Self-supporting rhombic infill structures for additive manufacturing
Recent work has demonstrated that the interior material layout of a 3D model can be designed to make a fabricated replica satisfy application-specific demands on its physical properties, such as resistance to external loads. A widely used practice to fabricate such models is by layer-based additive...
Saved in:
Published in | Computer aided design Vol. 80; pp. 32 - 42 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent work has demonstrated that the interior material layout of a 3D model can be designed to make a fabricated replica satisfy application-specific demands on its physical properties, such as resistance to external loads. A widely used practice to fabricate such models is by layer-based additive manufacturing (AM), which however suffers from the problem of adding and removing interior supporting structures. In this paper, we present a novel method for generating application-specific infill structures on rhombic cells so that the resultant structures can automatically satisfy manufacturing requirements on overhang-angle and wall-thickness. Additional supporting structures can be avoided entirely in our framework. To achieve this, we introduce the usage of an adaptive rhombic grid, which is built from an input surface model. Starting from the initial sparse set of rhombic cells, via numerical optimization techniques an objective function can be improved by adaptively subdividing the rhombic grid and thus adding more walls in cells. We demonstrate the effectiveness of our method for generating interior designs in the applications of improving mechanical stiffness and static stability.
•Rhombic infill structures ensure the manufacturability of the shape interior.•Adaptively subdividing the rhombic grid can improve the objective function.•The method is exemplified by improving mechanical stiffness and static stability. |
---|---|
AbstractList | Recent work has demonstrated that the interior material layout of a 3D model can be designed to make a fabricated replica satisfy application-specific demands on its physical properties, such as resistance to external loads. A widely used practice to fabricate such models is by layer-based additive manufacturing (AM), which however suffers from the problem of adding and removing interior supporting structures. In this paper, we present a novel method for generating application-specific infill structures on rhombic cells so that the resultant structures can automatically satisfy manufacturing requirements on overhang-angle and wall-thickness. Additional supporting structures can be avoided entirely in our framework. To achieve this, we introduce the usage of an adaptive rhombic grid, which is built from an input surface model. Starting from the initial sparse set of rhombic cells, via numerical optimization techniques an objective function can be improved by adaptively subdividing the rhombic grid and thus adding more walls in cells. We demonstrate the effectiveness of our method for generating interior designs in the applications of improving mechanical stiffness and static stability.
•Rhombic infill structures ensure the manufacturability of the shape interior.•Adaptively subdividing the rhombic grid can improve the objective function.•The method is exemplified by improving mechanical stiffness and static stability. |
Author | Wang, Charlie C.L. Wu, Jun Zhang, Xiaoting Westermann, Rüdiger |
Author_xml | – sequence: 1 givenname: Jun orcidid: 0000-0003-4237-1806 surname: Wu fullname: Wu, Jun email: jun.wu@tum.de organization: Department of Mechanical Engineering, Technical University of Denmark, Denmark – sequence: 2 givenname: Charlie C.L. surname: Wang fullname: Wang, Charlie C.L. organization: Department of Design Engineering, Delft University of Technology, The Netherlands – sequence: 3 givenname: Xiaoting surname: Zhang fullname: Zhang, Xiaoting organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, PR China – sequence: 4 givenname: Rüdiger surname: Westermann fullname: Westermann, Rüdiger organization: Department of Informatics, Technische Universität München, Germany |
BookMark | eNp9kM1KAzEUhYMo2FYfwN28wIw3mWkygyupv1Bwoa5DJrnRlGmmJJmCb29KXbno6lw4fBfONyfnfvRIyA2FigLlt5tKK1OxfFYgKgB-Rma0FV3JeLs8JzMACmXTtMtLMo9xAwCM1t2MPLzjYMs47XZjSM5_FeF73PZOF85bNwxFTGHSaQoYCzuGQhnjkttjsVV-surQZOiKXFg1RLz-ywX5fHr8WL2U67fn19X9utQ1r1OJSnMURgBjjWJcN6w3oKDveorMiM7WiC3YRnV11_JcCOh5K1Bbo4RQtl4QcfyrwxhjQCu1Syq50aeg3CApyIMMuZFZhjzIkCBklpFJ-o_cBbdV4eckc3dkME_aOwwyaodeo3EBdZJmdCfoX9t7e5E |
CitedBy_id | crossref_primary_10_1016_j_cad_2024_103745 crossref_primary_10_1016_j_cad_2021_103101 crossref_primary_10_1115_1_4040622 crossref_primary_10_1007_s00158_019_02346_z crossref_primary_10_1007_s00170_017_1261_6 crossref_primary_10_1016_j_cag_2017_07_005 crossref_primary_10_1016_j_visinf_2017_01_002 crossref_primary_10_1007_s00371_018_1493_y crossref_primary_10_1016_j_cag_2017_07_008 crossref_primary_10_1016_j_advengsoft_2023_103529 crossref_primary_10_1080_17452759_2019_1708027 crossref_primary_10_1088_1757_899X_692_1_012010 crossref_primary_10_1108_RPJ_11_2018_0293 crossref_primary_10_1007_s00158_019_02420_6 crossref_primary_10_1016_j_cma_2019_02_031 crossref_primary_10_1016_j_camwa_2022_09_004 crossref_primary_10_1007_s00170_020_05603_4 crossref_primary_10_1007_s00158_017_1786_1 crossref_primary_10_1016_j_addma_2022_102717 crossref_primary_10_1007_s00371_020_01860_2 crossref_primary_10_3390_sym11081029 crossref_primary_10_1016_j_matcom_2024_02_004 crossref_primary_10_1007_s00158_019_02334_3 crossref_primary_10_3390_app12157386 crossref_primary_10_1002_adem_201900524 crossref_primary_10_1109_TVCG_2020_2995495 crossref_primary_10_1007_s00170_017_0572_y crossref_primary_10_1016_j_cad_2017_05_003 crossref_primary_10_1016_j_cad_2019_05_003 crossref_primary_10_3390_jmmp2040064 crossref_primary_10_1016_j_addma_2019_100943 crossref_primary_10_1016_j_gmod_2018_12_003 crossref_primary_10_17341_gazimmfd_693116 crossref_primary_10_1007_s00170_021_08014_1 crossref_primary_10_3390_buildings11110516 crossref_primary_10_1016_j_ijmecsci_2019_105153 crossref_primary_10_1016_j_addma_2024_104329 crossref_primary_10_1007_s00170_023_11065_1 crossref_primary_10_1080_17452759_2019_1647488 crossref_primary_10_1111_cgf_14953 crossref_primary_10_1016_j_addma_2019_101003 crossref_primary_10_1016_j_promfg_2020_01_006 crossref_primary_10_2208_jscejam_75_68 crossref_primary_10_1016_j_cma_2020_113354 crossref_primary_10_1177_14644207231205281 crossref_primary_10_1002_adma_202308149 crossref_primary_10_1007_s00158_020_02805_y crossref_primary_10_1016_j_cagd_2018_03_015 crossref_primary_10_1109_TVCG_2021_3091509 crossref_primary_10_3788_CJL240434 crossref_primary_10_1007_s10957_020_01685_y crossref_primary_10_1016_j_cad_2021_103154 crossref_primary_10_1109_TVCG_2023_3268068 crossref_primary_10_1016_j_cad_2021_103156 crossref_primary_10_1089_3dp_2017_0039 crossref_primary_10_1016_j_compstruct_2023_116807 crossref_primary_10_1111_cgf_13750 crossref_primary_10_1016_j_cad_2018_04_008 crossref_primary_10_1007_s00158_018_1994_3 crossref_primary_10_2200_S00847ED1V01Y201804VCP031 crossref_primary_10_1038_s41598_024_67200_9 crossref_primary_10_3390_app11188292 crossref_primary_10_1007_s00371_021_02068_8 crossref_primary_10_1016_j_compstruct_2023_117468 crossref_primary_10_1115_1_4048044 crossref_primary_10_1115_1_4042617 crossref_primary_10_1016_j_cag_2017_05_022 crossref_primary_10_1108_RPJ_04_2019_0108 crossref_primary_10_1016_j_cad_2018_10_002 crossref_primary_10_1145_3072959_3073638 crossref_primary_10_1007_s00170_017_1018_2 crossref_primary_10_1016_j_cad_2023_103542 crossref_primary_10_1016_j_addma_2020_101710 crossref_primary_10_1016_j_procir_2024_08_033 crossref_primary_10_1016_j_cad_2018_06_003 crossref_primary_10_1016_j_ijmecsci_2024_109712 crossref_primary_10_1016_j_precisioneng_2021_10_009 crossref_primary_10_3390_designs6050073 crossref_primary_10_1016_j_gmod_2018_05_001 crossref_primary_10_1145_3355089_3356509 crossref_primary_10_3390_app12042180 crossref_primary_10_1115_1_4041913 crossref_primary_10_1109_TVCG_2017_2764462 crossref_primary_10_1016_j_addma_2023_103507 crossref_primary_10_1016_j_cad_2018_12_007 crossref_primary_10_1007_s00158_021_03079_8 crossref_primary_10_1016_j_cad_2023_103531 crossref_primary_10_1016_j_cad_2024_103834 crossref_primary_10_1016_j_cad_2022_103277 crossref_primary_10_1089_3dp_2022_0017 crossref_primary_10_1111_cgf_15075 crossref_primary_10_3390_met9121293 crossref_primary_10_1007_s00170_023_12439_1 crossref_primary_10_1007_s00158_021_02881_8 crossref_primary_10_1016_j_cma_2017_08_018 crossref_primary_10_1021_acs_est_2c04927 crossref_primary_10_1115_1_4040131 crossref_primary_10_1109_TASE_2023_3241866 crossref_primary_10_1016_j_cad_2020_102908 crossref_primary_10_1115_1_4050290 crossref_primary_10_1016_j_engstruct_2018_06_012 crossref_primary_10_1109_TVCG_2019_2914044 crossref_primary_10_1016_j_cad_2020_102861 crossref_primary_10_1016_j_cad_2019_102787 crossref_primary_10_1007_s00158_024_03883_y crossref_primary_10_1016_j_cad_2022_103437 crossref_primary_10_1016_j_matdes_2024_113264 crossref_primary_10_1016_j_cad_2020_102986 crossref_primary_10_1080_00207543_2020_1859637 crossref_primary_10_1109_TVCG_2017_2655523 crossref_primary_10_1109_TVCG_2020_3037697 crossref_primary_10_1007_s00366_022_01718_2 crossref_primary_10_1145_3386569_3392448 crossref_primary_10_1121_10_0003922 crossref_primary_10_3390_mi15070855 crossref_primary_10_3724_SP_J_1089_2022_19168 crossref_primary_10_3390_sym11111398 crossref_primary_10_1007_s00170_020_06542_w crossref_primary_10_3390_ma17225596 crossref_primary_10_1177_14644207211007159 crossref_primary_10_1016_j_cad_2020_102918 crossref_primary_10_1016_j_jmapro_2021_02_050 crossref_primary_10_1145_3414685_3417790 crossref_primary_10_1080_0305215X_2021_2012657 crossref_primary_10_1016_j_cad_2018_03_007 crossref_primary_10_1007_s11837_020_04158_9 crossref_primary_10_1007_s11424_022_1290_6 crossref_primary_10_1016_j_cma_2024_117112 crossref_primary_10_1109_TASE_2017_2685643 crossref_primary_10_1016_j_cad_2020_102880 crossref_primary_10_1111_cgf_13791 crossref_primary_10_1080_17452759_2021_1919154 crossref_primary_10_4028_www_scientific_net_KEM_786_348 crossref_primary_10_1108_RPJ_06_2018_0156 crossref_primary_10_1145_3197517_3201343 crossref_primary_10_1016_j_cad_2019_05_032 crossref_primary_10_1016_j_paerosci_2024_101021 crossref_primary_10_1016_j_cma_2019_03_054 crossref_primary_10_3390_designs3040049 crossref_primary_10_1093_jcde_qwac004 crossref_primary_10_3390_buildings12122247 crossref_primary_10_1016_j_cad_2023_103558 crossref_primary_10_1002_adem_201900508 crossref_primary_10_1016_j_addma_2020_101254 crossref_primary_10_1016_j_cad_2021_103117 |
Cites_doi | 10.1115/1.860328_ch15 10.3722/cadaps.2008.565-576 10.1007/s001580050176 10.1016/j.cma.2013.06.001 10.1016/j.cad.2015.03.001 10.1016/j.cad.2014.07.009 10.1016/S0045-7825(02)00559-5 10.1016/j.cad.2015.04.001 10.1007/s00158-007-0217-0 10.1145/2766888 10.1145/2185520.2185583 10.1016/0045-7949(93)90035-C 10.1145/2601097.2601168 10.1016/j.cag.2014.09.021 10.1145/2766955 10.1145/2601097.2601157 10.1145/2659467.2675050 10.1145/2816795.2818121 10.1145/2601097.2601153 10.1115/1.4024912 10.2514/6.2014-2036 10.1109/TVCG.2015.2502588 10.1145/2461912.2461927 10.1016/S0010-4485(96)00049-8 10.1145/2661229.2661266 10.1007/s00158-013-0899-4 10.1145/2508363.2508382 10.1145/2542355.2542361 10.1145/2461912.2461957 10.1002/nme.1943 10.1145/2366145.2366178 10.1016/j.cag.2016.05.003 10.1111/cgf.12437 10.1109/CoASE.2015.7294219 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cad.2016.07.006 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2685 |
EndPage | 42 |
ExternalDocumentID | 10_1016_j_cad_2016_07_006 S0010448516300690 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABFRF ABMAC ABXDB ABYKQ ACAZW ACBEA ACDAQ ACGFO ACGFS ACIWK ACKIV ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA K-O KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K TAE TN5 TWZ VOH WUQ XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c363t-eac6e7d70224a26c42bd0a0b9b1e2d79f3ee80f4a93986a0b70b687ecfda77af3 |
IEDL.DBID | .~1 |
ISSN | 0010-4485 |
IngestDate | Tue Jul 01 03:34:35 EDT 2025 Thu Apr 24 23:10:02 EDT 2025 Fri Feb 23 02:28:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Geometric algorithm Self-supporting Additive manufacturing Optimization Infill |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-eac6e7d70224a26c42bd0a0b9b1e2d79f3ee80f4a93986a0b70b687ecfda77af3 |
ORCID | 0000-0003-4237-1806 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cad_2016_07_006 crossref_primary_10_1016_j_cad_2016_07_006 elsevier_sciencedirect_doi_10_1016_j_cad_2016_07_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2016 2016-11-00 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: November 2016 |
PublicationDecade | 2010 |
PublicationTitle | Computer aided design |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Bächer, Whiting, Bickel, Sorkine-Hornung (br000085) 2014; 33 Suresh, Takalloozadeh (br000190) 2013; 48 Liu, Pan, Snyder, Wang, Guo (br000155) 2013; 32 Christiansen, Schmidt, Bærentzen (br000080) 2015; 58 Swift, Booker (br000030) 2013 Wang, Wang, Guo (br000060) 2003; 192 Hu, Jin, Wang (br000050) 2015; 65 Dumas, Hergel, Lefebvre (br000025) 2014; 33 Gaynor AT, Guest JK. Topology optimization for additive manufacturing: Considering maximum overhang constraint. In: 15th AIAA/ISSMO multidisciplinary analysis and optimization conference, 2014. Miki, Igarashi, Block (br000165) 2015; 34 Sigmund (br000115) 2001; 21 Liu L, Shamir A, Wang C, Whiting E. 3D printing oriented design: Geometry and optimization, in: SIGGRAPH Asia 2014 courses, 2014. Lu, Sharf, Zhao, Wei, Fan, Chen (br000005) 2014; 33 Rozvany (br000185) 2008; 37 Umetani N, Schmidt R. Cross-sectional structural analysis for 3D printing optimization. In: SIGGRAPH Asia 2013 technical briefs, 2013, p. 5:1–5:4. Christiansen, Bærentzen, Nobel-Jørgensen, Aage, Sigmund (br000140) 2015; 46 Wu, Dick, Westermann (br000120) 2016; 22 Chen, Li, Qian (br000110) 2013; 13 Eftekharian, Ilies (br000135) 2011 Hu K, Zhang X, Wang C. Direct computation of minimal rotation for support slimming. In: 2015 IEEE international conference on automation science and engineering, CASE, 2015, p. 936–941. Wang, Wang, Yang, Liu, Tong, Tong (br000105) 2013; 32 Chen, Shapiro, Suresh, Tsukanov (br000125) 2007; 71 Wu, Kramer, Westermann (br000095) 2016; 58 Deuss, Panozzo, Whiting, Liu, Block, Sorkine-Hornung, Pauly (br000160) 2014; 33 Xie, Steven (br000180) 1993; 49 Vanek, Galicia, Benes (br000020) 2014; 33 Huang P, Wang CCL, Chen Y. Algorithms for layered manufacturing in image space. In: ASME advances in computers and information in engineering research, 2014, p. 377–410. Gao, Zhang, Ramanujan, Ramani, Chen, Williams (br000075) 2015; 69 Bendsøe, Sigmund (br000170) 1999; 69 Zhang, Le, Panotopoulou, Whiting, Wang (br000040) 2015; 34 Vouga, Höbinger, Wallner, Pottmann (br000145) 2012; 31 . Lan, Chou, Chen, Gemmill (br000035) 1997; 29 Prévost, Whiting, Lefebvre, Sorkine-Hornung (br000010) 2013; 32 Musialski, Auzinger, Birsak, Wimmer, Kobbelt (br000090) 2015; 34 Chen, Wang (br000100) 2008; 5 Schmidt, Singh (br000175) 2010 Qian (br000130) 2013; 265 Whiting, Shin, Wang, Ochsendorf, Durand (br000150) 2012; 31 Hu (10.1016/j.cad.2016.07.006_br000050) 2015; 65 Christiansen (10.1016/j.cad.2016.07.006_br000140) 2015; 46 10.1016/j.cad.2016.07.006_br000045 10.1016/j.cad.2016.07.006_br000065 Bendsøe (10.1016/j.cad.2016.07.006_br000170) 1999; 69 Swift (10.1016/j.cad.2016.07.006_br000030) 2013 Suresh (10.1016/j.cad.2016.07.006_br000190) 2013; 48 Whiting (10.1016/j.cad.2016.07.006_br000150) 2012; 31 Zhang (10.1016/j.cad.2016.07.006_br000040) 2015; 34 Liu (10.1016/j.cad.2016.07.006_br000155) 2013; 32 Miki (10.1016/j.cad.2016.07.006_br000165) 2015; 34 Rozvany (10.1016/j.cad.2016.07.006_br000185) 2008; 37 10.1016/j.cad.2016.07.006_br000015 Prévost (10.1016/j.cad.2016.07.006_br000010) 2013; 32 Bächer (10.1016/j.cad.2016.07.006_br000085) 2014; 33 Schmidt (10.1016/j.cad.2016.07.006_br000175) 2010 Gao (10.1016/j.cad.2016.07.006_br000075) 2015; 69 Vouga (10.1016/j.cad.2016.07.006_br000145) 2012; 31 Wu (10.1016/j.cad.2016.07.006_br000120) 2016; 22 Musialski (10.1016/j.cad.2016.07.006_br000090) 2015; 34 Chen (10.1016/j.cad.2016.07.006_br000110) 2013; 13 10.1016/j.cad.2016.07.006_br000055 Christiansen (10.1016/j.cad.2016.07.006_br000080) 2015; 58 Wang (10.1016/j.cad.2016.07.006_br000105) 2013; 32 10.1016/j.cad.2016.07.006_br000070 Lan (10.1016/j.cad.2016.07.006_br000035) 1997; 29 Sigmund (10.1016/j.cad.2016.07.006_br000115) 2001; 21 Wang (10.1016/j.cad.2016.07.006_br000060) 2003; 192 Vanek (10.1016/j.cad.2016.07.006_br000020) 2014; 33 Chen (10.1016/j.cad.2016.07.006_br000125) 2007; 71 Eftekharian (10.1016/j.cad.2016.07.006_br000135) 2011 Dumas (10.1016/j.cad.2016.07.006_br000025) 2014; 33 Wu (10.1016/j.cad.2016.07.006_br000095) 2016; 58 Lu (10.1016/j.cad.2016.07.006_br000005) 2014; 33 Qian (10.1016/j.cad.2016.07.006_br000130) 2013; 265 Xie (10.1016/j.cad.2016.07.006_br000180) 1993; 49 Deuss (10.1016/j.cad.2016.07.006_br000160) 2014; 33 Chen (10.1016/j.cad.2016.07.006_br000100) 2008; 5 |
References_xml | – volume: 33 start-page: 98:1 year: 2014 end-page: 98:10 ident: br000025 article-title: Bridging the gap: Automated steady scaffoldings for 3D printing publication-title: ACM Trans Graph – volume: 69 start-page: 635 year: 1999 end-page: 654 ident: br000170 article-title: Material interpolation schemes in topology optimization publication-title: Arch Appl Mech – year: 2013 ident: br000030 article-title: Manufacturing process selection handbook – volume: 71 start-page: 313 year: 2007 end-page: 346 ident: br000125 article-title: Shape optimization with topological changes and parametric control publication-title: Internat J Numer Methods Engrg – reference: Hu K, Zhang X, Wang C. Direct computation of minimal rotation for support slimming. In: 2015 IEEE international conference on automation science and engineering, CASE, 2015, p. 936–941. – volume: 22 start-page: 1195 year: 2016 end-page: 1208 ident: br000120 article-title: A system for high-resolution topology optimization publication-title: IEEE Trans Vis Comput Graphics – volume: 34 year: 2015 ident: br000090 article-title: Reduced-order shape optimization using offset surfaces publication-title: ACM Trans Graph – volume: 32 start-page: 177:1 year: 2013 end-page: 177:10 ident: br000105 article-title: Cost-effective printing of 3D objects with skin-frame structures publication-title: ACM Trans Graph – volume: 33 start-page: 97:1 year: 2014 end-page: 97:10 ident: br000005 article-title: Build-to-last: Strength to weight 3D printed objects publication-title: ACM Trans Graph – volume: 58 start-page: 66 year: 2016 end-page: 72 ident: br000095 article-title: Shape interior modeling and mass property optimization using ray-reps publication-title: Comput Graph – volume: 33 start-page: 96:1 year: 2014 end-page: 96:10 ident: br000085 article-title: Spin-it: Optimizing moment of inertia for spinnable objects publication-title: ACM Trans Graph – reference: Gaynor AT, Guest JK. Topology optimization for additive manufacturing: Considering maximum overhang constraint. In: 15th AIAA/ISSMO multidisciplinary analysis and optimization conference, 2014. – volume: 29 start-page: 53 year: 1997 end-page: 62 ident: br000035 article-title: Determining fabrication orientations for rapid prototyping with stereolithography apparatus publication-title: Comput-Aided Des – volume: 32 start-page: 81:1 year: 2013 end-page: 81:10 ident: br000010 article-title: Make it stand: Balancing shapes for 3D fabrication publication-title: ACM Trans Graph – volume: 31 start-page: 87:1 year: 2012 end-page: 87:11 ident: br000145 article-title: Design of self-supporting surfaces publication-title: ACM Trans Graph – volume: 65 start-page: 1 year: 2015 end-page: 10 ident: br000050 article-title: Support slimming for single material based additive manufacturing publication-title: Comput-Aided Des – reference: Huang P, Wang CCL, Chen Y. Algorithms for layered manufacturing in image space. In: ASME advances in computers and information in engineering research, 2014, p. 377–410. – volume: 31 start-page: 159:1 year: 2012 end-page: 159:11 ident: br000150 article-title: Structural optimization of 3D masonry buildings publication-title: ACM Trans Graph – year: 2010 ident: br000175 article-title: Meshmixer: An interface for rapid mesh composition publication-title: ACM SIGGRAPH 2010 talks – start-page: 687 year: 2011 end-page: 696 ident: br000135 article-title: Shape and topology optimization with medial zones publication-title: ASME 2011 international design engineering technical conferences and computers and information in engineering conference – volume: 46 start-page: 25 year: 2015 end-page: 35 ident: br000140 article-title: Combined shape and topology optimization of 3D structures publication-title: Comput Graph – volume: 33 start-page: 117 year: 2014 end-page: 125 ident: br000020 article-title: Clever support: Efficient support structure generation for digital fabrication publication-title: Comput Graph Forum – volume: 34 start-page: 89:1 year: 2015 end-page: 89:12 ident: br000165 article-title: Parametric self-supporting surfaces via direct computation of airy stress functions publication-title: ACM Trans Graph – volume: 48 start-page: 295 year: 2013 end-page: 309 ident: br000190 article-title: Stress-constrained topology optimization: A topological level-set approach publication-title: Struct Multidiscip Optim – volume: 192 start-page: 227 year: 2003 end-page: 246 ident: br000060 article-title: A level set method for structural topology optimization publication-title: Comput Methods Appl Mech Engrg – volume: 58 start-page: 236 year: 2015 end-page: 241 ident: br000080 article-title: Automatic balancing of 3D models publication-title: Comput-Aided Des – volume: 5 start-page: 565 year: 2008 end-page: 576 ident: br000100 article-title: Computer-aided product design with performance-tailored mesostructures publication-title: Comput-Aided Des Appl – volume: 265 start-page: 15 year: 2013 end-page: 35 ident: br000130 article-title: Topology optimization in b-spline space publication-title: Comput Methods Appl Mech Engrg – volume: 49 start-page: 885 year: 1993 end-page: 896 ident: br000180 article-title: A simple evolutionary procedure for structural optimization publication-title: Comput Struct – reference: . – volume: 34 start-page: 215:1 year: 2015 end-page: 215:12 ident: br000040 article-title: Perceptual models of preference in 3D printing direction publication-title: ACM Trans Graph – reference: Umetani N, Schmidt R. Cross-sectional structural analysis for 3D printing optimization. In: SIGGRAPH Asia 2013 technical briefs, 2013, p. 5:1–5:4. – volume: 13 start-page: 041002 year: 2013 ident: br000110 article-title: Direct geometry processing for tele-fabrication publication-title: ASME J Comput Inf Sci Eng – volume: 33 start-page: 214:1 year: 2014 end-page: 214:10 ident: br000160 article-title: Assembling self-supporting structures publication-title: ACM Trans Graph – volume: 37 start-page: 217 year: 2008 end-page: 237 ident: br000185 article-title: A critical review of established methods of structural topology optimization publication-title: Struct Multidiscip Optim – volume: 32 start-page: 92:1 year: 2013 end-page: 92:10 ident: br000155 article-title: Computing self-supporting surfaces by regular triangulation publication-title: ACM Trans Graph – reference: Liu L, Shamir A, Wang C, Whiting E. 3D printing oriented design: Geometry and optimization, in: SIGGRAPH Asia 2014 courses, 2014. – volume: 69 start-page: 65 year: 2015 end-page: 89 ident: br000075 article-title: The status, challenges, and future of additive manufacturing in engineering publication-title: Comput-Aided Des – volume: 21 start-page: 120 year: 2001 end-page: 127 ident: br000115 article-title: A 99 line topology optimization code written in matlab publication-title: Struct Multidiscip Optim – ident: 10.1016/j.cad.2016.07.006_br000015 doi: 10.1115/1.860328_ch15 – volume: 5 start-page: 565 issue: 1-4 year: 2008 ident: 10.1016/j.cad.2016.07.006_br000100 article-title: Computer-aided product design with performance-tailored mesostructures publication-title: Comput-Aided Des Appl doi: 10.3722/cadaps.2008.565-576 – volume: 21 start-page: 120 issue: 2 year: 2001 ident: 10.1016/j.cad.2016.07.006_br000115 article-title: A 99 line topology optimization code written in matlab publication-title: Struct Multidiscip Optim doi: 10.1007/s001580050176 – volume: 265 start-page: 15 year: 2013 ident: 10.1016/j.cad.2016.07.006_br000130 article-title: Topology optimization in b-spline space publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2013.06.001 – volume: 65 start-page: 1 year: 2015 ident: 10.1016/j.cad.2016.07.006_br000050 article-title: Support slimming for single material based additive manufacturing publication-title: Comput-Aided Des doi: 10.1016/j.cad.2015.03.001 – volume: 58 start-page: 236 year: 2015 ident: 10.1016/j.cad.2016.07.006_br000080 article-title: Automatic balancing of 3D models publication-title: Comput-Aided Des doi: 10.1016/j.cad.2014.07.009 – start-page: 687 year: 2011 ident: 10.1016/j.cad.2016.07.006_br000135 article-title: Shape and topology optimization with medial zones – volume: 192 start-page: 227 year: 2003 ident: 10.1016/j.cad.2016.07.006_br000060 article-title: A level set method for structural topology optimization publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/S0045-7825(02)00559-5 – volume: 69 start-page: 65 year: 2015 ident: 10.1016/j.cad.2016.07.006_br000075 article-title: The status, challenges, and future of additive manufacturing in engineering publication-title: Comput-Aided Des doi: 10.1016/j.cad.2015.04.001 – volume: 37 start-page: 217 issue: 3 year: 2008 ident: 10.1016/j.cad.2016.07.006_br000185 article-title: A critical review of established methods of structural topology optimization publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-007-0217-0 – volume: 34 start-page: 89:1 issue: 4 year: 2015 ident: 10.1016/j.cad.2016.07.006_br000165 article-title: Parametric self-supporting surfaces via direct computation of airy stress functions publication-title: ACM Trans Graph doi: 10.1145/2766888 – volume: 31 start-page: 87:1 issue: 4 year: 2012 ident: 10.1016/j.cad.2016.07.006_br000145 article-title: Design of self-supporting surfaces publication-title: ACM Trans Graph doi: 10.1145/2185520.2185583 – volume: 49 start-page: 885 issue: 5 year: 1993 ident: 10.1016/j.cad.2016.07.006_br000180 article-title: A simple evolutionary procedure for structural optimization publication-title: Comput Struct doi: 10.1016/0045-7949(93)90035-C – volume: 33 start-page: 97:1 issue: 4 year: 2014 ident: 10.1016/j.cad.2016.07.006_br000005 article-title: Build-to-last: Strength to weight 3D printed objects publication-title: ACM Trans Graph doi: 10.1145/2601097.2601168 – volume: 46 start-page: 25 year: 2015 ident: 10.1016/j.cad.2016.07.006_br000140 article-title: Combined shape and topology optimization of 3D structures publication-title: Comput Graph doi: 10.1016/j.cag.2014.09.021 – volume: 34 issue: 4 year: 2015 ident: 10.1016/j.cad.2016.07.006_br000090 article-title: Reduced-order shape optimization using offset surfaces publication-title: ACM Trans Graph doi: 10.1145/2766955 – volume: 33 start-page: 96:1 issue: 4 year: 2014 ident: 10.1016/j.cad.2016.07.006_br000085 article-title: Spin-it: Optimizing moment of inertia for spinnable objects publication-title: ACM Trans Graph doi: 10.1145/2601097.2601157 – ident: 10.1016/j.cad.2016.07.006_br000070 doi: 10.1145/2659467.2675050 – volume: 34 start-page: 215:1 issue: 6 year: 2015 ident: 10.1016/j.cad.2016.07.006_br000040 article-title: Perceptual models of preference in 3D printing direction publication-title: ACM Trans Graph doi: 10.1145/2816795.2818121 – volume: 33 start-page: 98:1 issue: 4 year: 2014 ident: 10.1016/j.cad.2016.07.006_br000025 article-title: Bridging the gap: Automated steady scaffoldings for 3D printing publication-title: ACM Trans Graph doi: 10.1145/2601097.2601153 – volume: 13 start-page: 041002 year: 2013 ident: 10.1016/j.cad.2016.07.006_br000110 article-title: Direct geometry processing for tele-fabrication publication-title: ASME J Comput Inf Sci Eng doi: 10.1115/1.4024912 – ident: 10.1016/j.cad.2016.07.006_br000065 doi: 10.2514/6.2014-2036 – volume: 22 start-page: 1195 issue: 3 year: 2016 ident: 10.1016/j.cad.2016.07.006_br000120 article-title: A system for high-resolution topology optimization publication-title: IEEE Trans Vis Comput Graphics doi: 10.1109/TVCG.2015.2502588 – volume: 32 start-page: 92:1 issue: 4 year: 2013 ident: 10.1016/j.cad.2016.07.006_br000155 article-title: Computing self-supporting surfaces by regular triangulation publication-title: ACM Trans Graph doi: 10.1145/2461912.2461927 – volume: 29 start-page: 53 issue: 1 year: 1997 ident: 10.1016/j.cad.2016.07.006_br000035 article-title: Determining fabrication orientations for rapid prototyping with stereolithography apparatus publication-title: Comput-Aided Des doi: 10.1016/S0010-4485(96)00049-8 – volume: 33 start-page: 214:1 issue: 6 year: 2014 ident: 10.1016/j.cad.2016.07.006_br000160 article-title: Assembling self-supporting structures publication-title: ACM Trans Graph doi: 10.1145/2661229.2661266 – volume: 48 start-page: 295 issue: 2 year: 2013 ident: 10.1016/j.cad.2016.07.006_br000190 article-title: Stress-constrained topology optimization: A topological level-set approach publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-013-0899-4 – year: 2010 ident: 10.1016/j.cad.2016.07.006_br000175 article-title: Meshmixer: An interface for rapid mesh composition – volume: 32 start-page: 177:1 issue: 6 year: 2013 ident: 10.1016/j.cad.2016.07.006_br000105 article-title: Cost-effective printing of 3D objects with skin-frame structures publication-title: ACM Trans Graph doi: 10.1145/2508363.2508382 – year: 2013 ident: 10.1016/j.cad.2016.07.006_br000030 – volume: 69 start-page: 635 issue: 9 year: 1999 ident: 10.1016/j.cad.2016.07.006_br000170 article-title: Material interpolation schemes in topology optimization publication-title: Arch Appl Mech – ident: 10.1016/j.cad.2016.07.006_br000045 doi: 10.1145/2542355.2542361 – volume: 32 start-page: 81:1 issue: 4 year: 2013 ident: 10.1016/j.cad.2016.07.006_br000010 article-title: Make it stand: Balancing shapes for 3D fabrication publication-title: ACM Trans Graph doi: 10.1145/2461912.2461957 – volume: 71 start-page: 313 issue: 3 year: 2007 ident: 10.1016/j.cad.2016.07.006_br000125 article-title: Shape optimization with topological changes and parametric control publication-title: Internat J Numer Methods Engrg doi: 10.1002/nme.1943 – volume: 31 start-page: 159:1 issue: 6 year: 2012 ident: 10.1016/j.cad.2016.07.006_br000150 article-title: Structural optimization of 3D masonry buildings publication-title: ACM Trans Graph doi: 10.1145/2366145.2366178 – volume: 58 start-page: 66 year: 2016 ident: 10.1016/j.cad.2016.07.006_br000095 article-title: Shape interior modeling and mass property optimization using ray-reps publication-title: Comput Graph doi: 10.1016/j.cag.2016.05.003 – volume: 33 start-page: 117 issue: 5 year: 2014 ident: 10.1016/j.cad.2016.07.006_br000020 article-title: Clever support: Efficient support structure generation for digital fabrication publication-title: Comput Graph Forum doi: 10.1111/cgf.12437 – ident: 10.1016/j.cad.2016.07.006_br000055 doi: 10.1109/CoASE.2015.7294219 |
SSID | ssj0002139 |
Score | 2.5386338 |
Snippet | Recent work has demonstrated that the interior material layout of a 3D model can be designed to make a fabricated replica satisfy application-specific demands... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 32 |
SubjectTerms | Additive manufacturing Geometric algorithm Infill Optimization Self-supporting |
Title | Self-supporting rhombic infill structures for additive manufacturing |
URI | https://dx.doi.org/10.1016/j.cad.2016.07.006 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KvehBfGJ9lD14EmLzajY5lmqpCr1oobcw2exiJE2Ltld_uzN5aAX14HE3uyF8O5kHO_MNwKXxTEjCi5ZMHQpQEFML6f-2fDeJSEIM-qrM8p0E46l_P-vPWjBsamE4rbLW_ZVOL7V1PdOr0ewts4xrfCmU8MljYNYoCvK4gt2XLOXX719pHq7jVS4w6Rte3dxsljleCpks1Kn4O7np0U-2acPejPZgt3YUxaD6ln1o6eIAdjboAw_h5lHnxnpbL9mHphnx-ryYJ5kSJDVZnouKG3ZNAbUg11Rw6hArNzHHYs0FDWWF4hFMR7dPw7FVd0WwlBd4K4uQDLRMJRtfdANFqKY22kmUONpNZWQ8rUPb-Bh5URjQA2knQSi1MilKicY7hnaxKPQJCEehJntkR4mkd6UOSh1JpWhMfhvqfgfsBo9Y1ZTh3Lkij5vcsJeYIIwZwtjmi-ygA1efW5YVX8Zfi_0G5Pjbocekz3_fdvq_bWewzaOqkPAc2nQG-oI8ilXSLUWmC1uDu4fx5APCnsvc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMgAD4inK0wMsSKF5NU4GBkSpWlq60ErdjOM4IihNK9oKsfCn-IOc84AiAQNSx9g5yzlf7iF_dwdwGlqhi8LLNRoYGKBwHmgc_2_NNn0PJSTktkhRvl2n2bdvB7VBCd6LXBgFq8x1f6bTU22dj1RzblbHUaRyfDGUsNFjUFWjMMjLkZVt-fqCcdvkslXHQz4zzcZN77qp5a0FNGE51lTD7TiSBlRZMG46ArcW6Fz3Pd-QZkC90JLS1UObe5bnOjhBdd9xqRRhwCnloYXrLsGyjepCtU24ePvClZiGlfncqODU9oqr1BRUJriqTmpkBUNVl6WfjOGcgWtswHrumZKr7OM3oSSTLVibq1e4DfV7GYfaZDZWTjuOkOfH0dCPBEExjeKYZMVoZxjBE_SFicIqKW1KhjyZqQyKNCVyB_oL4dUulJNRIveAGIJLNIC651NcKzA4lR4VAp_RUeSyVgG94AcTeY1y1SojZgUY7YkhC5liIdPVzblTgfNPknFWoOOvl-2CyeyblDE0IL-T7f-P7ARWmr27Duu0uu0DWFUzWRbjIZTxPOQRujNT_zgVHwIPi5bXDxR_CSs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-supporting+rhombic+infill+structures+for+additive+manufacturing&rft.jtitle=Computer+aided+design&rft.au=Wu%2C+Jun&rft.au=Wang%2C+Charlie+C.L.&rft.au=Zhang%2C+Xiaoting&rft.au=Westermann%2C+R%C3%BCdiger&rft.date=2016-11-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4485&rft.eissn=1879-2685&rft.volume=80&rft.spage=32&rft.epage=42&rft_id=info:doi/10.1016%2Fj.cad.2016.07.006&rft.externalDocID=S0010448516300690 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon |