 crossref_primary_10_3390_su15053927 crossref_primary_10_1016_j_sciaf_2024_e02480 crossref_primary_10_1080_15567036_2023_2222679 crossref_primary_10_1016_j_esd_2024_101565 crossref_primary_10_1016_j_rser_2024_114452 crossref_primary_10_1016_j_sciaf_2022_e01388 crossref_primary_10_1088_1748_9326_abed7a crossref_primary_10_1016_j_rser_2023_113667 crossref_primary_10_1038_s41598_024_66800_9 crossref_primary_10_1016_j_adapen_2023_100158 crossref_primary_10_1016_j_rser_2025_115563 crossref_primary_10_1007_s10661_020_08603_9 crossref_primary_10_1016_j_renene_2021_03_026 crossref_primary_10_1016_j_apenergy_2023_122218 crossref_primary_10_1007_s12053_024_10213_0 crossref_primary_10_1016_j_rser_2020_109916 crossref_primary_10_3390_en15124367 crossref_primary_10_3390_en13215618 |
Cites_doi | 10.1029/2006GL027086 10.1007/978-3-319-66420-0_5 10.1016/j.renene.2011.11.029 10.1002/wene.123 10.1016/j.renene.2014.02.024 10.1016/j.rse.2014.07.017 10.1016/j.renene.2015.09.021 10.1016/j.renene.2014.12.009 10.1016/j.rser.2018.02.005 10.1175/WAF-D-12-00086.1 10.1002/2015EA000107 10.1016/j.rser.2015.04.092 10.1063/1.5009948 10.1029/2002JD002076 10.1080/01490419.2014.902881 10.1016/j.enpol.2009.04.055 10.1787/weo-2014-en 10.1016/j.energy.2018.08.153 10.1029/2004JD005462 10.1016/j.apenergy.2016.12.162 10.1016/j.jup.2011.11.002 10.1109/JOE.2016.2565018 10.1016/j.rser.2010.08.005 10.1016/j.apenergy.2016.05.046 10.3390/en9060437 10.1029/2009JD012679 10.1016/j.renene.2009.11.022 10.1175/BAMS-D-13-00108.1 10.1016/j.renene.2015.07.078 10.3390/en10122153 10.1016/j.energy.2017.07.032 10.1016/j.rser.2018.04.044 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.rser.2019.01.034 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0690 |
EndPage | 407 |
ExternalDocumentID | 10_1016_j_rser_2019_01_034 S1364032119300449 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADHUB ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSR SSZ T5K Y6R ZCA ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c363t-f09960ada30730696f1b359dd0b03886eb6ac93e05c3b8e6ddc5158123ae9c63 |
IEDL.DBID | .~1 |
ISSN | 1364-0321 |
IngestDate | Thu Apr 24 23:02:02 EDT 2025 Tue Jul 01 03:18:00 EDT 2025 Fri Feb 23 02:32:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Energy and development Offshore wind energy Resource potential analysis Africa Energy poverty |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-f09960ada30730696f1b359dd0b03886eb6ac93e05c3b8e6ddc5158123ae9c63 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1016_j_rser_2019_01_034 crossref_citationtrail_10_1016_j_rser_2019_01_034 elsevier_sciencedirect_doi_10_1016_j_rser_2019_01_034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Renewable & sustainable energy reviews |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Soukissian, Papadopoulos (bib34) 2015; 77 World Bank (bib4) 2016 Rodrigues, Restrepo, Kontos, Teixeira Pinto, Bauer (bib5) 2015; 49 Martin, Lazakis, Barbouchi, Johanning (bib53) 2016; 85 Chamberlain K. Offshore wind opex set to fall 40% by 2030 as suppliers dig deep | New Energy Update; 2017. Veum, Cameron, Huertas, Korpaas (bib15) 2011 Archer, Colle, Delle Monache, Dvorak, Lundquist, Bailey (bib52) 2014; 95 Martín Mederos, Medina Padrón, Feijóo Lorenzo (bib24) 2011; 15 Ouedraogo (bib9) 2017; 190 Brown, Beiter, Heimiller, Davidson, Denholm, Melius (bib26) 2015 Cavazzi, Dutton (bib18) 2016; 87 Dvorak, Archer, Jacobson (bib21) 2010; 35 Sheridan, Baker, Pearre, Firestone, Kempton (bib22) 2012; 43 Archer, Jacobson (bib33) 2005; 110 International Renewable Energy Agency (bib48) 2016 Musial, Heimiller, Beiter, Scott, Draxl (bib20) 2016 Carvalho, Rocha, Gómez-Gesteira, Silva Santos (bib51) 2014; 152 Gadad, Deka (bib25) 2016; 176 GWEC. 8th National Renewable Energy Forum, Global Wind Report 2016. GWEC Global Wind Energy Council; 2017. Masters (bib36) 2013 Suarez (bib42) 2008 Keivanpour, Ramudhin, Ait Kadi (bib11) 2017; 9 Lacal-Arántegui, Yusta, Domínguez-Navarro (bib6) 2018; 92 UNEP-WCMC (bib45) 2016 U.S. Department of Energy (DOE) (bib50) 2015 . Oh, Nam, Ryu, Kim, Epureanu (bib47) 2018; 88 Yamaguchi, Ishihara (bib23) 2014; 69 Lopez, Roberts, Heimiller, Blair, Porro (bib28) 2012 Bañuelos-Ruedas, Camacho, Rios-Marcuello (bib35) 2011 [accessed 29 December 2018]. Poulsen, Hasager (bib60) 2016; 9 Simuyemba (bib2) 2015 [accessed 7 December 2018]; 2018. Appleyard D. Falling offshore prices reveal UK supply chain, grid build savings | New Energy Update; 2017. Bazilian, Nussbaumer, Rogner, Brew-Hammond, Foster, Pachauri (bib10) 2012; 20 Hasager CB, Madsen PH, Giebel G, Réthoré P-E, Hansen KS, Badger J, et al. Design tool for offshore wind farm cluster planning Design tool for offshore wind farm cluster planning. Proc EWEA Annu Event Exhib 2015 2015. Bosch, Staffell, Hawkes (bib13) 2018; 163 Weatherall, Marks, Jakobsson, Schmitt, Tani, Arndt (bib41) 2015; 2 Eberhard, Foster, Briceño-Garmendia, Ouedraogo, Camos, Shkaratan (bib57) 2008 Ward S, Walsh V. Cape Town Energy Case Study. Energy Large Cities Report. World Energy Congr. Nagababu, Kachhwaha, Savsani (bib19) 2017; 138 Claus, De Hauwere, Vanhoorne, Souza Dias, Oset García, Hernandez (bib44) 2017 [accessed 7 January 2018]. International Energy Agency (bib3) 2014 Poudineh R, Brown C, Foley B. Current Support Policies to Promote Offshore Wind Power. Econ. Offshore Wind Power, Palgrave Macmillan; 2017, p. 65–90. Andrews, Jelley (bib37) 2007 Equinor. World’s first floating wind farm has started production - World’s first floating wind farm has started production - equinor.com n.d. Peng, Zhang, Frank, Bidlot, Higaki, Stevens (bib29) 2013; 28 EIA (bib55) 2018 Baldock, Jacquemin (bib14) 2009 Equinor. World class performance by world’s first floating wind farm. Soukissian, Karathanasi, Axaopoulos (bib17) 2017; 42 Soukissian, Papadopoulos (bib16) 2015; 77 Zhang, Bates, Reynolds (bib31) 2006; 33 Beiter, Musial (bib27) 2016 Africa Progress Panel (bib1) 2015 Capps, Zender (bib12) 2010; 115 Archer, Jacobson (bib38) 2003; 108 Yue, Yang (bib32) 2009; 37 Claus, De Hauwere, Vanhoorne, Deckers, Souza Dias, Hernandez (bib43) 2014 Poulsen, Hasager (bib56) 2017; 10 IRENA (bib46) 2016 Hasager (bib30) 2014; 3 Bazilian (10.1016/j.rser.2019.01.034_bib10) 2012; 20 Sheridan (10.1016/j.rser.2019.01.034_bib22) 2012; 43 UNEP-WCMC (10.1016/j.rser.2019.01.034_bib45) 2016 10.1016/j.rser.2019.01.034_bib40 Peng (10.1016/j.rser.2019.01.034_bib29) 2013; 28 Poulsen (10.1016/j.rser.2019.01.034_bib60) 2016; 9 10.1016/j.rser.2019.01.034_bib49 Soukissian (10.1016/j.rser.2019.01.034_bib16) 2015; 77 Suarez (10.1016/j.rser.2019.01.034_bib42) 2008 Baldock (10.1016/j.rser.2019.01.034_bib14) 2009 Nagababu (10.1016/j.rser.2019.01.034_bib19) 2017; 138 Zhang (10.1016/j.rser.2019.01.034_bib31) 2006; 33 Masters (10.1016/j.rser.2019.01.034_bib36) 2013 Cavazzi (10.1016/j.rser.2019.01.034_bib18) 2016; 87 Dvorak (10.1016/j.rser.2019.01.034_bib21) 2010; 35 10.1016/j.rser.2019.01.034_bib7 10.1016/j.rser.2019.01.034_bib54 Martín Mederos (10.1016/j.rser.2019.01.034_bib24) 2011; 15 Rodrigues (10.1016/j.rser.2019.01.034_bib5) 2015; 49 10.1016/j.rser.2019.01.034_bib58 Archer (10.1016/j.rser.2019.01.034_bib33) 2005; 110 10.1016/j.rser.2019.01.034_bib59 Poulsen (10.1016/j.rser.2019.01.034_bib56) 2017; 10 Beiter (10.1016/j.rser.2019.01.034_bib27) 2016 Musial (10.1016/j.rser.2019.01.034_bib20) 2016 10.1016/j.rser.2019.01.034_bib8 Gadad (10.1016/j.rser.2019.01.034_bib25) 2016; 176 Oh (10.1016/j.rser.2019.01.034_bib47) 2018; 88 Ouedraogo (10.1016/j.rser.2019.01.034_bib9) 2017; 190 Brown (10.1016/j.rser.2019.01.034_bib26) 2015 Veum (10.1016/j.rser.2019.01.034_bib15) 2011 Yamaguchi (10.1016/j.rser.2019.01.034_bib23) 2014; 69 International Renewable Energy Agency (10.1016/j.rser.2019.01.034_bib48) 2016 Carvalho (10.1016/j.rser.2019.01.034_bib51) 2014; 152 Capps (10.1016/j.rser.2019.01.034_bib12) 2010; 115 U.S. Department of Energy (DOE) (10.1016/j.rser.2019.01.034_bib50) 2015 Africa Progress Panel (10.1016/j.rser.2019.01.034_bib1) 2015 Claus (10.1016/j.rser.2019.01.034_bib44) 2017 International Energy Agency (10.1016/j.rser.2019.01.034_bib3) 2014 Soukissian (10.1016/j.rser.2019.01.034_bib34) 2015; 77 Keivanpour (10.1016/j.rser.2019.01.034_bib11) 2017; 9 Claus (10.1016/j.rser.2019.01.034_bib43) 2014 IRENA (10.1016/j.rser.2019.01.034_bib46) 2016 Martin (10.1016/j.rser.2019.01.034_bib53) 2016; 85 EIA (10.1016/j.rser.2019.01.034_bib55) 2018 Archer (10.1016/j.rser.2019.01.034_bib38) 2003; 108 Bosch (10.1016/j.rser.2019.01.034_bib13) 2018; 163 Bañuelos-Ruedas (10.1016/j.rser.2019.01.034_bib35) 2011 Yue (10.1016/j.rser.2019.01.034_bib32) 2009; 37 Simuyemba (10.1016/j.rser.2019.01.034_bib2) 2015 10.1016/j.rser.2019.01.034_bib39 Lacal-Arántegui (10.1016/j.rser.2019.01.034_bib6) 2018; 92 Andrews (10.1016/j.rser.2019.01.034_bib37) 2007 Soukissian (10.1016/j.rser.2019.01.034_bib17) 2017; 42 Eberhard (10.1016/j.rser.2019.01.034_bib57) 2008 World Bank (10.1016/j.rser.2019.01.034_bib4) 2016 Weatherall (10.1016/j.rser.2019.01.034_bib41) 2015; 2 Lopez (10.1016/j.rser.2019.01.034_bib28) 2012 Hasager (10.1016/j.rser.2019.01.034_bib30) 2014; 3 Archer (10.1016/j.rser.2019.01.034_bib52) 2014; 95 |
References_xml | – reference: [accessed 29 December 2018]. – volume: 110 start-page: D12110 year: 2005 ident: bib33 article-title: Evaluation of global wind power publication-title: J Geophys Res – year: 2015 ident: bib2 publication-title: The Programme for Infrastructure Development in Africa: transforming Africa through modern infrastructure – volume: 138 start-page: 79 year: 2017 end-page: 91 ident: bib19 article-title: Estimation of technical and economic potential of offshore wind along the coast of India publication-title: Energy – year: 2016 ident: bib45 publication-title: World database on protected areas – volume: 9 year: 2016 ident: bib60 article-title: How expensive is expensive enough? Opportunities for cost reductions in offshore Wind energy logistics publication-title: Energies – volume: 20 start-page: 1 year: 2012 end-page: 16 ident: bib10 article-title: Energy access scenarios to 2030 for the power sector in sub-Saharan Africa publication-title: Util Policy – year: 2016 ident: bib20 article-title: Offshore wind energy resource assessment for the United States – volume: 42 start-page: 73 year: 2017 end-page: 86 ident: bib17 article-title: Satellite-based offshore wind resource assessment in the Mediterranean Sea publication-title: IEEE J Ocean Eng – reference: Equinor. World class performance by world’s first floating wind farm. – volume: 88 start-page: 16 year: 2018 end-page: 36 ident: bib47 article-title: A review of foundations of offshore wind energy convertors: current status and future perspectives publication-title: Renew Sustain Energy Rev – year: 2014 ident: bib3 publication-title: Africa energy outlook – reference: Appleyard D. Falling offshore prices reveal UK supply chain, grid build savings | New Energy Update; 2017. – volume: 163 start-page: 766 year: 2018 end-page: 781 ident: bib13 article-title: Temporally explicit and spatially resolved global offshore wind energy potentials publication-title: Energy – year: 2017 ident: bib44 article-title: Marine regions – volume: 190 start-page: 1047 year: 2017 end-page: 1067 ident: bib9 article-title: Modeling sustainable long-term electricity supply-demand in Africa publication-title: Appl Energy – reference: [accessed 7 January 2018]. – reference: GWEC. 8th National Renewable Energy Forum, Global Wind Report 2016. GWEC Global Wind Energy Council; 2017. – start-page: 1 year: 2016 end-page: 8 ident: bib48 publication-title: Floating foundations: a game changer for offshore wind power – year: 2008 ident: bib57 article-title: Underpowered : The State of the Power Sector in Sub-Saharan Africa – volume: 95 start-page: 515 year: 2014 end-page: 519 ident: bib52 article-title: Meteorology for coastal/offshore wind energy in the United States: recommendations and research needs for the next 10 years publication-title: Bull Am Meteorol Soc – reference: 〉. – volume: 85 start-page: 1226 year: 2016 end-page: 1236 ident: bib53 article-title: Sensitivity analysis of offshore wind farm operation and maintenance cost and availability publication-title: Renew Energy – volume: 28 start-page: 1281 year: 2013 end-page: 1303 ident: bib29 article-title: Evaluation of various surface wind products with OceanSITES buoy measurements publication-title: Weather Forecast – year: 2016 ident: bib4 publication-title: World development indicators 2016 – year: 2012 ident: bib28 article-title: Renewable energy Technical potentials: a GIS-based analysis – year: 2016 ident: bib46 publication-title: Innovation outlook: offshore wind – volume: 87 start-page: 212 year: 2016 end-page: 228 ident: bib18 article-title: An Offshore Wind Energy Geographic Information System (OWE-GIS) for assessment of the UK's offshore wind energy potential publication-title: Renew Energy – volume: 10 start-page: 2153 year: 2017 ident: bib56 article-title: The (R)evolution of China: offshore Wind Diffusion publication-title: Energies – start-page: 246 year: 2011 ident: bib35 article-title: Methodologies used in the extrapolation of wind speed data at different heights and its impact in the wind energy resource assessment in a region publication-title: Wind Farm - Tech. Regul. Potential Estim. Siting Assess. – start-page: 350 year: 2015 ident: bib50 publication-title: Wind Vision. A new era for wind power in the United States – volume: 115 start-page: 1 year: 2010 end-page: 13 ident: bib12 article-title: Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting publication-title: J Geophys Res Atmos – year: 2011 ident: bib15 publication-title: Roadmap to the deployment of offshore wind energy in the central and Southern North Sea (2020–2030) – year: 2016 ident: bib27 article-title: Terminology guideline for classifying offshore wind energy resources terminology guideline for classifying offshore wind energy resources Philipp Beiter and Walt Musial – volume: 108 year: 2003 ident: bib38 article-title: Spatial and temporal distributions of U.S. winds and wind power at 80 m derived from measurements publication-title: J Geophys Res Atmos – reference: Poudineh R, Brown C, Foley B. Current Support Policies to Promote Offshore Wind Power. Econ. Offshore Wind Power, Palgrave Macmillan; 2017, p. 65–90. 〈 – year: 2015 ident: bib1 publication-title: Lights power action: electrifying Africa – volume: 69 start-page: 506 year: 2014 end-page: 515 ident: bib23 article-title: Assessment of offshore wind energy potential using mesoscale model and geographic information system publication-title: Renew Energy – year: 2014 ident: bib43 article-title: Marine regions: towards a global standard for georeferenced marine names and boundaries publication-title: Mar Geod – volume: 49 start-page: 1114 year: 2015 end-page: 1135 ident: bib5 article-title: Trends of offshore wind projects publication-title: Renew Sustain Energy Rev – reference: Ward S, Walsh V. Cape Town Energy Case Study. Energy Large Cities Report. World Energy Congr. – year: 2018 ident: bib55 publication-title: South Africa country analysis brief – volume: 37 start-page: 3925 year: 2009 end-page: 3940 ident: bib32 article-title: Exploring the potential of wind energy for a coastal state publication-title: Energy Policy – volume: 2 start-page: 331 year: 2015 end-page: 345 ident: bib41 article-title: A new digital bathymetric model of the world's oceans publication-title: Earth Sp Sci – volume: 77 start-page: 101 year: 2015 end-page: 114 ident: bib34 article-title: Effects of different wind data sources in offshore wind power assessment publication-title: Renew Energy – year: 2009 ident: bib14 publication-title: Inventory of wind potential based on sea depth, wind speed, distance from shore – reference: Equinor. World’s first floating wind farm has started production - World’s first floating wind farm has started production - equinor.com n.d. – volume: 35 start-page: 1244 year: 2010 end-page: 1254 ident: bib21 article-title: California offshore wind energy potential publication-title: Renew Energy – volume: 43 start-page: 224 year: 2012 end-page: 233 ident: bib22 article-title: Calculating the offshore wind power resource: robust assessment methods applied to the U.S. Atlantic Coast publication-title: Renew Energy – start-page: 1 year: 2015 end-page: 154 ident: bib26 article-title: Estimating renewable energy economic potential in the United States: methodology and initial results – year: 2008 ident: bib42 article-title: The outer limits of the continental shelf: legal aspects of their establishment – volume: 92 start-page: 133 year: 2018 end-page: 145 ident: bib6 article-title: Offshore wind installation: analysing the evidence behind improvements in installation time publication-title: Renew Sustain Energy Rev – volume: 176 start-page: 157 year: 2016 end-page: 170 ident: bib25 article-title: Offshore wind power resource assessment using Oceansat-2 scatterometer data at a regional scale publication-title: Appl Energy – year: 2013 ident: bib36 publication-title: Renewable and efficient electric power systems – volume: 3 start-page: 594 year: 2014 end-page: 603 ident: bib30 article-title: Offshore winds mapped from satellite remote sensing publication-title: Wiley Interdiscip Rev Energy Environ – year: 2007 ident: bib37 article-title: Energy science: principles, technologies, and impacts – reference: [accessed 7 December 2018]; 2018. – volume: 152 start-page: 480 year: 2014 end-page: 492 ident: bib51 article-title: Comparison of reanalyzed, analyzed, satellite-retrieved and NWP modelled winds with buoy data along the Iberian Peninsula coast publication-title: Remote Sens Environ – volume: 77 start-page: 101 year: 2015 end-page: 114 ident: bib16 article-title: Effects of different wind data sources in offshore wind power assessment publication-title: Renew Energy – volume: 15 start-page: 612 year: 2011 end-page: 620 ident: bib24 article-title: An offshore wind atlas for the Canary Islands publication-title: Renew Sustain Energy Rev – volume: 9 year: 2017 ident: bib11 article-title: The sustainable worldwide offshore wind energy potential: a systematic review publication-title: J Renew Sustain Energy – volume: 33 start-page: 1 year: 2006 end-page: 5 ident: bib31 article-title: Assessment of composite global sampling: sea surface wind speed publication-title: Geophys Res Lett – reference: Chamberlain K. Offshore wind opex set to fall 40% by 2030 as suppliers dig deep | New Energy Update; 2017. – reference: Hasager CB, Madsen PH, Giebel G, Réthoré P-E, Hansen KS, Badger J, et al. Design tool for offshore wind farm cluster planning Design tool for offshore wind farm cluster planning. Proc EWEA Annu Event Exhib 2015 2015. – ident: 10.1016/j.rser.2019.01.034_bib8 – volume: 33 start-page: 1 year: 2006 ident: 10.1016/j.rser.2019.01.034_bib31 article-title: Assessment of composite global sampling: sea surface wind speed publication-title: Geophys Res Lett doi: 10.1029/2006GL027086 – ident: 10.1016/j.rser.2019.01.034_bib58 doi: 10.1007/978-3-319-66420-0_5 – year: 2016 ident: 10.1016/j.rser.2019.01.034_bib27 – volume: 43 start-page: 224 year: 2012 ident: 10.1016/j.rser.2019.01.034_bib22 article-title: Calculating the offshore wind power resource: robust assessment methods applied to the U.S. Atlantic Coast publication-title: Renew Energy doi: 10.1016/j.renene.2011.11.029 – volume: 3 start-page: 594 year: 2014 ident: 10.1016/j.rser.2019.01.034_bib30 article-title: Offshore winds mapped from satellite remote sensing publication-title: Wiley Interdiscip Rev Energy Environ doi: 10.1002/wene.123 – volume: 69 start-page: 506 year: 2014 ident: 10.1016/j.rser.2019.01.034_bib23 article-title: Assessment of offshore wind energy potential using mesoscale model and geographic information system publication-title: Renew Energy doi: 10.1016/j.renene.2014.02.024 – volume: 152 start-page: 480 year: 2014 ident: 10.1016/j.rser.2019.01.034_bib51 article-title: Comparison of reanalyzed, analyzed, satellite-retrieved and NWP modelled winds with buoy data along the Iberian Peninsula coast publication-title: Remote Sens Environ doi: 10.1016/j.rse.2014.07.017 – start-page: 350 year: 2015 ident: 10.1016/j.rser.2019.01.034_bib50 – volume: 87 start-page: 212 year: 2016 ident: 10.1016/j.rser.2019.01.034_bib18 article-title: An Offshore Wind Energy Geographic Information System (OWE-GIS) for assessment of the UK's offshore wind energy potential publication-title: Renew Energy doi: 10.1016/j.renene.2015.09.021 – year: 2016 ident: 10.1016/j.rser.2019.01.034_bib45 – volume: 77 start-page: 101 year: 2015 ident: 10.1016/j.rser.2019.01.034_bib16 article-title: Effects of different wind data sources in offshore wind power assessment publication-title: Renew Energy doi: 10.1016/j.renene.2014.12.009 – volume: 88 start-page: 16 year: 2018 ident: 10.1016/j.rser.2019.01.034_bib47 article-title: A review of foundations of offshore wind energy convertors: current status and future perspectives publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.02.005 – year: 2008 ident: 10.1016/j.rser.2019.01.034_bib57 – year: 2011 ident: 10.1016/j.rser.2019.01.034_bib15 – volume: 28 start-page: 1281 year: 2013 ident: 10.1016/j.rser.2019.01.034_bib29 article-title: Evaluation of various surface wind products with OceanSITES buoy measurements publication-title: Weather Forecast doi: 10.1175/WAF-D-12-00086.1 – ident: 10.1016/j.rser.2019.01.034_bib40 – start-page: 246 year: 2011 ident: 10.1016/j.rser.2019.01.034_bib35 article-title: Methodologies used in the extrapolation of wind speed data at different heights and its impact in the wind energy resource assessment in a region – year: 2007 ident: 10.1016/j.rser.2019.01.034_bib37 – ident: 10.1016/j.rser.2019.01.034_bib7 – start-page: 1 year: 2015 ident: 10.1016/j.rser.2019.01.034_bib26 – year: 2008 ident: 10.1016/j.rser.2019.01.034_bib42 – volume: 2 start-page: 331 year: 2015 ident: 10.1016/j.rser.2019.01.034_bib41 article-title: A new digital bathymetric model of the world's oceans publication-title: Earth Sp Sci doi: 10.1002/2015EA000107 – volume: 49 start-page: 1114 year: 2015 ident: 10.1016/j.rser.2019.01.034_bib5 article-title: Trends of offshore wind projects publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.04.092 – volume: 77 start-page: 101 year: 2015 ident: 10.1016/j.rser.2019.01.034_bib34 article-title: Effects of different wind data sources in offshore wind power assessment publication-title: Renew Energy doi: 10.1016/j.renene.2014.12.009 – volume: 9 year: 2017 ident: 10.1016/j.rser.2019.01.034_bib11 article-title: The sustainable worldwide offshore wind energy potential: a systematic review publication-title: J Renew Sustain Energy doi: 10.1063/1.5009948 – volume: 108 year: 2003 ident: 10.1016/j.rser.2019.01.034_bib38 article-title: Spatial and temporal distributions of U.S. winds and wind power at 80 m derived from measurements publication-title: J Geophys Res Atmos doi: 10.1029/2002JD002076 – year: 2016 ident: 10.1016/j.rser.2019.01.034_bib20 – year: 2015 ident: 10.1016/j.rser.2019.01.034_bib1 – year: 2014 ident: 10.1016/j.rser.2019.01.034_bib43 article-title: Marine regions: towards a global standard for georeferenced marine names and boundaries publication-title: Mar Geod doi: 10.1080/01490419.2014.902881 – year: 2012 ident: 10.1016/j.rser.2019.01.034_bib28 – ident: 10.1016/j.rser.2019.01.034_bib49 – volume: 37 start-page: 3925 year: 2009 ident: 10.1016/j.rser.2019.01.034_bib32 article-title: Exploring the potential of wind energy for a coastal state publication-title: Energy Policy doi: 10.1016/j.enpol.2009.04.055 – year: 2015 ident: 10.1016/j.rser.2019.01.034_bib2 – year: 2016 ident: 10.1016/j.rser.2019.01.034_bib46 – ident: 10.1016/j.rser.2019.01.034_bib59 – start-page: 1 year: 2016 ident: 10.1016/j.rser.2019.01.034_bib48 – year: 2014 ident: 10.1016/j.rser.2019.01.034_bib3 doi: 10.1787/weo-2014-en – volume: 163 start-page: 766 year: 2018 ident: 10.1016/j.rser.2019.01.034_bib13 article-title: Temporally explicit and spatially resolved global offshore wind energy potentials publication-title: Energy doi: 10.1016/j.energy.2018.08.153 – volume: 110 start-page: D12110 year: 2005 ident: 10.1016/j.rser.2019.01.034_bib33 article-title: Evaluation of global wind power publication-title: J Geophys Res doi: 10.1029/2004JD005462 – volume: 190 start-page: 1047 year: 2017 ident: 10.1016/j.rser.2019.01.034_bib9 article-title: Modeling sustainable long-term electricity supply-demand in Africa publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.12.162 – year: 2017 ident: 10.1016/j.rser.2019.01.034_bib44 – year: 2018 ident: 10.1016/j.rser.2019.01.034_bib55 – year: 2009 ident: 10.1016/j.rser.2019.01.034_bib14 – ident: 10.1016/j.rser.2019.01.034_bib39 – volume: 20 start-page: 1 year: 2012 ident: 10.1016/j.rser.2019.01.034_bib10 article-title: Energy access scenarios to 2030 for the power sector in sub-Saharan Africa publication-title: Util Policy doi: 10.1016/j.jup.2011.11.002 – volume: 42 start-page: 73 year: 2017 ident: 10.1016/j.rser.2019.01.034_bib17 article-title: Satellite-based offshore wind resource assessment in the Mediterranean Sea publication-title: IEEE J Ocean Eng doi: 10.1109/JOE.2016.2565018 – volume: 15 start-page: 612 year: 2011 ident: 10.1016/j.rser.2019.01.034_bib24 article-title: An offshore wind atlas for the Canary Islands publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2010.08.005 – volume: 176 start-page: 157 year: 2016 ident: 10.1016/j.rser.2019.01.034_bib25 article-title: Offshore wind power resource assessment using Oceansat-2 scatterometer data at a regional scale publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.05.046 – volume: 9 year: 2016 ident: 10.1016/j.rser.2019.01.034_bib60 article-title: How expensive is expensive enough? Opportunities for cost reductions in offshore Wind energy logistics publication-title: Energies doi: 10.3390/en9060437 – volume: 115 start-page: 1 year: 2010 ident: 10.1016/j.rser.2019.01.034_bib12 article-title: Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting publication-title: J Geophys Res Atmos doi: 10.1029/2009JD012679 – ident: 10.1016/j.rser.2019.01.034_bib54 – volume: 35 start-page: 1244 year: 2010 ident: 10.1016/j.rser.2019.01.034_bib21 article-title: California offshore wind energy potential publication-title: Renew Energy doi: 10.1016/j.renene.2009.11.022 – volume: 95 start-page: 515 year: 2014 ident: 10.1016/j.rser.2019.01.034_bib52 article-title: Meteorology for coastal/offshore wind energy in the United States: recommendations and research needs for the next 10 years publication-title: Bull Am Meteorol Soc doi: 10.1175/BAMS-D-13-00108.1 – year: 2016 ident: 10.1016/j.rser.2019.01.034_bib4 – volume: 85 start-page: 1226 year: 2016 ident: 10.1016/j.rser.2019.01.034_bib53 article-title: Sensitivity analysis of offshore wind farm operation and maintenance cost and availability publication-title: Renew Energy doi: 10.1016/j.renene.2015.07.078 – volume: 10 start-page: 2153 year: 2017 ident: 10.1016/j.rser.2019.01.034_bib56 article-title: The (R)evolution of China: offshore Wind Diffusion publication-title: Energies doi: 10.3390/en10122153 – volume: 138 start-page: 79 year: 2017 ident: 10.1016/j.rser.2019.01.034_bib19 article-title: Estimation of technical and economic potential of offshore wind along the coast of India publication-title: Energy doi: 10.1016/j.energy.2017.07.032 – year: 2013 ident: 10.1016/j.rser.2019.01.034_bib36 – volume: 92 start-page: 133 year: 2018 ident: 10.1016/j.rser.2019.01.034_bib6 article-title: Offshore wind installation: analysing the evidence behind improvements in installation time publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.04.044 |
SSID | ssj0015873 |
Score | 2.5405426 |
Snippet | Offshore wind energy is rapidly becoming a technology that developing countries could consider because project costs have recently fallen substantially.... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 394 |
SubjectTerms | Africa Energy and development Energy poverty Offshore wind energy Resource potential analysis |
Title | Continental-scale assessment of the African offshore wind energy potential: Spatial analysis of an under-appreciated renewable energy resource |
URI | https://dx.doi.org/10.1016/j.rser.2019.01.034 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3oQn_gse_Ama5PuZpt4K0WpT8QH9Bb2iZXSlrTSmz_B3-xMsikK4sFTsmEnhJ3NzIR83zeEnKTaOciLgkGxbplItWU68y3W8m1rYi64Ech3vruXvRdx3U_6S6Rbc2EQVhlifxXTy2gdrjTDajYng0HzKeZSRBwVylA1SiCJT4g27vKzjwXMI07S8i8zTmY4OxBnKoxXAW5GeFdWSndy8Xty-pZwLjfIeqgUaad6mE2y5EZbZO2bfuA2-URtKRgio5FNYbUdVQulTTr2FKo7WnUCGsHQT1_HhaNz-AynruT80cl4hnAhNTyn2JwYTqgKMiVoD2ZIMisYSo9jo3qoTymKYM6RcVXfpAi_AHbI8-XFc7fHQoMFZrjkM-Yj1GZRVpUvusykjzVPMmsjjSIx0mmpTMZdlBiuUyetNVD-QEnAlcuM5LtkeTQeuT1CI68jG_nU2UwJzyGaS6PTFrep4tqq9j6J64XNTRAfxx4Yw7xGmb3l6IwcnZFHcQ7O2CenC5tJJb3x5-yk9lf-YwPlkBv-sDv4p90hWcVRBeI5Isuz4t0dQ30y041yAzbISqf7ePuAx6ub3v0XzHDq_Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB3RcGh7QNCCylfZQ2_VKnZ2vbG5IQQKBXJpKnFb7acAoSQyQfkX_GZm7HVEJcSBm9f2WNbOeuZZO-8NwK_ShoB5UXIE657L0npuqzjggzj0LhdSOEl85-uxGv2Tf26KmzU47bgwVFaZYn8b05tonc7002z253d3_b-5UDITpFBGqlGy-gTrpE5V9GD95OJyNF5tJhRls9FM93MySNyZtsyrRk9ThVfVqHcK-XZ-epVzzjdhI4FFdtK-zxashek3-PpKQvA7PJO8FA6J1MgfccIDMyuxTTaLDAEea5sBTXEYH29ndWBL_BNnoaH9sflsQRVD5uGYUX9iPGAmKZWQPZoRz6zmpD5OveoRojLSwVwS6ap7SJ12AbZhcn42OR3x1GOBO6HEgseM5FmMN823rioVcyuKyvvMkk6MClYZV4mQFU7YMijvHSIgRAXChMopsQO96WwafgDLos18FsvgKyOjwICunC0HwpdGWG-Gu5B3E6td0h-nNhgPuis0u9fkDE3O0Fmu0Rm78HtlM2_VN969u-j8pf9bQxrTwzt2ex-0O4LPo8n1lb66GF_uwxe60tb0HEBvUT-FQ4QrC_szLccXdezsGQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continental-scale+assessment+of+the+African+offshore+wind+energy+potential%3A+Spatial+analysis+of+an+under-appreciated+renewable+energy+resource&rft.jtitle=Renewable+%26+sustainable+energy+reviews&rft.au=Elsner%2C+Paul&rft.date=2019-04-01&rft.pub=Elsevier+Ltd&rft.issn=1364-0321&rft.eissn=1879-0690&rft.volume=104&rft.spage=394&rft.epage=407&rft_id=info:doi/10.1016%2Fj.rser.2019.01.034&rft.externalDocID=S1364032119300449 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-0321&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-0321&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-0321&client=summon |