MoS2 nanoworm thin films for NO2 gas sensing application

•MoS2 thin films of different thickness were grown on p-Si using DC sputtering.•Sputtered MoS2 films show the thickness dependent surface morphology.•NO2 gas sensing measurements have been performed for MoS2 nanoworm sensor.•MoS2 nanoworm sensor exhibits fast response and recovery for 100 ppm at 150...

Full description

Saved in:
Bibliographic Details
Published inThin solid films Vol. 725; p. 138625
Main Authors Neetika, Kumar, Arvind, Chandra, Ramesh, Malik, V.K.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •MoS2 thin films of different thickness were grown on p-Si using DC sputtering.•Sputtered MoS2 films show the thickness dependent surface morphology.•NO2 gas sensing measurements have been performed for MoS2 nanoworm sensor.•MoS2 nanoworm sensor exhibits fast response and recovery for 100 ppm at 150 °C. MoS2 thin films of different thickness have been deposited using direct current magnetron sputtering. These structures have been utilized as a gas sensor without any additional processing. As the thickness of the MoS2 film increases, surface morphology of the MoS2 films changes from nanoparticle to nanoworm like structures. Nanoworm structure of MoS2 exhibits large surface area and high porosity which provides the quick transfer of charge carriers and active sites for the adsorption and desorption of NO2 gas molecules. A rapid increase in NO2 sensing response is correlated with change in the morphology of MoS2 thin films from nanoparticle to nanoworm like structures. The gas sensing response of nanoworm like MoS2 thin films is measured using the non interdigitated type contacts. The cross-sensitivity of MoS2 nanoworm sensor for NH3, H2, CO and NO gases is also studied. Our results demonstrate the potential application of such MoS2 nanostructure for fabricating a highly sensitive NO2 gas sensor.
AbstractList •MoS2 thin films of different thickness were grown on p-Si using DC sputtering.•Sputtered MoS2 films show the thickness dependent surface morphology.•NO2 gas sensing measurements have been performed for MoS2 nanoworm sensor.•MoS2 nanoworm sensor exhibits fast response and recovery for 100 ppm at 150 °C. MoS2 thin films of different thickness have been deposited using direct current magnetron sputtering. These structures have been utilized as a gas sensor without any additional processing. As the thickness of the MoS2 film increases, surface morphology of the MoS2 films changes from nanoparticle to nanoworm like structures. Nanoworm structure of MoS2 exhibits large surface area and high porosity which provides the quick transfer of charge carriers and active sites for the adsorption and desorption of NO2 gas molecules. A rapid increase in NO2 sensing response is correlated with change in the morphology of MoS2 thin films from nanoparticle to nanoworm like structures. The gas sensing response of nanoworm like MoS2 thin films is measured using the non interdigitated type contacts. The cross-sensitivity of MoS2 nanoworm sensor for NH3, H2, CO and NO gases is also studied. Our results demonstrate the potential application of such MoS2 nanostructure for fabricating a highly sensitive NO2 gas sensor.
ArticleNumber 138625
Author Chandra, Ramesh
Malik, V.K.
Neetika
Kumar, Arvind
Author_xml – sequence: 1
  surname: Neetika
  fullname: Neetika
  organization: Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, India
– sequence: 2
  givenname: Arvind
  surname: Kumar
  fullname: Kumar, Arvind
  organization: Nanoscience Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667, India
– sequence: 3
  givenname: Ramesh
  surname: Chandra
  fullname: Chandra, Ramesh
  organization: Nanoscience Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667, India
– sequence: 4
  givenname: V.K.
  surname: Malik
  fullname: Malik, V.K.
  email: vivek.malik@ph.iitr.ac.in
  organization: Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, India
BookMark eNp9kL1OwzAUhS1UJErhAdj8AgnXdhKnYkIVf1KhAzBbjnNdXKV2ZVsg3p6UMjF0utN3zznfOZn44JGQKwYlA9Zcb8qcbMmBs5KJtuH1CZmyVs4LLgWbkClABUUDczgj5yltAIBxLqakfQ6vnHrtw1eIW5o_nKfWDdtEbYj0ZcXpWiea0Cfn11TvdoMzOrvgL8ip1UPCy787I-_3d2-Lx2K5enha3C4LIxqRC5RjMucWeyYZ77SshUaOVWNrLiuB2GJrqw7qXkJna6MbkIL3TWu7eVshihmRh78mhpQiWmVc_m2Qo3aDYqD2AtRGjQLUXoA6CBhJ9o_cRbfV8fsoc3NgcJz06TCqZBx6g72LaLLqgztC_wChtHSi
CitedBy_id crossref_primary_10_3390_coatings15020146
crossref_primary_10_1016_j_snb_2022_132131
crossref_primary_10_2139_ssrn_4050309
crossref_primary_10_1088_1402_4896_ad8a04
crossref_primary_10_1016_j_snb_2023_135083
crossref_primary_10_1016_j_jclepro_2022_131506
crossref_primary_10_1002_advs_202410825
crossref_primary_10_1021_acssensors_4c03489
crossref_primary_10_1002_slct_202302398
crossref_primary_10_1021_acsaelm_4c00056
crossref_primary_10_1021_acsanm_1c01929
crossref_primary_10_1016_j_snr_2022_100103
crossref_primary_10_1039_D4TA01713G
crossref_primary_10_3389_fphy_2024_1446416
crossref_primary_10_1016_j_physe_2022_115575
crossref_primary_10_1039_D2TC00759B
crossref_primary_10_1007_s10854_024_12991_w
crossref_primary_10_1021_acsomega_1c07274
crossref_primary_10_1021_acs_iecr_3c02288
crossref_primary_10_1021_acssensors_4c01812
crossref_primary_10_1021_acssuschemeng_2c03315
crossref_primary_10_1021_acsami_3c04438
crossref_primary_10_1016_j_matchemphys_2021_125422
crossref_primary_10_1016_j_ceramint_2024_02_084
crossref_primary_10_2139_ssrn_4176396
crossref_primary_10_1039_D2TC02103J
crossref_primary_10_1016_j_jmst_2024_04_016
crossref_primary_10_1016_j_sna_2024_115384
crossref_primary_10_1016_j_sna_2022_113647
crossref_primary_10_1016_j_snb_2022_131552
crossref_primary_10_1116_6_0002627
crossref_primary_10_1039_D2RA05695J
crossref_primary_10_1007_s10008_023_05618_3
crossref_primary_10_1016_j_ceramint_2023_09_223
Cites_doi 10.1039/C5QI00251F
10.1016/j.jallcom.2017.06.105
10.1016/j.tsf.2020.138190
10.1016/j.vacuum.2016.05.005
10.1002/smll.201303711
10.3390/app6030078
10.1021/nn5015215
10.1016/j.tsf.2018.01.008
10.1016/j.tsf.2015.04.051
10.1016/j.jallcom.2019.05.028
10.1021/acsnano.5b04504
10.1039/C7RA05341J
10.1016/j.tsf.2016.08.068
10.1016/j.snb.2019.127437
10.1016/j.jallcom.2018.11.165
10.1016/j.vacuum.2019.05.033
10.1016/j.ijhydene.2018.05.005
10.1002/smll.201402923
10.1002/adfm.201601562
10.1088/1361-6528/aad3ec
10.1016/j.snb.2016.04.152
10.3390/s100302088
10.1557/mrs.2015.143
10.1016/j.snb.2016.06.033
10.1016/j.snb.2018.08.046
10.1016/j.ceramint.2016.02.160
10.1039/C5CS00507H
10.1038/srep08052
10.1016/j.snb.2015.08.039
10.1016/j.vacuum.2020.109250
10.1021/acs.jpcc.6b03284
10.1016/j.snb.2016.11.107
10.1021/nn400026u
10.1016/j.scib.2018.12.009
10.1021/nl301485q
10.1021/acssensors.7b00731
10.1016/j.tsf.2017.02.014
10.1016/j.snb.2018.11.069
10.1103/PhysRevB.92.081307
10.1016/j.apsusc.2018.10.018
10.1016/j.snb.2014.10.099
10.1016/0042-207X(72)90310-7
10.1016/j.vacuum.2020.109386
10.1016/j.snb.2018.12.042
10.3390/electronics4030651
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.tsf.2021.138625
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-2731
ExternalDocumentID 10_1016_j_tsf_2021_138625
S0040609021001085
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
TWZ
WH7
ZMT
~G-
29Q
6TJ
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMV
HVGLF
HX~
HZ~
NDZJH
R2-
RIG
SEW
SMS
SPG
SSH
VOH
WUQ
ID FETCH-LOGICAL-c363t-e700422fed1712ba753ae2e46f52743ee8e8f4b05d70bf5ca60732d68fb984ee3
IEDL.DBID .~1
ISSN 0040-6090
IngestDate Thu Apr 24 23:11:10 EDT 2025
Tue Jul 01 00:51:19 EDT 2025
Fri Feb 23 02:46:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Gas sensor
Molybdenum disulfide
Nitrogen dioxide
Nanoworm
Sputtering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-e700422fed1712ba753ae2e46f52743ee8e8f4b05d70bf5ca60732d68fb984ee3
ParticipantIDs crossref_citationtrail_10_1016_j_tsf_2021_138625
crossref_primary_10_1016_j_tsf_2021_138625
elsevier_sciencedirect_doi_10_1016_j_tsf_2021_138625
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
2021-05-00
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Thin solid films
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cho, Hahm, Choi, Yoon, Kim, Lee, Park, Kwon, Kim, Song, Jeong, Nam, Lee, Yoo, Kang, Lee, Ko, Ajayan, Kim (bib0009) 2015; 5
Donarelli, Prezioso, Perrozzi, Bisti, Nardone, Giancaterini, Cantalini, Ottaviano (bib0035) 2015
Sahoo, Wang, Zhang, Shimada, Kitamura (bib0047) 2016; 120
Liu, Chen, Liu, Abbas, Fathi, Zhou (bib0036) 2014; 8
Xu, Pei, Liu, Wu, Shi, Xu, Tian, Li (bib0042) 2017; 725
Sanger, Jain, Mishra, Chandra (bib0043) 2017; 242
Pospischil, Mueller (bib0022) 2016; 6
Duan, Wang, Pan, Yu, Duan (bib0008) 2015; 44
Late, Huang, Liu, Acharya, Shirodkar, Luo, Yan, Charles, Waghmare, Dravid, Rao (bib0038) 2013; 7
Cho, Kim, Lee, Kim, Jung, Yoo, Kim, Jung (bib0040) 2015; 9
Lee, Min, Chang, Park, Nam, Kim, Kim, Ryu, Im (bib0019) 2012; 12
Shokri, Salami (bib0001) 2016; 236
Varghese, Varghese, Swaminathan, Singh, Mittal (bib0011) 2015; 4
Giannazzo, Fisichella, Piazza, Agnello, Roccaforte (bib0013) 2015; 92
Ikram, Liu, Lv, Liu, Rehman, Kan, Zhang, He, Wang, Wang, Shi (bib0037) 2019; 466
Guo, Wen, Zhai, Wang (bib0003) 2019; 64
Li, Zhang, Long, Cao, Xin, Guan, Peng, Zheng (bib0004) 2019; 19
Sharma, Kumar, Singh, Kaur (bib0030) 2018; 275
Laera, Mirenghi, Cassano, Capodieci, Ferrara, Mazzarelli, Schioppa, Dimaio, Rizzo, Penza, Tapfer (bib0006) 2020; 709
Li, Song, Li, Chen, Li, Li, Wang, Wang (bib0034) 2019; 282
Mourya, Kumar, Jaiswal, Malik, Kumar, Chandra (bib0031) 2019; 283
Jaiswal, Sanger, Tiwari, Chandra (bib0041) 2020; 305
Kumar, Goel, Kumar (bib0005) 2017; 2
Colas, Saulot, Philippon, Berthier, Leonard (bib0016) 2015; 588
Mane, Moholkar (bib0002) 2018; 648
Kumar, Sanger, Kumar, Chandra (bib0044) 2017; 7
Wang, Li, Guo, Wang, Yang, Yang, Deng, Yang, Qian (bib0017) 2020; 177
Sanger, Kumar, Kumar, Chandra (bib0027) 2016; 234
Chalangar, Machhadani, Lim, Karlsson, Nur, Willander, Pettersson (bib0033) 2018; 29
Neetika, Malik, Chandra (bib0025) 2018; 43
Wang, Feng, Li (bib0021) 2014; 10
Barzegar, Iraji zad, Tiwari (bib0024) 2019; 167
Holland, Priestland (bib0028) 1972; 22
Ray (bib0012) 2016; 222
Ding, Lin, Huang (bib0023) 2016; 130
Khatri, Puri (bib0020) 2020; 175
Cao, Zhou, Jia, Zhang, Jiang (bib0046) 2015; 49
Long, Trochimczyk, Pham, Tang, Shi, Zettl, Carraro, Worsley, Maboudian (bib0039) 2016; 26
Liu, Chen, You, Liu, Kong, Li, Li, Deng, Li, Yan, Zhang (bib0014) 2019; 779
Wang, Yin, Zhang, Xiang, Gao (bib0029) 2010; 10
Yang, Gan, Li, Zhai (bib0007) 2016; 3
Neetika, Sanger, Chourasiya, Kumar, Asokan, Chandra, Malik (bib0026) 2019; 797
McDonnell, Wallace (bib0010) 2016; 616
Kuc, Heine, Kis (bib0018) 2015; 40
Lee, Lee, Lee, Yang, Kwon (bib0015) 2017; 637
Cui, Wen, Huang, Chang, Chen (bib0032) 2015; 11
Yan, Song, Zhang, Zhang, Yang, Wang (bib0045) 2016; 42
Guo (10.1016/j.tsf.2021.138625_bib0003) 2019; 64
Chalangar (10.1016/j.tsf.2021.138625_bib0033) 2018; 29
McDonnell (10.1016/j.tsf.2021.138625_bib0010) 2016; 616
Wang (10.1016/j.tsf.2021.138625_bib0021) 2014; 10
Cui (10.1016/j.tsf.2021.138625_bib0032) 2015; 11
Colas (10.1016/j.tsf.2021.138625_bib0016) 2015; 588
Donarelli (10.1016/j.tsf.2021.138625_bib0035) 2015
Cho (10.1016/j.tsf.2021.138625_bib0009) 2015; 5
Neetika (10.1016/j.tsf.2021.138625_bib0025) 2018; 43
Lee (10.1016/j.tsf.2021.138625_bib0019) 2012; 12
Pospischil (10.1016/j.tsf.2021.138625_bib0022) 2016; 6
Wang (10.1016/j.tsf.2021.138625_bib0029) 2010; 10
Li (10.1016/j.tsf.2021.138625_bib0034) 2019; 282
Varghese (10.1016/j.tsf.2021.138625_bib0011) 2015; 4
Kumar (10.1016/j.tsf.2021.138625_bib0044) 2017; 7
Laera (10.1016/j.tsf.2021.138625_bib0006) 2020; 709
Wang (10.1016/j.tsf.2021.138625_bib0017) 2020; 177
Sharma (10.1016/j.tsf.2021.138625_bib0030) 2018; 275
Xu (10.1016/j.tsf.2021.138625_bib0042) 2017; 725
Mane (10.1016/j.tsf.2021.138625_bib0002) 2018; 648
Yang (10.1016/j.tsf.2021.138625_bib0007) 2016; 3
Khatri (10.1016/j.tsf.2021.138625_bib0020) 2020; 175
Jaiswal (10.1016/j.tsf.2021.138625_bib0041) 2020; 305
Liu (10.1016/j.tsf.2021.138625_bib0014) 2019; 779
Ding (10.1016/j.tsf.2021.138625_bib0023) 2016; 130
Duan (10.1016/j.tsf.2021.138625_bib0008) 2015; 44
Giannazzo (10.1016/j.tsf.2021.138625_bib0013) 2015; 92
Cho (10.1016/j.tsf.2021.138625_bib0040) 2015; 9
Yan (10.1016/j.tsf.2021.138625_bib0045) 2016; 42
Mourya (10.1016/j.tsf.2021.138625_bib0031) 2019; 283
Sahoo (10.1016/j.tsf.2021.138625_bib0047) 2016; 120
Ikram (10.1016/j.tsf.2021.138625_bib0037) 2019; 466
Sanger (10.1016/j.tsf.2021.138625_bib0043) 2017; 242
Shokri (10.1016/j.tsf.2021.138625_bib0001) 2016; 236
Kumar (10.1016/j.tsf.2021.138625_bib0005) 2017; 2
Li (10.1016/j.tsf.2021.138625_bib0004) 2019; 19
Sanger (10.1016/j.tsf.2021.138625_bib0027) 2016; 234
Kuc (10.1016/j.tsf.2021.138625_bib0018) 2015; 40
Holland (10.1016/j.tsf.2021.138625_bib0028) 1972; 22
Lee (10.1016/j.tsf.2021.138625_bib0015) 2017; 637
Neetika (10.1016/j.tsf.2021.138625_bib0026) 2019; 797
Late (10.1016/j.tsf.2021.138625_bib0038) 2013; 7
Long (10.1016/j.tsf.2021.138625_bib0039) 2016; 26
Ray (10.1016/j.tsf.2021.138625_bib0012) 2016; 222
Barzegar (10.1016/j.tsf.2021.138625_bib0024) 2019; 167
Liu (10.1016/j.tsf.2021.138625_bib0036) 2014; 8
Cao (10.1016/j.tsf.2021.138625_bib0046) 2015; 49
References_xml – volume: 11
  start-page: 2305
  year: 2015
  end-page: 2313
  ident: bib0032
  article-title: Stabilizing MoS
  publication-title: Small
– volume: 283
  start-page: 373
  year: 2019
  end-page: 383
  ident: bib0031
  article-title: Development of Pd-Pt functionalized high performance H
  publication-title: Sens. Actuators, B Chem
– volume: 9
  start-page: 9314
  year: 2015
  ident: bib0040
  article-title: Highly enhanced gas adsorption properties in vertically aligned MoS
  publication-title: ACS Nano
– volume: 26
  start-page: 5158
  year: 2016
  ident: bib0039
  article-title: High surface area MoS
  publication-title: Adv. Funct. Mater.
– volume: 648
  start-page: 50
  year: 2018
  end-page: 61
  ident: bib0002
  article-title: Effect of solution concentration on physicochemical and NO
  publication-title: Thin Solid Films
– volume: 10
  start-page: 2165
  year: 2014
  end-page: 2181
  ident: bib0021
  article-title: Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage
  publication-title: Small
– volume: 7
  start-page: 39666
  year: 2017
  end-page: 39675
  ident: bib0044
  article-title: Porous silicon filled with Pd/WO
  publication-title: RSC Adv.
– volume: 2
  start-page: 1744
  year: 2017
  end-page: 1752
  ident: bib0005
  article-title: UV-activated MoS
  publication-title: ACS Sens.
– volume: 29
  year: 2018
  ident: bib0033
  article-title: Influence of morphology on electrical and optical properties of graphene/Al-doped ZnO-nanorod composites
  publication-title: Nanotechnology
– volume: 305
  year: 2020
  ident: bib0041
  article-title: MoS
  publication-title: Sens. Actuators B Chem
– volume: 222
  start-page: 492
  year: 2016
  end-page: 498
  ident: bib0012
  article-title: First-principles study of MoS
  publication-title: Sens. Actuators B Chem
– volume: 175
  year: 2020
  ident: bib0020
  article-title: Electrochemical study of hydrothermally synthesised reduced MoS
  publication-title: Vacuum
– volume: 92
  year: 2015
  ident: bib0013
  article-title: Nanoscale inhomogeneity of the Schottky barrier and resistivity in MoS
  publication-title: Phys. Rev. B - Condens. Matter Mater. Phys.
– volume: 167
  start-page: 90
  year: 2019
  end-page: 97
  ident: bib0024
  article-title: On the performance of vertical MoS
  publication-title: Vacuum
– volume: 19
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib0004
  article-title: Gas sensors based on mechanically exfoliated MoS
  publication-title: Sensors (Basel)
– volume: 64
  start-page: 128
  year: 2019
  end-page: 135
  ident: bib0003
  article-title: Enhanced NO
  publication-title: Sci. Bull.
– volume: 40
  start-page: 577
  year: 2015
  end-page: 584
  ident: bib0018
  article-title: Electronic properties of transition-metal dichalcogenides
  publication-title: MRS Bull.
– volume: 6
  start-page: 78
  year: 2016
  ident: bib0022
  article-title: Optoelectronic devices based on atomically thin transition metal dichalcogenides
  publication-title: Appl. Sci.
– volume: 779
  start-page: 140
  year: 2019
  end-page: 146
  ident: bib0014
  article-title: High performance photodetector based on graphene/MoS
  publication-title: J. Alloys Compd.
– volume: 236
  start-page: 378
  year: 2016
  end-page: 385
  ident: bib0001
  article-title: Gas sensor based on MoS
  publication-title: Sens. Actuators, B Chem.
– volume: 709
  year: 2020
  ident: bib0006
  article-title: Synthesis of nanocrystalline ZnS/TiO
  publication-title: Thin Solid Films
– volume: 44
  start-page: 8859
  year: 2015
  end-page: 8876
  ident: bib0008
  article-title: Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges
  publication-title: Chem. Soc. Rev.
– volume: 120
  start-page: 14113
  year: 2016
  end-page: 14121
  ident: bib0047
  article-title: Modulation of gas adsorption and magnetic properties of monolayer-MoS
  publication-title: J. Phys. Chem. C.
– volume: 130
  start-page: 146
  year: 2016
  end-page: 153
  ident: bib0023
  article-title: The enhancement of NO detection by doping strategies on monolayer MoS
  publication-title: Vacuum
– volume: 466
  start-page: 1
  year: 2019
  end-page: 11
  ident: bib0037
  article-title: 3D-multilayer MoS
  publication-title: Appl. Surf. Sci.
– volume: 3
  start-page: 433
  year: 2016
  end-page: 451
  ident: bib0007
  article-title: Two-dimensional layered nanomaterials for gas-sensing applications
  publication-title: Inorg. Chem. Front.
– volume: 49
  year: 2015
  ident: bib0046
  article-title: Theoretical study of the NO, NO
  publication-title: J. Phys. D. Appl. Phys.
– volume: 725
  start-page: 253
  year: 2017
  end-page: 259
  ident: bib0042
  article-title: High-response NO
  publication-title: J. Alloys Compd.
– volume: 588
  start-page: 67
  year: 2015
  end-page: 77
  ident: bib0016
  article-title: Time-of-flight secondary ion mass spectroscopy investigation of the chemical rearrangement undergone by MoS
  publication-title: Thin Solid Films
– volume: 4
  start-page: 651
  year: 2015
  end-page: 687
  ident: bib0011
  article-title: Two-Dimensional materials for sensing: graphene and beyond
  publication-title: Electronics
– volume: 22
  start-page: 143
  year: 1972
  end-page: 149
  ident: bib0028
  article-title: The influence of sputtering and transport mechanisms on target etching and thin film growth in rf systems—II. Transport and deposition processes
  publication-title: Vacuum
– volume: 242
  start-page: 694
  year: 2017
  end-page: 699
  ident: bib0043
  article-title: Palladium decorated silicon carbide nanocauliflowers for hydrogen gas sensing application
  publication-title: Sens. Actuators, B Chem
– volume: 637
  start-page: 32
  year: 2017
  end-page: 36
  ident: bib0015
  article-title: Effects of plasma treatment on the electrical reliability of multilayer MoS
  publication-title: Thin Solid Films
– volume: 42
  start-page: 9327
  year: 2016
  end-page: 9331
  ident: bib0045
  article-title: A low temperature gas sensor based on Au-loaded MoS
  publication-title: Ceram. Int.
– volume: 177
  year: 2020
  ident: bib0017
  article-title: Effect of metal coating material on field emission of vertically grown layered MoS
  publication-title: Vacuum
– volume: 282
  start-page: 259
  year: 2019
  end-page: 267
  ident: bib0034
  article-title: Hierarchical hollow MoS2 microspheres as materials for conductometric NO
  publication-title: Sens. Actuators B Chem
– volume: 616
  start-page: 482
  year: 2016
  end-page: 501
  ident: bib0010
  article-title: Atomically-thin layered films for device applications based upon 2D TMDC materials
  publication-title: Thin Solid Films
– volume: 7
  start-page: 4879
  year: 2013
  end-page: 4891
  ident: bib0038
  article-title: Sensing behavior of atomically thin-layered MoS
  publication-title: ACS Nano
– volume: 43
  start-page: 11141
  year: 2018
  end-page: 11149
  ident: bib0025
  article-title: One step sputtered grown MoS
  publication-title: Int. J. Hydrogen Energy
– volume: 8
  start-page: 5304
  year: 2014
  ident: bib0036
  article-title: High-performance chemical sensing using schottky-contacted chemical vapor deposition grown monolayer MoS
  publication-title: ACS Nano
– volume: 12
  start-page: 3695
  year: 2012
  end-page: 3700
  ident: bib0019
  article-title: MoS
  publication-title: Nano Lett
– volume: 797
  start-page: 582
  year: 2019
  end-page: 588
  ident: bib0026
  article-title: Influence of barrier inhomogeneities on transport properties of Pt/MoS
  publication-title: J. Alloys Compd.
– volume: 10
  start-page: 2088
  year: 2010
  end-page: 2106
  ident: bib0029
  article-title: Metal oxide gas sensors: Sensitivity and influencing factors
  publication-title: Sensors
– volume: 275
  start-page: 499
  year: 2018
  end-page: 507
  ident: bib0030
  article-title: Excellent room temperature ammonia gas sensing properties of n-MoS
  publication-title: Sensors Actuators, B Chem
– volume: 234
  start-page: 8
  year: 2016
  end-page: 14
  ident: bib0027
  article-title: Highly sensitive and selective hydrogen gas sensor using sputtered grown Pd decorated MnO
  publication-title: Sens. Actuators, B Chem
– start-page: 602
  year: 2015
  end-page: 613
  ident: bib0035
  article-title: Response to NO
  publication-title: Sens. Actuators, B Chem
– volume: 5
  start-page: 8052
  year: 2015
  ident: bib0009
  article-title: Charge-transfer-based Gas Sensing Using Atomic-layer MoS
  publication-title: Sci. Rep.
– volume: 19
  start-page: 1
  year: 2019
  ident: 10.1016/j.tsf.2021.138625_bib0004
  article-title: Gas sensors based on mechanically exfoliated MoS2 nanosheets for room-temperature NO2 detection
  publication-title: Sensors (Basel)
– volume: 3
  start-page: 433
  year: 2016
  ident: 10.1016/j.tsf.2021.138625_bib0007
  article-title: Two-dimensional layered nanomaterials for gas-sensing applications
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C5QI00251F
– volume: 725
  start-page: 253
  year: 2017
  ident: 10.1016/j.tsf.2021.138625_bib0042
  article-title: High-response NO2 resistive gas sensor based on bilayer MoS2 grown by a new two-step chemical vapor deposition method
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.06.105
– volume: 709
  year: 2020
  ident: 10.1016/j.tsf.2021.138625_bib0006
  article-title: Synthesis of nanocrystalline ZnS/TiO2 films for enhanced NO2 gas sensing
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2020.138190
– volume: 130
  start-page: 146
  year: 2016
  ident: 10.1016/j.tsf.2021.138625_bib0023
  article-title: The enhancement of NO detection by doping strategies on monolayer MoS2
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2016.05.005
– volume: 10
  start-page: 2165
  year: 2014
  ident: 10.1016/j.tsf.2021.138625_bib0021
  article-title: Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage
  publication-title: Small
  doi: 10.1002/smll.201303711
– volume: 6
  start-page: 78
  year: 2016
  ident: 10.1016/j.tsf.2021.138625_bib0022
  article-title: Optoelectronic devices based on atomically thin transition metal dichalcogenides
  publication-title: Appl. Sci.
  doi: 10.3390/app6030078
– volume: 8
  start-page: 5304
  year: 2014
  ident: 10.1016/j.tsf.2021.138625_bib0036
  article-title: High-performance chemical sensing using schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors
  publication-title: ACS Nano
  doi: 10.1021/nn5015215
– volume: 648
  start-page: 50
  year: 2018
  ident: 10.1016/j.tsf.2021.138625_bib0002
  article-title: Effect of solution concentration on physicochemical and NO2 gas sensing properties of sprayed MoO3 nanobelts
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2018.01.008
– volume: 588
  start-page: 67
  year: 2015
  ident: 10.1016/j.tsf.2021.138625_bib0016
  article-title: Time-of-flight secondary ion mass spectroscopy investigation of the chemical rearrangement undergone by MoS2 under tribological conditions
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2015.04.051
– volume: 797
  start-page: 582
  year: 2019
  ident: 10.1016/j.tsf.2021.138625_bib0026
  article-title: Influence of barrier inhomogeneities on transport properties of Pt/MoS2 Schottky barrier junction
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.05.028
– volume: 9
  start-page: 9314
  year: 2015
  ident: 10.1016/j.tsf.2021.138625_bib0040
  article-title: Highly enhanced gas adsorption properties in vertically aligned MoS2 layers
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b04504
– volume: 7
  start-page: 39666
  year: 2017
  ident: 10.1016/j.tsf.2021.138625_bib0044
  article-title: Porous silicon filled with Pd/WO3 –ZnO composite thin film for enhanced H2 gas-sensing performance
  publication-title: RSC Adv.
  doi: 10.1039/C7RA05341J
– volume: 616
  start-page: 482
  year: 2016
  ident: 10.1016/j.tsf.2021.138625_bib0010
  article-title: Atomically-thin layered films for device applications based upon 2D TMDC materials
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2016.08.068
– volume: 305
  year: 2020
  ident: 10.1016/j.tsf.2021.138625_bib0041
  article-title: MoS2 hybrid heterostructure thin film decorated with CdTe quantum dots for room temperature NO2 gas sensor
  publication-title: Sens. Actuators B Chem
  doi: 10.1016/j.snb.2019.127437
– volume: 779
  start-page: 140
  year: 2019
  ident: 10.1016/j.tsf.2021.138625_bib0014
  article-title: High performance photodetector based on graphene/MoS2/graphene lateral heterostrurcture with Schottky junctions
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.11.165
– volume: 167
  start-page: 90
  year: 2019
  ident: 10.1016/j.tsf.2021.138625_bib0024
  article-title: On the performance of vertical MoS2 nanoflakes as a gas sensor
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2019.05.033
– volume: 43
  start-page: 11141
  year: 2018
  ident: 10.1016/j.tsf.2021.138625_bib0025
  article-title: One step sputtered grown MoS2 nanoworms binder free electrodes for high performance supercapacitor application
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.05.005
– volume: 11
  start-page: 2305
  year: 2015
  ident: 10.1016/j.tsf.2021.138625_bib0032
  article-title: Stabilizing MoS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air
  publication-title: Small
  doi: 10.1002/smll.201402923
– volume: 26
  start-page: 5158
  year: 2016
  ident: 10.1016/j.tsf.2021.138625_bib0039
  article-title: High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201601562
– volume: 29
  year: 2018
  ident: 10.1016/j.tsf.2021.138625_bib0033
  article-title: Influence of morphology on electrical and optical properties of graphene/Al-doped ZnO-nanorod composites
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aad3ec
– volume: 234
  start-page: 8
  year: 2016
  ident: 10.1016/j.tsf.2021.138625_bib0027
  article-title: Highly sensitive and selective hydrogen gas sensor using sputtered grown Pd decorated MnO2 nanowalls
  publication-title: Sens. Actuators, B Chem
  doi: 10.1016/j.snb.2016.04.152
– volume: 10
  start-page: 2088
  year: 2010
  ident: 10.1016/j.tsf.2021.138625_bib0029
  article-title: Metal oxide gas sensors: Sensitivity and influencing factors
  publication-title: Sensors
  doi: 10.3390/s100302088
– volume: 40
  start-page: 577
  year: 2015
  ident: 10.1016/j.tsf.2021.138625_bib0018
  article-title: Electronic properties of transition-metal dichalcogenides
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2015.143
– volume: 236
  start-page: 378
  year: 2016
  ident: 10.1016/j.tsf.2021.138625_bib0001
  article-title: Gas sensor based on MoS2 monolayer
  publication-title: Sens. Actuators, B Chem.
  doi: 10.1016/j.snb.2016.06.033
– volume: 275
  start-page: 499
  year: 2018
  ident: 10.1016/j.tsf.2021.138625_bib0030
  article-title: Excellent room temperature ammonia gas sensing properties of n-MoS2/p-CuO heterojunction nanoworms
  publication-title: Sensors Actuators, B Chem
  doi: 10.1016/j.snb.2018.08.046
– volume: 42
  start-page: 9327
  year: 2016
  ident: 10.1016/j.tsf.2021.138625_bib0045
  article-title: A low temperature gas sensor based on Au-loaded MoS2 hierarchical nanostructures for detecting ammonia
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.02.160
– volume: 44
  start-page: 8859
  year: 2015
  ident: 10.1016/j.tsf.2021.138625_bib0008
  article-title: Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00507H
– volume: 5
  start-page: 8052
  year: 2015
  ident: 10.1016/j.tsf.2021.138625_bib0009
  article-title: Charge-transfer-based Gas Sensing Using Atomic-layer MoS2
  publication-title: Sci. Rep.
  doi: 10.1038/srep08052
– volume: 222
  start-page: 492
  year: 2016
  ident: 10.1016/j.tsf.2021.138625_bib0012
  article-title: First-principles study of MoS2, phosphorene and graphene based single electron transistor for gas sensing applications
  publication-title: Sens. Actuators B Chem
  doi: 10.1016/j.snb.2015.08.039
– volume: 175
  year: 2020
  ident: 10.1016/j.tsf.2021.138625_bib0020
  article-title: Electrochemical study of hydrothermally synthesised reduced MoS2 layered nanosheets
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2020.109250
– volume: 120
  start-page: 14113
  year: 2016
  ident: 10.1016/j.tsf.2021.138625_bib0047
  article-title: Modulation of gas adsorption and magnetic properties of monolayer-MoS2 by antisite defect and strain
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.6b03284
– volume: 242
  start-page: 694
  year: 2017
  ident: 10.1016/j.tsf.2021.138625_bib0043
  article-title: Palladium decorated silicon carbide nanocauliflowers for hydrogen gas sensing application
  publication-title: Sens. Actuators, B Chem
  doi: 10.1016/j.snb.2016.11.107
– volume: 7
  start-page: 4879
  year: 2013
  ident: 10.1016/j.tsf.2021.138625_bib0038
  article-title: Sensing behavior of atomically thin-layered MoS2 transistors
  publication-title: ACS Nano
  doi: 10.1021/nn400026u
– volume: 64
  start-page: 128
  year: 2019
  ident: 10.1016/j.tsf.2021.138625_bib0003
  article-title: Enhanced NO2 gas sensing of a single-layer MoS2 by photogating and piezo-phototronic effects
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2018.12.009
– volume: 12
  start-page: 3695
  year: 2012
  ident: 10.1016/j.tsf.2021.138625_bib0019
  article-title: MoS2 nanosheet phototransistors with thickness-modulated optical energy gap
  publication-title: Nano Lett
  doi: 10.1021/nl301485q
– volume: 2
  start-page: 1744
  year: 2017
  ident: 10.1016/j.tsf.2021.138625_bib0005
  article-title: UV-activated MoS2 based fast and reversible NO2 sensor at room temperature
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.7b00731
– volume: 637
  start-page: 32
  year: 2017
  ident: 10.1016/j.tsf.2021.138625_bib0015
  article-title: Effects of plasma treatment on the electrical reliability of multilayer MoS2 field-effect transistors
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2017.02.014
– volume: 282
  start-page: 259
  year: 2019
  ident: 10.1016/j.tsf.2021.138625_bib0034
  article-title: Hierarchical hollow MoS2 microspheres as materials for conductometric NO2 gas sensors
  publication-title: Sens. Actuators B Chem
  doi: 10.1016/j.snb.2018.11.069
– volume: 92
  year: 2015
  ident: 10.1016/j.tsf.2021.138625_bib0013
  article-title: Nanoscale inhomogeneity of the Schottky barrier and resistivity in MoS2 multilayers
  publication-title: Phys. Rev. B - Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.92.081307
– volume: 466
  start-page: 1
  year: 2019
  ident: 10.1016/j.tsf.2021.138625_bib0037
  article-title: 3D-multilayer MoS2 nanosheets vertically grown on highly mesoporous cubic In2O3 for high-performance gas sensing at room temperature
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.10.018
– volume: 49
  year: 2015
  ident: 10.1016/j.tsf.2021.138625_bib0046
  article-title: Theoretical study of the NO, NO2, CO, SO2, and NH3 adsorptions on multi-diameter single-wall MoS2 nanotube
  publication-title: J. Phys. D. Appl. Phys.
– start-page: 602
  year: 2015
  ident: 10.1016/j.tsf.2021.138625_bib0035
  article-title: Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors
  publication-title: Sens. Actuators, B Chem
  doi: 10.1016/j.snb.2014.10.099
– volume: 22
  start-page: 143
  year: 1972
  ident: 10.1016/j.tsf.2021.138625_bib0028
  article-title: The influence of sputtering and transport mechanisms on target etching and thin film growth in rf systems—II. Transport and deposition processes
  publication-title: Vacuum
  doi: 10.1016/0042-207X(72)90310-7
– volume: 177
  year: 2020
  ident: 10.1016/j.tsf.2021.138625_bib0017
  article-title: Effect of metal coating material on field emission of vertically grown layered MoS2 nanosheets
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2020.109386
– volume: 283
  start-page: 373
  year: 2019
  ident: 10.1016/j.tsf.2021.138625_bib0031
  article-title: Development of Pd-Pt functionalized high performance H2 gas sensor based on silicon carbide coated porous silicon for extreme environment applications
  publication-title: Sens. Actuators, B Chem
  doi: 10.1016/j.snb.2018.12.042
– volume: 4
  start-page: 651
  year: 2015
  ident: 10.1016/j.tsf.2021.138625_bib0011
  article-title: Two-Dimensional materials for sensing: graphene and beyond
  publication-title: Electronics
  doi: 10.3390/electronics4030651
SSID ssj0001223
Score 2.5326521
Snippet •MoS2 thin films of different thickness were grown on p-Si using DC sputtering.•Sputtered MoS2 films show the thickness dependent surface morphology.•NO2 gas...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 138625
SubjectTerms Gas sensor
Molybdenum disulfide
Nanoworm
Nitrogen dioxide
Sputtering
Title MoS2 nanoworm thin films for NO2 gas sensing application
URI https://dx.doi.org/10.1016/j.tsf.2021.138625
Volume 725
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KRdCDaFWsj7IHT0LaZLN59FiKpVqsoBZ7C5vdTY3UtJiIN3-7s3nUCurBU0jYCeHbzTzYb74FOJe-1hWzfCPE8GOgw2MGF6KLzhBrASq44ipnW4zd4YRdT51pDfpVL4ymVZa-v_Dpubcun3RKNDvLONY9vhiMNK1Qywhh5qA72JmnV3n744vmYVG6Ys7p0dXOZs7xylKt4kmttmVjZu_8HJvW4s1gF3bKRJH0im_Zg5pKGrC9Jh_YgM2cvinSffBvFveUJDxZvGMOSrKnOCFRPH9JCeakZHxLyYynJNVk9WRG1jatD2AyuHzoD43yTARD2K6dGcrLVbsiJS3PoiHHaoMrqpgbOVhf2kr5yo9YaDrSM8PIEdzFf5hK14_Crs-Usg-hniwSdQSEY_HCnTCiknmMSY9LfKE0LRF1ZdflZhPMCo1AlILh-tyKeVAxw54DBDDQAAYFgE24WJksC7WMvwazCuLg25QH6M1_Nzv-n9kJbOm7gqt4CvXs9U2dYT6Rha18wbRgo3c1Go71dXT3OPoE7cvIxg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xCAEHBAXEjg9wQUqbOM7SAwfEokIXDlCpt-DETgmiKSJBiAs_xQ8yzlKKBByQek0yVvI8mUV-fgY4EK7SFTNczcf0o2HAYxoPgjoGQ-wFaMAllxnbomM3uuyqZ_Wm4KPcC6NolUXsz2N6Fq2LK7UCzdpTFKk9vpiMFK1QyQhh5VAwK5vy7RX7tuT48gwn-ZDSi_Pb04ZWHC2gBaZtppp0MvGrUArDMajPsWjnkkpmhxa2aaaUrnRD5uuWcHQ_tAJu469Ahe2Gft1lUpo47jTMMgwX6tiE6vsXr8SgdETVU69XLqVmpLI0UbKh1KgaJrYS1s_JcCzBXSzDUlGZkpP841dgSsYVWBzTK6zAXMYXDZJVcNvDG0piHg8RhQFJ76OYhNHjICFYBJPONSV9npBEsePjPhlbJV-D7kSQWoeZeBjLDSAcuyVu-SEVzGFMOFzggEI3grAu6jbXN0Ev0fCCQqFcHZTx6JVUtAcPAfQUgF4O4CYcjUyecnmOvx5mJcTeNx_zMH38brb1P7N9mG_ctlte67LT3IYFdScnSu7ATPr8InexmEn9vcx5CNxN2ls_AT4qAwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MoS2+nanoworm+thin+films+for+NO2+gas+sensing+application&rft.jtitle=Thin+solid+films&rft.au=Neetika&rft.au=Kumar%2C+Arvind&rft.au=Chandra%2C+Ramesh&rft.au=Malik%2C+V.K.&rft.date=2021-05-01&rft.issn=0040-6090&rft.volume=725&rft.spage=138625&rft_id=info:doi/10.1016%2Fj.tsf.2021.138625&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tsf_2021_138625
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-6090&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-6090&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-6090&client=summon