AI-based smart prediction of clinical disease using random forest classifier and Naive Bayes
Healthcare practices include collecting all kinds of patient data which would help the doctor correctly diagnose the health condition of the patient. These data could be simple symptoms observed by the subject, initial diagnosis by a physician or a detailed test result from a laboratory. Thus, these...
Saved in:
Published in | The Journal of supercomputing Vol. 77; no. 5; pp. 5198 - 5219 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Healthcare practices include collecting all kinds of patient data which would help the doctor correctly diagnose the health condition of the patient. These data could be simple symptoms observed by the subject, initial diagnosis by a physician or a detailed test result from a laboratory. Thus, these data are only utilized for analysis by a doctor who then ascertains the disease using his/her personal medical expertise. The artificial intelligence has been used with Naive Bayes classification and random forest classification algorithm to classify many disease datasets like diabetes, heart disease, and cancer to check whether the patient is affected by that disease or not. A performance analysis of the disease data for both algorithms is calculated and compared. The results of the simulations show the effectiveness of the classification techniques on a dataset, as well as the nature and complexity of the dataset used. |
---|---|
AbstractList | Healthcare practices include collecting all kinds of patient data which would help the doctor correctly diagnose the health condition of the patient. These data could be simple symptoms observed by the subject, initial diagnosis by a physician or a detailed test result from a laboratory. Thus, these data are only utilized for analysis by a doctor who then ascertains the disease using his/her personal medical expertise. The artificial intelligence has been used with Naive Bayes classification and random forest classification algorithm to classify many disease datasets like diabetes, heart disease, and cancer to check whether the patient is affected by that disease or not. A performance analysis of the disease data for both algorithms is calculated and compared. The results of the simulations show the effectiveness of the classification techniques on a dataset, as well as the nature and complexity of the dataset used. |
Author | Vimal, S. Kaliappan, M. Jackins, V. Lee, Mi Young |
Author_xml | – sequence: 1 givenname: V. surname: Jackins fullname: Jackins, V. organization: Department of IT, National Engineering College – sequence: 2 givenname: S. surname: Vimal fullname: Vimal, S. organization: Department of IT, National Engineering College – sequence: 3 givenname: M. surname: Kaliappan fullname: Kaliappan, M. organization: Department of Computer Science and Engineering, Ramco Institute of Technology – sequence: 4 givenname: Mi Young orcidid: 0000-0002-8139-7091 surname: Lee fullname: Lee, Mi Young email: miylee@sejong.ac.kr organization: Department of Software, Sejong University |
BookMark | eNp9kMtKAzEUhoNUsK2-gKuA69GTZC6ZZS1eCkU3uhPCmUlSUqYzNZlK-_amjiC46Cpw8n3n8k_IqO1aQ8g1g1sGUNwFxjgvEuCQgEglS_ZnZMyyQiSQynRExlDGL5ml_IJMQlgDQCoKMSYfs0VSYTCahg36nm690a7uXdfSztK6ca2rsaHaBRMpuguuXVGPre421HbehD5CGIKzznga6_QF3Zeh93gw4ZKcW2yCufp9p-T98eFt_pwsX58W89kyqUUu-kTXpcwKbWVq0WRoSiNzWUuGFebIuK5YAbaSBbe5zkWFRgNHAJ5ZXkosrZiSm6Hv1nefu7iTWnc738aRimeQFTweyyMlB6r2XQjeWFW7Ho-n9h5doxioY5ZqyFLFLNVPlmofVf5P3XoX8zqclsQghQi3K-P_tjphfQMQ7Ipw |
CitedBy_id | crossref_primary_10_32604_csse_2023_037488 crossref_primary_10_1016_j_ijcard_2024_132757 crossref_primary_10_1007_s42452_024_06307_0 crossref_primary_10_1016_j_seps_2024_101921 crossref_primary_10_3390_diagnostics12123067 crossref_primary_10_3390_s22208073 crossref_primary_10_1007_s11227_024_06909_w crossref_primary_10_1016_j_enbuild_2024_114727 crossref_primary_10_1155_2023_8583210 crossref_primary_10_1049_htl2_12039 crossref_primary_10_1016_j_arr_2023_102013 crossref_primary_10_32604_cmc_2025_061645 crossref_primary_10_3390_s22145247 crossref_primary_10_1007_s11042_023_15165_8 crossref_primary_10_32604_iasc_2023_035817 crossref_primary_10_1038_s41598_021_03287_8 crossref_primary_10_1155_2022_8100697 crossref_primary_10_2174_0115748936278851231213110653 crossref_primary_10_1007_s11227_024_06182_x crossref_primary_10_1109_JBHI_2024_3443137 crossref_primary_10_1155_2023_3913351 crossref_primary_10_1111_exsy_13300 crossref_primary_10_1007_s13258_023_01467_6 crossref_primary_10_36543_kauiibfd_2021_030 crossref_primary_10_1007_s10668_024_05340_8 crossref_primary_10_1016_j_slast_2024_100222 crossref_primary_10_1016_j_measen_2022_100406 crossref_primary_10_1007_s00431_024_05505_7 crossref_primary_10_1016_j_ijdrr_2023_104109 crossref_primary_10_1007_s12083_024_01776_x crossref_primary_10_1016_j_snb_2023_134403 crossref_primary_10_32604_cmc_2022_029619 crossref_primary_10_3390_diagnostics13071219 crossref_primary_10_1007_s12145_024_01413_4 crossref_primary_10_3390_healthcare11010081 crossref_primary_10_1016_j_fluid_2025_114423 crossref_primary_10_1007_s42600_023_00293_9 crossref_primary_10_1186_s13065_024_01127_0 crossref_primary_10_47992_IJHSP_2581_6411_0097 crossref_primary_10_3390_jcdd9020056 crossref_primary_10_1007_s42979_023_02521_6 crossref_primary_10_1016_j_eswa_2025_127272 crossref_primary_10_1016_j_eswa_2022_116502 crossref_primary_10_1016_j_glmedi_2023_100026 crossref_primary_10_1080_2150704X_2021_1910364 crossref_primary_10_1007_s10479_022_05023_5 crossref_primary_10_1007_s13721_024_00489_8 crossref_primary_10_1051_bioconf_20237501003 crossref_primary_10_1016_j_eswa_2024_124399 crossref_primary_10_1016_j_procs_2023_01_025 crossref_primary_10_1007_s11831_024_10098_3 crossref_primary_10_1016_j_bspc_2024_107010 crossref_primary_10_3390_diagnostics13203204 crossref_primary_10_1038_s41598_024_62278_7 crossref_primary_10_1155_2022_8266295 crossref_primary_10_1016_j_ssci_2023_106243 crossref_primary_10_18311_sdmimd_2023_32513 crossref_primary_10_1093_ijlct_ctae281 crossref_primary_10_1007_s11227_023_05132_3 crossref_primary_10_1016_j_health_2022_100112 crossref_primary_10_1038_s41598_024_58489_7 crossref_primary_10_1051_itmconf_20246903001 crossref_primary_10_3390_tropicalmed9090216 crossref_primary_10_1007_s11042_022_12567_y crossref_primary_10_1016_j_istruc_2024_106179 crossref_primary_10_1016_j_array_2023_100281 crossref_primary_10_1007_s11042_024_19766_9 crossref_primary_10_1007_s42979_023_01842_w crossref_primary_10_1016_j_micpro_2021_104027 crossref_primary_10_1186_s13040_024_00366_0 crossref_primary_10_1109_ACCESS_2024_3488743 crossref_primary_10_1007_s12145_025_01762_8 crossref_primary_10_3390_life13020439 crossref_primary_10_1007_s11831_023_10035_w crossref_primary_10_1016_j_ijcce_2025_02_002 crossref_primary_10_1007_s11042_024_19759_8 crossref_primary_10_1016_j_cie_2024_110405 crossref_primary_10_3390_info15080435 crossref_primary_10_1016_j_rineng_2024_102930 crossref_primary_10_1007_s11042_024_18312_x crossref_primary_10_3390_math9172078 crossref_primary_10_1007_s13204_021_02142_6 crossref_primary_10_1007_s10462_024_10814_2 crossref_primary_10_1016_j_jwpe_2024_105212 crossref_primary_10_33166_AETiC_2023_03_004 crossref_primary_10_1371_journal_pone_0283712 crossref_primary_10_1080_10255842_2024_2339479 crossref_primary_10_1109_TCBB_2023_3252668 crossref_primary_10_12720_jait_14_4_811_820 crossref_primary_10_2174_1386207325666220304112914 crossref_primary_10_1016_j_eij_2024_100507 crossref_primary_10_1016_j_ymssp_2023_110099 crossref_primary_10_1155_2021_9171756 crossref_primary_10_1007_s11042_024_18826_4 crossref_primary_10_3389_fpsyt_2024_1418969 crossref_primary_10_53759_7669_jmc202505043 crossref_primary_10_3390_bioengineering11060577 crossref_primary_10_1016_j_asoc_2024_112080 crossref_primary_10_1016_j_ejpb_2024_114508 crossref_primary_10_32604_cmc_2024_047961 crossref_primary_10_1007_s42600_023_00295_7 crossref_primary_10_1016_j_ajp_2024_104183 crossref_primary_10_3724_2096_7004_di_2024_0051 crossref_primary_10_32628_IJSRST229394 crossref_primary_10_1007_s11831_024_10209_0 crossref_primary_10_3233_JIFS_232851 crossref_primary_10_47164_ijngc_v13i3_820 crossref_primary_10_56294_dm2023173 crossref_primary_10_1007_s11042_023_17613_x crossref_primary_10_1016_j_procs_2024_03_218 crossref_primary_10_1007_s10115_023_01894_7 crossref_primary_10_1155_2023_3140270 crossref_primary_10_37394_23205_2024_23_23 crossref_primary_10_1007_s00418_022_02168_z crossref_primary_10_1007_s12065_023_00824_4 crossref_primary_10_3390_jpm12122052 crossref_primary_10_1016_j_jjimei_2023_100170 crossref_primary_10_1016_j_compbiomed_2022_105639 crossref_primary_10_4103_abr_abr_383_21 crossref_primary_10_1080_03772063_2024_2438325 crossref_primary_10_1155_2022_9900668 crossref_primary_10_3390_pr12081716 crossref_primary_10_1109_ACCESS_2023_3236002 crossref_primary_10_3390_diagnostics13040798 crossref_primary_10_3390_math11061467 crossref_primary_10_3390_jpm13071032 crossref_primary_10_35940_ijitee_A9757_1213123 crossref_primary_10_3390_s22249626 crossref_primary_10_35746_jtim_v7i1_628 |
Cites_doi | 10.4018/978-1-5225-9023-1.ch005 10.1109/JBHI.2015.2396520 10.1177/1094342020945026 10.1016/j.eswa.2015.06.024 10.3390/electronics9091469 10.1016/j.imu.2017.12.006 10.4018/978-1-7998-3591-2 10.1016/j.eswa.2010.12.141 10.1016/j.rser.2016.10.079 10.1007/s11063-020-10279-8 10.1007/s10916-019-1402-6 10.1016/j.jjcc.2014.02.001 10.1016/j.ijmedinf.2017.09.013 10.1016/j.comcom.2005.01.014 10.17485/ijst/2010/v3i10.2 10.20944/preprints202005.0493.v1 10.1109/ICCMC.2019.8819782 10.1109/ICICA.2014.43 10.1109/ECS.2014.6892740 10.1109/CSSE.2008.811 10.1016/j.procs.2015.10.014 10.1016/j.biosystems.2020.104211 10.1109/WCCCT.2014.66 10.1201/9780429298462 10.1109/PERVASIVE.2015.7087029 10.1109/RAICS.2015.7488400 10.1109/ICECA.2017.8203643 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s11227-020-03481-x |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-0484 |
EndPage | 5219 |
ExternalDocumentID | 10_1007_s11227_020_03481_x |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c363t-dc9857df84fae5ae9e868c81aba6a12db170fb872f6d63baed02a0025f298a9f3 |
IEDL.DBID | U2A |
ISSN | 0920-8542 |
IngestDate | Mon Jul 14 10:43:36 EDT 2025 Tue Jul 01 03:04:31 EDT 2025 Thu Apr 24 23:01:55 EDT 2025 Fri Feb 21 02:49:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Diabetes Random forest classification Artificial intelligence Naïve Bayes classification Data mining techniques |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-dc9857df84fae5ae9e868c81aba6a12db170fb872f6d63baed02a0025f298a9f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8139-7091 |
OpenAccessLink | https://link.springer.com/10.1007/s11227-020-03481-x |
PQID | 2505720432 |
PQPubID | 2043774 |
PageCount | 22 |
ParticipantIDs | proquest_journals_2505720432 crossref_citationtrail_10_1007_s11227_020_03481_x crossref_primary_10_1007_s11227_020_03481_x springer_journals_10_1007_s11227_020_03481_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
PublicationTitle | The Journal of supercomputing |
PublicationTitleAbbrev | J Supercomput |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Pradeepa, Gayathri, Nishmitha, Vimal, Oh-Young, Usman, Raheel (CR15) 2020; 9 Long, Meesad, Unger (CR21) 2015; 42 Renjit, Shunmuganathan (CR1) 2010; 3 CR18 Kumari, Vohra, Arora (CR19) 2014; 5 Robinson, Vimal, Khari, Hernández, Crespo (CR11) 2020 CR16 CR14 Annamalai, Udendhran, Vimal (CR6) 2019 Krishnaiah, Narsimha, Chandra (CR20) 2013; 4 CR12 CR10 Lee, Kim (CR23) 2016; 20 CR30 Wang, Srinivasan (CR24) 2017; 75 Geetha, Sivasubramanian, Kaliappan (CR5) 2019; 43 CR2 CR4 Yi, Wu, Xu (CR13) 2011; 38 CR3 Sampaul, Robinson, Julie, Shanmuganathan, Nam, Rho (CR17) 2020 CR8 Pradeepa, Manjula, Vimal (CR9) 2020 CR27 Esteghamati, Hafezi-Nejad, Zandieh, Sheikhbahaei, Ebadi, Nakhjavani (CR22) 2014; 64 CR26 Lynch, Abdollahi, Fuqua, de Carlo, Bartholomai, Balgemann, van Berkel, Frieboes (CR25) 2017; 108 Zhang, Shen (CR31) 2005; 28 Wu, Yang, Huang, He, Wang (CR7) 2018; 10 Vimal (CR28) 2016; 3 Suresh, Udendhran, Vimal (CR29) 2020 Z Zhang (3481_CR31) 2005; 28 3481_CR8 YH Robinson (3481_CR11) 2020 3481_CR26 3481_CR27 S Vimal (3481_CR28) 2016; 3 3481_CR4 BJ Lee (3481_CR23) 2016; 20 3481_CR12 3481_CR14 JA Renjit (3481_CR1) 2010; 3 Z Wang (3481_CR24) 2017; 75 CM Lynch (3481_CR25) 2017; 108 3481_CR30 NC Long (3481_CR21) 2015; 42 3481_CR10 3481_CR16 3481_CR18 V Krishnaiah (3481_CR20) 2013; 4 A Suresh (3481_CR29) 2020 3481_CR2 Y Yi (3481_CR13) 2011; 38 3481_CR3 S Pradeepa (3481_CR9) 2020 S Pradeepa (3481_CR15) 2020; 9 M Kumari (3481_CR19) 2014; 5 TGA Sampaul (3481_CR17) 2020 R Geetha (3481_CR5) 2019; 43 H Wu (3481_CR7) 2018; 10 A Esteghamati (3481_CR22) 2014; 64 S Annamalai (3481_CR6) 2019 |
References_xml | – year: 2019 ident: CR6 article-title: An intelligent grid network based on cloud computing infrastructures publication-title: Nov Pract Trends Grid Cloud Comput doi: 10.4018/978-1-5225-9023-1.ch005 – ident: CR18 – volume: 20 start-page: 39 issue: 1 year: 2016 end-page: 46 ident: CR23 article-title: Identification of type 2 diabetes risk factors using phenotypes consisting of anthropometry and triglycerides based on machine learning publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2015.2396520 – ident: CR4 – ident: CR14 – ident: CR2 – ident: CR16 – ident: CR12 – ident: CR30 – ident: CR10 – year: 2020 ident: CR11 article-title: Tree-based convolutional neural networks for object classification in segmented satellite images publication-title: Int J High Perform Comput Appl doi: 10.1177/1094342020945026 – volume: 4 start-page: 39 issue: 1 year: 2013 end-page: 45 ident: CR20 article-title: Diagnosis of lung cancer prediction system using data mining classification techniques publication-title: Int J Comput Sci Inf Technol – volume: 42 start-page: 8221 year: 2015 end-page: 8231 ident: CR21 article-title: A highly accurate firefly-based algorithm for heart disease prediction publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.06.024 – ident: CR8 – volume: 9 start-page: 1469 issue: 9 year: 2020 ident: CR15 article-title: IoT based health-related topic recognition from emerging online health community: med help using machine learning technique publication-title: Electronics doi: 10.3390/electronics9091469 – volume: 10 start-page: 100 year: 2018 end-page: 107 ident: CR7 article-title: Type 2 diabetes mellitus prediction model based on data mining publication-title: Inform Med Unlocked doi: 10.1016/j.imu.2017.12.006 – ident: CR27 – year: 2020 ident: CR29 article-title: Deep neural networks for multimodal imaging and biomedical applications publication-title: IGI Global, Hershey, doi: 10.4018/978-1-7998-3591-2 – volume: 38 start-page: 7698 issue: 6 year: 2011 end-page: 7707 ident: CR13 article-title: Incremental SVM based on reserved set for network intrusion detection publication-title: Elsevier J Expert Syst Appl doi: 10.1016/j.eswa.2010.12.141 – volume: 75 start-page: 796 year: 2017 end-page: 808 ident: CR24 article-title: A review of artificial intelligence based building energy use prediction: contrasting the capabilities of single and ensemble prediction models publication-title: Elsevier J Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.10.079 – year: 2020 ident: CR9 article-title: DRFS: detecting risk factor of stroke disease from social media using machine learning techniques publication-title: Neural Process Lett doi: 10.1007/s11063-020-10279-8 – volume: 5 start-page: 5174 issue: 4 year: 2014 end-page: 5178 ident: CR19 article-title: Prediction of diabetes using Bayesian network publication-title: Int J Comput Sci Inf Technol (IJCSIT) – ident: CR3 – volume: 43 start-page: 286 year: 2019 ident: CR5 article-title: Cervical cancer identification with synthetic minority oversampling technique and PCA analysis using random forest classifier publication-title: J Med Syst doi: 10.1007/s10916-019-1402-6 – volume: 64 start-page: 290 year: 2014 end-page: 296 ident: CR22 article-title: Homocysteine and metabolic syndrome: from clustering to additional utility in prediction of coronary heart disease publication-title: J Cardiol doi: 10.1016/j.jjcc.2014.02.001 – volume: 108 start-page: 1 year: 2017 end-page: 8 ident: CR25 article-title: Prediction of lung cancer patient survival via supervised machine learning classification techniques publication-title: Int J Med Inform doi: 10.1016/j.ijmedinf.2017.09.013 – volume: 28 start-page: 1428 issue: 12 year: 2005 end-page: 1442 ident: CR31 article-title: Application of online-training SVMs for real time intrusion detection with different considerations publication-title: Comput Commun doi: 10.1016/j.comcom.2005.01.014 – volume: 3 start-page: 35 issue: 12 year: 2016 end-page: 42 ident: CR28 article-title: Secure data packet transmission in MANET using enhanced identity-based cryptography publication-title: Int J New Technol Sci Eng – volume: 3 start-page: 1070 issue: 10 year: 2010 end-page: 1074 ident: CR1 article-title: Distributed and coorperative multi-agent based intrusion detection system publication-title: Indian J Sci Technol doi: 10.17485/ijst/2010/v3i10.2 – ident: CR26 – year: 2020 ident: CR17 article-title: Diabetic retinopathy diagnostics from retinal images based on deep convolutional networks publication-title: Preprints doi: 10.20944/preprints202005.0493.v1 – volume: 75 start-page: 796 year: 2017 ident: 3481_CR24 publication-title: Elsevier J Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.10.079 – volume: 3 start-page: 1070 issue: 10 year: 2010 ident: 3481_CR1 publication-title: Indian J Sci Technol doi: 10.17485/ijst/2010/v3i10.2 – volume: 108 start-page: 1 year: 2017 ident: 3481_CR25 publication-title: Int J Med Inform doi: 10.1016/j.ijmedinf.2017.09.013 – volume: 5 start-page: 5174 issue: 4 year: 2014 ident: 3481_CR19 publication-title: Int J Comput Sci Inf Technol (IJCSIT) – volume: 28 start-page: 1428 issue: 12 year: 2005 ident: 3481_CR31 publication-title: Comput Commun doi: 10.1016/j.comcom.2005.01.014 – ident: 3481_CR4 doi: 10.1109/ICCMC.2019.8819782 – ident: 3481_CR3 doi: 10.1109/ICICA.2014.43 – ident: 3481_CR2 doi: 10.1109/ECS.2014.6892740 – ident: 3481_CR8 – volume: 20 start-page: 39 issue: 1 year: 2016 ident: 3481_CR23 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2015.2396520 – year: 2020 ident: 3481_CR11 publication-title: Int J High Perform Comput Appl doi: 10.1177/1094342020945026 – ident: 3481_CR27 doi: 10.1109/CSSE.2008.811 – year: 2020 ident: 3481_CR17 publication-title: Preprints doi: 10.20944/preprints202005.0493.v1 – year: 2020 ident: 3481_CR29 publication-title: IGI Global, Hershey, doi: 10.4018/978-1-7998-3591-2 – ident: 3481_CR30 doi: 10.1016/j.procs.2015.10.014 – ident: 3481_CR14 doi: 10.1016/j.biosystems.2020.104211 – volume: 3 start-page: 35 issue: 12 year: 2016 ident: 3481_CR28 publication-title: Int J New Technol Sci Eng – volume: 9 start-page: 1469 issue: 9 year: 2020 ident: 3481_CR15 publication-title: Electronics doi: 10.3390/electronics9091469 – volume: 64 start-page: 290 year: 2014 ident: 3481_CR22 publication-title: J Cardiol doi: 10.1016/j.jjcc.2014.02.001 – ident: 3481_CR10 doi: 10.1109/WCCCT.2014.66 – volume: 4 start-page: 39 issue: 1 year: 2013 ident: 3481_CR20 publication-title: Int J Comput Sci Inf Technol – ident: 3481_CR18 doi: 10.1201/9780429298462 – volume: 43 start-page: 286 year: 2019 ident: 3481_CR5 publication-title: J Med Syst doi: 10.1007/s10916-019-1402-6 – year: 2019 ident: 3481_CR6 publication-title: Nov Pract Trends Grid Cloud Comput doi: 10.4018/978-1-5225-9023-1.ch005 – volume: 38 start-page: 7698 issue: 6 year: 2011 ident: 3481_CR13 publication-title: Elsevier J Expert Syst Appl doi: 10.1016/j.eswa.2010.12.141 – ident: 3481_CR12 doi: 10.1109/PERVASIVE.2015.7087029 – ident: 3481_CR26 doi: 10.1109/RAICS.2015.7488400 – ident: 3481_CR16 doi: 10.1109/ICECA.2017.8203643 – year: 2020 ident: 3481_CR9 publication-title: Neural Process Lett doi: 10.1007/s11063-020-10279-8 – volume: 10 start-page: 100 year: 2018 ident: 3481_CR7 publication-title: Inform Med Unlocked doi: 10.1016/j.imu.2017.12.006 – volume: 42 start-page: 8221 year: 2015 ident: 3481_CR21 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.06.024 |
SSID | ssj0004373 |
Score | 2.5625365 |
Snippet | Healthcare practices include collecting all kinds of patient data which would help the doctor correctly diagnose the health condition of the patient. These... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5198 |
SubjectTerms | Algorithms Artificial intelligence Artificial Intelligence for Smart Cities Classification Compilers Computer Science Datasets Heart diseases Interpreters Processor Architectures Programming Languages Signs and symptoms |
Title | AI-based smart prediction of clinical disease using random forest classifier and Naive Bayes |
URI | https://link.springer.com/article/10.1007/s11227-020-03481-x https://www.proquest.com/docview/2505720432 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-6vfjitzidIw--aaBNmzR97ObmVNiTgwlCSZpEBPfBOkH_ey9da1FU8KnQXo9wyeV-x30hdC4i7SsWW8KZZCTkBnTOBJbQiAMeUGEmbdHtc8SH4_B2wiZlUVheZbtXIcnipq6L3XxKI-LcHc9VjxJAjk3mfHc4xWOa1NWQwTquHAOlYCEtS2V-5vHVHNUY81tYtLA2g120XcJEnKz3dQ9tmNk-2qlGMOBSIw_QY3JDnCHSOJ_CIcCLpQu8OGHjucVV2SMuwzDYZbk_YTBPej7FAFdhEUAE-PnZgnnE8B6PJNx_uCvfTX6IxoP-fW9IyoEJJAt4sCI6iwWLtBWhlYZJExvBRSZ8qSSXPtXKjzyrREQt1zxQ0miPSod6LI2FjG1whBqz-cwcu4yn2KoMuHi-DqUAv4gyk4H6m1gFmaUt5FdyS7Oym7gbavGS1n2QnaxTkHVayDp9a6GLz38W614af1K3q-1IS73KUwfY3FidABZwWW1R_fl3bif_Iz9FW9QlrxSZjW3UWC1fzRmgj5XqoGbSveoO3PP64a7fQZs93usUR_ADDG7VKQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kHvTiW6xW3YM3XWw2yWZzrEVptfbUQg9C2KcI9kFTQf-9s-nGYFHBazIZlpmdzDfMC6ELnuhAxqklLBYxiZgBmzOhJTRhgAdkpIQtpn32WWcY3Y_ikR-T43phVvL31zngAZoQF-Q0Xc8oAby4HkGk7Mr32qxd9UCGy2xyCpQ8jqhvkPmZx3cnVCHLlWRo4WPudtCWB4e4tdTmLlozkz20XS5ewN4O99FTq0uc-9E4H4Pq8Wzu0i1OxHhqcdnsiH3yBbva9mcMTklPxxhAKhwCiAA1v1hwihie476Avx6-ER8mP0DDu9tBu0P8mgSiQhYuiFYgjURbHllhYmFSwxlXPBBSMBFQLYOkaSVPqGWahVIY3aTCYR1LUy5SGx6i2mQ6MUeuzim1UgGXZqAjwSEaorFRYPQmlaGytI6CUm6Z8jPE3SqL16yafuxknYGss0LW2XsdXX59M1tO0PiTulGqI_PWlGcOprllOiEc4KpUUfX6d27H_yM_RxudwWMv63X7Dydok7rylaK2sYFqi_mbOQX8sZBnxcX7BF-E0Bg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iIF58i9WqOXjT0N1kN5s91mppVYoHCz0IS7JJRLAP2hX03zvZh6uigtfdSQgzSeYLM98MQqci0r4KY0t4KEMScANnzjBLaMQBD6gglTav9jngvWFwPQpHn1j8ebZ7FZIsOA2uStMka820bdXEN5_SiLinj-eYpARQ5Aq8VPJAbYd3amYkK2LMMUiKMKAlbebnOb66phpvfguR5p6nu4nWS8iI24WNt9CSmWyjjaodAy5P5w56aPeJc0oaL8awIfBs7oIwTvF4anFFgcRlSAa7jPdHDK5KT8cYoCssAoQASz9ZcJUYvuOBhLsQX8g3s9hFw-7VfadHyuYJJGWcZUSnsQgjbUVgpQmliY3gIhW-VJJLn2rlR55VIqKWa86UNNqj0iEgS2MhY8v20PJkOjH7LvsptiqFWTxfB1LAG4mGJoWrwMSKpZY2kF_pLUnLyuKuwcVzUtdEdrpOQNdJruvktYHOPsbMiroaf0o3K3Mk5RlbJA68uRY7DBZwXpmo_v37bAf_Ez9Bq3eX3eS2P7g5RGvU5bTkCY9NtJzNX8wRgJJMHef77h00Hthf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-based+smart+prediction+of+clinical+disease+using+random+forest+classifier+and+Naive+Bayes&rft.jtitle=The+Journal+of+supercomputing&rft.au=Jackins%2C+V.&rft.au=Vimal%2C+S.&rft.au=Kaliappan%2C+M.&rft.au=Lee%2C+Mi+Young&rft.date=2021-05-01&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=77&rft.issue=5&rft.spage=5198&rft.epage=5219&rft_id=info:doi/10.1007%2Fs11227-020-03481-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11227_020_03481_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |