On-board range-based relative localization for micro air vehicles in indoor leader–follower flight

We present a range-based solution for indoor relative localization by micro air vehicles (MAVs), achieving sufficient accuracy for leader–follower flight. Moving forward from previous work, we removed the dependency on a common heading measurement by the MAVs, making the relative localization accura...

Full description

Saved in:
Bibliographic Details
Published inAutonomous robots Vol. 44; no. 3-4; pp. 415 - 441
Main Authors van der Helm, Steven, Coppola, Mario, McGuire, Kimberly N., de Croon, Guido C. H. E.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present a range-based solution for indoor relative localization by micro air vehicles (MAVs), achieving sufficient accuracy for leader–follower flight. Moving forward from previous work, we removed the dependency on a common heading measurement by the MAVs, making the relative localization accuracy independent of magnetometer readings. We found that this restricts the relative maneuvers that guarantee observability, and also that higher accuracy range measurements are required to rectify the missing heading information, yet both disadvantages can be tackled. Our implementation uses ultra wideband, for both range measurements between MAVs and sharing their velocities, accelerations, yaw rates, and height with each other. We showcased our implementation on a total of three Parrot Bebop 2.0 MAVs and performed leader–follower flight in a real-world indoor environment. The follower MAVs were autonomous and used only on-board sensors to track the same trajectory as the leader. They could follow the leader MAV in close proximity for the entire durations of the flights.
ISSN:0929-5593
1573-7527
DOI:10.1007/s10514-019-09843-6