Self-supporting rhombic infill structures for additive manufacturing

Recent work has demonstrated that the interior material layout of a 3D model can be designed to make a fabricated replica satisfy application-specific demands on its physical properties, such as resistance to external loads. A widely used practice to fabricate such models is by layer-based additive...

Full description

Saved in:
Bibliographic Details
Published inComputer aided design Vol. 80; pp. 32 - 42
Main Authors Wu, Jun, Wang, Charlie C.L., Zhang, Xiaoting, Westermann, Rüdiger
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent work has demonstrated that the interior material layout of a 3D model can be designed to make a fabricated replica satisfy application-specific demands on its physical properties, such as resistance to external loads. A widely used practice to fabricate such models is by layer-based additive manufacturing (AM), which however suffers from the problem of adding and removing interior supporting structures. In this paper, we present a novel method for generating application-specific infill structures on rhombic cells so that the resultant structures can automatically satisfy manufacturing requirements on overhang-angle and wall-thickness. Additional supporting structures can be avoided entirely in our framework. To achieve this, we introduce the usage of an adaptive rhombic grid, which is built from an input surface model. Starting from the initial sparse set of rhombic cells, via numerical optimization techniques an objective function can be improved by adaptively subdividing the rhombic grid and thus adding more walls in cells. We demonstrate the effectiveness of our method for generating interior designs in the applications of improving mechanical stiffness and static stability. •Rhombic infill structures ensure the manufacturability of the shape interior.•Adaptively subdividing the rhombic grid can improve the objective function.•The method is exemplified by improving mechanical stiffness and static stability.
AbstractList Recent work has demonstrated that the interior material layout of a 3D model can be designed to make a fabricated replica satisfy application-specific demands on its physical properties, such as resistance to external loads. A widely used practice to fabricate such models is by layer-based additive manufacturing (AM), which however suffers from the problem of adding and removing interior supporting structures. In this paper, we present a novel method for generating application-specific infill structures on rhombic cells so that the resultant structures can automatically satisfy manufacturing requirements on overhang-angle and wall-thickness. Additional supporting structures can be avoided entirely in our framework. To achieve this, we introduce the usage of an adaptive rhombic grid, which is built from an input surface model. Starting from the initial sparse set of rhombic cells, via numerical optimization techniques an objective function can be improved by adaptively subdividing the rhombic grid and thus adding more walls in cells. We demonstrate the effectiveness of our method for generating interior designs in the applications of improving mechanical stiffness and static stability. •Rhombic infill structures ensure the manufacturability of the shape interior.•Adaptively subdividing the rhombic grid can improve the objective function.•The method is exemplified by improving mechanical stiffness and static stability.
Author Wang, Charlie C.L.
Wu, Jun
Zhang, Xiaoting
Westermann, Rüdiger
Author_xml – sequence: 1
  givenname: Jun
  orcidid: 0000-0003-4237-1806
  surname: Wu
  fullname: Wu, Jun
  email: jun.wu@tum.de
  organization: Department of Mechanical Engineering, Technical University of Denmark, Denmark
– sequence: 2
  givenname: Charlie C.L.
  surname: Wang
  fullname: Wang, Charlie C.L.
  organization: Department of Design Engineering, Delft University of Technology, The Netherlands
– sequence: 3
  givenname: Xiaoting
  surname: Zhang
  fullname: Zhang, Xiaoting
  organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, PR China
– sequence: 4
  givenname: Rüdiger
  surname: Westermann
  fullname: Westermann, Rüdiger
  organization: Department of Informatics, Technische Universität München, Germany
BookMark eNp9kM1KAzEUhYMo2FYfwN28wIw3mWkygyupv1Bwoa5DJrnRlGmmJJmCb29KXbno6lw4fBfONyfnfvRIyA2FigLlt5tKK1OxfFYgKgB-Rma0FV3JeLs8JzMACmXTtMtLMo9xAwCM1t2MPLzjYMs47XZjSM5_FeF73PZOF85bNwxFTGHSaQoYCzuGQhnjkttjsVV-surQZOiKXFg1RLz-ywX5fHr8WL2U67fn19X9utQ1r1OJSnMURgBjjWJcN6w3oKDveorMiM7WiC3YRnV11_JcCOh5K1Bbo4RQtl4QcfyrwxhjQCu1Syq50aeg3CApyIMMuZFZhjzIkCBklpFJ-o_cBbdV4eckc3dkME_aOwwyaodeo3EBdZJmdCfoX9t7e5E
CitedBy_id crossref_primary_10_1016_j_cad_2024_103745
crossref_primary_10_1016_j_cad_2021_103101
crossref_primary_10_1115_1_4040622
crossref_primary_10_1007_s00158_019_02346_z
crossref_primary_10_1007_s00170_017_1261_6
crossref_primary_10_1016_j_cag_2017_07_005
crossref_primary_10_1016_j_visinf_2017_01_002
crossref_primary_10_1007_s00371_018_1493_y
crossref_primary_10_1016_j_cag_2017_07_008
crossref_primary_10_1016_j_advengsoft_2023_103529
crossref_primary_10_1080_17452759_2019_1708027
crossref_primary_10_1088_1757_899X_692_1_012010
crossref_primary_10_1108_RPJ_11_2018_0293
crossref_primary_10_1007_s00158_019_02420_6
crossref_primary_10_1016_j_cma_2019_02_031
crossref_primary_10_1016_j_camwa_2022_09_004
crossref_primary_10_1007_s00170_020_05603_4
crossref_primary_10_1007_s00158_017_1786_1
crossref_primary_10_1016_j_addma_2022_102717
crossref_primary_10_1007_s00371_020_01860_2
crossref_primary_10_3390_sym11081029
crossref_primary_10_1016_j_matcom_2024_02_004
crossref_primary_10_1007_s00158_019_02334_3
crossref_primary_10_3390_app12157386
crossref_primary_10_1002_adem_201900524
crossref_primary_10_1109_TVCG_2020_2995495
crossref_primary_10_1007_s00170_017_0572_y
crossref_primary_10_1016_j_cad_2017_05_003
crossref_primary_10_1016_j_cad_2019_05_003
crossref_primary_10_3390_jmmp2040064
crossref_primary_10_1016_j_addma_2019_100943
crossref_primary_10_1016_j_gmod_2018_12_003
crossref_primary_10_17341_gazimmfd_693116
crossref_primary_10_1007_s00170_021_08014_1
crossref_primary_10_3390_buildings11110516
crossref_primary_10_1016_j_ijmecsci_2019_105153
crossref_primary_10_1016_j_addma_2024_104329
crossref_primary_10_1007_s00170_023_11065_1
crossref_primary_10_1080_17452759_2019_1647488
crossref_primary_10_1111_cgf_14953
crossref_primary_10_1016_j_addma_2019_101003
crossref_primary_10_1016_j_promfg_2020_01_006
crossref_primary_10_2208_jscejam_75_68
crossref_primary_10_1016_j_cma_2020_113354
crossref_primary_10_1177_14644207231205281
crossref_primary_10_1002_adma_202308149
crossref_primary_10_1007_s00158_020_02805_y
crossref_primary_10_1016_j_cagd_2018_03_015
crossref_primary_10_1109_TVCG_2021_3091509
crossref_primary_10_3788_CJL240434
crossref_primary_10_1007_s10957_020_01685_y
crossref_primary_10_1016_j_cad_2021_103154
crossref_primary_10_1109_TVCG_2023_3268068
crossref_primary_10_1016_j_cad_2021_103156
crossref_primary_10_1089_3dp_2017_0039
crossref_primary_10_1016_j_compstruct_2023_116807
crossref_primary_10_1111_cgf_13750
crossref_primary_10_1016_j_cad_2018_04_008
crossref_primary_10_1007_s00158_018_1994_3
crossref_primary_10_2200_S00847ED1V01Y201804VCP031
crossref_primary_10_1038_s41598_024_67200_9
crossref_primary_10_3390_app11188292
crossref_primary_10_1007_s00371_021_02068_8
crossref_primary_10_1016_j_compstruct_2023_117468
crossref_primary_10_1115_1_4048044
crossref_primary_10_1115_1_4042617
crossref_primary_10_1016_j_cag_2017_05_022
crossref_primary_10_1108_RPJ_04_2019_0108
crossref_primary_10_1016_j_cad_2018_10_002
crossref_primary_10_1145_3072959_3073638
crossref_primary_10_1007_s00170_017_1018_2
crossref_primary_10_1016_j_cad_2023_103542
crossref_primary_10_1016_j_addma_2020_101710
crossref_primary_10_1016_j_procir_2024_08_033
crossref_primary_10_1016_j_cad_2018_06_003
crossref_primary_10_1016_j_ijmecsci_2024_109712
crossref_primary_10_1016_j_precisioneng_2021_10_009
crossref_primary_10_3390_designs6050073
crossref_primary_10_1016_j_gmod_2018_05_001
crossref_primary_10_1145_3355089_3356509
crossref_primary_10_3390_app12042180
crossref_primary_10_1115_1_4041913
crossref_primary_10_1109_TVCG_2017_2764462
crossref_primary_10_1016_j_addma_2023_103507
crossref_primary_10_1016_j_cad_2018_12_007
crossref_primary_10_1007_s00158_021_03079_8
crossref_primary_10_1016_j_cad_2023_103531
crossref_primary_10_1016_j_cad_2024_103834
crossref_primary_10_1016_j_cad_2022_103277
crossref_primary_10_1089_3dp_2022_0017
crossref_primary_10_1111_cgf_15075
crossref_primary_10_3390_met9121293
crossref_primary_10_1007_s00170_023_12439_1
crossref_primary_10_1007_s00158_021_02881_8
crossref_primary_10_1016_j_cma_2017_08_018
crossref_primary_10_1021_acs_est_2c04927
crossref_primary_10_1115_1_4040131
crossref_primary_10_1109_TASE_2023_3241866
crossref_primary_10_1016_j_cad_2020_102908
crossref_primary_10_1115_1_4050290
crossref_primary_10_1016_j_engstruct_2018_06_012
crossref_primary_10_1109_TVCG_2019_2914044
crossref_primary_10_1016_j_cad_2020_102861
crossref_primary_10_1016_j_cad_2019_102787
crossref_primary_10_1007_s00158_024_03883_y
crossref_primary_10_1016_j_cad_2022_103437
crossref_primary_10_1016_j_matdes_2024_113264
crossref_primary_10_1016_j_cad_2020_102986
crossref_primary_10_1080_00207543_2020_1859637
crossref_primary_10_1109_TVCG_2017_2655523
crossref_primary_10_1109_TVCG_2020_3037697
crossref_primary_10_1007_s00366_022_01718_2
crossref_primary_10_1145_3386569_3392448
crossref_primary_10_1121_10_0003922
crossref_primary_10_3390_mi15070855
crossref_primary_10_3724_SP_J_1089_2022_19168
crossref_primary_10_3390_sym11111398
crossref_primary_10_1007_s00170_020_06542_w
crossref_primary_10_3390_ma17225596
crossref_primary_10_1177_14644207211007159
crossref_primary_10_1016_j_cad_2020_102918
crossref_primary_10_1016_j_jmapro_2021_02_050
crossref_primary_10_1145_3414685_3417790
crossref_primary_10_1080_0305215X_2021_2012657
crossref_primary_10_1016_j_cad_2018_03_007
crossref_primary_10_1007_s11837_020_04158_9
crossref_primary_10_1007_s11424_022_1290_6
crossref_primary_10_1016_j_cma_2024_117112
crossref_primary_10_1109_TASE_2017_2685643
crossref_primary_10_1016_j_cad_2020_102880
crossref_primary_10_1111_cgf_13791
crossref_primary_10_1080_17452759_2021_1919154
crossref_primary_10_4028_www_scientific_net_KEM_786_348
crossref_primary_10_1108_RPJ_06_2018_0156
crossref_primary_10_1145_3197517_3201343
crossref_primary_10_1016_j_cad_2019_05_032
crossref_primary_10_1016_j_paerosci_2024_101021
crossref_primary_10_1016_j_cma_2019_03_054
crossref_primary_10_3390_designs3040049
crossref_primary_10_1093_jcde_qwac004
crossref_primary_10_3390_buildings12122247
crossref_primary_10_1016_j_cad_2023_103558
crossref_primary_10_1002_adem_201900508
crossref_primary_10_1016_j_addma_2020_101254
crossref_primary_10_1016_j_cad_2021_103117
Cites_doi 10.1115/1.860328_ch15
10.3722/cadaps.2008.565-576
10.1007/s001580050176
10.1016/j.cma.2013.06.001
10.1016/j.cad.2015.03.001
10.1016/j.cad.2014.07.009
10.1016/S0045-7825(02)00559-5
10.1016/j.cad.2015.04.001
10.1007/s00158-007-0217-0
10.1145/2766888
10.1145/2185520.2185583
10.1016/0045-7949(93)90035-C
10.1145/2601097.2601168
10.1016/j.cag.2014.09.021
10.1145/2766955
10.1145/2601097.2601157
10.1145/2659467.2675050
10.1145/2816795.2818121
10.1145/2601097.2601153
10.1115/1.4024912
10.2514/6.2014-2036
10.1109/TVCG.2015.2502588
10.1145/2461912.2461927
10.1016/S0010-4485(96)00049-8
10.1145/2661229.2661266
10.1007/s00158-013-0899-4
10.1145/2508363.2508382
10.1145/2542355.2542361
10.1145/2461912.2461957
10.1002/nme.1943
10.1145/2366145.2366178
10.1016/j.cag.2016.05.003
10.1111/cgf.12437
10.1109/CoASE.2015.7294219
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cad.2016.07.006
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2685
EndPage 42
ExternalDocumentID 10_1016_j_cad_2016_07_006
S0010448516300690
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACAZW
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TAE
TN5
TWZ
VOH
WUQ
XFK
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c363t-eac6e7d70224a26c42bd0a0b9b1e2d79f3ee80f4a93986a0b70b687ecfda77af3
IEDL.DBID .~1
ISSN 0010-4485
IngestDate Tue Jul 01 03:34:35 EDT 2025
Thu Apr 24 23:10:02 EDT 2025
Fri Feb 23 02:28:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Geometric algorithm
Self-supporting
Additive manufacturing
Optimization
Infill
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-eac6e7d70224a26c42bd0a0b9b1e2d79f3ee80f4a93986a0b70b687ecfda77af3
ORCID 0000-0003-4237-1806
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_cad_2016_07_006
crossref_primary_10_1016_j_cad_2016_07_006
elsevier_sciencedirect_doi_10_1016_j_cad_2016_07_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2016
2016-11-00
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: November 2016
PublicationDecade 2010
PublicationTitle Computer aided design
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bächer, Whiting, Bickel, Sorkine-Hornung (br000085) 2014; 33
Suresh, Takalloozadeh (br000190) 2013; 48
Liu, Pan, Snyder, Wang, Guo (br000155) 2013; 32
Christiansen, Schmidt, Bærentzen (br000080) 2015; 58
Swift, Booker (br000030) 2013
Wang, Wang, Guo (br000060) 2003; 192
Hu, Jin, Wang (br000050) 2015; 65
Dumas, Hergel, Lefebvre (br000025) 2014; 33
Gaynor AT, Guest JK. Topology optimization for additive manufacturing: Considering maximum overhang constraint. In: 15th AIAA/ISSMO multidisciplinary analysis and optimization conference, 2014.
Miki, Igarashi, Block (br000165) 2015; 34
Sigmund (br000115) 2001; 21
Liu L, Shamir A, Wang C, Whiting E. 3D printing oriented design: Geometry and optimization, in: SIGGRAPH Asia 2014 courses, 2014.
Lu, Sharf, Zhao, Wei, Fan, Chen (br000005) 2014; 33
Rozvany (br000185) 2008; 37
Umetani N, Schmidt R. Cross-sectional structural analysis for 3D printing optimization. In: SIGGRAPH Asia 2013 technical briefs, 2013, p. 5:1–5:4.
Christiansen, Bærentzen, Nobel-Jørgensen, Aage, Sigmund (br000140) 2015; 46
Wu, Dick, Westermann (br000120) 2016; 22
Chen, Li, Qian (br000110) 2013; 13
Eftekharian, Ilies (br000135) 2011
Hu K, Zhang X, Wang C. Direct computation of minimal rotation for support slimming. In: 2015 IEEE international conference on automation science and engineering, CASE, 2015, p. 936–941.
Wang, Wang, Yang, Liu, Tong, Tong (br000105) 2013; 32
Chen, Shapiro, Suresh, Tsukanov (br000125) 2007; 71
Wu, Kramer, Westermann (br000095) 2016; 58
Deuss, Panozzo, Whiting, Liu, Block, Sorkine-Hornung, Pauly (br000160) 2014; 33
Xie, Steven (br000180) 1993; 49
Vanek, Galicia, Benes (br000020) 2014; 33
Huang P, Wang CCL, Chen Y. Algorithms for layered manufacturing in image space. In: ASME advances in computers and information in engineering research, 2014, p. 377–410.
Gao, Zhang, Ramanujan, Ramani, Chen, Williams (br000075) 2015; 69
Bendsøe, Sigmund (br000170) 1999; 69
Zhang, Le, Panotopoulou, Whiting, Wang (br000040) 2015; 34
Vouga, Höbinger, Wallner, Pottmann (br000145) 2012; 31
.
Lan, Chou, Chen, Gemmill (br000035) 1997; 29
Prévost, Whiting, Lefebvre, Sorkine-Hornung (br000010) 2013; 32
Musialski, Auzinger, Birsak, Wimmer, Kobbelt (br000090) 2015; 34
Chen, Wang (br000100) 2008; 5
Schmidt, Singh (br000175) 2010
Qian (br000130) 2013; 265
Whiting, Shin, Wang, Ochsendorf, Durand (br000150) 2012; 31
Hu (10.1016/j.cad.2016.07.006_br000050) 2015; 65
Christiansen (10.1016/j.cad.2016.07.006_br000140) 2015; 46
10.1016/j.cad.2016.07.006_br000045
10.1016/j.cad.2016.07.006_br000065
Bendsøe (10.1016/j.cad.2016.07.006_br000170) 1999; 69
Swift (10.1016/j.cad.2016.07.006_br000030) 2013
Suresh (10.1016/j.cad.2016.07.006_br000190) 2013; 48
Whiting (10.1016/j.cad.2016.07.006_br000150) 2012; 31
Zhang (10.1016/j.cad.2016.07.006_br000040) 2015; 34
Liu (10.1016/j.cad.2016.07.006_br000155) 2013; 32
Miki (10.1016/j.cad.2016.07.006_br000165) 2015; 34
Rozvany (10.1016/j.cad.2016.07.006_br000185) 2008; 37
10.1016/j.cad.2016.07.006_br000015
Prévost (10.1016/j.cad.2016.07.006_br000010) 2013; 32
Bächer (10.1016/j.cad.2016.07.006_br000085) 2014; 33
Schmidt (10.1016/j.cad.2016.07.006_br000175) 2010
Gao (10.1016/j.cad.2016.07.006_br000075) 2015; 69
Vouga (10.1016/j.cad.2016.07.006_br000145) 2012; 31
Wu (10.1016/j.cad.2016.07.006_br000120) 2016; 22
Musialski (10.1016/j.cad.2016.07.006_br000090) 2015; 34
Chen (10.1016/j.cad.2016.07.006_br000110) 2013; 13
10.1016/j.cad.2016.07.006_br000055
Christiansen (10.1016/j.cad.2016.07.006_br000080) 2015; 58
Wang (10.1016/j.cad.2016.07.006_br000105) 2013; 32
10.1016/j.cad.2016.07.006_br000070
Lan (10.1016/j.cad.2016.07.006_br000035) 1997; 29
Sigmund (10.1016/j.cad.2016.07.006_br000115) 2001; 21
Wang (10.1016/j.cad.2016.07.006_br000060) 2003; 192
Vanek (10.1016/j.cad.2016.07.006_br000020) 2014; 33
Chen (10.1016/j.cad.2016.07.006_br000125) 2007; 71
Eftekharian (10.1016/j.cad.2016.07.006_br000135) 2011
Dumas (10.1016/j.cad.2016.07.006_br000025) 2014; 33
Wu (10.1016/j.cad.2016.07.006_br000095) 2016; 58
Lu (10.1016/j.cad.2016.07.006_br000005) 2014; 33
Qian (10.1016/j.cad.2016.07.006_br000130) 2013; 265
Xie (10.1016/j.cad.2016.07.006_br000180) 1993; 49
Deuss (10.1016/j.cad.2016.07.006_br000160) 2014; 33
Chen (10.1016/j.cad.2016.07.006_br000100) 2008; 5
References_xml – volume: 33
  start-page: 98:1
  year: 2014
  end-page: 98:10
  ident: br000025
  article-title: Bridging the gap: Automated steady scaffoldings for 3D printing
  publication-title: ACM Trans Graph
– volume: 69
  start-page: 635
  year: 1999
  end-page: 654
  ident: br000170
  article-title: Material interpolation schemes in topology optimization
  publication-title: Arch Appl Mech
– year: 2013
  ident: br000030
  article-title: Manufacturing process selection handbook
– volume: 71
  start-page: 313
  year: 2007
  end-page: 346
  ident: br000125
  article-title: Shape optimization with topological changes and parametric control
  publication-title: Internat J Numer Methods Engrg
– reference: Hu K, Zhang X, Wang C. Direct computation of minimal rotation for support slimming. In: 2015 IEEE international conference on automation science and engineering, CASE, 2015, p. 936–941.
– volume: 22
  start-page: 1195
  year: 2016
  end-page: 1208
  ident: br000120
  article-title: A system for high-resolution topology optimization
  publication-title: IEEE Trans Vis Comput Graphics
– volume: 34
  year: 2015
  ident: br000090
  article-title: Reduced-order shape optimization using offset surfaces
  publication-title: ACM Trans Graph
– volume: 32
  start-page: 177:1
  year: 2013
  end-page: 177:10
  ident: br000105
  article-title: Cost-effective printing of 3D objects with skin-frame structures
  publication-title: ACM Trans Graph
– volume: 33
  start-page: 97:1
  year: 2014
  end-page: 97:10
  ident: br000005
  article-title: Build-to-last: Strength to weight 3D printed objects
  publication-title: ACM Trans Graph
– volume: 58
  start-page: 66
  year: 2016
  end-page: 72
  ident: br000095
  article-title: Shape interior modeling and mass property optimization using ray-reps
  publication-title: Comput Graph
– volume: 33
  start-page: 96:1
  year: 2014
  end-page: 96:10
  ident: br000085
  article-title: Spin-it: Optimizing moment of inertia for spinnable objects
  publication-title: ACM Trans Graph
– reference: Gaynor AT, Guest JK. Topology optimization for additive manufacturing: Considering maximum overhang constraint. In: 15th AIAA/ISSMO multidisciplinary analysis and optimization conference, 2014.
– volume: 29
  start-page: 53
  year: 1997
  end-page: 62
  ident: br000035
  article-title: Determining fabrication orientations for rapid prototyping with stereolithography apparatus
  publication-title: Comput-Aided Des
– volume: 32
  start-page: 81:1
  year: 2013
  end-page: 81:10
  ident: br000010
  article-title: Make it stand: Balancing shapes for 3D fabrication
  publication-title: ACM Trans Graph
– volume: 31
  start-page: 87:1
  year: 2012
  end-page: 87:11
  ident: br000145
  article-title: Design of self-supporting surfaces
  publication-title: ACM Trans Graph
– volume: 65
  start-page: 1
  year: 2015
  end-page: 10
  ident: br000050
  article-title: Support slimming for single material based additive manufacturing
  publication-title: Comput-Aided Des
– reference: Huang P, Wang CCL, Chen Y. Algorithms for layered manufacturing in image space. In: ASME advances in computers and information in engineering research, 2014, p. 377–410.
– volume: 31
  start-page: 159:1
  year: 2012
  end-page: 159:11
  ident: br000150
  article-title: Structural optimization of 3D masonry buildings
  publication-title: ACM Trans Graph
– year: 2010
  ident: br000175
  article-title: Meshmixer: An interface for rapid mesh composition
  publication-title: ACM SIGGRAPH 2010 talks
– start-page: 687
  year: 2011
  end-page: 696
  ident: br000135
  article-title: Shape and topology optimization with medial zones
  publication-title: ASME 2011 international design engineering technical conferences and computers and information in engineering conference
– volume: 46
  start-page: 25
  year: 2015
  end-page: 35
  ident: br000140
  article-title: Combined shape and topology optimization of 3D structures
  publication-title: Comput Graph
– volume: 33
  start-page: 117
  year: 2014
  end-page: 125
  ident: br000020
  article-title: Clever support: Efficient support structure generation for digital fabrication
  publication-title: Comput Graph Forum
– volume: 34
  start-page: 89:1
  year: 2015
  end-page: 89:12
  ident: br000165
  article-title: Parametric self-supporting surfaces via direct computation of airy stress functions
  publication-title: ACM Trans Graph
– volume: 48
  start-page: 295
  year: 2013
  end-page: 309
  ident: br000190
  article-title: Stress-constrained topology optimization: A topological level-set approach
  publication-title: Struct Multidiscip Optim
– volume: 192
  start-page: 227
  year: 2003
  end-page: 246
  ident: br000060
  article-title: A level set method for structural topology optimization
  publication-title: Comput Methods Appl Mech Engrg
– volume: 58
  start-page: 236
  year: 2015
  end-page: 241
  ident: br000080
  article-title: Automatic balancing of 3D models
  publication-title: Comput-Aided Des
– volume: 5
  start-page: 565
  year: 2008
  end-page: 576
  ident: br000100
  article-title: Computer-aided product design with performance-tailored mesostructures
  publication-title: Comput-Aided Des Appl
– volume: 265
  start-page: 15
  year: 2013
  end-page: 35
  ident: br000130
  article-title: Topology optimization in b-spline space
  publication-title: Comput Methods Appl Mech Engrg
– volume: 49
  start-page: 885
  year: 1993
  end-page: 896
  ident: br000180
  article-title: A simple evolutionary procedure for structural optimization
  publication-title: Comput Struct
– reference: .
– volume: 34
  start-page: 215:1
  year: 2015
  end-page: 215:12
  ident: br000040
  article-title: Perceptual models of preference in 3D printing direction
  publication-title: ACM Trans Graph
– reference: Umetani N, Schmidt R. Cross-sectional structural analysis for 3D printing optimization. In: SIGGRAPH Asia 2013 technical briefs, 2013, p. 5:1–5:4.
– volume: 13
  start-page: 041002
  year: 2013
  ident: br000110
  article-title: Direct geometry processing for tele-fabrication
  publication-title: ASME J Comput Inf Sci Eng
– volume: 33
  start-page: 214:1
  year: 2014
  end-page: 214:10
  ident: br000160
  article-title: Assembling self-supporting structures
  publication-title: ACM Trans Graph
– volume: 37
  start-page: 217
  year: 2008
  end-page: 237
  ident: br000185
  article-title: A critical review of established methods of structural topology optimization
  publication-title: Struct Multidiscip Optim
– volume: 32
  start-page: 92:1
  year: 2013
  end-page: 92:10
  ident: br000155
  article-title: Computing self-supporting surfaces by regular triangulation
  publication-title: ACM Trans Graph
– reference: Liu L, Shamir A, Wang C, Whiting E. 3D printing oriented design: Geometry and optimization, in: SIGGRAPH Asia 2014 courses, 2014.
– volume: 69
  start-page: 65
  year: 2015
  end-page: 89
  ident: br000075
  article-title: The status, challenges, and future of additive manufacturing in engineering
  publication-title: Comput-Aided Des
– volume: 21
  start-page: 120
  year: 2001
  end-page: 127
  ident: br000115
  article-title: A 99 line topology optimization code written in matlab
  publication-title: Struct Multidiscip Optim
– ident: 10.1016/j.cad.2016.07.006_br000015
  doi: 10.1115/1.860328_ch15
– volume: 5
  start-page: 565
  issue: 1-4
  year: 2008
  ident: 10.1016/j.cad.2016.07.006_br000100
  article-title: Computer-aided product design with performance-tailored mesostructures
  publication-title: Comput-Aided Des Appl
  doi: 10.3722/cadaps.2008.565-576
– volume: 21
  start-page: 120
  issue: 2
  year: 2001
  ident: 10.1016/j.cad.2016.07.006_br000115
  article-title: A 99 line topology optimization code written in matlab
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s001580050176
– volume: 265
  start-page: 15
  year: 2013
  ident: 10.1016/j.cad.2016.07.006_br000130
  article-title: Topology optimization in b-spline space
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2013.06.001
– volume: 65
  start-page: 1
  year: 2015
  ident: 10.1016/j.cad.2016.07.006_br000050
  article-title: Support slimming for single material based additive manufacturing
  publication-title: Comput-Aided Des
  doi: 10.1016/j.cad.2015.03.001
– volume: 58
  start-page: 236
  year: 2015
  ident: 10.1016/j.cad.2016.07.006_br000080
  article-title: Automatic balancing of 3D models
  publication-title: Comput-Aided Des
  doi: 10.1016/j.cad.2014.07.009
– start-page: 687
  year: 2011
  ident: 10.1016/j.cad.2016.07.006_br000135
  article-title: Shape and topology optimization with medial zones
– volume: 192
  start-page: 227
  year: 2003
  ident: 10.1016/j.cad.2016.07.006_br000060
  article-title: A level set method for structural topology optimization
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/S0045-7825(02)00559-5
– volume: 69
  start-page: 65
  year: 2015
  ident: 10.1016/j.cad.2016.07.006_br000075
  article-title: The status, challenges, and future of additive manufacturing in engineering
  publication-title: Comput-Aided Des
  doi: 10.1016/j.cad.2015.04.001
– volume: 37
  start-page: 217
  issue: 3
  year: 2008
  ident: 10.1016/j.cad.2016.07.006_br000185
  article-title: A critical review of established methods of structural topology optimization
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-007-0217-0
– volume: 34
  start-page: 89:1
  issue: 4
  year: 2015
  ident: 10.1016/j.cad.2016.07.006_br000165
  article-title: Parametric self-supporting surfaces via direct computation of airy stress functions
  publication-title: ACM Trans Graph
  doi: 10.1145/2766888
– volume: 31
  start-page: 87:1
  issue: 4
  year: 2012
  ident: 10.1016/j.cad.2016.07.006_br000145
  article-title: Design of self-supporting surfaces
  publication-title: ACM Trans Graph
  doi: 10.1145/2185520.2185583
– volume: 49
  start-page: 885
  issue: 5
  year: 1993
  ident: 10.1016/j.cad.2016.07.006_br000180
  article-title: A simple evolutionary procedure for structural optimization
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(93)90035-C
– volume: 33
  start-page: 97:1
  issue: 4
  year: 2014
  ident: 10.1016/j.cad.2016.07.006_br000005
  article-title: Build-to-last: Strength to weight 3D printed objects
  publication-title: ACM Trans Graph
  doi: 10.1145/2601097.2601168
– volume: 46
  start-page: 25
  year: 2015
  ident: 10.1016/j.cad.2016.07.006_br000140
  article-title: Combined shape and topology optimization of 3D structures
  publication-title: Comput Graph
  doi: 10.1016/j.cag.2014.09.021
– volume: 34
  issue: 4
  year: 2015
  ident: 10.1016/j.cad.2016.07.006_br000090
  article-title: Reduced-order shape optimization using offset surfaces
  publication-title: ACM Trans Graph
  doi: 10.1145/2766955
– volume: 33
  start-page: 96:1
  issue: 4
  year: 2014
  ident: 10.1016/j.cad.2016.07.006_br000085
  article-title: Spin-it: Optimizing moment of inertia for spinnable objects
  publication-title: ACM Trans Graph
  doi: 10.1145/2601097.2601157
– ident: 10.1016/j.cad.2016.07.006_br000070
  doi: 10.1145/2659467.2675050
– volume: 34
  start-page: 215:1
  issue: 6
  year: 2015
  ident: 10.1016/j.cad.2016.07.006_br000040
  article-title: Perceptual models of preference in 3D printing direction
  publication-title: ACM Trans Graph
  doi: 10.1145/2816795.2818121
– volume: 33
  start-page: 98:1
  issue: 4
  year: 2014
  ident: 10.1016/j.cad.2016.07.006_br000025
  article-title: Bridging the gap: Automated steady scaffoldings for 3D printing
  publication-title: ACM Trans Graph
  doi: 10.1145/2601097.2601153
– volume: 13
  start-page: 041002
  year: 2013
  ident: 10.1016/j.cad.2016.07.006_br000110
  article-title: Direct geometry processing for tele-fabrication
  publication-title: ASME J Comput Inf Sci Eng
  doi: 10.1115/1.4024912
– ident: 10.1016/j.cad.2016.07.006_br000065
  doi: 10.2514/6.2014-2036
– volume: 22
  start-page: 1195
  issue: 3
  year: 2016
  ident: 10.1016/j.cad.2016.07.006_br000120
  article-title: A system for high-resolution topology optimization
  publication-title: IEEE Trans Vis Comput Graphics
  doi: 10.1109/TVCG.2015.2502588
– volume: 32
  start-page: 92:1
  issue: 4
  year: 2013
  ident: 10.1016/j.cad.2016.07.006_br000155
  article-title: Computing self-supporting surfaces by regular triangulation
  publication-title: ACM Trans Graph
  doi: 10.1145/2461912.2461927
– volume: 29
  start-page: 53
  issue: 1
  year: 1997
  ident: 10.1016/j.cad.2016.07.006_br000035
  article-title: Determining fabrication orientations for rapid prototyping with stereolithography apparatus
  publication-title: Comput-Aided Des
  doi: 10.1016/S0010-4485(96)00049-8
– volume: 33
  start-page: 214:1
  issue: 6
  year: 2014
  ident: 10.1016/j.cad.2016.07.006_br000160
  article-title: Assembling self-supporting structures
  publication-title: ACM Trans Graph
  doi: 10.1145/2661229.2661266
– volume: 48
  start-page: 295
  issue: 2
  year: 2013
  ident: 10.1016/j.cad.2016.07.006_br000190
  article-title: Stress-constrained topology optimization: A topological level-set approach
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-013-0899-4
– year: 2010
  ident: 10.1016/j.cad.2016.07.006_br000175
  article-title: Meshmixer: An interface for rapid mesh composition
– volume: 32
  start-page: 177:1
  issue: 6
  year: 2013
  ident: 10.1016/j.cad.2016.07.006_br000105
  article-title: Cost-effective printing of 3D objects with skin-frame structures
  publication-title: ACM Trans Graph
  doi: 10.1145/2508363.2508382
– year: 2013
  ident: 10.1016/j.cad.2016.07.006_br000030
– volume: 69
  start-page: 635
  issue: 9
  year: 1999
  ident: 10.1016/j.cad.2016.07.006_br000170
  article-title: Material interpolation schemes in topology optimization
  publication-title: Arch Appl Mech
– ident: 10.1016/j.cad.2016.07.006_br000045
  doi: 10.1145/2542355.2542361
– volume: 32
  start-page: 81:1
  issue: 4
  year: 2013
  ident: 10.1016/j.cad.2016.07.006_br000010
  article-title: Make it stand: Balancing shapes for 3D fabrication
  publication-title: ACM Trans Graph
  doi: 10.1145/2461912.2461957
– volume: 71
  start-page: 313
  issue: 3
  year: 2007
  ident: 10.1016/j.cad.2016.07.006_br000125
  article-title: Shape optimization with topological changes and parametric control
  publication-title: Internat J Numer Methods Engrg
  doi: 10.1002/nme.1943
– volume: 31
  start-page: 159:1
  issue: 6
  year: 2012
  ident: 10.1016/j.cad.2016.07.006_br000150
  article-title: Structural optimization of 3D masonry buildings
  publication-title: ACM Trans Graph
  doi: 10.1145/2366145.2366178
– volume: 58
  start-page: 66
  year: 2016
  ident: 10.1016/j.cad.2016.07.006_br000095
  article-title: Shape interior modeling and mass property optimization using ray-reps
  publication-title: Comput Graph
  doi: 10.1016/j.cag.2016.05.003
– volume: 33
  start-page: 117
  issue: 5
  year: 2014
  ident: 10.1016/j.cad.2016.07.006_br000020
  article-title: Clever support: Efficient support structure generation for digital fabrication
  publication-title: Comput Graph Forum
  doi: 10.1111/cgf.12437
– ident: 10.1016/j.cad.2016.07.006_br000055
  doi: 10.1109/CoASE.2015.7294219
SSID ssj0002139
Score 2.5386338
Snippet Recent work has demonstrated that the interior material layout of a 3D model can be designed to make a fabricated replica satisfy application-specific demands...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 32
SubjectTerms Additive manufacturing
Geometric algorithm
Infill
Optimization
Self-supporting
Title Self-supporting rhombic infill structures for additive manufacturing
URI https://dx.doi.org/10.1016/j.cad.2016.07.006
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KvehBfGJ9lD14EmLzajY5lmqpCr1oobcw2exiJE2Ltld_uzN5aAX14HE3uyF8O5kHO_MNwKXxTEjCi5ZMHQpQEFML6f-2fDeJSEIM-qrM8p0E46l_P-vPWjBsamE4rbLW_ZVOL7V1PdOr0ewts4xrfCmU8MljYNYoCvK4gt2XLOXX719pHq7jVS4w6Rte3dxsljleCpks1Kn4O7np0U-2acPejPZgt3YUxaD6ln1o6eIAdjboAw_h5lHnxnpbL9mHphnx-ryYJ5kSJDVZnouKG3ZNAbUg11Rw6hArNzHHYs0FDWWF4hFMR7dPw7FVd0WwlBd4K4uQDLRMJRtfdANFqKY22kmUONpNZWQ8rUPb-Bh5URjQA2knQSi1MilKicY7hnaxKPQJCEehJntkR4mkd6UOSh1JpWhMfhvqfgfsBo9Y1ZTh3Lkij5vcsJeYIIwZwtjmi-ygA1efW5YVX8Zfi_0G5Pjbocekz3_fdvq_bWewzaOqkPAc2nQG-oI8ilXSLUWmC1uDu4fx5APCnsvc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMgAD4inK0wMsSKF5NU4GBkSpWlq60ErdjOM4IihNK9oKsfCn-IOc84AiAQNSx9g5yzlf7iF_dwdwGlqhi8LLNRoYGKBwHmgc_2_NNn0PJSTktkhRvl2n2bdvB7VBCd6LXBgFq8x1f6bTU22dj1RzblbHUaRyfDGUsNFjUFWjMMjLkZVt-fqCcdvkslXHQz4zzcZN77qp5a0FNGE51lTD7TiSBlRZMG46ArcW6Fz3Pd-QZkC90JLS1UObe5bnOjhBdd9xqRRhwCnloYXrLsGyjepCtU24ePvClZiGlfncqODU9oqr1BRUJriqTmpkBUNVl6WfjOGcgWtswHrumZKr7OM3oSSTLVibq1e4DfV7GYfaZDZWTjuOkOfH0dCPBEExjeKYZMVoZxjBE_SFicIqKW1KhjyZqQyKNCVyB_oL4dUulJNRIveAGIJLNIC651NcKzA4lR4VAp_RUeSyVgG94AcTeY1y1SojZgUY7YkhC5liIdPVzblTgfNPknFWoOOvl-2CyeyblDE0IL-T7f-P7ARWmr27Duu0uu0DWFUzWRbjIZTxPOQRujNT_zgVHwIPi5bXDxR_CSs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-supporting+rhombic+infill+structures+for+additive+manufacturing&rft.jtitle=Computer+aided+design&rft.au=Wu%2C+Jun&rft.au=Wang%2C+Charlie+C.L.&rft.au=Zhang%2C+Xiaoting&rft.au=Westermann%2C+R%C3%BCdiger&rft.date=2016-11-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4485&rft.eissn=1879-2685&rft.volume=80&rft.spage=32&rft.epage=42&rft_id=info:doi/10.1016%2Fj.cad.2016.07.006&rft.externalDocID=S0010448516300690
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon