MoS2 nanoworm thin films for NO2 gas sensing application
•MoS2 thin films of different thickness were grown on p-Si using DC sputtering.•Sputtered MoS2 films show the thickness dependent surface morphology.•NO2 gas sensing measurements have been performed for MoS2 nanoworm sensor.•MoS2 nanoworm sensor exhibits fast response and recovery for 100 ppm at 150...
Saved in:
Published in | Thin solid films Vol. 725; p. 138625 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •MoS2 thin films of different thickness were grown on p-Si using DC sputtering.•Sputtered MoS2 films show the thickness dependent surface morphology.•NO2 gas sensing measurements have been performed for MoS2 nanoworm sensor.•MoS2 nanoworm sensor exhibits fast response and recovery for 100 ppm at 150 °C.
MoS2 thin films of different thickness have been deposited using direct current magnetron sputtering. These structures have been utilized as a gas sensor without any additional processing. As the thickness of the MoS2 film increases, surface morphology of the MoS2 films changes from nanoparticle to nanoworm like structures. Nanoworm structure of MoS2 exhibits large surface area and high porosity which provides the quick transfer of charge carriers and active sites for the adsorption and desorption of NO2 gas molecules. A rapid increase in NO2 sensing response is correlated with change in the morphology of MoS2 thin films from nanoparticle to nanoworm like structures. The gas sensing response of nanoworm like MoS2 thin films is measured using the non interdigitated type contacts. The cross-sensitivity of MoS2 nanoworm sensor for NH3, H2, CO and NO gases is also studied. Our results demonstrate the potential application of such MoS2 nanostructure for fabricating a highly sensitive NO2 gas sensor. |
---|---|
AbstractList | •MoS2 thin films of different thickness were grown on p-Si using DC sputtering.•Sputtered MoS2 films show the thickness dependent surface morphology.•NO2 gas sensing measurements have been performed for MoS2 nanoworm sensor.•MoS2 nanoworm sensor exhibits fast response and recovery for 100 ppm at 150 °C.
MoS2 thin films of different thickness have been deposited using direct current magnetron sputtering. These structures have been utilized as a gas sensor without any additional processing. As the thickness of the MoS2 film increases, surface morphology of the MoS2 films changes from nanoparticle to nanoworm like structures. Nanoworm structure of MoS2 exhibits large surface area and high porosity which provides the quick transfer of charge carriers and active sites for the adsorption and desorption of NO2 gas molecules. A rapid increase in NO2 sensing response is correlated with change in the morphology of MoS2 thin films from nanoparticle to nanoworm like structures. The gas sensing response of nanoworm like MoS2 thin films is measured using the non interdigitated type contacts. The cross-sensitivity of MoS2 nanoworm sensor for NH3, H2, CO and NO gases is also studied. Our results demonstrate the potential application of such MoS2 nanostructure for fabricating a highly sensitive NO2 gas sensor. |
ArticleNumber | 138625 |
Author | Chandra, Ramesh Malik, V.K. Neetika Kumar, Arvind |
Author_xml | – sequence: 1 surname: Neetika fullname: Neetika organization: Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, India – sequence: 2 givenname: Arvind surname: Kumar fullname: Kumar, Arvind organization: Nanoscience Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667, India – sequence: 3 givenname: Ramesh surname: Chandra fullname: Chandra, Ramesh organization: Nanoscience Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667, India – sequence: 4 givenname: V.K. surname: Malik fullname: Malik, V.K. email: vivek.malik@ph.iitr.ac.in organization: Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, India |
BookMark | eNp9kL1OwzAUhS1UJErhAdj8AgnXdhKnYkIVf1KhAzBbjnNdXKV2ZVsg3p6UMjF0utN3zznfOZn44JGQKwYlA9Zcb8qcbMmBs5KJtuH1CZmyVs4LLgWbkClABUUDczgj5yltAIBxLqakfQ6vnHrtw1eIW5o_nKfWDdtEbYj0ZcXpWiea0Cfn11TvdoMzOrvgL8ip1UPCy787I-_3d2-Lx2K5enha3C4LIxqRC5RjMucWeyYZ77SshUaOVWNrLiuB2GJrqw7qXkJna6MbkIL3TWu7eVshihmRh78mhpQiWmVc_m2Qo3aDYqD2AtRGjQLUXoA6CBhJ9o_cRbfV8fsoc3NgcJz06TCqZBx6g72LaLLqgztC_wChtHSi |
CitedBy_id | crossref_primary_10_3390_coatings15020146 crossref_primary_10_1016_j_snb_2022_132131 crossref_primary_10_2139_ssrn_4050309 crossref_primary_10_1088_1402_4896_ad8a04 crossref_primary_10_1016_j_snb_2023_135083 crossref_primary_10_1016_j_jclepro_2022_131506 crossref_primary_10_1002_advs_202410825 crossref_primary_10_1021_acssensors_4c03489 crossref_primary_10_1002_slct_202302398 crossref_primary_10_1021_acsaelm_4c00056 crossref_primary_10_1021_acsanm_1c01929 crossref_primary_10_1016_j_snr_2022_100103 crossref_primary_10_1039_D4TA01713G crossref_primary_10_3389_fphy_2024_1446416 crossref_primary_10_1016_j_physe_2022_115575 crossref_primary_10_1039_D2TC00759B crossref_primary_10_1007_s10854_024_12991_w crossref_primary_10_1021_acsomega_1c07274 crossref_primary_10_1021_acs_iecr_3c02288 crossref_primary_10_1021_acssensors_4c01812 crossref_primary_10_1021_acssuschemeng_2c03315 crossref_primary_10_1021_acsami_3c04438 crossref_primary_10_1016_j_matchemphys_2021_125422 crossref_primary_10_1016_j_ceramint_2024_02_084 crossref_primary_10_2139_ssrn_4176396 crossref_primary_10_1039_D2TC02103J crossref_primary_10_1016_j_jmst_2024_04_016 crossref_primary_10_1016_j_sna_2024_115384 crossref_primary_10_1016_j_sna_2022_113647 crossref_primary_10_1016_j_snb_2022_131552 crossref_primary_10_1116_6_0002627 crossref_primary_10_1039_D2RA05695J crossref_primary_10_1007_s10008_023_05618_3 crossref_primary_10_1016_j_ceramint_2023_09_223 |
Cites_doi | 10.1039/C5QI00251F 10.1016/j.jallcom.2017.06.105 10.1016/j.tsf.2020.138190 10.1016/j.vacuum.2016.05.005 10.1002/smll.201303711 10.3390/app6030078 10.1021/nn5015215 10.1016/j.tsf.2018.01.008 10.1016/j.tsf.2015.04.051 10.1016/j.jallcom.2019.05.028 10.1021/acsnano.5b04504 10.1039/C7RA05341J 10.1016/j.tsf.2016.08.068 10.1016/j.snb.2019.127437 10.1016/j.jallcom.2018.11.165 10.1016/j.vacuum.2019.05.033 10.1016/j.ijhydene.2018.05.005 10.1002/smll.201402923 10.1002/adfm.201601562 10.1088/1361-6528/aad3ec 10.1016/j.snb.2016.04.152 10.3390/s100302088 10.1557/mrs.2015.143 10.1016/j.snb.2016.06.033 10.1016/j.snb.2018.08.046 10.1016/j.ceramint.2016.02.160 10.1039/C5CS00507H 10.1038/srep08052 10.1016/j.snb.2015.08.039 10.1016/j.vacuum.2020.109250 10.1021/acs.jpcc.6b03284 10.1016/j.snb.2016.11.107 10.1021/nn400026u 10.1016/j.scib.2018.12.009 10.1021/nl301485q 10.1021/acssensors.7b00731 10.1016/j.tsf.2017.02.014 10.1016/j.snb.2018.11.069 10.1103/PhysRevB.92.081307 10.1016/j.apsusc.2018.10.018 10.1016/j.snb.2014.10.099 10.1016/0042-207X(72)90310-7 10.1016/j.vacuum.2020.109386 10.1016/j.snb.2018.12.042 10.3390/electronics4030651 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.tsf.2021.138625 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-2731 |
ExternalDocumentID | 10_1016_j_tsf_2021_138625 S0040609021001085 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K TWZ WH7 ZMT ~G- 29Q 6TJ AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB G-2 HMV HVGLF HX~ HZ~ NDZJH R2- RIG SEW SMS SPG SSH VOH WUQ |
ID | FETCH-LOGICAL-c363t-e700422fed1712ba753ae2e46f52743ee8e8f4b05d70bf5ca60732d68fb984ee3 |
IEDL.DBID | .~1 |
ISSN | 0040-6090 |
IngestDate | Thu Apr 24 23:11:10 EDT 2025 Tue Jul 01 00:51:19 EDT 2025 Fri Feb 23 02:46:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gas sensor Molybdenum disulfide Nitrogen dioxide Nanoworm Sputtering |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-e700422fed1712ba753ae2e46f52743ee8e8f4b05d70bf5ca60732d68fb984ee3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_tsf_2021_138625 crossref_primary_10_1016_j_tsf_2021_138625 elsevier_sciencedirect_doi_10_1016_j_tsf_2021_138625 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 2021-05-00 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Thin solid films |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Cho, Hahm, Choi, Yoon, Kim, Lee, Park, Kwon, Kim, Song, Jeong, Nam, Lee, Yoo, Kang, Lee, Ko, Ajayan, Kim (bib0009) 2015; 5 Donarelli, Prezioso, Perrozzi, Bisti, Nardone, Giancaterini, Cantalini, Ottaviano (bib0035) 2015 Sahoo, Wang, Zhang, Shimada, Kitamura (bib0047) 2016; 120 Liu, Chen, Liu, Abbas, Fathi, Zhou (bib0036) 2014; 8 Xu, Pei, Liu, Wu, Shi, Xu, Tian, Li (bib0042) 2017; 725 Sanger, Jain, Mishra, Chandra (bib0043) 2017; 242 Pospischil, Mueller (bib0022) 2016; 6 Duan, Wang, Pan, Yu, Duan (bib0008) 2015; 44 Late, Huang, Liu, Acharya, Shirodkar, Luo, Yan, Charles, Waghmare, Dravid, Rao (bib0038) 2013; 7 Cho, Kim, Lee, Kim, Jung, Yoo, Kim, Jung (bib0040) 2015; 9 Lee, Min, Chang, Park, Nam, Kim, Kim, Ryu, Im (bib0019) 2012; 12 Shokri, Salami (bib0001) 2016; 236 Varghese, Varghese, Swaminathan, Singh, Mittal (bib0011) 2015; 4 Giannazzo, Fisichella, Piazza, Agnello, Roccaforte (bib0013) 2015; 92 Ikram, Liu, Lv, Liu, Rehman, Kan, Zhang, He, Wang, Wang, Shi (bib0037) 2019; 466 Guo, Wen, Zhai, Wang (bib0003) 2019; 64 Li, Zhang, Long, Cao, Xin, Guan, Peng, Zheng (bib0004) 2019; 19 Sharma, Kumar, Singh, Kaur (bib0030) 2018; 275 Laera, Mirenghi, Cassano, Capodieci, Ferrara, Mazzarelli, Schioppa, Dimaio, Rizzo, Penza, Tapfer (bib0006) 2020; 709 Li, Song, Li, Chen, Li, Li, Wang, Wang (bib0034) 2019; 282 Mourya, Kumar, Jaiswal, Malik, Kumar, Chandra (bib0031) 2019; 283 Jaiswal, Sanger, Tiwari, Chandra (bib0041) 2020; 305 Kumar, Goel, Kumar (bib0005) 2017; 2 Colas, Saulot, Philippon, Berthier, Leonard (bib0016) 2015; 588 Mane, Moholkar (bib0002) 2018; 648 Kumar, Sanger, Kumar, Chandra (bib0044) 2017; 7 Wang, Li, Guo, Wang, Yang, Yang, Deng, Yang, Qian (bib0017) 2020; 177 Sanger, Kumar, Kumar, Chandra (bib0027) 2016; 234 Chalangar, Machhadani, Lim, Karlsson, Nur, Willander, Pettersson (bib0033) 2018; 29 Neetika, Malik, Chandra (bib0025) 2018; 43 Wang, Feng, Li (bib0021) 2014; 10 Barzegar, Iraji zad, Tiwari (bib0024) 2019; 167 Holland, Priestland (bib0028) 1972; 22 Ray (bib0012) 2016; 222 Ding, Lin, Huang (bib0023) 2016; 130 Khatri, Puri (bib0020) 2020; 175 Cao, Zhou, Jia, Zhang, Jiang (bib0046) 2015; 49 Long, Trochimczyk, Pham, Tang, Shi, Zettl, Carraro, Worsley, Maboudian (bib0039) 2016; 26 Liu, Chen, You, Liu, Kong, Li, Li, Deng, Li, Yan, Zhang (bib0014) 2019; 779 Wang, Yin, Zhang, Xiang, Gao (bib0029) 2010; 10 Yang, Gan, Li, Zhai (bib0007) 2016; 3 Neetika, Sanger, Chourasiya, Kumar, Asokan, Chandra, Malik (bib0026) 2019; 797 McDonnell, Wallace (bib0010) 2016; 616 Kuc, Heine, Kis (bib0018) 2015; 40 Lee, Lee, Lee, Yang, Kwon (bib0015) 2017; 637 Cui, Wen, Huang, Chang, Chen (bib0032) 2015; 11 Yan, Song, Zhang, Zhang, Yang, Wang (bib0045) 2016; 42 Guo (10.1016/j.tsf.2021.138625_bib0003) 2019; 64 Chalangar (10.1016/j.tsf.2021.138625_bib0033) 2018; 29 McDonnell (10.1016/j.tsf.2021.138625_bib0010) 2016; 616 Wang (10.1016/j.tsf.2021.138625_bib0021) 2014; 10 Cui (10.1016/j.tsf.2021.138625_bib0032) 2015; 11 Colas (10.1016/j.tsf.2021.138625_bib0016) 2015; 588 Donarelli (10.1016/j.tsf.2021.138625_bib0035) 2015 Cho (10.1016/j.tsf.2021.138625_bib0009) 2015; 5 Neetika (10.1016/j.tsf.2021.138625_bib0025) 2018; 43 Lee (10.1016/j.tsf.2021.138625_bib0019) 2012; 12 Pospischil (10.1016/j.tsf.2021.138625_bib0022) 2016; 6 Wang (10.1016/j.tsf.2021.138625_bib0029) 2010; 10 Li (10.1016/j.tsf.2021.138625_bib0034) 2019; 282 Varghese (10.1016/j.tsf.2021.138625_bib0011) 2015; 4 Kumar (10.1016/j.tsf.2021.138625_bib0044) 2017; 7 Laera (10.1016/j.tsf.2021.138625_bib0006) 2020; 709 Wang (10.1016/j.tsf.2021.138625_bib0017) 2020; 177 Sharma (10.1016/j.tsf.2021.138625_bib0030) 2018; 275 Xu (10.1016/j.tsf.2021.138625_bib0042) 2017; 725 Mane (10.1016/j.tsf.2021.138625_bib0002) 2018; 648 Yang (10.1016/j.tsf.2021.138625_bib0007) 2016; 3 Khatri (10.1016/j.tsf.2021.138625_bib0020) 2020; 175 Jaiswal (10.1016/j.tsf.2021.138625_bib0041) 2020; 305 Liu (10.1016/j.tsf.2021.138625_bib0014) 2019; 779 Ding (10.1016/j.tsf.2021.138625_bib0023) 2016; 130 Duan (10.1016/j.tsf.2021.138625_bib0008) 2015; 44 Giannazzo (10.1016/j.tsf.2021.138625_bib0013) 2015; 92 Cho (10.1016/j.tsf.2021.138625_bib0040) 2015; 9 Yan (10.1016/j.tsf.2021.138625_bib0045) 2016; 42 Mourya (10.1016/j.tsf.2021.138625_bib0031) 2019; 283 Sahoo (10.1016/j.tsf.2021.138625_bib0047) 2016; 120 Ikram (10.1016/j.tsf.2021.138625_bib0037) 2019; 466 Sanger (10.1016/j.tsf.2021.138625_bib0043) 2017; 242 Shokri (10.1016/j.tsf.2021.138625_bib0001) 2016; 236 Kumar (10.1016/j.tsf.2021.138625_bib0005) 2017; 2 Li (10.1016/j.tsf.2021.138625_bib0004) 2019; 19 Sanger (10.1016/j.tsf.2021.138625_bib0027) 2016; 234 Kuc (10.1016/j.tsf.2021.138625_bib0018) 2015; 40 Holland (10.1016/j.tsf.2021.138625_bib0028) 1972; 22 Lee (10.1016/j.tsf.2021.138625_bib0015) 2017; 637 Neetika (10.1016/j.tsf.2021.138625_bib0026) 2019; 797 Late (10.1016/j.tsf.2021.138625_bib0038) 2013; 7 Long (10.1016/j.tsf.2021.138625_bib0039) 2016; 26 Ray (10.1016/j.tsf.2021.138625_bib0012) 2016; 222 Barzegar (10.1016/j.tsf.2021.138625_bib0024) 2019; 167 Liu (10.1016/j.tsf.2021.138625_bib0036) 2014; 8 Cao (10.1016/j.tsf.2021.138625_bib0046) 2015; 49 |
References_xml | – volume: 11 start-page: 2305 year: 2015 end-page: 2313 ident: bib0032 article-title: Stabilizing MoS publication-title: Small – volume: 283 start-page: 373 year: 2019 end-page: 383 ident: bib0031 article-title: Development of Pd-Pt functionalized high performance H publication-title: Sens. Actuators, B Chem – volume: 9 start-page: 9314 year: 2015 ident: bib0040 article-title: Highly enhanced gas adsorption properties in vertically aligned MoS publication-title: ACS Nano – volume: 26 start-page: 5158 year: 2016 ident: bib0039 article-title: High surface area MoS publication-title: Adv. Funct. Mater. – volume: 648 start-page: 50 year: 2018 end-page: 61 ident: bib0002 article-title: Effect of solution concentration on physicochemical and NO publication-title: Thin Solid Films – volume: 10 start-page: 2165 year: 2014 end-page: 2181 ident: bib0021 article-title: Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage publication-title: Small – volume: 7 start-page: 39666 year: 2017 end-page: 39675 ident: bib0044 article-title: Porous silicon filled with Pd/WO publication-title: RSC Adv. – volume: 2 start-page: 1744 year: 2017 end-page: 1752 ident: bib0005 article-title: UV-activated MoS publication-title: ACS Sens. – volume: 29 year: 2018 ident: bib0033 article-title: Influence of morphology on electrical and optical properties of graphene/Al-doped ZnO-nanorod composites publication-title: Nanotechnology – volume: 305 year: 2020 ident: bib0041 article-title: MoS publication-title: Sens. Actuators B Chem – volume: 222 start-page: 492 year: 2016 end-page: 498 ident: bib0012 article-title: First-principles study of MoS publication-title: Sens. Actuators B Chem – volume: 175 year: 2020 ident: bib0020 article-title: Electrochemical study of hydrothermally synthesised reduced MoS publication-title: Vacuum – volume: 92 year: 2015 ident: bib0013 article-title: Nanoscale inhomogeneity of the Schottky barrier and resistivity in MoS publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. – volume: 167 start-page: 90 year: 2019 end-page: 97 ident: bib0024 article-title: On the performance of vertical MoS publication-title: Vacuum – volume: 19 start-page: 1 year: 2019 end-page: 12 ident: bib0004 article-title: Gas sensors based on mechanically exfoliated MoS publication-title: Sensors (Basel) – volume: 64 start-page: 128 year: 2019 end-page: 135 ident: bib0003 article-title: Enhanced NO publication-title: Sci. Bull. – volume: 40 start-page: 577 year: 2015 end-page: 584 ident: bib0018 article-title: Electronic properties of transition-metal dichalcogenides publication-title: MRS Bull. – volume: 6 start-page: 78 year: 2016 ident: bib0022 article-title: Optoelectronic devices based on atomically thin transition metal dichalcogenides publication-title: Appl. Sci. – volume: 779 start-page: 140 year: 2019 end-page: 146 ident: bib0014 article-title: High performance photodetector based on graphene/MoS publication-title: J. Alloys Compd. – volume: 236 start-page: 378 year: 2016 end-page: 385 ident: bib0001 article-title: Gas sensor based on MoS publication-title: Sens. Actuators, B Chem. – volume: 709 year: 2020 ident: bib0006 article-title: Synthesis of nanocrystalline ZnS/TiO publication-title: Thin Solid Films – volume: 44 start-page: 8859 year: 2015 end-page: 8876 ident: bib0008 article-title: Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges publication-title: Chem. Soc. Rev. – volume: 120 start-page: 14113 year: 2016 end-page: 14121 ident: bib0047 article-title: Modulation of gas adsorption and magnetic properties of monolayer-MoS publication-title: J. Phys. Chem. C. – volume: 130 start-page: 146 year: 2016 end-page: 153 ident: bib0023 article-title: The enhancement of NO detection by doping strategies on monolayer MoS publication-title: Vacuum – volume: 466 start-page: 1 year: 2019 end-page: 11 ident: bib0037 article-title: 3D-multilayer MoS publication-title: Appl. Surf. Sci. – volume: 3 start-page: 433 year: 2016 end-page: 451 ident: bib0007 article-title: Two-dimensional layered nanomaterials for gas-sensing applications publication-title: Inorg. Chem. Front. – volume: 49 year: 2015 ident: bib0046 article-title: Theoretical study of the NO, NO publication-title: J. Phys. D. Appl. Phys. – volume: 725 start-page: 253 year: 2017 end-page: 259 ident: bib0042 article-title: High-response NO publication-title: J. Alloys Compd. – volume: 588 start-page: 67 year: 2015 end-page: 77 ident: bib0016 article-title: Time-of-flight secondary ion mass spectroscopy investigation of the chemical rearrangement undergone by MoS publication-title: Thin Solid Films – volume: 4 start-page: 651 year: 2015 end-page: 687 ident: bib0011 article-title: Two-Dimensional materials for sensing: graphene and beyond publication-title: Electronics – volume: 22 start-page: 143 year: 1972 end-page: 149 ident: bib0028 article-title: The influence of sputtering and transport mechanisms on target etching and thin film growth in rf systems—II. Transport and deposition processes publication-title: Vacuum – volume: 242 start-page: 694 year: 2017 end-page: 699 ident: bib0043 article-title: Palladium decorated silicon carbide nanocauliflowers for hydrogen gas sensing application publication-title: Sens. Actuators, B Chem – volume: 637 start-page: 32 year: 2017 end-page: 36 ident: bib0015 article-title: Effects of plasma treatment on the electrical reliability of multilayer MoS publication-title: Thin Solid Films – volume: 42 start-page: 9327 year: 2016 end-page: 9331 ident: bib0045 article-title: A low temperature gas sensor based on Au-loaded MoS publication-title: Ceram. Int. – volume: 177 year: 2020 ident: bib0017 article-title: Effect of metal coating material on field emission of vertically grown layered MoS publication-title: Vacuum – volume: 282 start-page: 259 year: 2019 end-page: 267 ident: bib0034 article-title: Hierarchical hollow MoS2 microspheres as materials for conductometric NO publication-title: Sens. Actuators B Chem – volume: 616 start-page: 482 year: 2016 end-page: 501 ident: bib0010 article-title: Atomically-thin layered films for device applications based upon 2D TMDC materials publication-title: Thin Solid Films – volume: 7 start-page: 4879 year: 2013 end-page: 4891 ident: bib0038 article-title: Sensing behavior of atomically thin-layered MoS publication-title: ACS Nano – volume: 43 start-page: 11141 year: 2018 end-page: 11149 ident: bib0025 article-title: One step sputtered grown MoS publication-title: Int. J. Hydrogen Energy – volume: 8 start-page: 5304 year: 2014 ident: bib0036 article-title: High-performance chemical sensing using schottky-contacted chemical vapor deposition grown monolayer MoS publication-title: ACS Nano – volume: 12 start-page: 3695 year: 2012 end-page: 3700 ident: bib0019 article-title: MoS publication-title: Nano Lett – volume: 797 start-page: 582 year: 2019 end-page: 588 ident: bib0026 article-title: Influence of barrier inhomogeneities on transport properties of Pt/MoS publication-title: J. Alloys Compd. – volume: 10 start-page: 2088 year: 2010 end-page: 2106 ident: bib0029 article-title: Metal oxide gas sensors: Sensitivity and influencing factors publication-title: Sensors – volume: 275 start-page: 499 year: 2018 end-page: 507 ident: bib0030 article-title: Excellent room temperature ammonia gas sensing properties of n-MoS publication-title: Sensors Actuators, B Chem – volume: 234 start-page: 8 year: 2016 end-page: 14 ident: bib0027 article-title: Highly sensitive and selective hydrogen gas sensor using sputtered grown Pd decorated MnO publication-title: Sens. Actuators, B Chem – start-page: 602 year: 2015 end-page: 613 ident: bib0035 article-title: Response to NO publication-title: Sens. Actuators, B Chem – volume: 5 start-page: 8052 year: 2015 ident: bib0009 article-title: Charge-transfer-based Gas Sensing Using Atomic-layer MoS publication-title: Sci. Rep. – volume: 19 start-page: 1 year: 2019 ident: 10.1016/j.tsf.2021.138625_bib0004 article-title: Gas sensors based on mechanically exfoliated MoS2 nanosheets for room-temperature NO2 detection publication-title: Sensors (Basel) – volume: 3 start-page: 433 year: 2016 ident: 10.1016/j.tsf.2021.138625_bib0007 article-title: Two-dimensional layered nanomaterials for gas-sensing applications publication-title: Inorg. Chem. Front. doi: 10.1039/C5QI00251F – volume: 725 start-page: 253 year: 2017 ident: 10.1016/j.tsf.2021.138625_bib0042 article-title: High-response NO2 resistive gas sensor based on bilayer MoS2 grown by a new two-step chemical vapor deposition method publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.06.105 – volume: 709 year: 2020 ident: 10.1016/j.tsf.2021.138625_bib0006 article-title: Synthesis of nanocrystalline ZnS/TiO2 films for enhanced NO2 gas sensing publication-title: Thin Solid Films doi: 10.1016/j.tsf.2020.138190 – volume: 130 start-page: 146 year: 2016 ident: 10.1016/j.tsf.2021.138625_bib0023 article-title: The enhancement of NO detection by doping strategies on monolayer MoS2 publication-title: Vacuum doi: 10.1016/j.vacuum.2016.05.005 – volume: 10 start-page: 2165 year: 2014 ident: 10.1016/j.tsf.2021.138625_bib0021 article-title: Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage publication-title: Small doi: 10.1002/smll.201303711 – volume: 6 start-page: 78 year: 2016 ident: 10.1016/j.tsf.2021.138625_bib0022 article-title: Optoelectronic devices based on atomically thin transition metal dichalcogenides publication-title: Appl. Sci. doi: 10.3390/app6030078 – volume: 8 start-page: 5304 year: 2014 ident: 10.1016/j.tsf.2021.138625_bib0036 article-title: High-performance chemical sensing using schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors publication-title: ACS Nano doi: 10.1021/nn5015215 – volume: 648 start-page: 50 year: 2018 ident: 10.1016/j.tsf.2021.138625_bib0002 article-title: Effect of solution concentration on physicochemical and NO2 gas sensing properties of sprayed MoO3 nanobelts publication-title: Thin Solid Films doi: 10.1016/j.tsf.2018.01.008 – volume: 588 start-page: 67 year: 2015 ident: 10.1016/j.tsf.2021.138625_bib0016 article-title: Time-of-flight secondary ion mass spectroscopy investigation of the chemical rearrangement undergone by MoS2 under tribological conditions publication-title: Thin Solid Films doi: 10.1016/j.tsf.2015.04.051 – volume: 797 start-page: 582 year: 2019 ident: 10.1016/j.tsf.2021.138625_bib0026 article-title: Influence of barrier inhomogeneities on transport properties of Pt/MoS2 Schottky barrier junction publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.05.028 – volume: 9 start-page: 9314 year: 2015 ident: 10.1016/j.tsf.2021.138625_bib0040 article-title: Highly enhanced gas adsorption properties in vertically aligned MoS2 layers publication-title: ACS Nano doi: 10.1021/acsnano.5b04504 – volume: 7 start-page: 39666 year: 2017 ident: 10.1016/j.tsf.2021.138625_bib0044 article-title: Porous silicon filled with Pd/WO3 –ZnO composite thin film for enhanced H2 gas-sensing performance publication-title: RSC Adv. doi: 10.1039/C7RA05341J – volume: 616 start-page: 482 year: 2016 ident: 10.1016/j.tsf.2021.138625_bib0010 article-title: Atomically-thin layered films for device applications based upon 2D TMDC materials publication-title: Thin Solid Films doi: 10.1016/j.tsf.2016.08.068 – volume: 305 year: 2020 ident: 10.1016/j.tsf.2021.138625_bib0041 article-title: MoS2 hybrid heterostructure thin film decorated with CdTe quantum dots for room temperature NO2 gas sensor publication-title: Sens. Actuators B Chem doi: 10.1016/j.snb.2019.127437 – volume: 779 start-page: 140 year: 2019 ident: 10.1016/j.tsf.2021.138625_bib0014 article-title: High performance photodetector based on graphene/MoS2/graphene lateral heterostrurcture with Schottky junctions publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.11.165 – volume: 167 start-page: 90 year: 2019 ident: 10.1016/j.tsf.2021.138625_bib0024 article-title: On the performance of vertical MoS2 nanoflakes as a gas sensor publication-title: Vacuum doi: 10.1016/j.vacuum.2019.05.033 – volume: 43 start-page: 11141 year: 2018 ident: 10.1016/j.tsf.2021.138625_bib0025 article-title: One step sputtered grown MoS2 nanoworms binder free electrodes for high performance supercapacitor application publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.05.005 – volume: 11 start-page: 2305 year: 2015 ident: 10.1016/j.tsf.2021.138625_bib0032 article-title: Stabilizing MoS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air publication-title: Small doi: 10.1002/smll.201402923 – volume: 26 start-page: 5158 year: 2016 ident: 10.1016/j.tsf.2021.138625_bib0039 article-title: High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201601562 – volume: 29 year: 2018 ident: 10.1016/j.tsf.2021.138625_bib0033 article-title: Influence of morphology on electrical and optical properties of graphene/Al-doped ZnO-nanorod composites publication-title: Nanotechnology doi: 10.1088/1361-6528/aad3ec – volume: 234 start-page: 8 year: 2016 ident: 10.1016/j.tsf.2021.138625_bib0027 article-title: Highly sensitive and selective hydrogen gas sensor using sputtered grown Pd decorated MnO2 nanowalls publication-title: Sens. Actuators, B Chem doi: 10.1016/j.snb.2016.04.152 – volume: 10 start-page: 2088 year: 2010 ident: 10.1016/j.tsf.2021.138625_bib0029 article-title: Metal oxide gas sensors: Sensitivity and influencing factors publication-title: Sensors doi: 10.3390/s100302088 – volume: 40 start-page: 577 year: 2015 ident: 10.1016/j.tsf.2021.138625_bib0018 article-title: Electronic properties of transition-metal dichalcogenides publication-title: MRS Bull. doi: 10.1557/mrs.2015.143 – volume: 236 start-page: 378 year: 2016 ident: 10.1016/j.tsf.2021.138625_bib0001 article-title: Gas sensor based on MoS2 monolayer publication-title: Sens. Actuators, B Chem. doi: 10.1016/j.snb.2016.06.033 – volume: 275 start-page: 499 year: 2018 ident: 10.1016/j.tsf.2021.138625_bib0030 article-title: Excellent room temperature ammonia gas sensing properties of n-MoS2/p-CuO heterojunction nanoworms publication-title: Sensors Actuators, B Chem doi: 10.1016/j.snb.2018.08.046 – volume: 42 start-page: 9327 year: 2016 ident: 10.1016/j.tsf.2021.138625_bib0045 article-title: A low temperature gas sensor based on Au-loaded MoS2 hierarchical nanostructures for detecting ammonia publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.02.160 – volume: 44 start-page: 8859 year: 2015 ident: 10.1016/j.tsf.2021.138625_bib0008 article-title: Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00507H – volume: 5 start-page: 8052 year: 2015 ident: 10.1016/j.tsf.2021.138625_bib0009 article-title: Charge-transfer-based Gas Sensing Using Atomic-layer MoS2 publication-title: Sci. Rep. doi: 10.1038/srep08052 – volume: 222 start-page: 492 year: 2016 ident: 10.1016/j.tsf.2021.138625_bib0012 article-title: First-principles study of MoS2, phosphorene and graphene based single electron transistor for gas sensing applications publication-title: Sens. Actuators B Chem doi: 10.1016/j.snb.2015.08.039 – volume: 175 year: 2020 ident: 10.1016/j.tsf.2021.138625_bib0020 article-title: Electrochemical study of hydrothermally synthesised reduced MoS2 layered nanosheets publication-title: Vacuum doi: 10.1016/j.vacuum.2020.109250 – volume: 120 start-page: 14113 year: 2016 ident: 10.1016/j.tsf.2021.138625_bib0047 article-title: Modulation of gas adsorption and magnetic properties of monolayer-MoS2 by antisite defect and strain publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.6b03284 – volume: 242 start-page: 694 year: 2017 ident: 10.1016/j.tsf.2021.138625_bib0043 article-title: Palladium decorated silicon carbide nanocauliflowers for hydrogen gas sensing application publication-title: Sens. Actuators, B Chem doi: 10.1016/j.snb.2016.11.107 – volume: 7 start-page: 4879 year: 2013 ident: 10.1016/j.tsf.2021.138625_bib0038 article-title: Sensing behavior of atomically thin-layered MoS2 transistors publication-title: ACS Nano doi: 10.1021/nn400026u – volume: 64 start-page: 128 year: 2019 ident: 10.1016/j.tsf.2021.138625_bib0003 article-title: Enhanced NO2 gas sensing of a single-layer MoS2 by photogating and piezo-phototronic effects publication-title: Sci. Bull. doi: 10.1016/j.scib.2018.12.009 – volume: 12 start-page: 3695 year: 2012 ident: 10.1016/j.tsf.2021.138625_bib0019 article-title: MoS2 nanosheet phototransistors with thickness-modulated optical energy gap publication-title: Nano Lett doi: 10.1021/nl301485q – volume: 2 start-page: 1744 year: 2017 ident: 10.1016/j.tsf.2021.138625_bib0005 article-title: UV-activated MoS2 based fast and reversible NO2 sensor at room temperature publication-title: ACS Sens. doi: 10.1021/acssensors.7b00731 – volume: 637 start-page: 32 year: 2017 ident: 10.1016/j.tsf.2021.138625_bib0015 article-title: Effects of plasma treatment on the electrical reliability of multilayer MoS2 field-effect transistors publication-title: Thin Solid Films doi: 10.1016/j.tsf.2017.02.014 – volume: 282 start-page: 259 year: 2019 ident: 10.1016/j.tsf.2021.138625_bib0034 article-title: Hierarchical hollow MoS2 microspheres as materials for conductometric NO2 gas sensors publication-title: Sens. Actuators B Chem doi: 10.1016/j.snb.2018.11.069 – volume: 92 year: 2015 ident: 10.1016/j.tsf.2021.138625_bib0013 article-title: Nanoscale inhomogeneity of the Schottky barrier and resistivity in MoS2 multilayers publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.92.081307 – volume: 466 start-page: 1 year: 2019 ident: 10.1016/j.tsf.2021.138625_bib0037 article-title: 3D-multilayer MoS2 nanosheets vertically grown on highly mesoporous cubic In2O3 for high-performance gas sensing at room temperature publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.10.018 – volume: 49 year: 2015 ident: 10.1016/j.tsf.2021.138625_bib0046 article-title: Theoretical study of the NO, NO2, CO, SO2, and NH3 adsorptions on multi-diameter single-wall MoS2 nanotube publication-title: J. Phys. D. Appl. Phys. – start-page: 602 year: 2015 ident: 10.1016/j.tsf.2021.138625_bib0035 article-title: Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors publication-title: Sens. Actuators, B Chem doi: 10.1016/j.snb.2014.10.099 – volume: 22 start-page: 143 year: 1972 ident: 10.1016/j.tsf.2021.138625_bib0028 article-title: The influence of sputtering and transport mechanisms on target etching and thin film growth in rf systems—II. Transport and deposition processes publication-title: Vacuum doi: 10.1016/0042-207X(72)90310-7 – volume: 177 year: 2020 ident: 10.1016/j.tsf.2021.138625_bib0017 article-title: Effect of metal coating material on field emission of vertically grown layered MoS2 nanosheets publication-title: Vacuum doi: 10.1016/j.vacuum.2020.109386 – volume: 283 start-page: 373 year: 2019 ident: 10.1016/j.tsf.2021.138625_bib0031 article-title: Development of Pd-Pt functionalized high performance H2 gas sensor based on silicon carbide coated porous silicon for extreme environment applications publication-title: Sens. Actuators, B Chem doi: 10.1016/j.snb.2018.12.042 – volume: 4 start-page: 651 year: 2015 ident: 10.1016/j.tsf.2021.138625_bib0011 article-title: Two-Dimensional materials for sensing: graphene and beyond publication-title: Electronics doi: 10.3390/electronics4030651 |
SSID | ssj0001223 |
Score | 2.5326521 |
Snippet | •MoS2 thin films of different thickness were grown on p-Si using DC sputtering.•Sputtered MoS2 films show the thickness dependent surface morphology.•NO2 gas... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 138625 |
SubjectTerms | Gas sensor Molybdenum disulfide Nanoworm Nitrogen dioxide Sputtering |
Title | MoS2 nanoworm thin films for NO2 gas sensing application |
URI | https://dx.doi.org/10.1016/j.tsf.2021.138625 |
Volume | 725 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KRdCDaFWsj7IHT0LaZLN59FiKpVqsoBZ7C5vdTY3UtJiIN3-7s3nUCurBU0jYCeHbzTzYb74FOJe-1hWzfCPE8GOgw2MGF6KLzhBrASq44ipnW4zd4YRdT51pDfpVL4ymVZa-v_Dpubcun3RKNDvLONY9vhiMNK1Qywhh5qA72JmnV3n744vmYVG6Ys7p0dXOZs7xylKt4kmttmVjZu_8HJvW4s1gF3bKRJH0im_Zg5pKGrC9Jh_YgM2cvinSffBvFveUJDxZvGMOSrKnOCFRPH9JCeakZHxLyYynJNVk9WRG1jatD2AyuHzoD43yTARD2K6dGcrLVbsiJS3PoiHHaoMrqpgbOVhf2kr5yo9YaDrSM8PIEdzFf5hK14_Crs-Usg-hniwSdQSEY_HCnTCiknmMSY9LfKE0LRF1ZdflZhPMCo1AlILh-tyKeVAxw54DBDDQAAYFgE24WJksC7WMvwazCuLg25QH6M1_Nzv-n9kJbOm7gqt4CvXs9U2dYT6Rha18wbRgo3c1Go71dXT3OPoE7cvIxg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xCAEHBAXEjg9wQUqbOM7SAwfEokIXDlCpt-DETgmiKSJBiAs_xQ8yzlKKBByQek0yVvI8mUV-fgY4EK7SFTNczcf0o2HAYxoPgjoGQ-wFaMAllxnbomM3uuyqZ_Wm4KPcC6NolUXsz2N6Fq2LK7UCzdpTFKk9vpiMFK1QyQhh5VAwK5vy7RX7tuT48gwn-ZDSi_Pb04ZWHC2gBaZtppp0MvGrUArDMajPsWjnkkpmhxa2aaaUrnRD5uuWcHQ_tAJu469Ahe2Gft1lUpo47jTMMgwX6tiE6vsXr8SgdETVU69XLqVmpLI0UbKh1KgaJrYS1s_JcCzBXSzDUlGZkpP841dgSsYVWBzTK6zAXMYXDZJVcNvDG0piHg8RhQFJ76OYhNHjICFYBJPONSV9npBEsePjPhlbJV-D7kSQWoeZeBjLDSAcuyVu-SEVzGFMOFzggEI3grAu6jbXN0Ev0fCCQqFcHZTx6JVUtAcPAfQUgF4O4CYcjUyecnmOvx5mJcTeNx_zMH38brb1P7N9mG_ctlte67LT3IYFdScnSu7ATPr8InexmEn9vcx5CNxN2ls_AT4qAwA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MoS2+nanoworm+thin+films+for+NO2+gas+sensing+application&rft.jtitle=Thin+solid+films&rft.au=Neetika&rft.au=Kumar%2C+Arvind&rft.au=Chandra%2C+Ramesh&rft.au=Malik%2C+V.K.&rft.date=2021-05-01&rft.issn=0040-6090&rft.volume=725&rft.spage=138625&rft_id=info:doi/10.1016%2Fj.tsf.2021.138625&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tsf_2021_138625 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-6090&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-6090&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-6090&client=summon |