A facile method to prepare size-tunable silver nanoparticles and its antibacterial mechanism
[Display omitted] •Different sizes of silver nanoparticles were synthesized by a facial method.•The antibacterial activities increase with the decreasing of the particles size.•Contact action and Ag+ release antibacterial mechanisms were demonstrated. The antibacterial effect of silver nanoparticles...
Saved in:
Published in | Advanced powder technology : the international journal of the Society of Powder Technology, Japan Vol. 29; no. 2; pp. 407 - 415 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0921-8831 1568-5527 |
DOI | 10.1016/j.apt.2017.11.028 |
Cover
Loading…
Abstract | [Display omitted]
•Different sizes of silver nanoparticles were synthesized by a facial method.•The antibacterial activities increase with the decreasing of the particles size.•Contact action and Ag+ release antibacterial mechanisms were demonstrated.
The antibacterial effect of silver nanoparticles (denoted as Ag NPs) is closely related to size. This could partly explain why size controllable synthesis ofAg NPs for bactericidal application is drawing much attention. Thus, we establish a facile and mild route to prepare size-tunable Ag NPs with highly uniform morphologies and narrow size distributions. The as-prepared Ag NPs with averaged sizes of 2, 12 and 32 nm were characterized by transmission electron microscopy (TEM), ultraviolet–visible absorption spectroscopy (UV–vis), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The antimicrobial effect of the as-prepared Ag NPs with different particles size was assessed by broth dilution and disk diffusion as well as measurement of optical density (OD600). Moreover, their antibacterial mechanism was discussed in relation to morphology observation of microorganism by scanning electron microscopy (SEM) and to concentration detection of Ag+ by stripping voltammetry. It was found that the parameters such as reactant molar ratio, reaction time, dropping speed, and most of all, pH of the reactant solutions, have significant influences on size-regulation of Ag NPs. The as-prepared Ag NPs exhibit excellent antibacterial properties, and their antimicrobial activities increase with decreasing particles size. Besides, two kinds of mechanisms, i.e., contact action and release of Ag+, are responsible for the antimicrobial effect of Ag NPs. |
---|---|
AbstractList | [Display omitted]
•Different sizes of silver nanoparticles were synthesized by a facial method.•The antibacterial activities increase with the decreasing of the particles size.•Contact action and Ag+ release antibacterial mechanisms were demonstrated.
The antibacterial effect of silver nanoparticles (denoted as Ag NPs) is closely related to size. This could partly explain why size controllable synthesis ofAg NPs for bactericidal application is drawing much attention. Thus, we establish a facile and mild route to prepare size-tunable Ag NPs with highly uniform morphologies and narrow size distributions. The as-prepared Ag NPs with averaged sizes of 2, 12 and 32 nm were characterized by transmission electron microscopy (TEM), ultraviolet–visible absorption spectroscopy (UV–vis), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The antimicrobial effect of the as-prepared Ag NPs with different particles size was assessed by broth dilution and disk diffusion as well as measurement of optical density (OD600). Moreover, their antibacterial mechanism was discussed in relation to morphology observation of microorganism by scanning electron microscopy (SEM) and to concentration detection of Ag+ by stripping voltammetry. It was found that the parameters such as reactant molar ratio, reaction time, dropping speed, and most of all, pH of the reactant solutions, have significant influences on size-regulation of Ag NPs. The as-prepared Ag NPs exhibit excellent antibacterial properties, and their antimicrobial activities increase with decreasing particles size. Besides, two kinds of mechanisms, i.e., contact action and release of Ag+, are responsible for the antimicrobial effect of Ag NPs. |
Author | Yang, Yan Wang, Zhihua Zhao, Yanbao Sun, Lei Wu, Yunping Zhang, Zhijie |
Author_xml | – sequence: 1 givenname: Yunping surname: Wu fullname: Wu, Yunping organization: Engineering Research Center for Nanomaterials, Henan University, Jinming Campus, Kaifeng 475004, China – sequence: 2 givenname: Yan surname: Yang fullname: Yang, Yan organization: Engineering Research Center for Nanomaterials, Henan University, Jinming Campus, Kaifeng 475004, China – sequence: 3 givenname: Zhijie surname: Zhang fullname: Zhang, Zhijie organization: Engineering Research Center for Nanomaterials, Henan University, Jinming Campus, Kaifeng 475004, China – sequence: 4 givenname: Zhihua surname: Wang fullname: Wang, Zhihua email: zhwang@henu.edu.cn organization: College of Chemistry and Chemical Engineering, Henan University, Jinming Campus, Kaifeng 475004, China – sequence: 5 givenname: Yanbao surname: Zhao fullname: Zhao, Yanbao organization: Engineering Research Center for Nanomaterials, Henan University, Jinming Campus, Kaifeng 475004, China – sequence: 6 givenname: Lei surname: Sun fullname: Sun, Lei email: sunlei@henu.edu.cn organization: Engineering Research Center for Nanomaterials, Henan University, Jinming Campus, Kaifeng 475004, China |
BookMark | eNp9kMtqwzAQRUVJoUnaD-hOP2BXI0e2TFch9AWBbtpdQcjjMVFw5CCpgfbra9OuusjqMsycC3MWbOYHT4zdgshBQHm3z-0x5VJAlQPkQuoLNgdV6kwpWc3YXNQSMq0LuGKLGPdiPJSres4-1ryz6HriB0q7oeVp4MdARxuIR_dNWfr0tumnoT9R4N76YVwmhz1Fbn3LXZoyucZiouBsPzbhznoXD9fssrN9pJu_XLL3x4e3zXO2fX162ay3GRZlkTKS1K1Qg1RNhygrhaWmxkINXYudVm0tW9CypE7KElQtrJJqVSAKLUjWulgy-O3FMMQYqDPH4A42fBkQZtJj9mbUYyY9BsCMekam-segSza5wadgXX-WvP8laXzp5CiYiI48UusCYTLt4M7QP1jTg2I |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2023_124185 crossref_primary_10_1080_10826068_2023_2248238 crossref_primary_10_1002_pi_6295 crossref_primary_10_1021_acsomega_3c09851 crossref_primary_10_1016_j_jbiotec_2024_08_009 crossref_primary_10_1021_acsabm_1c00674 crossref_primary_10_3389_fnano_2024_1427843 crossref_primary_10_1016_j_colsurfb_2024_114213 crossref_primary_10_1007_s40204_020_00135_2 crossref_primary_10_1016_j_rechem_2020_100073 crossref_primary_10_1002_aoc_5575 crossref_primary_10_1016_j_jre_2020_02_002 crossref_primary_10_3390_ma17020278 crossref_primary_10_1021_acsanm_8b00069 crossref_primary_10_1039_D3RA03736C crossref_primary_10_1002_pi_6689 crossref_primary_10_1016_j_fbio_2023_102517 crossref_primary_10_3390_nano9070972 crossref_primary_10_3390_app11104638 crossref_primary_10_1007_s12223_024_01161_4 crossref_primary_10_1080_14786419_2019_1628752 crossref_primary_10_1016_j_apt_2018_10_003 crossref_primary_10_3389_fchem_2022_870666 crossref_primary_10_1002_app_55392 crossref_primary_10_1007_s40495_019_00204_6 crossref_primary_10_1016_j_msec_2020_110712 crossref_primary_10_3390_polym12112486 crossref_primary_10_1016_j_inoche_2021_108474 crossref_primary_10_1016_j_msec_2020_110834 crossref_primary_10_1039_D4TB01780C crossref_primary_10_1002_jsfa_11492 crossref_primary_10_2174_0929867330666230607125432 crossref_primary_10_1002_pc_27525 crossref_primary_10_1007_s13204_024_03073_8 crossref_primary_10_3390_jfb14050244 crossref_primary_10_1007_s10856_021_06590_y crossref_primary_10_1002_pc_27958 crossref_primary_10_1021_acsapm_0c00792 crossref_primary_10_1016_j_colsurfa_2021_127831 crossref_primary_10_1155_2022_1854473 crossref_primary_10_2217_nnm_2023_0246 crossref_primary_10_3390_ijms24065133 crossref_primary_10_1021_acsnano_4c09803 crossref_primary_10_1088_2631_8695_acd74a crossref_primary_10_1016_j_carbpol_2019_04_042 crossref_primary_10_1080_10826068_2023_2209886 crossref_primary_10_1186_s13104_019_4813_z crossref_primary_10_1007_s11705_022_2288_2 crossref_primary_10_1007_s10570_021_03825_7 crossref_primary_10_1021_acsomega_9b02908 crossref_primary_10_1088_1757_899X_460_1_012007 crossref_primary_10_1016_j_inoche_2019_107497 crossref_primary_10_1039_C8RA08148D crossref_primary_10_3390_catal13010063 crossref_primary_10_3390_molecules26206144 crossref_primary_10_1016_j_colsurfa_2021_126453 crossref_primary_10_1016_j_jff_2018_07_015 crossref_primary_10_1016_j_inoche_2020_108435 crossref_primary_10_1002_app_46997 crossref_primary_10_1002_star_202200156 crossref_primary_10_1002_aoc_7780 crossref_primary_10_1016_j_yrtph_2018_08_003 crossref_primary_10_1088_2053_1591_abb8a0 crossref_primary_10_3390_ma17122853 crossref_primary_10_1016_j_molstruc_2019_127060 crossref_primary_10_3390_nano9121775 crossref_primary_10_1016_j_foodchem_2024_141844 crossref_primary_10_1016_j_mtcomm_2023_106284 crossref_primary_10_1007_s11696_019_00917_4 crossref_primary_10_3390_molecules27207059 crossref_primary_10_1021_acs_bioconjchem_0c00297 crossref_primary_10_1016_j_molstruc_2024_137901 crossref_primary_10_1016_j_fbio_2023_103133 crossref_primary_10_1039_D2AY02102A crossref_primary_10_1155_2020_5380950 crossref_primary_10_1007_s10904_021_02165_0 crossref_primary_10_1007_s42823_023_00626_9 crossref_primary_10_3390_polym10090945 crossref_primary_10_1002_slct_202303022 crossref_primary_10_1007_s11802_023_5349_3 crossref_primary_10_1016_j_inoche_2022_110356 crossref_primary_10_1016_j_colsurfa_2020_124736 crossref_primary_10_1016_j_carbpol_2018_09_087 crossref_primary_10_1016_j_bioadv_2022_213269 crossref_primary_10_1007_s12668_022_01043_4 crossref_primary_10_1016_j_colsurfb_2024_114131 crossref_primary_10_3390_molecules26165057 crossref_primary_10_1166_jbn_2022_3413 crossref_primary_10_1155_2022_2663812 crossref_primary_10_1016_j_matpr_2021_02_232 crossref_primary_10_3390_ijms23031799 crossref_primary_10_1080_10643389_2020_1806685 crossref_primary_10_1016_j_jallcom_2023_168797 crossref_primary_10_1098_rsos_240915 crossref_primary_10_3390_ma17091939 crossref_primary_10_2116_analsci_18P419 crossref_primary_10_26599_NBE_2023_9290020 crossref_primary_10_1016_j_inoche_2023_112006 crossref_primary_10_1016_j_foodhyd_2022_108331 crossref_primary_10_1007_s11947_023_03217_8 crossref_primary_10_1016_j_apt_2022_103928 crossref_primary_10_1016_j_inoche_2021_108808 crossref_primary_10_1088_1748_605X_ad4e87 crossref_primary_10_3390_nano10112318 crossref_primary_10_1016_j_ijbiomac_2022_06_184 crossref_primary_10_1016_j_foodchem_2023_135459 crossref_primary_10_1039_C8TB02211A crossref_primary_10_1016_j_jhazmat_2023_131290 crossref_primary_10_1016_j_carbpol_2019_05_048 crossref_primary_10_33380_2305_2066_2021_10_3_176_187 crossref_primary_10_1007_s11051_025_06237_x crossref_primary_10_1016_j_snb_2018_05_129 crossref_primary_10_3389_fchem_2020_00620 crossref_primary_10_1016_j_apmt_2020_100763 crossref_primary_10_1177_09673911211037499 crossref_primary_10_1557_adv_2019_473 crossref_primary_10_1002_mame_202100646 crossref_primary_10_1016_j_heliyon_2022_e10010 crossref_primary_10_1016_j_ijbiomac_2025_141379 crossref_primary_10_1007_s11664_021_09078_1 crossref_primary_10_1016_j_colsurfa_2024_133957 crossref_primary_10_1002_aoc_7293 crossref_primary_10_1016_j_biotechadv_2018_05_004 crossref_primary_10_1016_j_eurpolymj_2022_111087 crossref_primary_10_1016_j_inoche_2024_113492 crossref_primary_10_1016_j_molstruc_2023_136823 crossref_primary_10_1016_j_mtsust_2023_100552 crossref_primary_10_1016_j_porgcoat_2023_108144 crossref_primary_10_1088_2632_959X_ad4c80 crossref_primary_10_1080_10826068_2021_1875236 crossref_primary_10_1039_C8NJ03112F crossref_primary_10_1007_s11130_019_00740_y crossref_primary_10_1002_slct_202203609 crossref_primary_10_1016_j_molstruc_2021_131699 crossref_primary_10_1155_2021_9959552 crossref_primary_10_1007_s11051_018_4378_0 crossref_primary_10_1016_j_apt_2020_09_017 crossref_primary_10_1016_j_micromeso_2022_112207 crossref_primary_10_1038_s41598_024_84503_z crossref_primary_10_1080_10826068_2020_1815057 crossref_primary_10_1515_ntrev_2022_0137 crossref_primary_10_1051_e3sconf_202346303016 crossref_primary_10_1016_j_inoche_2024_113654 crossref_primary_10_1021_acsabm_2c00670 crossref_primary_10_1016_j_ijbiomac_2022_05_015 crossref_primary_10_1007_s11033_023_08914_3 crossref_primary_10_1080_10826068_2025_2472937 |
Cites_doi | 10.1002/adma.201601739 10.1016/j.msec.2017.02.037 10.1073/pnas.1007524107 10.1016/j.biomaterials.2004.05.030 10.1166/jnn.2009.1217 10.1016/j.arabjc.2010.04.008 10.1021/ja2080345 10.1007/s10853-011-5499-3 10.1166/jnn.2013.7781 10.1007/s10853-017-1038-1 10.1016/j.colsurfa.2012.06.012 10.1016/j.reactfunctpolym.2005.11.005 10.1166/jnn.2004.117 10.1007/s10853-017-1072-z 10.1016/j.msec.2014.04.059 10.1016/j.biomaterials.2017.01.028 10.1021/cm504243f 10.1016/j.matlet.2005.02.033 10.1039/C5RA00610D 10.1088/0957-4484/16/10/059 10.1016/j.nantod.2015.04.002 10.1021/nl5015734 10.1007/s10570-014-0449-2 10.1021/jp712087m 10.1166/jnn.2014.8761 10.1186/s11671-016-1725-x 10.1039/C3CS60218D 10.1016/j.partic.2016.06.003 10.1146/annurev-bioeng-071811-150124 10.1016/j.physe.2011.09.018 10.1016/j.matlet.2016.07.114 10.1021/nl301934w 10.1016/j.apcatb.2016.11.006 10.1021/ed084p322 10.1016/j.nano.2006.12.001 10.1007/s11051-008-9428-6 10.3390/nano6040074 10.1016/j.msec.2012.09.005 10.1016/j.jcis.2013.06.028 |
ContentType | Journal Article |
Copyright | 2017 The Society of Powder Technology Japan |
Copyright_xml | – notice: 2017 The Society of Powder Technology Japan |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apt.2017.11.028 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1568-5527 |
EndPage | 415 |
ExternalDocumentID | 10_1016_j_apt_2017_11_028 S092188311730465X |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 23M 4.4 457 4G. 5GY 5VS 63Z 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAFNC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDBF ABFNM ABJNI ABLST ABMAC ABNUV ABUBZ ABXDB ABXRA ABYKQ ACDAQ ACGFS ACMRT ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADYHW AEBSH AEKER AENEX AEVUW AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMFWP AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 EAP EAS EBS EFJIC EFLBG EJD EMK ENUVR EP2 EP3 EST ESX F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN GBLVA HLY HVGLF HZ~ I-F J1W KC5 KCYFY KOM LY7 M41 MAGPM MM1 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- R4W RIG RNI ROL RZC SCE SDF SES SPC SPCBC SSG SSM SSZ T5K TUS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACUHS ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c363t-e2ef4c8125bfcc275c68eba191fdcf85d92d1826ef2261590a52543cc080e2983 |
IEDL.DBID | .~1 |
ISSN | 0921-8831 |
IngestDate | Thu Apr 24 23:09:41 EDT 2025 Tue Jul 01 02:42:28 EDT 2025 Fri Feb 23 02:30:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Size-tunable silver nanoparticles Structure characterization Preparation Antibacterial mechanism |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-e2ef4c8125bfcc275c68eba191fdcf85d92d1826ef2261590a52543cc080e2983 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_j_apt_2017_11_028 crossref_citationtrail_10_1016_j_apt_2017_11_028 elsevier_sciencedirect_doi_10_1016_j_apt_2017_11_028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2018 2018-02-00 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: February 2018 |
PublicationDecade | 2010 |
PublicationTitle | Advanced powder technology : the international journal of the Society of Powder Technology, Japan |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ethiraj, Jayanthi, Ramalingam, Banerjee (b0015) 2016; 185 Shahzad, Kim, Yu (b0200) 2015; 5 Logaranjan, Raiza, Gopinath, Chen, Pandian (b0010) 2016; 11 Feng, Shi, Li, Shu, Chen, Xie, Huang (b0205) 2014; 21 Jing, Zhang, Large, Yu, Blom, Nordlander, Wang (b0035) 2014; 14 Wang, Jin, Qasim, Gao, Peng, Li, Feng, Chu (b0145) 2017; 124 Shi, Lu, Jiang (b0100) 2009; 9 Radheshkumar, Münstedt (b0175) 2005; 59 P. Suchomel, A. Panacek, R. Prucek, R. Zboril, L. Kvitek, Synthesis of small silver nanoparticles and their catalytic activity in 4-nitrophenol reduction, in: 5th International Conference, Nanocon 2013, 2014, pp. 225–231. El-Nour, Eftaiha, Al-Warthan, Ammar (b0125) 2010; 3 Kumar, Munstedt (b0170) 2005; 26 Xiu, Zhang, Puppala, Colvin, Alvarez (b0080) 2012; 12 Samavati, Ismail (b0045) 2017; 30 Dong, Liu, Liu, Meng, Ma (b0065) 2017; 52 Ibrahim (b0135) 2015 Raza, Kanwal, Rauf, Sabri, Riaz, Naseem (b0050) 2016; 6 Solomon, Bahadory, Jeyarajasingam, Rutkowsky, Boritz, Mulfinger (b0190) 2007; 84 Li, Rong, Zhao, Li, Lu, Chen (b0120) 2013; 13 Wojtysiak, Kudelski (b0185) 2012; 410 Antolini, Perez (b0090) 2011; 46 Yang, Zheng, Xu, Zhang, Jiang (b0095) 2016; 28 Seoudi, Shabaka, El Sayed, Anis (b0105) 2011; 44 Ni, Wang, Sun, Li, Zhao (b0040) 2014; 41 Morones, Elechiguerra, Camacho, Holt, Kouri, Ramírez, Yacaman (b0140) 2005; 16 Albanese, Tang, Chan (b0110) 2012; 14 Ning, Lin, Tong, Zhang, Lin, Zhang, Long, Wang (b0155) 2017; 204 Zhang, Li, Goebl, Lu, Yin (b0195) 2011; 133 Gu, Huang, Zhu, Li, Wei, Zhao, Liu, Shi (b0025) 2013; 407 Carlson, Hussain, Schrand, Braydich-Stolle, Hess, Jones, Schlager (b0085) 2008; 112 Gao, Sun, Wang, Zhao (b0115) 2013; 33 Radheshkumar, Münstedt (b0180) 2006; 66 Bo, Eaton, Gallagher, Canlas, Miller, Notestein (b0075) 2015; 27 Kumar, Bala, Gondil, Pandey, Chhibber, Jain, Sharma, Wangoo (b0060) 2017; 52 Ouay, Stellacci (b0150) 2015; 10 Kim, Kuk, Yu, Kim, Park, Lee, Kim, Park, Park, Hwang (b0130) 2007; 3 Peng, McMahon, Schatz, Gray, Sun (b0020) 2010; 107 Ul-Islam, Shehzad, Khan, Khattak, Ullah, Park (b0160) 2014; 14 Martínez-Castañón, Niño-Martínez, Martínez-Gutierrez, Martínez-Mendoza, Ruiz (b0005) 2008; 10 Mohandas, Krishnan, Biswas, Menon, Nair (b0055) 2017; 75 Bhattacharjee, Chakraborty, Mandal (b0030) 2004; 4 Rizzello, Pompa (b0165) 2014; 43 10.1016/j.apt.2017.11.028_b0070 Morones (10.1016/j.apt.2017.11.028_b0140) 2005; 16 Wang (10.1016/j.apt.2017.11.028_b0145) 2017; 124 Ning (10.1016/j.apt.2017.11.028_b0155) 2017; 204 Solomon (10.1016/j.apt.2017.11.028_b0190) 2007; 84 Kumar (10.1016/j.apt.2017.11.028_b0060) 2017; 52 Kim (10.1016/j.apt.2017.11.028_b0130) 2007; 3 Yang (10.1016/j.apt.2017.11.028_b0095) 2016; 28 Peng (10.1016/j.apt.2017.11.028_b0020) 2010; 107 Li (10.1016/j.apt.2017.11.028_b0120) 2013; 13 Kumar (10.1016/j.apt.2017.11.028_b0170) 2005; 26 Ul-Islam (10.1016/j.apt.2017.11.028_b0160) 2014; 14 Feng (10.1016/j.apt.2017.11.028_b0205) 2014; 21 Wojtysiak (10.1016/j.apt.2017.11.028_b0185) 2012; 410 Martínez-Castañón (10.1016/j.apt.2017.11.028_b0005) 2008; 10 Jing (10.1016/j.apt.2017.11.028_b0035) 2014; 14 Ethiraj (10.1016/j.apt.2017.11.028_b0015) 2016; 185 Raza (10.1016/j.apt.2017.11.028_b0050) 2016; 6 Antolini (10.1016/j.apt.2017.11.028_b0090) 2011; 46 Ouay (10.1016/j.apt.2017.11.028_b0150) 2015; 10 Dong (10.1016/j.apt.2017.11.028_b0065) 2017; 52 Shahzad (10.1016/j.apt.2017.11.028_b0200) 2015; 5 Logaranjan (10.1016/j.apt.2017.11.028_b0010) 2016; 11 Rizzello (10.1016/j.apt.2017.11.028_b0165) 2014; 43 Zhang (10.1016/j.apt.2017.11.028_b0195) 2011; 133 Ibrahim (10.1016/j.apt.2017.11.028_b0135) 2015 Mohandas (10.1016/j.apt.2017.11.028_b0055) 2017; 75 Bo (10.1016/j.apt.2017.11.028_b0075) 2015; 27 Radheshkumar (10.1016/j.apt.2017.11.028_b0180) 2006; 66 Ni (10.1016/j.apt.2017.11.028_b0040) 2014; 41 Gao (10.1016/j.apt.2017.11.028_b0115) 2013; 33 Seoudi (10.1016/j.apt.2017.11.028_b0105) 2011; 44 Bhattacharjee (10.1016/j.apt.2017.11.028_b0030) 2004; 4 El-Nour (10.1016/j.apt.2017.11.028_b0125) 2010; 3 Gu (10.1016/j.apt.2017.11.028_b0025) 2013; 407 Carlson (10.1016/j.apt.2017.11.028_b0085) 2008; 112 Radheshkumar (10.1016/j.apt.2017.11.028_b0175) 2005; 59 Samavati (10.1016/j.apt.2017.11.028_b0045) 2017; 30 Albanese (10.1016/j.apt.2017.11.028_b0110) 2012; 14 Shi (10.1016/j.apt.2017.11.028_b0100) 2009; 9 Xiu (10.1016/j.apt.2017.11.028_b0080) 2012; 12 |
References_xml | – volume: 41 start-page: 249 year: 2014 end-page: 254 ident: b0040 article-title: Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities publication-title: Mater. Sci. Eng. C-Mater. Biol. Appl. – volume: 112 start-page: 13608 year: 2008 end-page: 13619 ident: b0085 article-title: Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species publication-title: J. Phys. Chem. B – volume: 14 start-page: 1 year: 2012 end-page: 16 ident: b0110 article-title: The effect of nanoparticle size, shape, and surface chemistry on biological systems publication-title: Annu. Rev. Biomed. Eng. – volume: 43 start-page: 1501 year: 2014 end-page: 1518 ident: b0165 article-title: Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines publication-title: Chem. Soc. Rev. – volume: 107 start-page: 14530 year: 2010 end-page: 14534 ident: b0020 article-title: Reversing the size-dependence of surface plasmon resonances publication-title: Proc. Nat. Acad. Sci. USA – volume: 3 start-page: 95 year: 2007 end-page: 101 ident: b0130 article-title: Antimicrobial effects of silver nanoparticles publication-title: Nanomed. –Nanotechnol. – volume: 13 start-page: 6806 year: 2013 end-page: 6813 ident: b0120 article-title: Highly selective antibacterial activities of silver nanoparticles against Bacillus subtilis publication-title: J. Nanosci. Nanotech. – volume: 59 start-page: 1949 year: 2005 end-page: 1953 ident: b0175 article-title: Morphology and mechanical properties of antimicrobial polyamide/silver composites publication-title: Mater. Lett. – volume: 16 start-page: 2346 year: 2005 end-page: 2353 ident: b0140 article-title: The bactericidal effect of silver nanoparticles publication-title: Nanotechnology – volume: 52 start-page: 8568 year: 2017 end-page: 8575 ident: b0060 article-title: Combating food pathogens using sodium benzoate functionalized silver nanoparticles: synthesis, characterization and antimicrobial evaluation publication-title: J. Mater. Sci. – volume: 46 start-page: 4435 year: 2011 end-page: 4457 ident: b0090 article-title: The renaissance of unsupported nanostructured catalysts for low-temperature fuel cells: from the size to the shape of metal nanostructures publication-title: J. Mater. Sci. – volume: 5 start-page: 28652 year: 2015 end-page: 28661 ident: b0200 article-title: Synthesis, stabilization, growth behavior, and catalytic activity of highly concentrated silver nanoparticles using a multifunctional polymer in an aqueous-phase publication-title: RSC Adv. – volume: 84 start-page: 322 year: 2007 end-page: 325 ident: b0190 article-title: Synthesis and study of silver nanoparticles publication-title: J. Chem. Educ. – volume: 133 start-page: 18931 year: 2011 end-page: 18939 ident: b0195 article-title: A systematic study of the synthesis of silver nanoplates: is citrate a “magic” reagent? publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 4557 year: 2014 end-page: 4567 ident: b0205 article-title: Antimicrobial activity of silver nanoparticles in situ growth on TEMPO-mediated oxidized bacterial cellulose publication-title: Cellulose – reference: P. Suchomel, A. Panacek, R. Prucek, R. Zboril, L. Kvitek, Synthesis of small silver nanoparticles and their catalytic activity in 4-nitrophenol reduction, in: 5th International Conference, Nanocon 2013, 2014, pp. 225–231. – volume: 44 start-page: 440 year: 2011 end-page: 447 ident: b0105 article-title: Effect of stabilizing agent on the morphology and optical properties of silver nanoparticles publication-title: Physica E – volume: 14 start-page: 780 year: 2014 end-page: 791 ident: b0160 article-title: Antimicrobial and biocompatible properties of nanomaterials publication-title: J. Nanosci. Nanotechnol. – volume: 4 start-page: 844 year: 2004 end-page: 848 ident: b0030 article-title: Synthesis of size-tunable gold nanoparticles by poly(vinylphenol) and electrostatic multilayer deposition of the gold-poly(vinylphenol) nanocomposites publication-title: J. Nanosci. Nanotechnol. – volume: 9 start-page: 5764 year: 2009 end-page: 5769 ident: b0100 article-title: Fabrication of amphiphilic gold nanoparticles of well-defined size, high concentration and robust colloidal stability publication-title: J. Nanosci. Nanotech. – volume: 407 start-page: 236 year: 2013 end-page: 242 ident: b0025 article-title: Sub-150 nm mesoporous silica nanoparticles with tunable pore sizes and well-ordered mesostructure for protein encapsulation publication-title: J. Colloid Interf. Sci. – volume: 14 start-page: 3674 year: 2014 end-page: 3682 ident: b0035 article-title: Tunable plasmonic nanoparticles with catalytically active high-index facets publication-title: Nano Lett. – start-page: 191 year: 2015 end-page: 216 ident: b0135 article-title: Nanomaterials for antibacterial textiles publication-title: Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious Diseases – volume: 6 start-page: 74 year: 2016 end-page: 88 ident: b0050 article-title: Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes publication-title: J. Nanomater. – volume: 410 start-page: 45 year: 2012 end-page: 51 ident: b0185 article-title: Influence of oxygen on the process of formation of silver nanoparticles during citrate/borohydride synthesis of silver sols publication-title: Colloid Surface A – volume: 75 start-page: 115 year: 2017 end-page: 124 ident: b0055 article-title: Antibacterial and cytocompatible nanotextured Ti surface incorporating silver via single step hydrothermal processing publication-title: Mater. Sci. Eng. C – volume: 11 start-page: 520 year: 2016 end-page: 528 ident: b0010 article-title: Shape- and size-controlled synthesis of silver nanoparticles using Aloe vera plant extract and their antimicrobial activity publication-title: Nanoscale Res. Lett. – volume: 52 start-page: 8219 year: 2017 end-page: 8230 ident: b0065 article-title: Ag@Fe publication-title: J. Mater. Sci. – volume: 66 start-page: 780 year: 2006 end-page: 788 ident: b0180 article-title: Antimicrobial polymers from polypropylene/silver composites—Ag+ release measured by anode stripping voltammetry publication-title: React. Funct. Polym. – volume: 124 start-page: 25 year: 2017 end-page: 34 ident: b0145 article-title: Antibacterial effects of titanium embedded with silver nanoparticles based on electron-transfer-induced reactive oxygen species publication-title: Biomaterials – volume: 28 start-page: 10508 year: 2016 end-page: 10517 ident: b0095 article-title: Colloidal synthesis and applications of plasmonic metal nanoparticles publication-title: Adv. Mater. – volume: 12 start-page: 4271 year: 2012 end-page: 4275 ident: b0080 article-title: Negligible particle-specific antibacterial activity of silver nanoparticles publication-title: Nano Lett. – volume: 10 start-page: 339 year: 2015 end-page: 354 ident: b0150 article-title: Antibacterial activity of silver nanoparticles: a surface science insight publication-title: Nano Today – volume: 10 start-page: 1343 year: 2008 end-page: 1348 ident: b0005 article-title: Synthesis and antibacterial activity of silver nanoparticles with different sizes publication-title: J. Nanopart. Res. – volume: 27 start-page: 1269 year: 2015 end-page: 1277 ident: b0075 article-title: Size-selective synthesis and stabilization of small silver nanoparticles on TiO publication-title: Chem. Mater. – volume: 3 start-page: 135 year: 2010 end-page: 140 ident: b0125 article-title: Synthesis and applications of silver nanoparticles publication-title: Arab. J. Chem. – volume: 30 start-page: 158 year: 2017 end-page: 163 ident: b0045 article-title: Antibacterial properties of copper-substituted cobalt ferrite nanoparticles synthesized by co-precipitation method publication-title: Particuology – volume: 33 start-page: 397 year: 2013 end-page: 404 ident: b0115 article-title: Controlled synthesis of Ag nanoparticles with different morphologies and their antibacterial properties publication-title: Mater. Sci. Eng. C-Mater. Biol. Appl. – volume: 204 start-page: 1 year: 2017 end-page: 10 ident: b0155 article-title: Dual couples Bi metal depositing and Ag@AgI islanding on BiOI 3D architectures for synergistic bactericidal mechanism of E. coli under visible light publication-title: Appl. Catal. B-Environ. – volume: 185 start-page: 526 year: 2016 end-page: 529 ident: b0015 article-title: Control of size and antimicrobial activity of green synthesized silver nanoparticles publication-title: Mater. Lett. – volume: 26 start-page: 2081 year: 2005 end-page: 2088 ident: b0170 article-title: Silver ion release from antimicrobial polyamide/silver composites publication-title: Biomaterials – volume: 28 start-page: 10508 year: 2016 ident: 10.1016/j.apt.2017.11.028_b0095 article-title: Colloidal synthesis and applications of plasmonic metal nanoparticles publication-title: Adv. Mater. doi: 10.1002/adma.201601739 – volume: 75 start-page: 115 year: 2017 ident: 10.1016/j.apt.2017.11.028_b0055 article-title: Antibacterial and cytocompatible nanotextured Ti surface incorporating silver via single step hydrothermal processing publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2017.02.037 – volume: 107 start-page: 14530 year: 2010 ident: 10.1016/j.apt.2017.11.028_b0020 article-title: Reversing the size-dependence of surface plasmon resonances publication-title: Proc. Nat. Acad. Sci. USA doi: 10.1073/pnas.1007524107 – volume: 26 start-page: 2081 year: 2005 ident: 10.1016/j.apt.2017.11.028_b0170 article-title: Silver ion release from antimicrobial polyamide/silver composites publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.05.030 – volume: 9 start-page: 5764 year: 2009 ident: 10.1016/j.apt.2017.11.028_b0100 article-title: Fabrication of amphiphilic gold nanoparticles of well-defined size, high concentration and robust colloidal stability publication-title: J. Nanosci. Nanotech. doi: 10.1166/jnn.2009.1217 – volume: 3 start-page: 135 year: 2010 ident: 10.1016/j.apt.2017.11.028_b0125 article-title: Synthesis and applications of silver nanoparticles publication-title: Arab. J. Chem. doi: 10.1016/j.arabjc.2010.04.008 – volume: 133 start-page: 18931 year: 2011 ident: 10.1016/j.apt.2017.11.028_b0195 article-title: A systematic study of the synthesis of silver nanoplates: is citrate a “magic” reagent? publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2080345 – volume: 46 start-page: 4435 year: 2011 ident: 10.1016/j.apt.2017.11.028_b0090 article-title: The renaissance of unsupported nanostructured catalysts for low-temperature fuel cells: from the size to the shape of metal nanostructures publication-title: J. Mater. Sci. doi: 10.1007/s10853-011-5499-3 – volume: 13 start-page: 6806 year: 2013 ident: 10.1016/j.apt.2017.11.028_b0120 article-title: Highly selective antibacterial activities of silver nanoparticles against Bacillus subtilis publication-title: J. Nanosci. Nanotech. doi: 10.1166/jnn.2013.7781 – volume: 52 start-page: 8219 year: 2017 ident: 10.1016/j.apt.2017.11.028_b0065 article-title: Ag@Fe3O4@cellulose nanocrystals nanocomposites: microwave-assisted hydrothermal synthesis, antimicrobial properties, and good adsorption of dye solution publication-title: J. Mater. Sci. doi: 10.1007/s10853-017-1038-1 – volume: 410 start-page: 45 year: 2012 ident: 10.1016/j.apt.2017.11.028_b0185 article-title: Influence of oxygen on the process of formation of silver nanoparticles during citrate/borohydride synthesis of silver sols publication-title: Colloid Surface A doi: 10.1016/j.colsurfa.2012.06.012 – volume: 66 start-page: 780 year: 2006 ident: 10.1016/j.apt.2017.11.028_b0180 article-title: Antimicrobial polymers from polypropylene/silver composites—Ag+ release measured by anode stripping voltammetry publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2005.11.005 – volume: 4 start-page: 844 year: 2004 ident: 10.1016/j.apt.2017.11.028_b0030 article-title: Synthesis of size-tunable gold nanoparticles by poly(vinylphenol) and electrostatic multilayer deposition of the gold-poly(vinylphenol) nanocomposites publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2004.117 – volume: 52 start-page: 8568 year: 2017 ident: 10.1016/j.apt.2017.11.028_b0060 article-title: Combating food pathogens using sodium benzoate functionalized silver nanoparticles: synthesis, characterization and antimicrobial evaluation publication-title: J. Mater. Sci. doi: 10.1007/s10853-017-1072-z – volume: 41 start-page: 249 year: 2014 ident: 10.1016/j.apt.2017.11.028_b0040 article-title: Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities publication-title: Mater. Sci. Eng. C-Mater. Biol. Appl. doi: 10.1016/j.msec.2014.04.059 – volume: 124 start-page: 25 year: 2017 ident: 10.1016/j.apt.2017.11.028_b0145 article-title: Antibacterial effects of titanium embedded with silver nanoparticles based on electron-transfer-induced reactive oxygen species publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.01.028 – ident: 10.1016/j.apt.2017.11.028_b0070 – volume: 27 start-page: 1269 year: 2015 ident: 10.1016/j.apt.2017.11.028_b0075 article-title: Size-selective synthesis and stabilization of small silver nanoparticles on TiO2 partially masked by SiO2 publication-title: Chem. Mater. doi: 10.1021/cm504243f – volume: 59 start-page: 1949 year: 2005 ident: 10.1016/j.apt.2017.11.028_b0175 article-title: Morphology and mechanical properties of antimicrobial polyamide/silver composites publication-title: Mater. Lett. doi: 10.1016/j.matlet.2005.02.033 – volume: 5 start-page: 28652 year: 2015 ident: 10.1016/j.apt.2017.11.028_b0200 article-title: Synthesis, stabilization, growth behavior, and catalytic activity of highly concentrated silver nanoparticles using a multifunctional polymer in an aqueous-phase publication-title: RSC Adv. doi: 10.1039/C5RA00610D – start-page: 191 year: 2015 ident: 10.1016/j.apt.2017.11.028_b0135 article-title: Nanomaterials for antibacterial textiles – volume: 16 start-page: 2346 year: 2005 ident: 10.1016/j.apt.2017.11.028_b0140 article-title: The bactericidal effect of silver nanoparticles publication-title: Nanotechnology doi: 10.1088/0957-4484/16/10/059 – volume: 10 start-page: 339 year: 2015 ident: 10.1016/j.apt.2017.11.028_b0150 article-title: Antibacterial activity of silver nanoparticles: a surface science insight publication-title: Nano Today doi: 10.1016/j.nantod.2015.04.002 – volume: 14 start-page: 3674 year: 2014 ident: 10.1016/j.apt.2017.11.028_b0035 article-title: Tunable plasmonic nanoparticles with catalytically active high-index facets publication-title: Nano Lett. doi: 10.1021/nl5015734 – volume: 21 start-page: 4557 year: 2014 ident: 10.1016/j.apt.2017.11.028_b0205 article-title: Antimicrobial activity of silver nanoparticles in situ growth on TEMPO-mediated oxidized bacterial cellulose publication-title: Cellulose doi: 10.1007/s10570-014-0449-2 – volume: 112 start-page: 13608 year: 2008 ident: 10.1016/j.apt.2017.11.028_b0085 article-title: Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species publication-title: J. Phys. Chem. B doi: 10.1021/jp712087m – volume: 14 start-page: 780 year: 2014 ident: 10.1016/j.apt.2017.11.028_b0160 article-title: Antimicrobial and biocompatible properties of nanomaterials publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2014.8761 – volume: 11 start-page: 520 year: 2016 ident: 10.1016/j.apt.2017.11.028_b0010 article-title: Shape- and size-controlled synthesis of silver nanoparticles using Aloe vera plant extract and their antimicrobial activity publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-016-1725-x – volume: 43 start-page: 1501 year: 2014 ident: 10.1016/j.apt.2017.11.028_b0165 article-title: Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60218D – volume: 30 start-page: 158 year: 2017 ident: 10.1016/j.apt.2017.11.028_b0045 article-title: Antibacterial properties of copper-substituted cobalt ferrite nanoparticles synthesized by co-precipitation method publication-title: Particuology doi: 10.1016/j.partic.2016.06.003 – volume: 14 start-page: 1 year: 2012 ident: 10.1016/j.apt.2017.11.028_b0110 article-title: The effect of nanoparticle size, shape, and surface chemistry on biological systems publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-071811-150124 – volume: 44 start-page: 440 year: 2011 ident: 10.1016/j.apt.2017.11.028_b0105 article-title: Effect of stabilizing agent on the morphology and optical properties of silver nanoparticles publication-title: Physica E doi: 10.1016/j.physe.2011.09.018 – volume: 185 start-page: 526 year: 2016 ident: 10.1016/j.apt.2017.11.028_b0015 article-title: Control of size and antimicrobial activity of green synthesized silver nanoparticles publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.07.114 – volume: 12 start-page: 4271 year: 2012 ident: 10.1016/j.apt.2017.11.028_b0080 article-title: Negligible particle-specific antibacterial activity of silver nanoparticles publication-title: Nano Lett. doi: 10.1021/nl301934w – volume: 204 start-page: 1 year: 2017 ident: 10.1016/j.apt.2017.11.028_b0155 article-title: Dual couples Bi metal depositing and Ag@AgI islanding on BiOI 3D architectures for synergistic bactericidal mechanism of E. coli under visible light publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2016.11.006 – volume: 84 start-page: 322 year: 2007 ident: 10.1016/j.apt.2017.11.028_b0190 article-title: Synthesis and study of silver nanoparticles publication-title: J. Chem. Educ. doi: 10.1021/ed084p322 – volume: 3 start-page: 95 year: 2007 ident: 10.1016/j.apt.2017.11.028_b0130 article-title: Antimicrobial effects of silver nanoparticles publication-title: Nanomed. –Nanotechnol. doi: 10.1016/j.nano.2006.12.001 – volume: 10 start-page: 1343 year: 2008 ident: 10.1016/j.apt.2017.11.028_b0005 article-title: Synthesis and antibacterial activity of silver nanoparticles with different sizes publication-title: J. Nanopart. Res. doi: 10.1007/s11051-008-9428-6 – volume: 6 start-page: 74 year: 2016 ident: 10.1016/j.apt.2017.11.028_b0050 article-title: Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes publication-title: J. Nanomater. doi: 10.3390/nano6040074 – volume: 33 start-page: 397 year: 2013 ident: 10.1016/j.apt.2017.11.028_b0115 article-title: Controlled synthesis of Ag nanoparticles with different morphologies and their antibacterial properties publication-title: Mater. Sci. Eng. C-Mater. Biol. Appl. doi: 10.1016/j.msec.2012.09.005 – volume: 407 start-page: 236 year: 2013 ident: 10.1016/j.apt.2017.11.028_b0025 article-title: Sub-150 nm mesoporous silica nanoparticles with tunable pore sizes and well-ordered mesostructure for protein encapsulation publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2013.06.028 |
SSID | ssj0017249 |
Score | 2.5189228 |
Snippet | [Display omitted]
•Different sizes of silver nanoparticles were synthesized by a facial method.•The antibacterial activities increase with the decreasing of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 407 |
SubjectTerms | Antibacterial mechanism Preparation Size-tunable silver nanoparticles Structure characterization |
Title | A facile method to prepare size-tunable silver nanoparticles and its antibacterial mechanism |
URI | https://dx.doi.org/10.1016/j.apt.2017.11.028 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14ErZNsptkcyzFUhV70UIPQshudiGiaWnTiwd_uzN5lArqwVPYMJtdhs3MN-w3M4RcRzqIwCIapriyTFjlsij0AiYkgA2pIzhUmI38OAnGU3E_82ctMmxyYZBWWdv-yqaX1rp-06-12V9kWf_JgUWk5K4b4u2eP8MMdhEira_3uaF5gH-uIDAIM5RubjZLjleyQDqlG_awkCc2ZP_JN235m9EB2a-BIh1UezkkLZMfkb2t8oHH5GVAbaLht6ZVH2hazOliaZBTTlfZh2HFusyMggHyn2me5BAi10w4muQpzQp8FpmqajbDeu8GU4Gz1fsJmY5un4djVndLYJoHvGDGM1Zo8Ne-slp7oa8DaVQC8ZhNtZV-GnkpBhPGAuICEOMkPibCayw1brxI8lPSzue5OSNUiZArRyv4JMAl30AQyD0rLI-UUcLKDnEaPcW6LiWOHS3e4oYz9hqDamNULYQYMai2Q242UxZVHY2_hEWj_PjbYYjBzv8-7fx_0y7ILoxkRcW-JO1iuTZXgDQK1S2PUpfsDO4expMvKsjTDA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe1AP4hPrcw-ehLVpskk2xyJKtI-LCj0IIbvdhYhNi6YXf70zTSIV1IOnkMdkw7CZ_Yb95huAi0gHEUZEw5WnLBdWdXkUugEXEsGG1BFOKqpGHo6C-Encj_1xA67rWhiiVVaxv4zpy2hdXelU3uzMs6zz4OAgUnrdbki7e_54DVqkTiWa0Ord9ePR12ZC6JYoGJ_nZFBvbi5pXumcGJXd8Iq0PKkn-0_L08qSc7sNWxVWZL3yc3agYfJd2FxRENyD5x6zqcY_m5WtoFkxY_M3Q7Ry9p59GF4slsVReEIUaJanOWbJFRmOpfmEZQUdi0yVss043tRQNXD2Pt2Hp9ubx-uYVw0TuPYCr-DGNVZoXLJ9ZbV2Q18H0qgUUzI70Vb6k8idUD5hLIIuxDFO6lMtvCa1ceNG0juAZj7LzSEwJUJPOVrhKxEx-QbzQM-1wnqRMkpY2Qan9lOiKzVxamrxmtS0sZcEXZuQazHLSNC1bbj8MpmXUhp_PSxq5yff5kOCof53s6P_mZ3Devw4HCSDu1H_GDbwjiyZ2SfQLN4W5hSBR6HOqon1CXRd1b0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+facile+method+to+prepare+size-tunable+silver+nanoparticles+and+its+antibacterial+mechanism&rft.jtitle=Advanced+powder+technology+%3A+the+international+journal+of+the+Society+of+Powder+Technology%2C+Japan&rft.au=Wu%2C+Yunping&rft.au=Yang%2C+Yan&rft.au=Zhang%2C+Zhijie&rft.au=Wang%2C+Zhihua&rft.date=2018-02-01&rft.pub=Elsevier+B.V&rft.issn=0921-8831&rft.eissn=1568-5527&rft.volume=29&rft.issue=2&rft.spage=407&rft.epage=415&rft_id=info:doi/10.1016%2Fj.apt.2017.11.028&rft.externalDocID=S092188311730465X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8831&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8831&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8831&client=summon |