An Efficient and Fast Sparse Grid Algorithm for High-Dimensional Numerical Integration
This paper is concerned with developing an efficient numerical algorithm for the fast implementation of the sparse grid method for computing the d-dimensional integral of a given function. The new algorithm, called the MDI-SG (multilevel dimension iteration sparse grid) method, implements the sparse...
Saved in:
Published in | Mathematics (Basel) Vol. 11; no. 19; p. 4191 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2227-7390 2227-7390 |
DOI | 10.3390/math11194191 |
Cover
Loading…
Abstract | This paper is concerned with developing an efficient numerical algorithm for the fast implementation of the sparse grid method for computing the d-dimensional integral of a given function. The new algorithm, called the MDI-SG (multilevel dimension iteration sparse grid) method, implements the sparse grid method based on a dimension iteration/reduction procedure. It does not need to store the integration points, nor does it compute the function values independently at each integration point; instead, it reuses the computation for function evaluations as much as possible by performing the function evaluations at all integration points in a cluster and iteratively along coordinate directions. It is shown numerically that the computational complexity (in terms of CPU time) of the proposed MDI-SG method is of polynomial order O(d3Nb)(b≤2) or better, compared to the exponential order O(N(logN)d−1) for the standard sparse grid method, where N denotes the maximum number of integration points in each coordinate direction. As a result, the proposed MDI-SG method effectively circumvents the curse of dimensionality suffered by the standard sparse grid method for high-dimensional numerical integration. |
---|---|
AbstractList | This paper is concerned with developing an efficient numerical algorithm for the fast implementation of the sparse grid method for computing the d-dimensional integral of a given function. The new algorithm, called the MDI-SG (multilevel dimension iteration sparse grid) method, implements the sparse grid method based on a dimension iteration/reduction procedure. It does not need to store the integration points, nor does it compute the function values independently at each integration point; instead, it reuses the computation for function evaluations as much as possible by performing the function evaluations at all integration points in a cluster and iteratively along coordinate directions. It is shown numerically that the computational complexity (in terms of CPU time) of the proposed MDI-SG method is of polynomial order O(d3Nb)(b≤2) or better, compared to the exponential order O(N(logN)d−1) for the standard sparse grid method, where N denotes the maximum number of integration points in each coordinate direction. As a result, the proposed MDI-SG method effectively circumvents the curse of dimensionality suffered by the standard sparse grid method for high-dimensional numerical integration. This paper is concerned with developing an efficient numerical algorithm for the fast implementation of the sparse grid method for computing the d-dimensional integral of a given function. The new algorithm, called the MDI-SG (multilevel dimension iteration sparse grid) method, implements the sparse grid method based on a dimension iteration/reduction procedure. It does not need to store the integration points, nor does it compute the function values independently at each integration point; instead, it reuses the computation for function evaluations as much as possible by performing the function evaluations at all integration points in a cluster and iteratively along coordinate directions. It is shown numerically that the computational complexity (in terms of CPU time) of the proposed MDI-SG method is of polynomial order O(d3Nb)(b≤2) or better, compared to the exponential order O(N( log N)d−1) for the standard sparse grid method, where N denotes the maximum number of integration points in each coordinate direction. As a result, the proposed MDI-SG method effectively circumvents the curse of dimensionality suffered by the standard sparse grid method for high-dimensional numerical integration. This paper is concerned with developing an efficient numerical algorithm for the fast implementation of the sparse grid method for computing the d-dimensional integral of a given function. The new algorithm, called the MDI-SG (multilevel dimension iteration sparse grid) method, implements the sparse grid method based on a dimension iteration/reduction procedure. It does not need to store the integration points, nor does it compute the function values independently at each integration point; instead, it reuses the computation for function evaluations as much as possible by performing the function evaluations at all integration points in a cluster and iteratively along coordinate directions. It is shown numerically that the computational complexity (in terms of CPU time) of the proposed MDI-SG method is of polynomial order O(d[sup.3]N[sup.b])(b≤2) or better, compared to the exponential order O(N(logN)[sup.d−1]) for the standard sparse grid method, where N denotes the maximum number of integration points in each coordinate direction. As a result, the proposed MDI-SG method effectively circumvents the curse of dimensionality suffered by the standard sparse grid method for high-dimensional numerical integration. |
Audience | Academic |
Author | Feng, Xiaobing Zhong, Huicong |
Author_xml | – sequence: 1 givenname: Huicong surname: Zhong fullname: Zhong, Huicong – sequence: 2 givenname: Xiaobing orcidid: 0000-0002-9191-9092 surname: Feng fullname: Feng, Xiaobing |
BookMark | eNpNkUlvFDEQhS0UJELIjR9giSsdvHW7fRyFLCNFcGC5WuWtx6Npe7A9B_49DoNQyod6eq76ZOu9RRcpJ4_Qe0puOFfk0wptRylVgir6Cl0yxuQg-8XFC_0GXde6J70U5bNQl-jnJuG7EKKNPjUMyeF7qA1_O0KpHj-U6PDmsOQS227FIRf8GJfd8DmuPtWYExzwl9PqS7RdbVPzS4HW_XfodYBD9df_-hX6cX_3_fZxePr6sL3dPA2WT7wNzkjC2KicF9xaYYzxjgTKwHrO_URdIMSMxgXOghcTA2kNHScqRyKV8cCv0PbMdRn2-ljiCuW3zhD1XyOXRUNp0R68BmECY2oSApRg0oOdw8iZHaVhIyNzZ304s44l_zr52vQ-n0r_YtVsltMoJylpn7o5Ty3QoTGF3ArYfpxfo-2RhNj9jZSMqHmanrEfzwu25FqLD_-fSYl-Tk6_TI7_AeHFjIg |
Cites_doi | 10.21203/rs.3.rs-2891450/v1 10.1006/jcom.1993.1019 10.4208/cicp.260111.230911a 10.1017/S0962492913000044 10.2307/2331347 10.1073/pnas.1718942115 10.1016/j.ymssp.2020.107106 10.1242/jeb.004432 10.1017/S0962492900002804 10.1090/S0025-5718-68-99866-9 10.1007/s00362-023-01439-8 10.1016/j.jco.2010.02.002 10.1007/BF01406511 10.1017/S1446181112000077 10.1016/j.jco.2010.06.001 10.1007/978-3-642-33105-3_3 10.1137/19M1274067 10.1137/S1064827503426863 10.1017/S0962492904000182 10.4208/cicp.OA-2020-0191 10.1007/978-3-0348-6338-4_1 10.1007/s40304-018-0127-z 10.1051/m2an/2022055 10.1007/s002110050231 10.1016/j.jcp.2018.08.029 10.1109/83.650119 10.1023/A:1019129717644 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/math11194191 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central - New (Subscription) Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_a4bf229644a9427eac8f532c57b25208 A772098668 10_3390_math11194191 |
GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS RNS PMFND 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c363t-db702259de43cc4bbbed0f12ace33e61df00b5bdf32fe462a7cb156175079bea3 |
IEDL.DBID | DOA |
ISSN | 2227-7390 |
IngestDate | Wed Aug 27 01:18:32 EDT 2025 Sun Jul 13 05:36:01 EDT 2025 Tue Jun 10 21:16:51 EDT 2025 Tue Jul 01 01:53:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-db702259de43cc4bbbed0f12ace33e61df00b5bdf32fe462a7cb156175079bea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9191-9092 |
OpenAccessLink | https://doaj.org/article/a4bf229644a9427eac8f532c57b25208 |
PQID | 2876576771 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a4bf229644a9427eac8f532c57b25208 proquest_journals_2876576771 gale_infotracacademiconefile_A772098668 crossref_primary_10_3390_math11194191 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Han (ref_18) 2018; 115 Yang (ref_21) 2023; 457 Wipf (ref_14) 2013; Volume 100 Bungartz (ref_7) 2014; 13 Wu (ref_26) 2021; 147 ref_33 ref_30 Lu (ref_16) 2021; 63 Gerstner (ref_6) 1998; 18 Xu (ref_19) 2020; 28 Deluzet (ref_25) 2022; 56 Barraquand (ref_3) 1995; 30 Griebel (ref_1) 2010; 26 Dick (ref_10) 2013; 22 LaValle (ref_2) 1997; 6 Hickernell (ref_11) 2010; 26 E (ref_15) 2018; 6 ref_23 Quackenbush (ref_4) 2007; 210 ref_22 Azevedo (ref_5) 2012; 12 Kuo (ref_12) 2011; 53 ref_20 Novak (ref_31) 1996; 75 Wynn (ref_24) 2023; 64 ref_29 Patterson (ref_32) 1968; 22 Ogata (ref_9) 1989; 55 ref_27 Caflisch (ref_8) 1998; 7 Sirignano (ref_17) 2018; 375 Paskov (ref_28) 1993; 9 Lu (ref_13) 2004; 26 |
References_xml | – ident: ref_30 – ident: ref_20 doi: 10.21203/rs.3.rs-2891450/v1 – volume: 9 start-page: 291 year: 1993 ident: ref_28 article-title: Average case complexity of multivariate integration for smooth functions publication-title: J. Complex. doi: 10.1006/jcom.1993.1019 – volume: 12 start-page: 1051 year: 2012 ident: ref_5 article-title: A numerical comparison between quasi-Monte Carlo and sparse grid stochastic collocation methods publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.260111.230911a – volume: 22 start-page: 133 year: 2013 ident: ref_10 article-title: High-dimensional integration: The quasi-Monte Carlo way publication-title: Acta Numer. doi: 10.1017/S0962492913000044 – volume: 30 start-page: 383 year: 1995 ident: ref_3 article-title: Numerical valuation of high dimensional multivariate American securities publication-title: J. Financ. Quant. Anal. doi: 10.2307/2331347 – volume: 115 start-page: 8505 year: 2018 ident: ref_18 article-title: Solving high-dimensional partial differential equations using deep learning publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1718942115 – volume: 147 start-page: 107106 year: 2021 ident: ref_26 article-title: On reliability analysis method through rotational sparse grid nodes publication-title: Mech. Sys. Signal Process. doi: 10.1016/j.ymssp.2020.107106 – volume: 457 start-page: 128192 year: 2023 ident: ref_21 article-title: A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity publication-title: Appl. Math. Comput. – volume: 210 start-page: 1507 year: 2007 ident: ref_4 article-title: Extracting biology from high-dimensional biological data publication-title: J. Exp. Biol. doi: 10.1242/jeb.004432 – volume: 7 start-page: 1 year: 1998 ident: ref_8 article-title: Monte Carlo and quasi-Monte Carlo methods publication-title: Acta Numer. doi: 10.1017/S0962492900002804 – volume: 22 start-page: 847 year: 1968 ident: ref_32 article-title: The optimum addition of points to quadrature formulae publication-title: Math. Comp. doi: 10.1090/S0025-5718-68-99866-9 – ident: ref_23 – volume: 64 start-page: 1233 year: 2023 ident: ref_24 article-title: Sparse polynomial prediction publication-title: Stat. Pap. doi: 10.1007/s00362-023-01439-8 – volume: 26 start-page: 229 year: 2010 ident: ref_11 article-title: Multi-level Monte Carlo algorithms for infinite-dimensional integration on RN publication-title: J. Complexity doi: 10.1016/j.jco.2010.02.002 – volume: 55 start-page: 137 year: 1989 ident: ref_9 article-title: A Monte Carlo method for high dimensional integration publication-title: Numer. Math. doi: 10.1007/BF01406511 – volume: 53 start-page: 1 year: 2011 ident: ref_12 article-title: Quasi-Monte Carlo methods for high-dimensional integration: The standard (weighted Hilbert space) setting and beyond publication-title: ANZIAM J. doi: 10.1017/S1446181112000077 – volume: 26 start-page: 455 year: 2010 ident: ref_1 article-title: Dimension-wise integration of high-dimensional functions with applications to finance publication-title: J. Complex. doi: 10.1016/j.jco.2010.06.001 – volume: Volume 100 start-page: 25 year: 2013 ident: ref_14 article-title: High-Dimensional Integrals publication-title: Statistical Approach to Quantum Field Theory doi: 10.1007/978-3-642-33105-3_3 – ident: ref_29 – ident: ref_33 – volume: 63 start-page: 208 year: 2021 ident: ref_16 article-title: DeepXDE: A deep learning library for solving differential equations publication-title: SIAM Rev. doi: 10.1137/19M1274067 – volume: 26 start-page: 613 year: 2004 ident: ref_13 article-title: Higher-dimensional integration with Gaussian weight for applications in probabilistic design publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827503426863 – volume: 13 start-page: 147 year: 2014 ident: ref_7 article-title: Sparse grids publication-title: Acta Numer. doi: 10.1017/S0962492904000182 – volume: 28 start-page: 1707 year: 2020 ident: ref_19 article-title: Finite neuron method and convergence analysis publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.OA-2020-0191 – ident: ref_27 doi: 10.1007/978-3-0348-6338-4_1 – volume: 6 start-page: 1 year: 2018 ident: ref_15 article-title: The deep Ritz method: A deep learning-based numerical algorithm for solving variational problems publication-title: Commun. Math. Stat. doi: 10.1007/s40304-018-0127-z – volume: 56 start-page: 1809 year: 2022 ident: ref_25 article-title: Sparse grid reconstructions for Particle-In-Cell methods publication-title: ESAIM: Math. Model. Numer. Anal. doi: 10.1051/m2an/2022055 – ident: ref_22 – volume: 75 start-page: 79 year: 1996 ident: ref_31 article-title: High dimensional integration of smooth functions over cubes publication-title: Numer. Math. doi: 10.1007/s002110050231 – volume: 375 start-page: 1339 year: 2018 ident: ref_17 article-title: DGM: A deep learning algorithm for solving partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.08.029 – volume: 6 start-page: 1659 year: 1997 ident: ref_2 article-title: Methods for numerical integration of high-dimensional posterior densities with application to statistical image models publication-title: IEEE Trans. Image Process. doi: 10.1109/83.650119 – volume: 18 start-page: 209 year: 1998 ident: ref_6 article-title: Numerical integration using sparse grids publication-title: Numer. Algorithms doi: 10.1023/A:1019129717644 |
SSID | ssj0000913849 |
Score | 2.2336733 |
Snippet | This paper is concerned with developing an efficient numerical algorithm for the fast implementation of the sparse grid method for computing the d-dimensional... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 4191 |
SubjectTerms | Algorithms curse of dimensionality Efficiency Grid method high-dimensional integration Image processing Integrals Iterative methods Mathematical analysis Methods multilevel dimension iteration (MDI) Numerical analysis Numerical integration numerical quadrature rules Polynomials sparse grid (SG) method |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYoXNoDKi-xQJEPoJ4s4lcSn9C2sDwkuBQQN8tPqESzy274_4wT70IPcHV8SMbz-GY8-QahA0eN9LXgxJVCEWEcJcaJSOpQVB7sydKQCvpX1-X5rbi8l_e54DbLbZVzn9g5aj92qUZ-BMi-BGxcVfR48kzS1Kh0u5pHaHxBKxQiTdLwenS2qLEkzstaqL7fnUN2fwQo8BGsWwmq6H-RqCPs_8gtd7Fm9B2tZpCIh_2prqGl0Kyjb1cLhtXZBrobNvi0o3-AqIFN4_HIzFr8ZwKJasBn078eD58e4APax38YgClODR3kJHH59zwc-Pqlv6x5wheZMgLWN9Ht6PTm9znJMxKI4yVvibcVRGGpfBDcOWGtDb6IlBkXOA8l9bEorLQ-chaDKJmpnIWUDUBDUSkbDN9Cy824CdsIWwVox0tLrWfCeWa9EiFyp6JUPHg3QIdzeelJT4WhIYVIctXv5TpAv5IwF3sSgXW3MJ4-6GwP2ggbWbryFUYJVoH7r6PkzMnKMsmKeoB-pqPQyczaqXEm_y0Ar5oIq_QQsoJC1WUJO_fmp6Wz_c30m7bsfP54F31NA-T79rw9tNxOX8IPgBmt3e906RVvv9O8 priority: 102 providerName: ProQuest |
Title | An Efficient and Fast Sparse Grid Algorithm for High-Dimensional Numerical Integration |
URI | https://www.proquest.com/docview/2876576771 https://doaj.org/article/a4bf229644a9427eac8f532c57b25208 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELZKeimHqtBWTQuRD6CeVlm_dtfHpM0DJCLUNlVulp-ARBeULP-_4_UGhQPiwtXywZrZmfm-9fgbhE4s0cJVnGW24DLj2pJMWx6yyuelg3gyxMcf-heLYr7k5yux2hn1FXvCkjxwMtxQcxNovBvkWnJaQp6ogmDUitJQQdMzX6h5O2SqzcGSsIrL1OnOgNcPAf9dQ1xLTiR5UoNaqf7nEnJbZaYf0PsOHuJROtYBeuPrQ7R_8aituvmI_o5qPGmFH6BeYF07PNWbBv--B4rq8Wx94_Do9uoOSP_1PwyQFMdWjuxnVPFPChx48ZCuaW7xWScWAeuf0HI6-fNjnnXTETLLCtZkzpRQf4V0njNruTHGuzwQqq1nzBfEhTw3wrjAaPC8oLq0BsgawIW8lMZr9hn16rvaf0HYSMA5ThhiHOXWUeMk94FZGYRk3tk-Ot3aS90nEQwF5CHaVe3atY_G0ZiPe6J0dbsADlWdQ9VLDu2j79EVKgZYs9ZWd-8E4KhRqkqNgA_ksioK2Hm09ZbqIm-jgAEWwKHKknx9jdN8Q-_igPnUvneEes36wR8DDGnMAO1V09kAvR1PFpe_Bu339x92T936 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOQAHVF4iUIoPVJysrl-76wNCoW2a0CYXWtSb8bNFKpuQbIX4U_xGxvtI4QC3Xm1rtRrPzDdjj79B6I2jRvpScOJyoYgwjhLjRCRlyAoP9mRpSAf601k-PhMfz-X5BvrVv4VJZZW9T2wctZ-7dEa-B5F9DrFxUdD3i-8kdY1Kt6t9C41WLY7Dzx-Qsq3eTQ5gf3cZGx2e7o9J11WAOJ7zmnhbAG5J5YPgzglrbfBZpMy4wHnIqY9ZZqX1kbMYRM5M4SwkOQCzWaFsMBy-ewfdFZyrVEJYjo7WZzqJY7MUqq2vh_lsD6LOS_AmSlBF_0K-pkHAv2CgwbbRFnrYBaV42GrRI7QRqsfowXTN6Lp6gj4PK3zY0E0ASmFTeTwyqxp_WkBiHPDR8qvHw6sLEFh9-Q1DIIxTAQk5SL0DWt4PPLtuL4eu8KSjqIDxp-jsVqT3DG1W8yo8R9gqiK68tNR6Jpxn1isRIncqSsWDdwO028tLL1rqDQ0pS5Kr_lOuA_QhCXO9JhFmNwPz5YXu7E8bYSNLV8zCKMEKgJsySs6cLCyTLCsH6G3aCp3Mul4aZ7rXCfCriSBLDyELyVSZ57Byu98t3dn7St9o54v_T79G98an0xN9Mpkdv0T3U_P6tjRwG23Wy-vwCkKc2u40eoXRl9tW5N_NmxJz |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEE91oYAPVJysdfxI4gNCC9u0S-kKCYp6M362SCW77KZC_DV-HeM8FjjArVcniqLxjOcbe_x9CD13mZG-FJy4XCgijMuIcSKSMtDCQzzZLKQN_eN5fngi3p7K0y30c7gLk9oqhzWxXaj9wqU98jEg-xywcVFk49i3RbyfVq-W30hSkEonrYOcRuciR-HHdyjf1i9nU5jrPcaq_Y9vDkmvMEAcz3lDvC0gh0nlg-DOCWtt8DRmzLjAecgzHym10vrIWQwiZ6ZwFgoeSLm0UDYYDt-9hq4XvKRJPaGsDjb7O4lvsxSq67XnXNExINBzWFmUyFT2VxZsxQL-lRLaPFfdQbd7gIonnUfdRVuhvoduHW_YXdf30adJjfdb6gnIWNjUHldm3eAPSyiSAz5YffF4cnEGBmvOv2IAxTg1k5Bp0hHoOEDw_LI7KLrAs56uAsYfoJMrsd5DtF0v6rCDsFWAtLy0mfVMOM-sVyJE7lSUigfvRmhvsJdedjQcGsqXZFf9p11H6HUy5uadRJ7dDixWZ7qPRW2EjSwdNwujBCsg9ZRRcuZkYZlktByhF2kqdArxZmWc6W8qwK8msiw9gYqEqjLP4c3dYbZ0H_tr_dtTH_3_8TN0A1xYv5vNjx6jm0nHvusS3EXbzeoyPAG009inrVth9Pmq_fgXFjcWoA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+and+Fast+Sparse+Grid+Algorithm+for+High-Dimensional+Numerical+Integration&rft.jtitle=Mathematics+%28Basel%29&rft.au=Huicong+Zhong&rft.au=Xiaobing+Feng&rft.date=2023-10-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=11&rft.issue=19&rft.spage=4191&rft_id=info:doi/10.3390%2Fmath11194191&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a4bf229644a9427eac8f532c57b25208 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |