AI-based smart prediction of clinical disease using random forest classifier and Naive Bayes

Healthcare practices include collecting all kinds of patient data which would help the doctor correctly diagnose the health condition of the patient. These data could be simple symptoms observed by the subject, initial diagnosis by a physician or a detailed test result from a laboratory. Thus, these...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of supercomputing Vol. 77; no. 5; pp. 5198 - 5219
Main Authors Jackins, V., Vimal, S., Kaliappan, M., Lee, Mi Young
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Healthcare practices include collecting all kinds of patient data which would help the doctor correctly diagnose the health condition of the patient. These data could be simple symptoms observed by the subject, initial diagnosis by a physician or a detailed test result from a laboratory. Thus, these data are only utilized for analysis by a doctor who then ascertains the disease using his/her personal medical expertise. The artificial intelligence has been used with Naive Bayes classification and random forest classification algorithm to classify many disease datasets like diabetes, heart disease, and cancer to check whether the patient is affected by that disease or not. A performance analysis of the disease data for both algorithms is calculated and compared. The results of the simulations show the effectiveness of the classification techniques on a dataset, as well as the nature and complexity of the dataset used.
AbstractList Healthcare practices include collecting all kinds of patient data which would help the doctor correctly diagnose the health condition of the patient. These data could be simple symptoms observed by the subject, initial diagnosis by a physician or a detailed test result from a laboratory. Thus, these data are only utilized for analysis by a doctor who then ascertains the disease using his/her personal medical expertise. The artificial intelligence has been used with Naive Bayes classification and random forest classification algorithm to classify many disease datasets like diabetes, heart disease, and cancer to check whether the patient is affected by that disease or not. A performance analysis of the disease data for both algorithms is calculated and compared. The results of the simulations show the effectiveness of the classification techniques on a dataset, as well as the nature and complexity of the dataset used.
Author Vimal, S.
Kaliappan, M.
Jackins, V.
Lee, Mi Young
Author_xml – sequence: 1
  givenname: V.
  surname: Jackins
  fullname: Jackins, V.
  organization: Department of IT, National Engineering College
– sequence: 2
  givenname: S.
  surname: Vimal
  fullname: Vimal, S.
  organization: Department of IT, National Engineering College
– sequence: 3
  givenname: M.
  surname: Kaliappan
  fullname: Kaliappan, M.
  organization: Department of Computer Science and Engineering, Ramco Institute of Technology
– sequence: 4
  givenname: Mi Young
  orcidid: 0000-0002-8139-7091
  surname: Lee
  fullname: Lee, Mi Young
  email: miylee@sejong.ac.kr
  organization: Department of Software, Sejong University
BookMark eNp9kMtKAzEUhoNUsK2-gKuA69GTZC6ZZS1eCkU3uhPCmUlSUqYzNZlK-_amjiC46Cpw8n3n8k_IqO1aQ8g1g1sGUNwFxjgvEuCQgEglS_ZnZMyyQiSQynRExlDGL5ml_IJMQlgDQCoKMSYfs0VSYTCahg36nm690a7uXdfSztK6ca2rsaHaBRMpuguuXVGPre421HbehD5CGIKzznga6_QF3Zeh93gw4ZKcW2yCufp9p-T98eFt_pwsX58W89kyqUUu-kTXpcwKbWVq0WRoSiNzWUuGFebIuK5YAbaSBbe5zkWFRgNHAJ5ZXkosrZiSm6Hv1nefu7iTWnc738aRimeQFTweyyMlB6r2XQjeWFW7Ho-n9h5doxioY5ZqyFLFLNVPlmofVf5P3XoX8zqclsQghQi3K-P_tjphfQMQ7Ipw
CitedBy_id crossref_primary_10_32604_csse_2023_037488
crossref_primary_10_1016_j_ijcard_2024_132757
crossref_primary_10_1007_s42452_024_06307_0
crossref_primary_10_1016_j_seps_2024_101921
crossref_primary_10_3390_diagnostics12123067
crossref_primary_10_3390_s22208073
crossref_primary_10_1007_s11227_024_06909_w
crossref_primary_10_1016_j_enbuild_2024_114727
crossref_primary_10_1155_2023_8583210
crossref_primary_10_1049_htl2_12039
crossref_primary_10_1016_j_arr_2023_102013
crossref_primary_10_32604_cmc_2025_061645
crossref_primary_10_3390_s22145247
crossref_primary_10_1007_s11042_023_15165_8
crossref_primary_10_32604_iasc_2023_035817
crossref_primary_10_1038_s41598_021_03287_8
crossref_primary_10_1155_2022_8100697
crossref_primary_10_2174_0115748936278851231213110653
crossref_primary_10_1007_s11227_024_06182_x
crossref_primary_10_1109_JBHI_2024_3443137
crossref_primary_10_1155_2023_3913351
crossref_primary_10_1111_exsy_13300
crossref_primary_10_1007_s13258_023_01467_6
crossref_primary_10_36543_kauiibfd_2021_030
crossref_primary_10_1007_s10668_024_05340_8
crossref_primary_10_1016_j_slast_2024_100222
crossref_primary_10_1016_j_measen_2022_100406
crossref_primary_10_1007_s00431_024_05505_7
crossref_primary_10_1016_j_ijdrr_2023_104109
crossref_primary_10_1007_s12083_024_01776_x
crossref_primary_10_1016_j_snb_2023_134403
crossref_primary_10_32604_cmc_2022_029619
crossref_primary_10_3390_diagnostics13071219
crossref_primary_10_1007_s12145_024_01413_4
crossref_primary_10_3390_healthcare11010081
crossref_primary_10_1016_j_fluid_2025_114423
crossref_primary_10_1007_s42600_023_00293_9
crossref_primary_10_1186_s13065_024_01127_0
crossref_primary_10_47992_IJHSP_2581_6411_0097
crossref_primary_10_3390_jcdd9020056
crossref_primary_10_1007_s42979_023_02521_6
crossref_primary_10_1016_j_eswa_2025_127272
crossref_primary_10_1016_j_eswa_2022_116502
crossref_primary_10_1016_j_glmedi_2023_100026
crossref_primary_10_1080_2150704X_2021_1910364
crossref_primary_10_1007_s10479_022_05023_5
crossref_primary_10_1007_s13721_024_00489_8
crossref_primary_10_1051_bioconf_20237501003
crossref_primary_10_1016_j_eswa_2024_124399
crossref_primary_10_1016_j_procs_2023_01_025
crossref_primary_10_1007_s11831_024_10098_3
crossref_primary_10_1016_j_bspc_2024_107010
crossref_primary_10_3390_diagnostics13203204
crossref_primary_10_1038_s41598_024_62278_7
crossref_primary_10_1155_2022_8266295
crossref_primary_10_1016_j_ssci_2023_106243
crossref_primary_10_18311_sdmimd_2023_32513
crossref_primary_10_1093_ijlct_ctae281
crossref_primary_10_1007_s11227_023_05132_3
crossref_primary_10_1016_j_health_2022_100112
crossref_primary_10_1038_s41598_024_58489_7
crossref_primary_10_1051_itmconf_20246903001
crossref_primary_10_3390_tropicalmed9090216
crossref_primary_10_1007_s11042_022_12567_y
crossref_primary_10_1016_j_istruc_2024_106179
crossref_primary_10_1016_j_array_2023_100281
crossref_primary_10_1007_s11042_024_19766_9
crossref_primary_10_1007_s42979_023_01842_w
crossref_primary_10_1016_j_micpro_2021_104027
crossref_primary_10_1186_s13040_024_00366_0
crossref_primary_10_1109_ACCESS_2024_3488743
crossref_primary_10_1007_s12145_025_01762_8
crossref_primary_10_3390_life13020439
crossref_primary_10_1007_s11831_023_10035_w
crossref_primary_10_1016_j_ijcce_2025_02_002
crossref_primary_10_1007_s11042_024_19759_8
crossref_primary_10_1016_j_cie_2024_110405
crossref_primary_10_3390_info15080435
crossref_primary_10_1016_j_rineng_2024_102930
crossref_primary_10_1007_s11042_024_18312_x
crossref_primary_10_3390_math9172078
crossref_primary_10_1007_s13204_021_02142_6
crossref_primary_10_1007_s10462_024_10814_2
crossref_primary_10_1016_j_jwpe_2024_105212
crossref_primary_10_33166_AETiC_2023_03_004
crossref_primary_10_1371_journal_pone_0283712
crossref_primary_10_1080_10255842_2024_2339479
crossref_primary_10_1109_TCBB_2023_3252668
crossref_primary_10_12720_jait_14_4_811_820
crossref_primary_10_2174_1386207325666220304112914
crossref_primary_10_1016_j_eij_2024_100507
crossref_primary_10_1016_j_ymssp_2023_110099
crossref_primary_10_1155_2021_9171756
crossref_primary_10_1007_s11042_024_18826_4
crossref_primary_10_3389_fpsyt_2024_1418969
crossref_primary_10_53759_7669_jmc202505043
crossref_primary_10_3390_bioengineering11060577
crossref_primary_10_1016_j_asoc_2024_112080
crossref_primary_10_1016_j_ejpb_2024_114508
crossref_primary_10_32604_cmc_2024_047961
crossref_primary_10_1007_s42600_023_00295_7
crossref_primary_10_1016_j_ajp_2024_104183
crossref_primary_10_3724_2096_7004_di_2024_0051
crossref_primary_10_32628_IJSRST229394
crossref_primary_10_1007_s11831_024_10209_0
crossref_primary_10_3233_JIFS_232851
crossref_primary_10_47164_ijngc_v13i3_820
crossref_primary_10_56294_dm2023173
crossref_primary_10_1007_s11042_023_17613_x
crossref_primary_10_1016_j_procs_2024_03_218
crossref_primary_10_1007_s10115_023_01894_7
crossref_primary_10_1155_2023_3140270
crossref_primary_10_37394_23205_2024_23_23
crossref_primary_10_1007_s00418_022_02168_z
crossref_primary_10_1007_s12065_023_00824_4
crossref_primary_10_3390_jpm12122052
crossref_primary_10_1016_j_jjimei_2023_100170
crossref_primary_10_1016_j_compbiomed_2022_105639
crossref_primary_10_4103_abr_abr_383_21
crossref_primary_10_1080_03772063_2024_2438325
crossref_primary_10_1155_2022_9900668
crossref_primary_10_3390_pr12081716
crossref_primary_10_1109_ACCESS_2023_3236002
crossref_primary_10_3390_diagnostics13040798
crossref_primary_10_3390_math11061467
crossref_primary_10_3390_jpm13071032
crossref_primary_10_35940_ijitee_A9757_1213123
crossref_primary_10_3390_s22249626
crossref_primary_10_35746_jtim_v7i1_628
Cites_doi 10.4018/978-1-5225-9023-1.ch005
10.1109/JBHI.2015.2396520
10.1177/1094342020945026
10.1016/j.eswa.2015.06.024
10.3390/electronics9091469
10.1016/j.imu.2017.12.006
10.4018/978-1-7998-3591-2
10.1016/j.eswa.2010.12.141
10.1016/j.rser.2016.10.079
10.1007/s11063-020-10279-8
10.1007/s10916-019-1402-6
10.1016/j.jjcc.2014.02.001
10.1016/j.ijmedinf.2017.09.013
10.1016/j.comcom.2005.01.014
10.17485/ijst/2010/v3i10.2
10.20944/preprints202005.0493.v1
10.1109/ICCMC.2019.8819782
10.1109/ICICA.2014.43
10.1109/ECS.2014.6892740
10.1109/CSSE.2008.811
10.1016/j.procs.2015.10.014
10.1016/j.biosystems.2020.104211
10.1109/WCCCT.2014.66
10.1201/9780429298462
10.1109/PERVASIVE.2015.7087029
10.1109/RAICS.2015.7488400
10.1109/ICECA.2017.8203643
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s11227-020-03481-x
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 5219
ExternalDocumentID 10_1007_s11227_020_03481_x
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c363t-dc9857df84fae5ae9e868c81aba6a12db170fb872f6d63baed02a0025f298a9f3
IEDL.DBID U2A
ISSN 0920-8542
IngestDate Mon Jul 14 10:43:36 EDT 2025
Tue Jul 01 03:04:31 EDT 2025
Thu Apr 24 23:01:55 EDT 2025
Fri Feb 21 02:49:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Diabetes
Random forest classification
Artificial intelligence
Naïve Bayes classification
Data mining techniques
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-dc9857df84fae5ae9e868c81aba6a12db170fb872f6d63baed02a0025f298a9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8139-7091
OpenAccessLink https://link.springer.com/10.1007/s11227-020-03481-x
PQID 2505720432
PQPubID 2043774
PageCount 22
ParticipantIDs proquest_journals_2505720432
crossref_citationtrail_10_1007_s11227_020_03481_x
crossref_primary_10_1007_s11227_020_03481_x
springer_journals_10_1007_s11227_020_03481_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Pradeepa, Gayathri, Nishmitha, Vimal, Oh-Young, Usman, Raheel (CR15) 2020; 9
Long, Meesad, Unger (CR21) 2015; 42
Renjit, Shunmuganathan (CR1) 2010; 3
CR18
Kumari, Vohra, Arora (CR19) 2014; 5
Robinson, Vimal, Khari, Hernández, Crespo (CR11) 2020
CR16
CR14
Annamalai, Udendhran, Vimal (CR6) 2019
Krishnaiah, Narsimha, Chandra (CR20) 2013; 4
CR12
CR10
Lee, Kim (CR23) 2016; 20
CR30
Wang, Srinivasan (CR24) 2017; 75
Geetha, Sivasubramanian, Kaliappan (CR5) 2019; 43
CR2
CR4
Yi, Wu, Xu (CR13) 2011; 38
CR3
Sampaul, Robinson, Julie, Shanmuganathan, Nam, Rho (CR17) 2020
CR8
Pradeepa, Manjula, Vimal (CR9) 2020
CR27
Esteghamati, Hafezi-Nejad, Zandieh, Sheikhbahaei, Ebadi, Nakhjavani (CR22) 2014; 64
CR26
Lynch, Abdollahi, Fuqua, de Carlo, Bartholomai, Balgemann, van Berkel, Frieboes (CR25) 2017; 108
Zhang, Shen (CR31) 2005; 28
Wu, Yang, Huang, He, Wang (CR7) 2018; 10
Vimal (CR28) 2016; 3
Suresh, Udendhran, Vimal (CR29) 2020
Z Zhang (3481_CR31) 2005; 28
3481_CR8
YH Robinson (3481_CR11) 2020
3481_CR26
3481_CR27
S Vimal (3481_CR28) 2016; 3
3481_CR4
BJ Lee (3481_CR23) 2016; 20
3481_CR12
3481_CR14
JA Renjit (3481_CR1) 2010; 3
Z Wang (3481_CR24) 2017; 75
CM Lynch (3481_CR25) 2017; 108
3481_CR30
NC Long (3481_CR21) 2015; 42
3481_CR10
3481_CR16
3481_CR18
V Krishnaiah (3481_CR20) 2013; 4
A Suresh (3481_CR29) 2020
3481_CR2
Y Yi (3481_CR13) 2011; 38
3481_CR3
S Pradeepa (3481_CR9) 2020
S Pradeepa (3481_CR15) 2020; 9
M Kumari (3481_CR19) 2014; 5
TGA Sampaul (3481_CR17) 2020
R Geetha (3481_CR5) 2019; 43
H Wu (3481_CR7) 2018; 10
A Esteghamati (3481_CR22) 2014; 64
S Annamalai (3481_CR6) 2019
References_xml – year: 2019
  ident: CR6
  article-title: An intelligent grid network based on cloud computing infrastructures
  publication-title: Nov Pract Trends Grid Cloud Comput
  doi: 10.4018/978-1-5225-9023-1.ch005
– ident: CR18
– volume: 20
  start-page: 39
  issue: 1
  year: 2016
  end-page: 46
  ident: CR23
  article-title: Identification of type 2 diabetes risk factors using phenotypes consisting of anthropometry and triglycerides based on machine learning
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2015.2396520
– ident: CR4
– ident: CR14
– ident: CR2
– ident: CR16
– ident: CR12
– ident: CR30
– ident: CR10
– year: 2020
  ident: CR11
  article-title: Tree-based convolutional neural networks for object classification in segmented satellite images
  publication-title: Int J High Perform Comput Appl
  doi: 10.1177/1094342020945026
– volume: 4
  start-page: 39
  issue: 1
  year: 2013
  end-page: 45
  ident: CR20
  article-title: Diagnosis of lung cancer prediction system using data mining classification techniques
  publication-title: Int J Comput Sci Inf Technol
– volume: 42
  start-page: 8221
  year: 2015
  end-page: 8231
  ident: CR21
  article-title: A highly accurate firefly-based algorithm for heart disease prediction
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.06.024
– ident: CR8
– volume: 9
  start-page: 1469
  issue: 9
  year: 2020
  ident: CR15
  article-title: IoT based health-related topic recognition from emerging online health community: med help using machine learning technique
  publication-title: Electronics
  doi: 10.3390/electronics9091469
– volume: 10
  start-page: 100
  year: 2018
  end-page: 107
  ident: CR7
  article-title: Type 2 diabetes mellitus prediction model based on data mining
  publication-title: Inform Med Unlocked
  doi: 10.1016/j.imu.2017.12.006
– ident: CR27
– year: 2020
  ident: CR29
  article-title: Deep neural networks for multimodal imaging and biomedical applications
  publication-title: IGI Global, Hershey,
  doi: 10.4018/978-1-7998-3591-2
– volume: 38
  start-page: 7698
  issue: 6
  year: 2011
  end-page: 7707
  ident: CR13
  article-title: Incremental SVM based on reserved set for network intrusion detection
  publication-title: Elsevier J Expert Syst Appl
  doi: 10.1016/j.eswa.2010.12.141
– volume: 75
  start-page: 796
  year: 2017
  end-page: 808
  ident: CR24
  article-title: A review of artificial intelligence based building energy use prediction: contrasting the capabilities of single and ensemble prediction models
  publication-title: Elsevier J Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2016.10.079
– year: 2020
  ident: CR9
  article-title: DRFS: detecting risk factor of stroke disease from social media using machine learning techniques
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-020-10279-8
– volume: 5
  start-page: 5174
  issue: 4
  year: 2014
  end-page: 5178
  ident: CR19
  article-title: Prediction of diabetes using Bayesian network
  publication-title: Int J Comput Sci Inf Technol (IJCSIT)
– ident: CR3
– volume: 43
  start-page: 286
  year: 2019
  ident: CR5
  article-title: Cervical cancer identification with synthetic minority oversampling technique and PCA analysis using random forest classifier
  publication-title: J Med Syst
  doi: 10.1007/s10916-019-1402-6
– volume: 64
  start-page: 290
  year: 2014
  end-page: 296
  ident: CR22
  article-title: Homocysteine and metabolic syndrome: from clustering to additional utility in prediction of coronary heart disease
  publication-title: J Cardiol
  doi: 10.1016/j.jjcc.2014.02.001
– volume: 108
  start-page: 1
  year: 2017
  end-page: 8
  ident: CR25
  article-title: Prediction of lung cancer patient survival via supervised machine learning classification techniques
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2017.09.013
– volume: 28
  start-page: 1428
  issue: 12
  year: 2005
  end-page: 1442
  ident: CR31
  article-title: Application of online-training SVMs for real time intrusion detection with different considerations
  publication-title: Comput Commun
  doi: 10.1016/j.comcom.2005.01.014
– volume: 3
  start-page: 35
  issue: 12
  year: 2016
  end-page: 42
  ident: CR28
  article-title: Secure data packet transmission in MANET using enhanced identity-based cryptography
  publication-title: Int J New Technol Sci Eng
– volume: 3
  start-page: 1070
  issue: 10
  year: 2010
  end-page: 1074
  ident: CR1
  article-title: Distributed and coorperative multi-agent based intrusion detection system
  publication-title: Indian J Sci Technol
  doi: 10.17485/ijst/2010/v3i10.2
– ident: CR26
– year: 2020
  ident: CR17
  article-title: Diabetic retinopathy diagnostics from retinal images based on deep convolutional networks
  publication-title: Preprints
  doi: 10.20944/preprints202005.0493.v1
– volume: 75
  start-page: 796
  year: 2017
  ident: 3481_CR24
  publication-title: Elsevier J Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2016.10.079
– volume: 3
  start-page: 1070
  issue: 10
  year: 2010
  ident: 3481_CR1
  publication-title: Indian J Sci Technol
  doi: 10.17485/ijst/2010/v3i10.2
– volume: 108
  start-page: 1
  year: 2017
  ident: 3481_CR25
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2017.09.013
– volume: 5
  start-page: 5174
  issue: 4
  year: 2014
  ident: 3481_CR19
  publication-title: Int J Comput Sci Inf Technol (IJCSIT)
– volume: 28
  start-page: 1428
  issue: 12
  year: 2005
  ident: 3481_CR31
  publication-title: Comput Commun
  doi: 10.1016/j.comcom.2005.01.014
– ident: 3481_CR4
  doi: 10.1109/ICCMC.2019.8819782
– ident: 3481_CR3
  doi: 10.1109/ICICA.2014.43
– ident: 3481_CR2
  doi: 10.1109/ECS.2014.6892740
– ident: 3481_CR8
– volume: 20
  start-page: 39
  issue: 1
  year: 2016
  ident: 3481_CR23
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2015.2396520
– year: 2020
  ident: 3481_CR11
  publication-title: Int J High Perform Comput Appl
  doi: 10.1177/1094342020945026
– ident: 3481_CR27
  doi: 10.1109/CSSE.2008.811
– year: 2020
  ident: 3481_CR17
  publication-title: Preprints
  doi: 10.20944/preprints202005.0493.v1
– year: 2020
  ident: 3481_CR29
  publication-title: IGI Global, Hershey,
  doi: 10.4018/978-1-7998-3591-2
– ident: 3481_CR30
  doi: 10.1016/j.procs.2015.10.014
– ident: 3481_CR14
  doi: 10.1016/j.biosystems.2020.104211
– volume: 3
  start-page: 35
  issue: 12
  year: 2016
  ident: 3481_CR28
  publication-title: Int J New Technol Sci Eng
– volume: 9
  start-page: 1469
  issue: 9
  year: 2020
  ident: 3481_CR15
  publication-title: Electronics
  doi: 10.3390/electronics9091469
– volume: 64
  start-page: 290
  year: 2014
  ident: 3481_CR22
  publication-title: J Cardiol
  doi: 10.1016/j.jjcc.2014.02.001
– ident: 3481_CR10
  doi: 10.1109/WCCCT.2014.66
– volume: 4
  start-page: 39
  issue: 1
  year: 2013
  ident: 3481_CR20
  publication-title: Int J Comput Sci Inf Technol
– ident: 3481_CR18
  doi: 10.1201/9780429298462
– volume: 43
  start-page: 286
  year: 2019
  ident: 3481_CR5
  publication-title: J Med Syst
  doi: 10.1007/s10916-019-1402-6
– year: 2019
  ident: 3481_CR6
  publication-title: Nov Pract Trends Grid Cloud Comput
  doi: 10.4018/978-1-5225-9023-1.ch005
– volume: 38
  start-page: 7698
  issue: 6
  year: 2011
  ident: 3481_CR13
  publication-title: Elsevier J Expert Syst Appl
  doi: 10.1016/j.eswa.2010.12.141
– ident: 3481_CR12
  doi: 10.1109/PERVASIVE.2015.7087029
– ident: 3481_CR26
  doi: 10.1109/RAICS.2015.7488400
– ident: 3481_CR16
  doi: 10.1109/ICECA.2017.8203643
– year: 2020
  ident: 3481_CR9
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-020-10279-8
– volume: 10
  start-page: 100
  year: 2018
  ident: 3481_CR7
  publication-title: Inform Med Unlocked
  doi: 10.1016/j.imu.2017.12.006
– volume: 42
  start-page: 8221
  year: 2015
  ident: 3481_CR21
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.06.024
SSID ssj0004373
Score 2.5625365
Snippet Healthcare practices include collecting all kinds of patient data which would help the doctor correctly diagnose the health condition of the patient. These...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5198
SubjectTerms Algorithms
Artificial intelligence
Artificial Intelligence for Smart Cities
Classification
Compilers
Computer Science
Datasets
Heart diseases
Interpreters
Processor Architectures
Programming Languages
Signs and symptoms
Title AI-based smart prediction of clinical disease using random forest classifier and Naive Bayes
URI https://link.springer.com/article/10.1007/s11227-020-03481-x
https://www.proquest.com/docview/2505720432
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-6vfjitzidIw--aaBNmzR97ObmVNiTgwlCSZpEBPfBOkH_ey9da1FU8KnQXo9wyeV-x30hdC4i7SsWW8KZZCTkBnTOBJbQiAMeUGEmbdHtc8SH4_B2wiZlUVheZbtXIcnipq6L3XxKI-LcHc9VjxJAjk3mfHc4xWOa1NWQwTquHAOlYCEtS2V-5vHVHNUY81tYtLA2g120XcJEnKz3dQ9tmNk-2qlGMOBSIw_QY3JDnCHSOJ_CIcCLpQu8OGHjucVV2SMuwzDYZbk_YTBPej7FAFdhEUAE-PnZgnnE8B6PJNx_uCvfTX6IxoP-fW9IyoEJJAt4sCI6iwWLtBWhlYZJExvBRSZ8qSSXPtXKjzyrREQt1zxQ0miPSod6LI2FjG1whBqz-cwcu4yn2KoMuHi-DqUAv4gyk4H6m1gFmaUt5FdyS7Oym7gbavGS1n2QnaxTkHVayDp9a6GLz38W614af1K3q-1IS73KUwfY3FidABZwWW1R_fl3bif_Iz9FW9QlrxSZjW3UWC1fzRmgj5XqoGbSveoO3PP64a7fQZs93usUR_ADDG7VKQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kHvTiW6xW3YM3XWw2yWZzrEVptfbUQg9C2KcI9kFTQf-9s-nGYFHBazIZlpmdzDfMC6ELnuhAxqklLBYxiZgBmzOhJTRhgAdkpIQtpn32WWcY3Y_ikR-T43phVvL31zngAZoQF-Q0Xc8oAby4HkGk7Mr32qxd9UCGy2xyCpQ8jqhvkPmZx3cnVCHLlWRo4WPudtCWB4e4tdTmLlozkz20XS5ewN4O99FTq0uc-9E4H4Pq8Wzu0i1OxHhqcdnsiH3yBbva9mcMTklPxxhAKhwCiAA1v1hwihie476Avx6-ER8mP0DDu9tBu0P8mgSiQhYuiFYgjURbHllhYmFSwxlXPBBSMBFQLYOkaSVPqGWahVIY3aTCYR1LUy5SGx6i2mQ6MUeuzim1UgGXZqAjwSEaorFRYPQmlaGytI6CUm6Z8jPE3SqL16yafuxknYGss0LW2XsdXX59M1tO0PiTulGqI_PWlGcOprllOiEc4KpUUfX6d27H_yM_RxudwWMv63X7Dydok7rylaK2sYFqi_mbOQX8sZBnxcX7BF-E0Bg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iIF58i9WqOXjT0N1kN5s91mppVYoHCz0IS7JJRLAP2hX03zvZh6uigtfdSQgzSeYLM98MQqci0r4KY0t4KEMScANnzjBLaMQBD6gglTav9jngvWFwPQpHn1j8ebZ7FZIsOA2uStMka820bdXEN5_SiLinj-eYpARQ5Aq8VPJAbYd3amYkK2LMMUiKMKAlbebnOb66phpvfguR5p6nu4nWS8iI24WNt9CSmWyjjaodAy5P5w56aPeJc0oaL8awIfBs7oIwTvF4anFFgcRlSAa7jPdHDK5KT8cYoCssAoQASz9ZcJUYvuOBhLsQX8g3s9hFw-7VfadHyuYJJGWcZUSnsQgjbUVgpQmliY3gIhW-VJJLn2rlR55VIqKWa86UNNqj0iEgS2MhY8v20PJkOjH7LvsptiqFWTxfB1LAG4mGJoWrwMSKpZY2kF_pLUnLyuKuwcVzUtdEdrpOQNdJruvktYHOPsbMiroaf0o3K3Mk5RlbJA68uRY7DBZwXpmo_v37bAf_Ez9Bq3eX3eS2P7g5RGvU5bTkCY9NtJzNX8wRgJJMHef77h00Hthf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-based+smart+prediction+of+clinical+disease+using+random+forest+classifier+and+Naive+Bayes&rft.jtitle=The+Journal+of+supercomputing&rft.au=Jackins%2C+V.&rft.au=Vimal%2C+S.&rft.au=Kaliappan%2C+M.&rft.au=Lee%2C+Mi+Young&rft.date=2021-05-01&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=77&rft.issue=5&rft.spage=5198&rft.epage=5219&rft_id=info:doi/10.1007%2Fs11227-020-03481-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11227_020_03481_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon