Water quality prediction using machine learning models based on grid search method

Water quality is very dominant for humans, animals, plants, industries, and the environment. In the last decades, the quality of water has been impacted by contamination and pollution. In this paper, the challenge is to anticipate Water Quality Index (WQI) and Water Quality Classification (WQC), suc...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 83; no. 12; pp. 35307 - 35334
Main Authors Shams, Mahmoud Y., Elshewey, Ahmed M., El-kenawy, El-Sayed M., Ibrahim, Abdelhameed, Talaat, Fatma M., Tarek, Zahraa
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Water quality is very dominant for humans, animals, plants, industries, and the environment. In the last decades, the quality of water has been impacted by contamination and pollution. In this paper, the challenge is to anticipate Water Quality Index (WQI) and Water Quality Classification (WQC), such that WQI is a vital indicator for water validity. In this study, parameters optimization and tuning are utilized to improve the accuracy of several machine learning models, where the machine learning techniques are utilized for the process of predicting WQI and WQC. Grid search is a vital method used for optimizing and tuning the parameters for four classification models and also, for optimizing and tuning the parameters for four regression models. Random forest (RF) model, Extreme Gradient Boosting (Xgboost) model, Gradient Boosting (GB) model, and Adaptive Boosting (AdaBoost) model are used as classification models for predicting WQC. K-nearest neighbor (KNN) regressor model, decision tree (DT) regressor model, support vector regressor (SVR) model, and multi-layer perceptron (MLP) regressor model are used as regression models for predicting WQI. In addition, preprocessing step including, data imputation (mean imputation) and data normalization were performed to fit the data and make it convenient for any further processing. The dataset used in this study includes 7 features and 1991 instances. To examine the efficacy of the classification approaches, five assessment metrics were computed: accuracy, recall, precision, Matthews's Correlation Coefficient (MCC), and F1 score. To assess the effectiveness of the regression models, four assessment metrics were computed: Mean Absolute Error (MAE), Median Absolute Error (MedAE), Mean Square Error (MSE), and coefficient of determination (R 2 ). In terms of classification, the testing findings showed that the GB model produced the best results, with an accuracy of 99.50% when predicting WQC values. According to the experimental results, the MLP regressor model outperformed other models in regression and achieved an R 2 value of 99.8% while predicting WQI values.
AbstractList Water quality is very dominant for humans, animals, plants, industries, and the environment. In the last decades, the quality of water has been impacted by contamination and pollution. In this paper, the challenge is to anticipate Water Quality Index (WQI) and Water Quality Classification (WQC), such that WQI is a vital indicator for water validity. In this study, parameters optimization and tuning are utilized to improve the accuracy of several machine learning models, where the machine learning techniques are utilized for the process of predicting WQI and WQC. Grid search is a vital method used for optimizing and tuning the parameters for four classification models and also, for optimizing and tuning the parameters for four regression models. Random forest (RF) model, Extreme Gradient Boosting (Xgboost) model, Gradient Boosting (GB) model, and Adaptive Boosting (AdaBoost) model are used as classification models for predicting WQC. K-nearest neighbor (KNN) regressor model, decision tree (DT) regressor model, support vector regressor (SVR) model, and multi-layer perceptron (MLP) regressor model are used as regression models for predicting WQI. In addition, preprocessing step including, data imputation (mean imputation) and data normalization were performed to fit the data and make it convenient for any further processing. The dataset used in this study includes 7 features and 1991 instances. To examine the efficacy of the classification approaches, five assessment metrics were computed: accuracy, recall, precision, Matthews's Correlation Coefficient (MCC), and F1 score. To assess the effectiveness of the regression models, four assessment metrics were computed: Mean Absolute Error (MAE), Median Absolute Error (MedAE), Mean Square Error (MSE), and coefficient of determination (R 2 ). In terms of classification, the testing findings showed that the GB model produced the best results, with an accuracy of 99.50% when predicting WQC values. According to the experimental results, the MLP regressor model outperformed other models in regression and achieved an R 2 value of 99.8% while predicting WQI values.
Water quality is very dominant for humans, animals, plants, industries, and the environment. In the last decades, the quality of water has been impacted by contamination and pollution. In this paper, the challenge is to anticipate Water Quality Index (WQI) and Water Quality Classification (WQC), such that WQI is a vital indicator for water validity. In this study, parameters optimization and tuning are utilized to improve the accuracy of several machine learning models, where the machine learning techniques are utilized for the process of predicting WQI and WQC. Grid search is a vital method used for optimizing and tuning the parameters for four classification models and also, for optimizing and tuning the parameters for four regression models. Random forest (RF) model, Extreme Gradient Boosting (Xgboost) model, Gradient Boosting (GB) model, and Adaptive Boosting (AdaBoost) model are used as classification models for predicting WQC. K-nearest neighbor (KNN) regressor model, decision tree (DT) regressor model, support vector regressor (SVR) model, and multi-layer perceptron (MLP) regressor model are used as regression models for predicting WQI. In addition, preprocessing step including, data imputation (mean imputation) and data normalization were performed to fit the data and make it convenient for any further processing. The dataset used in this study includes 7 features and 1991 instances. To examine the efficacy of the classification approaches, five assessment metrics were computed: accuracy, recall, precision, Matthews's Correlation Coefficient (MCC), and F1 score. To assess the effectiveness of the regression models, four assessment metrics were computed: Mean Absolute Error (MAE), Median Absolute Error (MedAE), Mean Square Error (MSE), and coefficient of determination (R2). In terms of classification, the testing findings showed that the GB model produced the best results, with an accuracy of 99.50% when predicting WQC values. According to the experimental results, the MLP regressor model outperformed other models in regression and achieved an R2 value of 99.8% while predicting WQI values.
Author Tarek, Zahraa
Elshewey, Ahmed M.
El-kenawy, El-Sayed M.
Ibrahim, Abdelhameed
Shams, Mahmoud Y.
Talaat, Fatma M.
Author_xml – sequence: 1
  givenname: Mahmoud Y.
  orcidid: 0000-0003-3021-5902
  surname: Shams
  fullname: Shams, Mahmoud Y.
  email: mahmoud.yasin@ai.kfs.edu.eg
  organization: Faculty of Artificial Intelligence, Kafrelsheikh University
– sequence: 2
  givenname: Ahmed M.
  surname: Elshewey
  fullname: Elshewey, Ahmed M.
  organization: Faculty of Computers and Information, Computer Science Department, Suez University
– sequence: 3
  givenname: El-Sayed M.
  surname: El-kenawy
  fullname: El-kenawy, El-Sayed M.
  organization: Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology
– sequence: 4
  givenname: Abdelhameed
  surname: Ibrahim
  fullname: Ibrahim, Abdelhameed
  organization: Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University
– sequence: 5
  givenname: Fatma M.
  surname: Talaat
  fullname: Talaat, Fatma M.
  organization: Faculty of Artificial Intelligence, Kafrelsheikh University, Faculty of Computer Science & Engineering, New Mansoura University
– sequence: 6
  givenname: Zahraa
  surname: Tarek
  fullname: Tarek, Zahraa
  organization: Faculty of Computers and Information, Computer Science Department, Mansoura University
BookMark eNp9kEtLAzEUhYNUsK3-AVcB16N5zCTTpRRfUBBEcRnS5E6bMs20SWbRf2_aERQX3k3CzfnOzT0TNPKdB4SuKbmlhMi7SCkpWUEYL6iQXBblGRrTSvJCSkZHv-4XaBLjhhAqKlaO0dunThDwvtetSwe8C2CdSa7zuI_Or_BWm7XzgFvQwZ8anYU24qWOYHGWrYKzOOZXs8ZbSOvOXqLzRrcRrr7PKfp4fHifPxeL16eX-f2iMFzwVIAVMpcVvOLWgFza2awWNpfIu5imbhopGkmooRVhprG0ZJZKoZmsDZQzPkU3g-8udPseYlKbrg8-j1SccDIT2YdlVT2oTOhiDNAo45I-bpiCdq2iRB0TVEOCKhPqlKAqM8r-oLvgtjoc_of4AMUs9isIP7_6h_oCf8KFtQ
CitedBy_id crossref_primary_10_1007_s41748_024_00524_8
crossref_primary_10_2166_wqrj_2024_049
crossref_primary_10_3390_ijgi13110381
crossref_primary_10_1007_s00521_023_09391_2
crossref_primary_10_2166_ws_2024_247
crossref_primary_10_47264_idea_nasij_5_1_6
crossref_primary_10_1007_s11356_024_35662_z
crossref_primary_10_31436_iiumej_v25i2_3129
crossref_primary_10_1007_s11356_024_34119_7
crossref_primary_10_1007_s00521_024_10317_9
crossref_primary_10_1007_s11356_025_35999_z
crossref_primary_10_1016_j_ejrh_2025_102182
crossref_primary_10_1080_10447318_2024_2448877
crossref_primary_10_1038_s41598_024_73559_6
crossref_primary_10_1007_s43832_025_00206_0
crossref_primary_10_3390_cli12090131
crossref_primary_10_1021_acsomega_4c04526
crossref_primary_10_1371_journal_pone_0310044
crossref_primary_10_1007_s11269_024_04062_w
crossref_primary_10_1007_s12145_024_01610_1
crossref_primary_10_33715_inonusaglik_1571883
crossref_primary_10_1002_wer_11138
crossref_primary_10_1155_er_9934909
crossref_primary_10_1016_j_ecoinf_2024_102500
crossref_primary_10_1007_s40808_024_02083_3
crossref_primary_10_1016_j_aej_2025_01_067
crossref_primary_10_1016_j_jwpe_2024_106585
crossref_primary_10_1007_s12145_024_01558_2
crossref_primary_10_1016_j_ecoinf_2024_102868
crossref_primary_10_1080_17499518_2024_2443457
crossref_primary_10_1016_j_algal_2025_103935
crossref_primary_10_1016_j_rineng_2025_104265
crossref_primary_10_1016_j_cclet_2024_110722
crossref_primary_10_1016_j_jconhyd_2025_104498
crossref_primary_10_3390_w17010059
crossref_primary_10_1007_s42108_024_00317_9
crossref_primary_10_2166_nh_2025_097
crossref_primary_10_1007_s41976_024_00162_8
crossref_primary_10_1007_s11356_024_32415_w
crossref_primary_10_1088_2515_7620_ad549e
crossref_primary_10_1016_j_jenvman_2024_122721
crossref_primary_10_1016_j_mtcomm_2024_110487
crossref_primary_10_1186_s12302_024_00914_9
crossref_primary_10_1016_j_soildyn_2024_108805
crossref_primary_10_1016_j_jenvman_2025_124987
crossref_primary_10_1016_j_rineng_2024_103534
crossref_primary_10_1007_s41101_025_00346_3
crossref_primary_10_1007_s41101_025_00348_1
crossref_primary_10_3390_jmse13030539
crossref_primary_10_3389_fenvs_2024_1434703
crossref_primary_10_1007_s41976_024_00145_9
crossref_primary_10_3390_app14167136
crossref_primary_10_1007_s11760_025_03915_0
crossref_primary_10_61453_jods_v2023no48
crossref_primary_10_1016_j_gsd_2024_101324
crossref_primary_10_59313_jsr_a_1416015
crossref_primary_10_2166_wqrj_2025_075
crossref_primary_10_3390_jmse12122342
crossref_primary_10_4236_ica_2024_154010
crossref_primary_10_1016_j_eswa_2025_126958
crossref_primary_10_1007_s12145_024_01526_w
crossref_primary_10_48084_etasr_9230
crossref_primary_10_3390_land13091438
crossref_primary_10_1007_s11356_025_36120_0
crossref_primary_10_3390_w16243616
crossref_primary_10_1016_j_jhydrol_2024_131767
crossref_primary_10_3390_rs16142595
crossref_primary_10_1007_s11356_025_36062_7
crossref_primary_10_1109_ACCESS_2024_3502361
crossref_primary_10_3390_su16229848
Cites_doi 10.1007/978-981-15-8443-5_53
10.1016/j.chemosphere.2020.126169
10.3390/su12145814
10.1007/s11356-021-17064-7
10.1109/ICICCT.2018.8473168
10.1007/978-1-4614-0189-6
10.3390/w14101552
10.3390/su15010757
10.1007/s10462-022-10143-2
10.1016/j.inffus.2019.06.006
10.32604/csse.2023.034324
10.3390/w14040610
10.3390/s19061420
10.1007/s11356-020-09689-x
10.21203/rs.3.rs-876980/v2
10.1016/j.jece.2020.104599
10.2991/hcis.k.211203.001
10.1007/3-540-49257-7_15
10.1016/j.knosys.2020.106443
10.3390/su13084259
10.1016/j.jenvman.2021.112051
10.3390/ijerph15071322
10.3390/su11072058
10.1016/j.jksuci.2021.06.003
10.12691/ajwr-1-3-3
10.1109/ICCES48766.2020.9137903
10.1155/2020/6659314
10.1016/j.jhydrol.2021.127320
10.1016/j.agwat.2019.105923
10.1145/2939672.2939785
10.32604/cmc.2023.032533
10.1007/s11356-021-16289-w
10.1016/S0167-9473(01)00065-2
10.3390/w10091148
10.3390/w14071067
10.1007/s11356-021-13875-w
10.1016/j.eswa.2020.113864
10.1016/j.cie.2019.04.047
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-023-16737-4
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
CrossRef
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 35334
ExternalDocumentID 10_1007_s11042_023_16737_4
GrantInformation_xml – fundername: Kafr El Shiekh University
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c363t-ed67777d6353dce7bd9986dddd6104cf8ff76f701c1502cfd142d176a278ce493
IEDL.DBID C6C
ISSN 1573-7721
1380-7501
IngestDate Fri Jul 25 21:14:07 EDT 2025
Tue Jul 01 04:13:27 EDT 2025
Thu Apr 24 23:12:51 EDT 2025
Fri Feb 21 02:41:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Grid search
Water quality classification
Machine learning models
Water quality index
Water quality
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-ed67777d6353dce7bd9986dddd6104cf8ff76f701c1502cfd142d176a278ce493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3021-5902
OpenAccessLink https://doi.org/10.1007/s11042-023-16737-4
PQID 3030966102
PQPubID 54626
PageCount 28
ParticipantIDs proquest_journals_3030966102
crossref_citationtrail_10_1007_s11042_023_16737_4
crossref_primary_10_1007_s11042_023_16737_4
springer_journals_10_1007_s11042_023_16737_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240400
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 4
  year: 2024
  text: 20240400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References LeeSLeeDImproved prediction of harmful algal blooms in four Major South Korea’s Rivers using deep learning modelsInt J Environ Res Public Health201815132210.3390/ijerph15071322
Jain D, Shah S, Mehta H et al (2021) A Machine Learning Approach to Analyze Marine Life Sustainability. In: Proceedings of International Conference on Intelligent Computing, Information and Control Systems. Springer, pp 619–632
ShamsMYTarekZElsheweyAMHassanienAEDarwishAA Machine Learning-Based Model for Predicting Temperature Under the Effects of Climate ChangeThe Power of Data: Driving Climate Change with Data Science and Artificial Intelligence Innovations2023ChamSpringer Nature Switzerland6181
AldhyaniTHHAl-YaariMAlkahtaniHMaashiMWater quality prediction using artificial intelligence algorithmsAppl Bionics Biomech2020202011210.1155/2020/6659314
DengTChauK-WDuanH-FMachine learning based marine water quality prediction for coastal hydro-environment managementJ Environ Manage202128411205110.1016/j.jenvman.2021.112051
Beyer K, Goldstein J, Ramakrishnan R, Shaft U (1999) When is “nearest neighbor” meaningful? In: International conference on database theory. Springer, pp 217–235
TarekZShamsMYElsheweyAMWind Power Prediction Based on Machine Learning and Deep Learning ModelsComput Mater Contin20237471573210.32604/cmc.2023.032533
TyagiSSharmaBSinghPDobhalRWater quality assessment in terms of water quality indexAm J Water Resour20131343810.12691/ajwr-1-3-3
Khan MSI, Islam N, Uddin J et al (2021) Water quality prediction and classification based on principal component regression and gradient boosting classifier approach. J King Saud Univ – Comput Inform Sci 34(8):4773–4781. https://doi.org/10.1016/j.jksuci.2021.06.003
LiaoZLiYXiongWAn In-Depth Assessment of Water Resource Responses to Regional Development Policies Using Hydrological Variation Analysis and System Dynamics ModelingSustainability202012581410.3390/su12145814
HalimZRehanMOn identification of driving-induced stress using electroencephalogram signals: A framework based on wearable safety-critical scheme and machine learningInf Fusion202053667910.1016/j.inffus.2019.06.006
BiauGAnalysis of a random forests modelJ Mach Learn Res201213106310952930634
WangSPengHLiangSPrediction of estuarine water quality using interpretable machine learning approachJ Hydrol202260512732010.1016/j.jhydrol.2021.127320
ZhouYMazzuchiTASarkaniSM-adaboost-a based ensemble system for network intrusion detectionExpert Syst Appl202016211386410.1016/j.eswa.2020.113864
LuHMaXHybrid decision tree-based machine learning models for short-term water quality predictionChemosphere202024912616910.1016/j.chemosphere.2020.126169
ChengYPengJGuXAn intelligent supplier evaluation model based on data-driven support vector regression in global supply chainComput Ind Eng202013910583410.1016/j.cie.2019.04.047
WaqasMTuSHalimZThe role of artificial intelligence and machine learning in wireless networks security: principle, practice and challengesArtif Intell Rev2022555215526110.1007/s10462-022-10143-2
Garabaghi FH, Benzer S, Benzer R (2021) Performance evaluation of machine learning models with ensemble learning approach in classification of water quality indices based on different subset of features. Res Square 1:1–35. https://doi.org/10.21203/rs.3.rs-876980/v2
HuZZhangYZhaoYA water quality prediction method based on the deep LSTM network considering correlation in smart maricultureSensors201919142010.3390/s19061420
HassanMMHassanMMAkterLEfficient Prediction of Water Quality Index (WQI) Using Machine Learning AlgorithmsHum Centric Intell Syst20211869710.2991/hcis.k.211203.001
ElbeltagiAPandeCBKouadriSIslamARMApplications of various data-driven models for the prediction of groundwater quality index in the Akot basin, Maharashtra, IndiaEnviron Sci Pollut Res202229175911760510.1007/s11356-021-17064-7
ElsheweyAMShamsMYElhadyAMA Novel WD-SARIMAX Model for Temperature Forecasting Using Daily Delhi Climate DatasetSustainability20231575710.3390/su15010757
HalimZWaqarMTahirMA machine learning-based investigation utilizing the in-text features for the identification of dominant emotion in an emailKnowl Based Syst202020810644310.1016/j.knosys.2020.106443
AbbaSIPhamQBSainiGImplementation of data intelligence models coupled with ensemble machine learning for prediction of water quality indexEnviron Sci Pollut Res202027415244153910.1007/s11356-020-09689-x
Forests R, Breiman L (1999) Statistics Department University of California Berkeley. pp 1-29
LiuPWangJSangaiahAKAnalysis and prediction of water quality using LSTM deep neural networks in IoT environmentSustainability201911205810.3390/su11072058
MalekNHAWan YaacobWFMd NasirSAShaadanNPrediction of Water Quality Classification of the Kelantan River Basin, Malaysia, Using Machine Learning TechniquesWater202214106710.3390/w14071067
BhardwajDVermaNResearch paper on analysing impact of various parameters on water quality indexInt J Adv Res Comput Sci2017852496498
Clark RM, Hakim S, Ostfeld A (2011) Handbook of water and wastewater systems protection. In: Protecting Critical Infrastructure. Springer, pp 1–29. https://doi.org/10.1007/978-1-4614-0189-6
KhullarSSinghNWater quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validationEnviron Sci Pollut Res202229128751288910.1007/s11356-021-13875-w
Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM sigkdd international conference on knowledge discovery and data mining. pp 785–794
Prakash R, Tharun VP, Devi SR (2018) A comparative study of various classification techniques to determine water quality. In: 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT). IEEE, pp 1501–1506
Hmoud Al-AdhailehMWaselallah AlsaadeFModelling and prediction of water quality by using artificial intelligenceSustainability202113425910.3390/su13084259
WuJWangZA Hybrid Model for Water Quality Prediction Based on an Artificial Neural Network, Wavelet Transform, and Long Short-Term MemoryWater20221461010.3390/w14040610
FriedmanJHStochastic gradient boostingComput Stat Data Anal200238367378188486910.1016/S0167-9473(01)00065-2
Radhakrishnan N, Pillai AS (2020) Comparison of Water Quality Classification Models using Machine Learning. In: 2020 5th International Conference on Communication and Electronics Systems (ICCES). IEEE, pp 1183–1188
Slatnia A, Ladjal M, Ouali MA, Imed M (2022) Improving prediction and classification of water quality indices using hybrid machine learning algorithms with features selection analysis. In: Online International Symposium on Applied Mathematics and Engineering (ISAME22), vol 1. ISAME22, Istanbul-Turkey, pp 16–17
ZhouJWangYXiaoFWater quality prediction method based on IGRA and LSTMWater201810114810.3390/w10091148
AsadollahSBHSSharafatiAMottaDYaseenZMRiver water quality index prediction and uncertainty analysis: A comparative study of machine learning modelsJ Environ Chem Eng2021910459910.1016/j.jece.2020.104599
KhoiDNQuanNTLinhDQUsing Machine Learning Models for Predicting the Water Quality Index in the La Buong River, VietnamWater202214155210.3390/w14101552
ElsheweyAMShamsMYTarekZWeight Prediction Using the Hybrid Stacked-LSTM Food Selection ModelComput Syst Sci Eng20234676578110.32604/csse.2023.034324
ChenHHuangJJMcBeanEPartitioning of daily evapotranspiration using a modified shuttleworth-wallace model, random Forest and support vector regression, for a cabbage farmlandAgric Water Manag202022810592310.1016/j.agwat.2019.105923
NosairAMShamsMYAbouElmagdLMPredictive model for progressive salinization in a coastal aquifer using artificial intelligence and hydrogeochemical techniques: A case study of the Nile Delta aquifer, EgyptEnviron Sci Pollut Res2022299318934010.1007/s11356-021-16289-w
J Zhou (16737_CR4) 2018; 10
M Hmoud Al-Adhaileh (16737_CR10) 2021; 13
AM Nosair (16737_CR19) 2022; 29
G Biau (16737_CR27) 2012; 13
J Wu (16737_CR7) 2022; 14
16737_CR20
16737_CR23
16737_CR22
NHA Malek (16737_CR12) 2022; 14
16737_CR26
Y Cheng (16737_CR37) 2020; 139
D Bhardwaj (16737_CR11) 2017; 8
16737_CR29
S Lee (16737_CR8) 2018; 15
S Wang (16737_CR28) 2022; 605
Z Liao (16737_CR38) 2020; 12
Z Hu (16737_CR3) 2019; 19
H Chen (16737_CR36) 2020; 228
MY Shams (16737_CR40) 2023
SBHS Asadollah (16737_CR18) 2021; 9
MM Hassan (16737_CR21) 2021; 1
AM Elshewey (16737_CR43) 2023; 46
S Tyagi (16737_CR39) 2013; 1
16737_CR30
DN Khoi (16737_CR25) 2022; 14
Y Zhou (16737_CR32) 2020; 162
S Khullar (16737_CR15) 2022; 29
P Liu (16737_CR9) 2019; 11
16737_CR33
16737_CR13
Z Halim (16737_CR35) 2020; 53
Z Tarek (16737_CR42) 2023; 74
THH Aldhyani (16737_CR24) 2020; 2020
16737_CR1
H Lu (16737_CR34) 2020; 249
16737_CR2
A Elbeltagi (16737_CR17) 2022; 29
Z Halim (16737_CR6) 2020; 208
SI Abba (16737_CR16) 2020; 27
JH Friedman (16737_CR31) 2002; 38
AM Elshewey (16737_CR41) 2023; 15
M Waqas (16737_CR5) 2022; 55
T Deng (16737_CR14) 2021; 284
References_xml – reference: FriedmanJHStochastic gradient boostingComput Stat Data Anal200238367378188486910.1016/S0167-9473(01)00065-2
– reference: AbbaSIPhamQBSainiGImplementation of data intelligence models coupled with ensemble machine learning for prediction of water quality indexEnviron Sci Pollut Res202027415244153910.1007/s11356-020-09689-x
– reference: ElsheweyAMShamsMYTarekZWeight Prediction Using the Hybrid Stacked-LSTM Food Selection ModelComput Syst Sci Eng20234676578110.32604/csse.2023.034324
– reference: ElbeltagiAPandeCBKouadriSIslamARMApplications of various data-driven models for the prediction of groundwater quality index in the Akot basin, Maharashtra, IndiaEnviron Sci Pollut Res202229175911760510.1007/s11356-021-17064-7
– reference: Forests R, Breiman L (1999) Statistics Department University of California Berkeley. pp 1-29
– reference: Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM sigkdd international conference on knowledge discovery and data mining. pp 785–794
– reference: AsadollahSBHSSharafatiAMottaDYaseenZMRiver water quality index prediction and uncertainty analysis: A comparative study of machine learning modelsJ Environ Chem Eng2021910459910.1016/j.jece.2020.104599
– reference: Slatnia A, Ladjal M, Ouali MA, Imed M (2022) Improving prediction and classification of water quality indices using hybrid machine learning algorithms with features selection analysis. In: Online International Symposium on Applied Mathematics and Engineering (ISAME22), vol 1. ISAME22, Istanbul-Turkey, pp 16–17
– reference: LuHMaXHybrid decision tree-based machine learning models for short-term water quality predictionChemosphere202024912616910.1016/j.chemosphere.2020.126169
– reference: KhoiDNQuanNTLinhDQUsing Machine Learning Models for Predicting the Water Quality Index in the La Buong River, VietnamWater202214155210.3390/w14101552
– reference: BiauGAnalysis of a random forests modelJ Mach Learn Res201213106310952930634
– reference: Prakash R, Tharun VP, Devi SR (2018) A comparative study of various classification techniques to determine water quality. In: 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT). IEEE, pp 1501–1506
– reference: HalimZRehanMOn identification of driving-induced stress using electroencephalogram signals: A framework based on wearable safety-critical scheme and machine learningInf Fusion202053667910.1016/j.inffus.2019.06.006
– reference: ElsheweyAMShamsMYElhadyAMA Novel WD-SARIMAX Model for Temperature Forecasting Using Daily Delhi Climate DatasetSustainability20231575710.3390/su15010757
– reference: LeeSLeeDImproved prediction of harmful algal blooms in four Major South Korea’s Rivers using deep learning modelsInt J Environ Res Public Health201815132210.3390/ijerph15071322
– reference: HalimZWaqarMTahirMA machine learning-based investigation utilizing the in-text features for the identification of dominant emotion in an emailKnowl Based Syst202020810644310.1016/j.knosys.2020.106443
– reference: KhullarSSinghNWater quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validationEnviron Sci Pollut Res202229128751288910.1007/s11356-021-13875-w
– reference: Radhakrishnan N, Pillai AS (2020) Comparison of Water Quality Classification Models using Machine Learning. In: 2020 5th International Conference on Communication and Electronics Systems (ICCES). IEEE, pp 1183–1188
– reference: NosairAMShamsMYAbouElmagdLMPredictive model for progressive salinization in a coastal aquifer using artificial intelligence and hydrogeochemical techniques: A case study of the Nile Delta aquifer, EgyptEnviron Sci Pollut Res2022299318934010.1007/s11356-021-16289-w
– reference: Garabaghi FH, Benzer S, Benzer R (2021) Performance evaluation of machine learning models with ensemble learning approach in classification of water quality indices based on different subset of features. Res Square 1:1–35. https://doi.org/10.21203/rs.3.rs-876980/v2
– reference: Jain D, Shah S, Mehta H et al (2021) A Machine Learning Approach to Analyze Marine Life Sustainability. In: Proceedings of International Conference on Intelligent Computing, Information and Control Systems. Springer, pp 619–632
– reference: Khan MSI, Islam N, Uddin J et al (2021) Water quality prediction and classification based on principal component regression and gradient boosting classifier approach. J King Saud Univ – Comput Inform Sci 34(8):4773–4781. https://doi.org/10.1016/j.jksuci.2021.06.003
– reference: WangSPengHLiangSPrediction of estuarine water quality using interpretable machine learning approachJ Hydrol202260512732010.1016/j.jhydrol.2021.127320
– reference: Clark RM, Hakim S, Ostfeld A (2011) Handbook of water and wastewater systems protection. In: Protecting Critical Infrastructure. Springer, pp 1–29. https://doi.org/10.1007/978-1-4614-0189-6
– reference: ChengYPengJGuXAn intelligent supplier evaluation model based on data-driven support vector regression in global supply chainComput Ind Eng202013910583410.1016/j.cie.2019.04.047
– reference: WaqasMTuSHalimZThe role of artificial intelligence and machine learning in wireless networks security: principle, practice and challengesArtif Intell Rev2022555215526110.1007/s10462-022-10143-2
– reference: Hmoud Al-AdhailehMWaselallah AlsaadeFModelling and prediction of water quality by using artificial intelligenceSustainability202113425910.3390/su13084259
– reference: WuJWangZA Hybrid Model for Water Quality Prediction Based on an Artificial Neural Network, Wavelet Transform, and Long Short-Term MemoryWater20221461010.3390/w14040610
– reference: DengTChauK-WDuanH-FMachine learning based marine water quality prediction for coastal hydro-environment managementJ Environ Manage202128411205110.1016/j.jenvman.2021.112051
– reference: ZhouYMazzuchiTASarkaniSM-adaboost-a based ensemble system for network intrusion detectionExpert Syst Appl202016211386410.1016/j.eswa.2020.113864
– reference: TyagiSSharmaBSinghPDobhalRWater quality assessment in terms of water quality indexAm J Water Resour20131343810.12691/ajwr-1-3-3
– reference: ZhouJWangYXiaoFWater quality prediction method based on IGRA and LSTMWater201810114810.3390/w10091148
– reference: LiuPWangJSangaiahAKAnalysis and prediction of water quality using LSTM deep neural networks in IoT environmentSustainability201911205810.3390/su11072058
– reference: BhardwajDVermaNResearch paper on analysing impact of various parameters on water quality indexInt J Adv Res Comput Sci2017852496498
– reference: TarekZShamsMYElsheweyAMWind Power Prediction Based on Machine Learning and Deep Learning ModelsComput Mater Contin20237471573210.32604/cmc.2023.032533
– reference: HuZZhangYZhaoYA water quality prediction method based on the deep LSTM network considering correlation in smart maricultureSensors201919142010.3390/s19061420
– reference: Beyer K, Goldstein J, Ramakrishnan R, Shaft U (1999) When is “nearest neighbor” meaningful? In: International conference on database theory. Springer, pp 217–235
– reference: MalekNHAWan YaacobWFMd NasirSAShaadanNPrediction of Water Quality Classification of the Kelantan River Basin, Malaysia, Using Machine Learning TechniquesWater202214106710.3390/w14071067
– reference: ShamsMYTarekZElsheweyAMHassanienAEDarwishAA Machine Learning-Based Model for Predicting Temperature Under the Effects of Climate ChangeThe Power of Data: Driving Climate Change with Data Science and Artificial Intelligence Innovations2023ChamSpringer Nature Switzerland6181
– reference: HassanMMHassanMMAkterLEfficient Prediction of Water Quality Index (WQI) Using Machine Learning AlgorithmsHum Centric Intell Syst20211869710.2991/hcis.k.211203.001
– reference: AldhyaniTHHAl-YaariMAlkahtaniHMaashiMWater quality prediction using artificial intelligence algorithmsAppl Bionics Biomech2020202011210.1155/2020/6659314
– reference: LiaoZLiYXiongWAn In-Depth Assessment of Water Resource Responses to Regional Development Policies Using Hydrological Variation Analysis and System Dynamics ModelingSustainability202012581410.3390/su12145814
– reference: ChenHHuangJJMcBeanEPartitioning of daily evapotranspiration using a modified shuttleworth-wallace model, random Forest and support vector regression, for a cabbage farmlandAgric Water Manag202022810592310.1016/j.agwat.2019.105923
– ident: 16737_CR1
  doi: 10.1007/978-981-15-8443-5_53
– volume: 249
  start-page: 126169
  year: 2020
  ident: 16737_CR34
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126169
– volume: 12
  start-page: 5814
  year: 2020
  ident: 16737_CR38
  publication-title: Sustainability
  doi: 10.3390/su12145814
– volume: 29
  start-page: 17591
  year: 2022
  ident: 16737_CR17
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-17064-7
– ident: 16737_CR26
– ident: 16737_CR30
  doi: 10.1109/ICICCT.2018.8473168
– ident: 16737_CR2
  doi: 10.1007/978-1-4614-0189-6
– volume: 14
  start-page: 1552
  year: 2022
  ident: 16737_CR25
  publication-title: Water
  doi: 10.3390/w14101552
– volume: 15
  start-page: 757
  year: 2023
  ident: 16737_CR41
  publication-title: Sustainability
  doi: 10.3390/su15010757
– volume: 55
  start-page: 5215
  year: 2022
  ident: 16737_CR5
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-022-10143-2
– volume: 53
  start-page: 66
  year: 2020
  ident: 16737_CR35
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2019.06.006
– start-page: 61
  volume-title: The Power of Data: Driving Climate Change with Data Science and Artificial Intelligence Innovations
  year: 2023
  ident: 16737_CR40
– volume: 46
  start-page: 765
  year: 2023
  ident: 16737_CR43
  publication-title: Comput Syst Sci Eng
  doi: 10.32604/csse.2023.034324
– volume: 14
  start-page: 610
  year: 2022
  ident: 16737_CR7
  publication-title: Water
  doi: 10.3390/w14040610
– volume: 19
  start-page: 1420
  year: 2019
  ident: 16737_CR3
  publication-title: Sensors
  doi: 10.3390/s19061420
– volume: 27
  start-page: 41524
  year: 2020
  ident: 16737_CR16
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-09689-x
– ident: 16737_CR20
  doi: 10.21203/rs.3.rs-876980/v2
– volume: 9
  start-page: 104599
  year: 2021
  ident: 16737_CR18
  publication-title: J Environ Chem Eng
  doi: 10.1016/j.jece.2020.104599
– volume: 1
  start-page: 86
  year: 2021
  ident: 16737_CR21
  publication-title: Hum Centric Intell Syst
  doi: 10.2991/hcis.k.211203.001
– ident: 16737_CR33
  doi: 10.1007/3-540-49257-7_15
– volume: 208
  start-page: 106443
  year: 2020
  ident: 16737_CR6
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2020.106443
– volume: 13
  start-page: 4259
  year: 2021
  ident: 16737_CR10
  publication-title: Sustainability
  doi: 10.3390/su13084259
– volume: 284
  start-page: 112051
  year: 2021
  ident: 16737_CR14
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2021.112051
– volume: 15
  start-page: 1322
  year: 2018
  ident: 16737_CR8
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph15071322
– volume: 11
  start-page: 2058
  year: 2019
  ident: 16737_CR9
  publication-title: Sustainability
  doi: 10.3390/su11072058
– ident: 16737_CR23
  doi: 10.1016/j.jksuci.2021.06.003
– volume: 8
  start-page: 2496
  issue: 5
  year: 2017
  ident: 16737_CR11
  publication-title: Int J Adv Res Comput Sci
– volume: 1
  start-page: 34
  year: 2013
  ident: 16737_CR39
  publication-title: Am J Water Resour
  doi: 10.12691/ajwr-1-3-3
– ident: 16737_CR22
  doi: 10.1109/ICCES48766.2020.9137903
– volume: 2020
  start-page: 1
  year: 2020
  ident: 16737_CR24
  publication-title: Appl Bionics Biomech
  doi: 10.1155/2020/6659314
– volume: 605
  start-page: 127320
  year: 2022
  ident: 16737_CR28
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2021.127320
– volume: 13
  start-page: 1063
  year: 2012
  ident: 16737_CR27
  publication-title: J Mach Learn Res
– volume: 228
  start-page: 105923
  year: 2020
  ident: 16737_CR36
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2019.105923
– ident: 16737_CR29
  doi: 10.1145/2939672.2939785
– volume: 74
  start-page: 715
  year: 2023
  ident: 16737_CR42
  publication-title: Comput Mater Contin
  doi: 10.32604/cmc.2023.032533
– ident: 16737_CR13
– volume: 29
  start-page: 9318
  year: 2022
  ident: 16737_CR19
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-16289-w
– volume: 38
  start-page: 367
  year: 2002
  ident: 16737_CR31
  publication-title: Comput Stat Data Anal
  doi: 10.1016/S0167-9473(01)00065-2
– volume: 10
  start-page: 1148
  year: 2018
  ident: 16737_CR4
  publication-title: Water
  doi: 10.3390/w10091148
– volume: 14
  start-page: 1067
  year: 2022
  ident: 16737_CR12
  publication-title: Water
  doi: 10.3390/w14071067
– volume: 29
  start-page: 12875
  year: 2022
  ident: 16737_CR15
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-13875-w
– volume: 162
  start-page: 113864
  year: 2020
  ident: 16737_CR32
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113864
– volume: 139
  start-page: 105834
  year: 2020
  ident: 16737_CR37
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2019.04.047
SSID ssj0016524
Score 2.6532073
Snippet Water quality is very dominant for humans, animals, plants, industries, and the environment. In the last decades, the quality of water has been impacted by...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35307
SubjectTerms Accuracy
Classification
Computation
Computer Communication Networks
Computer Science
Correlation coefficients
Data Structures and Information Theory
Decision trees
Errors
Machine learning
Multilayer perceptrons
Multilayers
Multimedia Information Systems
Parameters
Regression models
Search methods
Special Purpose and Application-Based Systems
Tuning
Water quality
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEJ4oXPTgAzWiaHrwpo3bbumWk1EDISYSQyRy27Btl5goIODBf-90t8uqifS4fRxm2s63nccHcMGVDQzXLSpFMqICTQZVIx5Rzayy1gbcZA_6jz3ZHYiHYXPoH9wWPqyyuBOzi9pMtXsjvw6dLwCNScBvZh_UsUY576qn0NiEKl7BSlWgetfuPfVXfgTZ9LS2KqBoG5lPm8mT55hLTUGbRZkja6Hit2kq8eYfF2lmeTp7sOMhI7nNdbwPG3ZSg92CjoH401mD7R-1BQ-g_zJyvXnS5BeZzZ1HxmmBuFD3MXnPoigt8bQR-MFx4iyIM2uG4LDx_NWQ_CCQnGf6EAad9vN9l3oCBapDGS6pNTLCZhBUhEbbKDH4cyUNNpSj0KlK00imUcA0wkKuU8MENyySqCylrWiFR1CZTCf2GAgiFa6aqdQt5RCLTQRCmcBoFqap5ZGuAytkF2tfXdyRXLzFZV1kJ-8Y5R1n8o5FHS5Xc2Z5bY21oxuFSmJ_zhZxuSvqcFWoqez-f7WT9audwhZH9JKH6DSgspx_2jNEH8vk3G-xb2E71JI
  priority: 102
  providerName: ProQuest
Title Water quality prediction using machine learning models based on grid search method
URI https://link.springer.com/article/10.1007/s11042-023-16737-4
https://www.proquest.com/docview/3030966102
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4IXPTgAzWiSHrwpo273W67HIGwEI3EEIl42kDbJSaKBPDgv3e6D1CiJvawTbbTPcy0mW87nfkALlhgHM1UnQo-HlGOLoMGIyapck1gjHGYTg7073qiO-A3Q3-YlcmxuTAb8fvrBbonzih6FupaShXKC1DyXU9amoaWaK0iBsJnPEuK-Xned8ezRpMbAdDEr4T7sJsBQtJILXgAW2Zahr2cbIFke68MO18qBx5C_3FkR9OUyA8ym9t4i9UxsRfZJ-Q1uSNpSEYKgS8s482CWKelCYpN5s-apMucpCzSRzAI2w-tLs3oEajyhLekRguJTSNk8LQycqzx10lobAiJuIqDOJYilo6rEPQxFWuXM-1KgaYIlOF17xiK07epOQGCOIQFfixUPbB4xIw5AhVHK9eLY8OkqoCb6y5SWe1wS2HxEq2rHlt9R6jvKNF3xCtwuZozSytn_CldzU0SZbtoEXk2_oMAwmEVuMrNtB7-_Wun_xM_g22GWCW9kFOF4nL-bs4RayzHNSgEYacGpUbYbPZs33m6bWPfbPfu-7VkCeJzwBqff_PQpw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLYQHIADb8RgQA5wgogmzdLugBACxngeEAhuZcsDIcEY2xDan-I3YvfBAAluy7FJI9V28zlx7A9gQ8YusNJUuVbNBlcIGTxuyIgb4WLnXCBteqB_canrN-r0rnI3Ah9FLgxdqyzWxHShti-Gzsh3QooFIJgEcq_9yok1iqKrBYVGZhZnrv-OW7bu7skh6ndTytrR9UGd56wC3IQ67HFndYTNItKG1rioaXHHoS02nFwZH3sfaR8FwqCvJI23QkkrIo1fEBunqPgSLvljKkQkp8z02vFX1EJXchLdOOCIxCJP0slS9QQlwiBCckHUMFz9BMKBd_srIJviXG0GpnIHle1nFjULI641B9MF-QPL14I5mPxWyXAerm4b1JulaPZZu0PxH9I5o4v1D-w5vbPpWE5SgQ-IgafLCEQtw2EPnUfLMvmyjNV6AW6GIthFGG29tNwSMPSLZFzx2lRj8o9cU6HjFFgjQu-djEwJRCG7xOS1zIlS4ykZVGEmeSco7ySVd6JKsPX1Tjur5PHv6HKhkiT_q7vJwAZLsF2oadD992zL_8-2DuP164vz5Pzk8mwFJiT6TdnloDKM9jpvbhX9nl5zLTU2BvfDtu5PEvoQhQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB6hIiH2wHtFoYAPcAKL2HGdcECIVwULVAiBllu29QMhQSltV6v-NX4dM4lDAWm54WPiOMp44m_seXwA6zJ1kZVmh2vVbnGFkMHTlky4ES51zkXS5gf6F019cqN-3dZvx-ClzIWhsMpyTcwXavtk6Ix8OyZfAIJJJLd9CIu4PGrsdZ85MUiRp7Wk0yhU5MwN_-H2rb97eoRzvSFl4_j68IQHhgFuYh0PuLM6wWYRdWNrXNK2uPvQFhu-SBmfep9on0TCoN0kjbdCSSsSjV-TGqeoEBMu_-MJ7YoqMH5w3Ly8evNh6Hqg1E0jjrgsQspOkbgnKC0G8ZILIorh6iMsjmzdT-7ZHPUaMzAVzFW2X-jXLIy5zhxMl1QQLKwMc_DjXV3Debj63aK7RcLmkHV75A0iDWAUZn_HHvMITscCZQVeID6ePiNItQy73fXuLSskzAqO6wW4-RbR_oRK56njFoGhlSTTutdmJyVrybUVmlGRNSL23snEVEGUsstMqGxOBBsP2agmM8k7Q3lnubwzVYXNt2e6RV2PL3vXyinJwj_ez0YaWYWtcppGt_8_2tLXo63BBGp2dn7aPFuGSYlGVBEpVIPKoPfXraARNGivBm1j8Oe7FfwVdKQWFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water+quality+prediction+using+machine+learning+models+based+on+grid+search+method&rft.jtitle=Multimedia+tools+and+applications&rft.au=Shams%2C+Mahmoud+Y.&rft.au=Elshewey%2C+Ahmed+M.&rft.au=El-kenawy%2C+El-Sayed+M.&rft.au=Ibrahim%2C+Abdelhameed&rft.date=2024-04-01&rft.issn=1573-7721&rft.eissn=1573-7721&rft.volume=83&rft.issue=12&rft.spage=35307&rft.epage=35334&rft_id=info:doi/10.1007%2Fs11042-023-16737-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_023_16737_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon