Water quality prediction using machine learning models based on grid search method
Water quality is very dominant for humans, animals, plants, industries, and the environment. In the last decades, the quality of water has been impacted by contamination and pollution. In this paper, the challenge is to anticipate Water Quality Index (WQI) and Water Quality Classification (WQC), suc...
Saved in:
Published in | Multimedia tools and applications Vol. 83; no. 12; pp. 35307 - 35334 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Water quality is very dominant for humans, animals, plants, industries, and the environment. In the last decades, the quality of water has been impacted by contamination and pollution. In this paper, the challenge is to anticipate Water Quality Index (WQI) and Water Quality Classification (WQC), such that WQI is a vital indicator for water validity. In this study, parameters optimization and tuning are utilized to improve the accuracy of several machine learning models, where the machine learning techniques are utilized for the process of predicting WQI and WQC. Grid search is a vital method used for optimizing and tuning the parameters for four classification models and also, for optimizing and tuning the parameters for four regression models. Random forest (RF) model, Extreme Gradient Boosting (Xgboost) model, Gradient Boosting (GB) model, and Adaptive Boosting (AdaBoost) model are used as classification models for predicting WQC. K-nearest neighbor (KNN) regressor model, decision tree (DT) regressor model, support vector regressor (SVR) model, and multi-layer perceptron (MLP) regressor model are used as regression models for predicting WQI. In addition, preprocessing step including, data imputation (mean imputation) and data normalization were performed to fit the data and make it convenient for any further processing. The dataset used in this study includes 7 features and 1991 instances. To examine the efficacy of the classification approaches, five assessment metrics were computed: accuracy, recall, precision, Matthews's Correlation Coefficient (MCC), and F1 score. To assess the effectiveness of the regression models, four assessment metrics were computed: Mean Absolute Error (MAE), Median Absolute Error (MedAE), Mean Square Error (MSE), and coefficient of determination (R
2
). In terms of classification, the testing findings showed that the GB model produced the best results, with an accuracy of 99.50% when predicting WQC values. According to the experimental results, the MLP regressor model outperformed other models in regression and achieved an R
2
value of 99.8% while predicting WQI values. |
---|---|
AbstractList | Water quality is very dominant for humans, animals, plants, industries, and the environment. In the last decades, the quality of water has been impacted by contamination and pollution. In this paper, the challenge is to anticipate Water Quality Index (WQI) and Water Quality Classification (WQC), such that WQI is a vital indicator for water validity. In this study, parameters optimization and tuning are utilized to improve the accuracy of several machine learning models, where the machine learning techniques are utilized for the process of predicting WQI and WQC. Grid search is a vital method used for optimizing and tuning the parameters for four classification models and also, for optimizing and tuning the parameters for four regression models. Random forest (RF) model, Extreme Gradient Boosting (Xgboost) model, Gradient Boosting (GB) model, and Adaptive Boosting (AdaBoost) model are used as classification models for predicting WQC. K-nearest neighbor (KNN) regressor model, decision tree (DT) regressor model, support vector regressor (SVR) model, and multi-layer perceptron (MLP) regressor model are used as regression models for predicting WQI. In addition, preprocessing step including, data imputation (mean imputation) and data normalization were performed to fit the data and make it convenient for any further processing. The dataset used in this study includes 7 features and 1991 instances. To examine the efficacy of the classification approaches, five assessment metrics were computed: accuracy, recall, precision, Matthews's Correlation Coefficient (MCC), and F1 score. To assess the effectiveness of the regression models, four assessment metrics were computed: Mean Absolute Error (MAE), Median Absolute Error (MedAE), Mean Square Error (MSE), and coefficient of determination (R
2
). In terms of classification, the testing findings showed that the GB model produced the best results, with an accuracy of 99.50% when predicting WQC values. According to the experimental results, the MLP regressor model outperformed other models in regression and achieved an R
2
value of 99.8% while predicting WQI values. Water quality is very dominant for humans, animals, plants, industries, and the environment. In the last decades, the quality of water has been impacted by contamination and pollution. In this paper, the challenge is to anticipate Water Quality Index (WQI) and Water Quality Classification (WQC), such that WQI is a vital indicator for water validity. In this study, parameters optimization and tuning are utilized to improve the accuracy of several machine learning models, where the machine learning techniques are utilized for the process of predicting WQI and WQC. Grid search is a vital method used for optimizing and tuning the parameters for four classification models and also, for optimizing and tuning the parameters for four regression models. Random forest (RF) model, Extreme Gradient Boosting (Xgboost) model, Gradient Boosting (GB) model, and Adaptive Boosting (AdaBoost) model are used as classification models for predicting WQC. K-nearest neighbor (KNN) regressor model, decision tree (DT) regressor model, support vector regressor (SVR) model, and multi-layer perceptron (MLP) regressor model are used as regression models for predicting WQI. In addition, preprocessing step including, data imputation (mean imputation) and data normalization were performed to fit the data and make it convenient for any further processing. The dataset used in this study includes 7 features and 1991 instances. To examine the efficacy of the classification approaches, five assessment metrics were computed: accuracy, recall, precision, Matthews's Correlation Coefficient (MCC), and F1 score. To assess the effectiveness of the regression models, four assessment metrics were computed: Mean Absolute Error (MAE), Median Absolute Error (MedAE), Mean Square Error (MSE), and coefficient of determination (R2). In terms of classification, the testing findings showed that the GB model produced the best results, with an accuracy of 99.50% when predicting WQC values. According to the experimental results, the MLP regressor model outperformed other models in regression and achieved an R2 value of 99.8% while predicting WQI values. |
Author | Tarek, Zahraa Elshewey, Ahmed M. El-kenawy, El-Sayed M. Ibrahim, Abdelhameed Shams, Mahmoud Y. Talaat, Fatma M. |
Author_xml | – sequence: 1 givenname: Mahmoud Y. orcidid: 0000-0003-3021-5902 surname: Shams fullname: Shams, Mahmoud Y. email: mahmoud.yasin@ai.kfs.edu.eg organization: Faculty of Artificial Intelligence, Kafrelsheikh University – sequence: 2 givenname: Ahmed M. surname: Elshewey fullname: Elshewey, Ahmed M. organization: Faculty of Computers and Information, Computer Science Department, Suez University – sequence: 3 givenname: El-Sayed M. surname: El-kenawy fullname: El-kenawy, El-Sayed M. organization: Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology – sequence: 4 givenname: Abdelhameed surname: Ibrahim fullname: Ibrahim, Abdelhameed organization: Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University – sequence: 5 givenname: Fatma M. surname: Talaat fullname: Talaat, Fatma M. organization: Faculty of Artificial Intelligence, Kafrelsheikh University, Faculty of Computer Science & Engineering, New Mansoura University – sequence: 6 givenname: Zahraa surname: Tarek fullname: Tarek, Zahraa organization: Faculty of Computers and Information, Computer Science Department, Mansoura University |
BookMark | eNp9kEtLAzEUhYNUsK3-AVcB16N5zCTTpRRfUBBEcRnS5E6bMs20SWbRf2_aERQX3k3CzfnOzT0TNPKdB4SuKbmlhMi7SCkpWUEYL6iQXBblGRrTSvJCSkZHv-4XaBLjhhAqKlaO0dunThDwvtetSwe8C2CdSa7zuI_Or_BWm7XzgFvQwZ8anYU24qWOYHGWrYKzOOZXs8ZbSOvOXqLzRrcRrr7PKfp4fHifPxeL16eX-f2iMFzwVIAVMpcVvOLWgFza2awWNpfIu5imbhopGkmooRVhprG0ZJZKoZmsDZQzPkU3g-8udPseYlKbrg8-j1SccDIT2YdlVT2oTOhiDNAo45I-bpiCdq2iRB0TVEOCKhPqlKAqM8r-oLvgtjoc_of4AMUs9isIP7_6h_oCf8KFtQ |
CitedBy_id | crossref_primary_10_1007_s41748_024_00524_8 crossref_primary_10_2166_wqrj_2024_049 crossref_primary_10_3390_ijgi13110381 crossref_primary_10_1007_s00521_023_09391_2 crossref_primary_10_2166_ws_2024_247 crossref_primary_10_47264_idea_nasij_5_1_6 crossref_primary_10_1007_s11356_024_35662_z crossref_primary_10_31436_iiumej_v25i2_3129 crossref_primary_10_1007_s11356_024_34119_7 crossref_primary_10_1007_s00521_024_10317_9 crossref_primary_10_1007_s11356_025_35999_z crossref_primary_10_1016_j_ejrh_2025_102182 crossref_primary_10_1080_10447318_2024_2448877 crossref_primary_10_1038_s41598_024_73559_6 crossref_primary_10_1007_s43832_025_00206_0 crossref_primary_10_3390_cli12090131 crossref_primary_10_1021_acsomega_4c04526 crossref_primary_10_1371_journal_pone_0310044 crossref_primary_10_1007_s11269_024_04062_w crossref_primary_10_1007_s12145_024_01610_1 crossref_primary_10_33715_inonusaglik_1571883 crossref_primary_10_1002_wer_11138 crossref_primary_10_1155_er_9934909 crossref_primary_10_1016_j_ecoinf_2024_102500 crossref_primary_10_1007_s40808_024_02083_3 crossref_primary_10_1016_j_aej_2025_01_067 crossref_primary_10_1016_j_jwpe_2024_106585 crossref_primary_10_1007_s12145_024_01558_2 crossref_primary_10_1016_j_ecoinf_2024_102868 crossref_primary_10_1080_17499518_2024_2443457 crossref_primary_10_1016_j_algal_2025_103935 crossref_primary_10_1016_j_rineng_2025_104265 crossref_primary_10_1016_j_cclet_2024_110722 crossref_primary_10_1016_j_jconhyd_2025_104498 crossref_primary_10_3390_w17010059 crossref_primary_10_1007_s42108_024_00317_9 crossref_primary_10_2166_nh_2025_097 crossref_primary_10_1007_s41976_024_00162_8 crossref_primary_10_1007_s11356_024_32415_w crossref_primary_10_1088_2515_7620_ad549e crossref_primary_10_1016_j_jenvman_2024_122721 crossref_primary_10_1016_j_mtcomm_2024_110487 crossref_primary_10_1186_s12302_024_00914_9 crossref_primary_10_1016_j_soildyn_2024_108805 crossref_primary_10_1016_j_jenvman_2025_124987 crossref_primary_10_1016_j_rineng_2024_103534 crossref_primary_10_1007_s41101_025_00346_3 crossref_primary_10_1007_s41101_025_00348_1 crossref_primary_10_3390_jmse13030539 crossref_primary_10_3389_fenvs_2024_1434703 crossref_primary_10_1007_s41976_024_00145_9 crossref_primary_10_3390_app14167136 crossref_primary_10_1007_s11760_025_03915_0 crossref_primary_10_61453_jods_v2023no48 crossref_primary_10_1016_j_gsd_2024_101324 crossref_primary_10_59313_jsr_a_1416015 crossref_primary_10_2166_wqrj_2025_075 crossref_primary_10_3390_jmse12122342 crossref_primary_10_4236_ica_2024_154010 crossref_primary_10_1016_j_eswa_2025_126958 crossref_primary_10_1007_s12145_024_01526_w crossref_primary_10_48084_etasr_9230 crossref_primary_10_3390_land13091438 crossref_primary_10_1007_s11356_025_36120_0 crossref_primary_10_3390_w16243616 crossref_primary_10_1016_j_jhydrol_2024_131767 crossref_primary_10_3390_rs16142595 crossref_primary_10_1007_s11356_025_36062_7 crossref_primary_10_1109_ACCESS_2024_3502361 crossref_primary_10_3390_su16229848 |
Cites_doi | 10.1007/978-981-15-8443-5_53 10.1016/j.chemosphere.2020.126169 10.3390/su12145814 10.1007/s11356-021-17064-7 10.1109/ICICCT.2018.8473168 10.1007/978-1-4614-0189-6 10.3390/w14101552 10.3390/su15010757 10.1007/s10462-022-10143-2 10.1016/j.inffus.2019.06.006 10.32604/csse.2023.034324 10.3390/w14040610 10.3390/s19061420 10.1007/s11356-020-09689-x 10.21203/rs.3.rs-876980/v2 10.1016/j.jece.2020.104599 10.2991/hcis.k.211203.001 10.1007/3-540-49257-7_15 10.1016/j.knosys.2020.106443 10.3390/su13084259 10.1016/j.jenvman.2021.112051 10.3390/ijerph15071322 10.3390/su11072058 10.1016/j.jksuci.2021.06.003 10.12691/ajwr-1-3-3 10.1109/ICCES48766.2020.9137903 10.1155/2020/6659314 10.1016/j.jhydrol.2021.127320 10.1016/j.agwat.2019.105923 10.1145/2939672.2939785 10.32604/cmc.2023.032533 10.1007/s11356-021-16289-w 10.1016/S0167-9473(01)00065-2 10.3390/w10091148 10.3390/w14071067 10.1007/s11356-021-13875-w 10.1016/j.eswa.2020.113864 10.1016/j.cie.2019.04.047 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-023-16737-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | CrossRef ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 35334 |
ExternalDocumentID | 10_1007_s11042_023_16737_4 |
GrantInformation_xml | – fundername: Kafr El Shiekh University |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c363t-ed67777d6353dce7bd9986dddd6104cf8ff76f701c1502cfd142d176a278ce493 |
IEDL.DBID | C6C |
ISSN | 1573-7721 1380-7501 |
IngestDate | Fri Jul 25 21:14:07 EDT 2025 Tue Jul 01 04:13:27 EDT 2025 Thu Apr 24 23:12:51 EDT 2025 Fri Feb 21 02:41:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Grid search Water quality classification Machine learning models Water quality index Water quality |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-ed67777d6353dce7bd9986dddd6104cf8ff76f701c1502cfd142d176a278ce493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3021-5902 |
OpenAccessLink | https://doi.org/10.1007/s11042-023-16737-4 |
PQID | 3030966102 |
PQPubID | 54626 |
PageCount | 28 |
ParticipantIDs | proquest_journals_3030966102 crossref_citationtrail_10_1007_s11042_023_16737_4 crossref_primary_10_1007_s11042_023_16737_4 springer_journals_10_1007_s11042_023_16737_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240400 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 4 year: 2024 text: 20240400 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | LeeSLeeDImproved prediction of harmful algal blooms in four Major South Korea’s Rivers using deep learning modelsInt J Environ Res Public Health201815132210.3390/ijerph15071322 Jain D, Shah S, Mehta H et al (2021) A Machine Learning Approach to Analyze Marine Life Sustainability. In: Proceedings of International Conference on Intelligent Computing, Information and Control Systems. Springer, pp 619–632 ShamsMYTarekZElsheweyAMHassanienAEDarwishAA Machine Learning-Based Model for Predicting Temperature Under the Effects of Climate ChangeThe Power of Data: Driving Climate Change with Data Science and Artificial Intelligence Innovations2023ChamSpringer Nature Switzerland6181 AldhyaniTHHAl-YaariMAlkahtaniHMaashiMWater quality prediction using artificial intelligence algorithmsAppl Bionics Biomech2020202011210.1155/2020/6659314 DengTChauK-WDuanH-FMachine learning based marine water quality prediction for coastal hydro-environment managementJ Environ Manage202128411205110.1016/j.jenvman.2021.112051 Beyer K, Goldstein J, Ramakrishnan R, Shaft U (1999) When is “nearest neighbor” meaningful? In: International conference on database theory. Springer, pp 217–235 TarekZShamsMYElsheweyAMWind Power Prediction Based on Machine Learning and Deep Learning ModelsComput Mater Contin20237471573210.32604/cmc.2023.032533 TyagiSSharmaBSinghPDobhalRWater quality assessment in terms of water quality indexAm J Water Resour20131343810.12691/ajwr-1-3-3 Khan MSI, Islam N, Uddin J et al (2021) Water quality prediction and classification based on principal component regression and gradient boosting classifier approach. J King Saud Univ – Comput Inform Sci 34(8):4773–4781. https://doi.org/10.1016/j.jksuci.2021.06.003 LiaoZLiYXiongWAn In-Depth Assessment of Water Resource Responses to Regional Development Policies Using Hydrological Variation Analysis and System Dynamics ModelingSustainability202012581410.3390/su12145814 HalimZRehanMOn identification of driving-induced stress using electroencephalogram signals: A framework based on wearable safety-critical scheme and machine learningInf Fusion202053667910.1016/j.inffus.2019.06.006 BiauGAnalysis of a random forests modelJ Mach Learn Res201213106310952930634 WangSPengHLiangSPrediction of estuarine water quality using interpretable machine learning approachJ Hydrol202260512732010.1016/j.jhydrol.2021.127320 ZhouYMazzuchiTASarkaniSM-adaboost-a based ensemble system for network intrusion detectionExpert Syst Appl202016211386410.1016/j.eswa.2020.113864 LuHMaXHybrid decision tree-based machine learning models for short-term water quality predictionChemosphere202024912616910.1016/j.chemosphere.2020.126169 ChengYPengJGuXAn intelligent supplier evaluation model based on data-driven support vector regression in global supply chainComput Ind Eng202013910583410.1016/j.cie.2019.04.047 WaqasMTuSHalimZThe role of artificial intelligence and machine learning in wireless networks security: principle, practice and challengesArtif Intell Rev2022555215526110.1007/s10462-022-10143-2 Garabaghi FH, Benzer S, Benzer R (2021) Performance evaluation of machine learning models with ensemble learning approach in classification of water quality indices based on different subset of features. Res Square 1:1–35. https://doi.org/10.21203/rs.3.rs-876980/v2 HuZZhangYZhaoYA water quality prediction method based on the deep LSTM network considering correlation in smart maricultureSensors201919142010.3390/s19061420 HassanMMHassanMMAkterLEfficient Prediction of Water Quality Index (WQI) Using Machine Learning AlgorithmsHum Centric Intell Syst20211869710.2991/hcis.k.211203.001 ElbeltagiAPandeCBKouadriSIslamARMApplications of various data-driven models for the prediction of groundwater quality index in the Akot basin, Maharashtra, IndiaEnviron Sci Pollut Res202229175911760510.1007/s11356-021-17064-7 ElsheweyAMShamsMYElhadyAMA Novel WD-SARIMAX Model for Temperature Forecasting Using Daily Delhi Climate DatasetSustainability20231575710.3390/su15010757 HalimZWaqarMTahirMA machine learning-based investigation utilizing the in-text features for the identification of dominant emotion in an emailKnowl Based Syst202020810644310.1016/j.knosys.2020.106443 AbbaSIPhamQBSainiGImplementation of data intelligence models coupled with ensemble machine learning for prediction of water quality indexEnviron Sci Pollut Res202027415244153910.1007/s11356-020-09689-x Forests R, Breiman L (1999) Statistics Department University of California Berkeley. pp 1-29 LiuPWangJSangaiahAKAnalysis and prediction of water quality using LSTM deep neural networks in IoT environmentSustainability201911205810.3390/su11072058 MalekNHAWan YaacobWFMd NasirSAShaadanNPrediction of Water Quality Classification of the Kelantan River Basin, Malaysia, Using Machine Learning TechniquesWater202214106710.3390/w14071067 BhardwajDVermaNResearch paper on analysing impact of various parameters on water quality indexInt J Adv Res Comput Sci2017852496498 Clark RM, Hakim S, Ostfeld A (2011) Handbook of water and wastewater systems protection. In: Protecting Critical Infrastructure. Springer, pp 1–29. https://doi.org/10.1007/978-1-4614-0189-6 KhullarSSinghNWater quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validationEnviron Sci Pollut Res202229128751288910.1007/s11356-021-13875-w Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM sigkdd international conference on knowledge discovery and data mining. pp 785–794 Prakash R, Tharun VP, Devi SR (2018) A comparative study of various classification techniques to determine water quality. In: 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT). IEEE, pp 1501–1506 Hmoud Al-AdhailehMWaselallah AlsaadeFModelling and prediction of water quality by using artificial intelligenceSustainability202113425910.3390/su13084259 WuJWangZA Hybrid Model for Water Quality Prediction Based on an Artificial Neural Network, Wavelet Transform, and Long Short-Term MemoryWater20221461010.3390/w14040610 FriedmanJHStochastic gradient boostingComput Stat Data Anal200238367378188486910.1016/S0167-9473(01)00065-2 Radhakrishnan N, Pillai AS (2020) Comparison of Water Quality Classification Models using Machine Learning. In: 2020 5th International Conference on Communication and Electronics Systems (ICCES). IEEE, pp 1183–1188 Slatnia A, Ladjal M, Ouali MA, Imed M (2022) Improving prediction and classification of water quality indices using hybrid machine learning algorithms with features selection analysis. In: Online International Symposium on Applied Mathematics and Engineering (ISAME22), vol 1. ISAME22, Istanbul-Turkey, pp 16–17 ZhouJWangYXiaoFWater quality prediction method based on IGRA and LSTMWater201810114810.3390/w10091148 AsadollahSBHSSharafatiAMottaDYaseenZMRiver water quality index prediction and uncertainty analysis: A comparative study of machine learning modelsJ Environ Chem Eng2021910459910.1016/j.jece.2020.104599 KhoiDNQuanNTLinhDQUsing Machine Learning Models for Predicting the Water Quality Index in the La Buong River, VietnamWater202214155210.3390/w14101552 ElsheweyAMShamsMYTarekZWeight Prediction Using the Hybrid Stacked-LSTM Food Selection ModelComput Syst Sci Eng20234676578110.32604/csse.2023.034324 ChenHHuangJJMcBeanEPartitioning of daily evapotranspiration using a modified shuttleworth-wallace model, random Forest and support vector regression, for a cabbage farmlandAgric Water Manag202022810592310.1016/j.agwat.2019.105923 NosairAMShamsMYAbouElmagdLMPredictive model for progressive salinization in a coastal aquifer using artificial intelligence and hydrogeochemical techniques: A case study of the Nile Delta aquifer, EgyptEnviron Sci Pollut Res2022299318934010.1007/s11356-021-16289-w J Zhou (16737_CR4) 2018; 10 M Hmoud Al-Adhaileh (16737_CR10) 2021; 13 AM Nosair (16737_CR19) 2022; 29 G Biau (16737_CR27) 2012; 13 J Wu (16737_CR7) 2022; 14 16737_CR20 16737_CR23 16737_CR22 NHA Malek (16737_CR12) 2022; 14 16737_CR26 Y Cheng (16737_CR37) 2020; 139 D Bhardwaj (16737_CR11) 2017; 8 16737_CR29 S Lee (16737_CR8) 2018; 15 S Wang (16737_CR28) 2022; 605 Z Liao (16737_CR38) 2020; 12 Z Hu (16737_CR3) 2019; 19 H Chen (16737_CR36) 2020; 228 MY Shams (16737_CR40) 2023 SBHS Asadollah (16737_CR18) 2021; 9 MM Hassan (16737_CR21) 2021; 1 AM Elshewey (16737_CR43) 2023; 46 S Tyagi (16737_CR39) 2013; 1 16737_CR30 DN Khoi (16737_CR25) 2022; 14 Y Zhou (16737_CR32) 2020; 162 S Khullar (16737_CR15) 2022; 29 P Liu (16737_CR9) 2019; 11 16737_CR33 16737_CR13 Z Halim (16737_CR35) 2020; 53 Z Tarek (16737_CR42) 2023; 74 THH Aldhyani (16737_CR24) 2020; 2020 16737_CR1 H Lu (16737_CR34) 2020; 249 16737_CR2 A Elbeltagi (16737_CR17) 2022; 29 Z Halim (16737_CR6) 2020; 208 SI Abba (16737_CR16) 2020; 27 JH Friedman (16737_CR31) 2002; 38 AM Elshewey (16737_CR41) 2023; 15 M Waqas (16737_CR5) 2022; 55 T Deng (16737_CR14) 2021; 284 |
References_xml | – reference: FriedmanJHStochastic gradient boostingComput Stat Data Anal200238367378188486910.1016/S0167-9473(01)00065-2 – reference: AbbaSIPhamQBSainiGImplementation of data intelligence models coupled with ensemble machine learning for prediction of water quality indexEnviron Sci Pollut Res202027415244153910.1007/s11356-020-09689-x – reference: ElsheweyAMShamsMYTarekZWeight Prediction Using the Hybrid Stacked-LSTM Food Selection ModelComput Syst Sci Eng20234676578110.32604/csse.2023.034324 – reference: ElbeltagiAPandeCBKouadriSIslamARMApplications of various data-driven models for the prediction of groundwater quality index in the Akot basin, Maharashtra, IndiaEnviron Sci Pollut Res202229175911760510.1007/s11356-021-17064-7 – reference: Forests R, Breiman L (1999) Statistics Department University of California Berkeley. pp 1-29 – reference: Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM sigkdd international conference on knowledge discovery and data mining. pp 785–794 – reference: AsadollahSBHSSharafatiAMottaDYaseenZMRiver water quality index prediction and uncertainty analysis: A comparative study of machine learning modelsJ Environ Chem Eng2021910459910.1016/j.jece.2020.104599 – reference: Slatnia A, Ladjal M, Ouali MA, Imed M (2022) Improving prediction and classification of water quality indices using hybrid machine learning algorithms with features selection analysis. In: Online International Symposium on Applied Mathematics and Engineering (ISAME22), vol 1. ISAME22, Istanbul-Turkey, pp 16–17 – reference: LuHMaXHybrid decision tree-based machine learning models for short-term water quality predictionChemosphere202024912616910.1016/j.chemosphere.2020.126169 – reference: KhoiDNQuanNTLinhDQUsing Machine Learning Models for Predicting the Water Quality Index in the La Buong River, VietnamWater202214155210.3390/w14101552 – reference: BiauGAnalysis of a random forests modelJ Mach Learn Res201213106310952930634 – reference: Prakash R, Tharun VP, Devi SR (2018) A comparative study of various classification techniques to determine water quality. In: 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT). IEEE, pp 1501–1506 – reference: HalimZRehanMOn identification of driving-induced stress using electroencephalogram signals: A framework based on wearable safety-critical scheme and machine learningInf Fusion202053667910.1016/j.inffus.2019.06.006 – reference: ElsheweyAMShamsMYElhadyAMA Novel WD-SARIMAX Model for Temperature Forecasting Using Daily Delhi Climate DatasetSustainability20231575710.3390/su15010757 – reference: LeeSLeeDImproved prediction of harmful algal blooms in four Major South Korea’s Rivers using deep learning modelsInt J Environ Res Public Health201815132210.3390/ijerph15071322 – reference: HalimZWaqarMTahirMA machine learning-based investigation utilizing the in-text features for the identification of dominant emotion in an emailKnowl Based Syst202020810644310.1016/j.knosys.2020.106443 – reference: KhullarSSinghNWater quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validationEnviron Sci Pollut Res202229128751288910.1007/s11356-021-13875-w – reference: Radhakrishnan N, Pillai AS (2020) Comparison of Water Quality Classification Models using Machine Learning. In: 2020 5th International Conference on Communication and Electronics Systems (ICCES). IEEE, pp 1183–1188 – reference: NosairAMShamsMYAbouElmagdLMPredictive model for progressive salinization in a coastal aquifer using artificial intelligence and hydrogeochemical techniques: A case study of the Nile Delta aquifer, EgyptEnviron Sci Pollut Res2022299318934010.1007/s11356-021-16289-w – reference: Garabaghi FH, Benzer S, Benzer R (2021) Performance evaluation of machine learning models with ensemble learning approach in classification of water quality indices based on different subset of features. Res Square 1:1–35. https://doi.org/10.21203/rs.3.rs-876980/v2 – reference: Jain D, Shah S, Mehta H et al (2021) A Machine Learning Approach to Analyze Marine Life Sustainability. In: Proceedings of International Conference on Intelligent Computing, Information and Control Systems. Springer, pp 619–632 – reference: Khan MSI, Islam N, Uddin J et al (2021) Water quality prediction and classification based on principal component regression and gradient boosting classifier approach. J King Saud Univ – Comput Inform Sci 34(8):4773–4781. https://doi.org/10.1016/j.jksuci.2021.06.003 – reference: WangSPengHLiangSPrediction of estuarine water quality using interpretable machine learning approachJ Hydrol202260512732010.1016/j.jhydrol.2021.127320 – reference: Clark RM, Hakim S, Ostfeld A (2011) Handbook of water and wastewater systems protection. In: Protecting Critical Infrastructure. Springer, pp 1–29. https://doi.org/10.1007/978-1-4614-0189-6 – reference: ChengYPengJGuXAn intelligent supplier evaluation model based on data-driven support vector regression in global supply chainComput Ind Eng202013910583410.1016/j.cie.2019.04.047 – reference: WaqasMTuSHalimZThe role of artificial intelligence and machine learning in wireless networks security: principle, practice and challengesArtif Intell Rev2022555215526110.1007/s10462-022-10143-2 – reference: Hmoud Al-AdhailehMWaselallah AlsaadeFModelling and prediction of water quality by using artificial intelligenceSustainability202113425910.3390/su13084259 – reference: WuJWangZA Hybrid Model for Water Quality Prediction Based on an Artificial Neural Network, Wavelet Transform, and Long Short-Term MemoryWater20221461010.3390/w14040610 – reference: DengTChauK-WDuanH-FMachine learning based marine water quality prediction for coastal hydro-environment managementJ Environ Manage202128411205110.1016/j.jenvman.2021.112051 – reference: ZhouYMazzuchiTASarkaniSM-adaboost-a based ensemble system for network intrusion detectionExpert Syst Appl202016211386410.1016/j.eswa.2020.113864 – reference: TyagiSSharmaBSinghPDobhalRWater quality assessment in terms of water quality indexAm J Water Resour20131343810.12691/ajwr-1-3-3 – reference: ZhouJWangYXiaoFWater quality prediction method based on IGRA and LSTMWater201810114810.3390/w10091148 – reference: LiuPWangJSangaiahAKAnalysis and prediction of water quality using LSTM deep neural networks in IoT environmentSustainability201911205810.3390/su11072058 – reference: BhardwajDVermaNResearch paper on analysing impact of various parameters on water quality indexInt J Adv Res Comput Sci2017852496498 – reference: TarekZShamsMYElsheweyAMWind Power Prediction Based on Machine Learning and Deep Learning ModelsComput Mater Contin20237471573210.32604/cmc.2023.032533 – reference: HuZZhangYZhaoYA water quality prediction method based on the deep LSTM network considering correlation in smart maricultureSensors201919142010.3390/s19061420 – reference: Beyer K, Goldstein J, Ramakrishnan R, Shaft U (1999) When is “nearest neighbor” meaningful? In: International conference on database theory. Springer, pp 217–235 – reference: MalekNHAWan YaacobWFMd NasirSAShaadanNPrediction of Water Quality Classification of the Kelantan River Basin, Malaysia, Using Machine Learning TechniquesWater202214106710.3390/w14071067 – reference: ShamsMYTarekZElsheweyAMHassanienAEDarwishAA Machine Learning-Based Model for Predicting Temperature Under the Effects of Climate ChangeThe Power of Data: Driving Climate Change with Data Science and Artificial Intelligence Innovations2023ChamSpringer Nature Switzerland6181 – reference: HassanMMHassanMMAkterLEfficient Prediction of Water Quality Index (WQI) Using Machine Learning AlgorithmsHum Centric Intell Syst20211869710.2991/hcis.k.211203.001 – reference: AldhyaniTHHAl-YaariMAlkahtaniHMaashiMWater quality prediction using artificial intelligence algorithmsAppl Bionics Biomech2020202011210.1155/2020/6659314 – reference: LiaoZLiYXiongWAn In-Depth Assessment of Water Resource Responses to Regional Development Policies Using Hydrological Variation Analysis and System Dynamics ModelingSustainability202012581410.3390/su12145814 – reference: ChenHHuangJJMcBeanEPartitioning of daily evapotranspiration using a modified shuttleworth-wallace model, random Forest and support vector regression, for a cabbage farmlandAgric Water Manag202022810592310.1016/j.agwat.2019.105923 – ident: 16737_CR1 doi: 10.1007/978-981-15-8443-5_53 – volume: 249 start-page: 126169 year: 2020 ident: 16737_CR34 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126169 – volume: 12 start-page: 5814 year: 2020 ident: 16737_CR38 publication-title: Sustainability doi: 10.3390/su12145814 – volume: 29 start-page: 17591 year: 2022 ident: 16737_CR17 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-17064-7 – ident: 16737_CR26 – ident: 16737_CR30 doi: 10.1109/ICICCT.2018.8473168 – ident: 16737_CR2 doi: 10.1007/978-1-4614-0189-6 – volume: 14 start-page: 1552 year: 2022 ident: 16737_CR25 publication-title: Water doi: 10.3390/w14101552 – volume: 15 start-page: 757 year: 2023 ident: 16737_CR41 publication-title: Sustainability doi: 10.3390/su15010757 – volume: 55 start-page: 5215 year: 2022 ident: 16737_CR5 publication-title: Artif Intell Rev doi: 10.1007/s10462-022-10143-2 – volume: 53 start-page: 66 year: 2020 ident: 16737_CR35 publication-title: Inf Fusion doi: 10.1016/j.inffus.2019.06.006 – start-page: 61 volume-title: The Power of Data: Driving Climate Change with Data Science and Artificial Intelligence Innovations year: 2023 ident: 16737_CR40 – volume: 46 start-page: 765 year: 2023 ident: 16737_CR43 publication-title: Comput Syst Sci Eng doi: 10.32604/csse.2023.034324 – volume: 14 start-page: 610 year: 2022 ident: 16737_CR7 publication-title: Water doi: 10.3390/w14040610 – volume: 19 start-page: 1420 year: 2019 ident: 16737_CR3 publication-title: Sensors doi: 10.3390/s19061420 – volume: 27 start-page: 41524 year: 2020 ident: 16737_CR16 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-09689-x – ident: 16737_CR20 doi: 10.21203/rs.3.rs-876980/v2 – volume: 9 start-page: 104599 year: 2021 ident: 16737_CR18 publication-title: J Environ Chem Eng doi: 10.1016/j.jece.2020.104599 – volume: 1 start-page: 86 year: 2021 ident: 16737_CR21 publication-title: Hum Centric Intell Syst doi: 10.2991/hcis.k.211203.001 – ident: 16737_CR33 doi: 10.1007/3-540-49257-7_15 – volume: 208 start-page: 106443 year: 2020 ident: 16737_CR6 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2020.106443 – volume: 13 start-page: 4259 year: 2021 ident: 16737_CR10 publication-title: Sustainability doi: 10.3390/su13084259 – volume: 284 start-page: 112051 year: 2021 ident: 16737_CR14 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2021.112051 – volume: 15 start-page: 1322 year: 2018 ident: 16737_CR8 publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph15071322 – volume: 11 start-page: 2058 year: 2019 ident: 16737_CR9 publication-title: Sustainability doi: 10.3390/su11072058 – ident: 16737_CR23 doi: 10.1016/j.jksuci.2021.06.003 – volume: 8 start-page: 2496 issue: 5 year: 2017 ident: 16737_CR11 publication-title: Int J Adv Res Comput Sci – volume: 1 start-page: 34 year: 2013 ident: 16737_CR39 publication-title: Am J Water Resour doi: 10.12691/ajwr-1-3-3 – ident: 16737_CR22 doi: 10.1109/ICCES48766.2020.9137903 – volume: 2020 start-page: 1 year: 2020 ident: 16737_CR24 publication-title: Appl Bionics Biomech doi: 10.1155/2020/6659314 – volume: 605 start-page: 127320 year: 2022 ident: 16737_CR28 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2021.127320 – volume: 13 start-page: 1063 year: 2012 ident: 16737_CR27 publication-title: J Mach Learn Res – volume: 228 start-page: 105923 year: 2020 ident: 16737_CR36 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2019.105923 – ident: 16737_CR29 doi: 10.1145/2939672.2939785 – volume: 74 start-page: 715 year: 2023 ident: 16737_CR42 publication-title: Comput Mater Contin doi: 10.32604/cmc.2023.032533 – ident: 16737_CR13 – volume: 29 start-page: 9318 year: 2022 ident: 16737_CR19 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-16289-w – volume: 38 start-page: 367 year: 2002 ident: 16737_CR31 publication-title: Comput Stat Data Anal doi: 10.1016/S0167-9473(01)00065-2 – volume: 10 start-page: 1148 year: 2018 ident: 16737_CR4 publication-title: Water doi: 10.3390/w10091148 – volume: 14 start-page: 1067 year: 2022 ident: 16737_CR12 publication-title: Water doi: 10.3390/w14071067 – volume: 29 start-page: 12875 year: 2022 ident: 16737_CR15 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-13875-w – volume: 162 start-page: 113864 year: 2020 ident: 16737_CR32 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113864 – volume: 139 start-page: 105834 year: 2020 ident: 16737_CR37 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2019.04.047 |
SSID | ssj0016524 |
Score | 2.6532073 |
Snippet | Water quality is very dominant for humans, animals, plants, industries, and the environment. In the last decades, the quality of water has been impacted by... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 35307 |
SubjectTerms | Accuracy Classification Computation Computer Communication Networks Computer Science Correlation coefficients Data Structures and Information Theory Decision trees Errors Machine learning Multilayer perceptrons Multilayers Multimedia Information Systems Parameters Regression models Search methods Special Purpose and Application-Based Systems Tuning Water quality |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEJ4oXPTgAzWiaHrwpo3bbumWk1EDISYSQyRy27Btl5goIODBf-90t8uqifS4fRxm2s63nccHcMGVDQzXLSpFMqICTQZVIx5Rzayy1gbcZA_6jz3ZHYiHYXPoH9wWPqyyuBOzi9pMtXsjvw6dLwCNScBvZh_UsUY576qn0NiEKl7BSlWgetfuPfVXfgTZ9LS2KqBoG5lPm8mT55hLTUGbRZkja6Hit2kq8eYfF2lmeTp7sOMhI7nNdbwPG3ZSg92CjoH401mD7R-1BQ-g_zJyvXnS5BeZzZ1HxmmBuFD3MXnPoigt8bQR-MFx4iyIM2uG4LDx_NWQ_CCQnGf6EAad9vN9l3oCBapDGS6pNTLCZhBUhEbbKDH4cyUNNpSj0KlK00imUcA0wkKuU8MENyySqCylrWiFR1CZTCf2GAgiFa6aqdQt5RCLTQRCmcBoFqap5ZGuAytkF2tfXdyRXLzFZV1kJ-8Y5R1n8o5FHS5Xc2Z5bY21oxuFSmJ_zhZxuSvqcFWoqez-f7WT9audwhZH9JKH6DSgspx_2jNEH8vk3G-xb2E71JI priority: 102 providerName: ProQuest |
Title | Water quality prediction using machine learning models based on grid search method |
URI | https://link.springer.com/article/10.1007/s11042-023-16737-4 https://www.proquest.com/docview/3030966102 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4IXPTgAzWiSHrwpo273W67HIGwEI3EEIl42kDbJSaKBPDgv3e6D1CiJvawTbbTPcy0mW87nfkALlhgHM1UnQo-HlGOLoMGIyapck1gjHGYTg7073qiO-A3Q3-YlcmxuTAb8fvrBbonzih6FupaShXKC1DyXU9amoaWaK0iBsJnPEuK-Xned8ezRpMbAdDEr4T7sJsBQtJILXgAW2Zahr2cbIFke68MO18qBx5C_3FkR9OUyA8ym9t4i9UxsRfZJ-Q1uSNpSEYKgS8s482CWKelCYpN5s-apMucpCzSRzAI2w-tLs3oEajyhLekRguJTSNk8LQycqzx10lobAiJuIqDOJYilo6rEPQxFWuXM-1KgaYIlOF17xiK07epOQGCOIQFfixUPbB4xIw5AhVHK9eLY8OkqoCb6y5SWe1wS2HxEq2rHlt9R6jvKNF3xCtwuZozSytn_CldzU0SZbtoEXk2_oMAwmEVuMrNtB7-_Wun_xM_g22GWCW9kFOF4nL-bs4RayzHNSgEYacGpUbYbPZs33m6bWPfbPfu-7VkCeJzwBqff_PQpw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLYQHIADb8RgQA5wgogmzdLugBACxngeEAhuZcsDIcEY2xDan-I3YvfBAAluy7FJI9V28zlx7A9gQ8YusNJUuVbNBlcIGTxuyIgb4WLnXCBteqB_canrN-r0rnI3Ah9FLgxdqyzWxHShti-Gzsh3QooFIJgEcq_9yok1iqKrBYVGZhZnrv-OW7bu7skh6ndTytrR9UGd56wC3IQ67HFndYTNItKG1rioaXHHoS02nFwZH3sfaR8FwqCvJI23QkkrIo1fEBunqPgSLvljKkQkp8z02vFX1EJXchLdOOCIxCJP0slS9QQlwiBCckHUMFz9BMKBd_srIJviXG0GpnIHle1nFjULI641B9MF-QPL14I5mPxWyXAerm4b1JulaPZZu0PxH9I5o4v1D-w5vbPpWE5SgQ-IgafLCEQtw2EPnUfLMvmyjNV6AW6GIthFGG29tNwSMPSLZFzx2lRj8o9cU6HjFFgjQu-djEwJRCG7xOS1zIlS4ykZVGEmeSco7ySVd6JKsPX1Tjur5PHv6HKhkiT_q7vJwAZLsF2oadD992zL_8-2DuP164vz5Pzk8mwFJiT6TdnloDKM9jpvbhX9nl5zLTU2BvfDtu5PEvoQhQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB6hIiH2wHtFoYAPcAKL2HGdcECIVwULVAiBllu29QMhQSltV6v-NX4dM4lDAWm54WPiOMp44m_seXwA6zJ1kZVmh2vVbnGFkMHTlky4ES51zkXS5gf6F019cqN-3dZvx-ClzIWhsMpyTcwXavtk6Ix8OyZfAIJJJLd9CIu4PGrsdZ85MUiRp7Wk0yhU5MwN_-H2rb97eoRzvSFl4_j68IQHhgFuYh0PuLM6wWYRdWNrXNK2uPvQFhu-SBmfep9on0TCoN0kjbdCSSsSjV-TGqeoEBMu_-MJ7YoqMH5w3Ly8evNh6Hqg1E0jjrgsQspOkbgnKC0G8ZILIorh6iMsjmzdT-7ZHPUaMzAVzFW2X-jXLIy5zhxMl1QQLKwMc_DjXV3Debj63aK7RcLmkHV75A0iDWAUZn_HHvMITscCZQVeID6ePiNItQy73fXuLSskzAqO6wW4-RbR_oRK56njFoGhlSTTutdmJyVrybUVmlGRNSL23snEVEGUsstMqGxOBBsP2agmM8k7Q3lnubwzVYXNt2e6RV2PL3vXyinJwj_ez0YaWYWtcppGt_8_2tLXo63BBGp2dn7aPFuGSYlGVBEpVIPKoPfXraARNGivBm1j8Oe7FfwVdKQWFw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water+quality+prediction+using+machine+learning+models+based+on+grid+search+method&rft.jtitle=Multimedia+tools+and+applications&rft.au=Shams%2C+Mahmoud+Y.&rft.au=Elshewey%2C+Ahmed+M.&rft.au=El-kenawy%2C+El-Sayed+M.&rft.au=Ibrahim%2C+Abdelhameed&rft.date=2024-04-01&rft.issn=1573-7721&rft.eissn=1573-7721&rft.volume=83&rft.issue=12&rft.spage=35307&rft.epage=35334&rft_id=info:doi/10.1007%2Fs11042-023-16737-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_023_16737_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |