An Efficient and Fast Sparse Grid Algorithm for High-Dimensional Numerical Integration

This paper is concerned with developing an efficient numerical algorithm for the fast implementation of the sparse grid method for computing the d-dimensional integral of a given function. The new algorithm, called the MDI-SG (multilevel dimension iteration sparse grid) method, implements the sparse...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 11; no. 19; p. 4191
Main Authors Zhong, Huicong, Feng, Xiaobing
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2023
Subjects
Online AccessGet full text
ISSN2227-7390
2227-7390
DOI10.3390/math11194191

Cover

Loading…
Abstract This paper is concerned with developing an efficient numerical algorithm for the fast implementation of the sparse grid method for computing the d-dimensional integral of a given function. The new algorithm, called the MDI-SG (multilevel dimension iteration sparse grid) method, implements the sparse grid method based on a dimension iteration/reduction procedure. It does not need to store the integration points, nor does it compute the function values independently at each integration point; instead, it reuses the computation for function evaluations as much as possible by performing the function evaluations at all integration points in a cluster and iteratively along coordinate directions. It is shown numerically that the computational complexity (in terms of CPU time) of the proposed MDI-SG method is of polynomial order O(d3Nb)(b≤2) or better, compared to the exponential order O(N(logN)d−1) for the standard sparse grid method, where N denotes the maximum number of integration points in each coordinate direction. As a result, the proposed MDI-SG method effectively circumvents the curse of dimensionality suffered by the standard sparse grid method for high-dimensional numerical integration.
AbstractList This paper is concerned with developing an efficient numerical algorithm for the fast implementation of the sparse grid method for computing the d-dimensional integral of a given function. The new algorithm, called the MDI-SG (multilevel dimension iteration sparse grid) method, implements the sparse grid method based on a dimension iteration/reduction procedure. It does not need to store the integration points, nor does it compute the function values independently at each integration point; instead, it reuses the computation for function evaluations as much as possible by performing the function evaluations at all integration points in a cluster and iteratively along coordinate directions. It is shown numerically that the computational complexity (in terms of CPU time) of the proposed MDI-SG method is of polynomial order O(d3Nb)(b≤2) or better, compared to the exponential order O(N(logN)d−1) for the standard sparse grid method, where N denotes the maximum number of integration points in each coordinate direction. As a result, the proposed MDI-SG method effectively circumvents the curse of dimensionality suffered by the standard sparse grid method for high-dimensional numerical integration.
This paper is concerned with developing an efficient numerical algorithm for the fast implementation of the sparse grid method for computing the d-dimensional integral of a given function. The new algorithm, called the MDI-SG (multilevel dimension iteration sparse grid) method, implements the sparse grid method based on a dimension iteration/reduction procedure. It does not need to store the integration points, nor does it compute the function values independently at each integration point; instead, it reuses the computation for function evaluations as much as possible by performing the function evaluations at all integration points in a cluster and iteratively along coordinate directions. It is shown numerically that the computational complexity (in terms of CPU time) of the proposed MDI-SG method is of polynomial order O(d3Nb)(b≤2) or better, compared to the exponential order O(N( log N)d−1) for the standard sparse grid method, where N denotes the maximum number of integration points in each coordinate direction. As a result, the proposed MDI-SG method effectively circumvents the curse of dimensionality suffered by the standard sparse grid method for high-dimensional numerical integration.
This paper is concerned with developing an efficient numerical algorithm for the fast implementation of the sparse grid method for computing the d-dimensional integral of a given function. The new algorithm, called the MDI-SG (multilevel dimension iteration sparse grid) method, implements the sparse grid method based on a dimension iteration/reduction procedure. It does not need to store the integration points, nor does it compute the function values independently at each integration point; instead, it reuses the computation for function evaluations as much as possible by performing the function evaluations at all integration points in a cluster and iteratively along coordinate directions. It is shown numerically that the computational complexity (in terms of CPU time) of the proposed MDI-SG method is of polynomial order O(d[sup.3]N[sup.b])(b≤2) or better, compared to the exponential order O(N(logN)[sup.d−1]) for the standard sparse grid method, where N denotes the maximum number of integration points in each coordinate direction. As a result, the proposed MDI-SG method effectively circumvents the curse of dimensionality suffered by the standard sparse grid method for high-dimensional numerical integration.
Audience Academic
Author Feng, Xiaobing
Zhong, Huicong
Author_xml – sequence: 1
  givenname: Huicong
  surname: Zhong
  fullname: Zhong, Huicong
– sequence: 2
  givenname: Xiaobing
  orcidid: 0000-0002-9191-9092
  surname: Feng
  fullname: Feng, Xiaobing
BookMark eNpNkUlvFDEQhS0UJELIjR9giSsdvHW7fRyFLCNFcGC5WuWtx6Npe7A9B_49DoNQyod6eq76ZOu9RRcpJ4_Qe0puOFfk0wptRylVgir6Cl0yxuQg-8XFC_0GXde6J70U5bNQl-jnJuG7EKKNPjUMyeF7qA1_O0KpHj-U6PDmsOQS227FIRf8GJfd8DmuPtWYExzwl9PqS7RdbVPzS4HW_XfodYBD9df_-hX6cX_3_fZxePr6sL3dPA2WT7wNzkjC2KicF9xaYYzxjgTKwHrO_URdIMSMxgXOghcTA2kNHScqRyKV8cCv0PbMdRn2-ljiCuW3zhD1XyOXRUNp0R68BmECY2oSApRg0oOdw8iZHaVhIyNzZ304s44l_zr52vQ-n0r_YtVsltMoJylpn7o5Ty3QoTGF3ArYfpxfo-2RhNj9jZSMqHmanrEfzwu25FqLD_-fSYl-Tk6_TI7_AeHFjIg
Cites_doi 10.21203/rs.3.rs-2891450/v1
10.1006/jcom.1993.1019
10.4208/cicp.260111.230911a
10.1017/S0962492913000044
10.2307/2331347
10.1073/pnas.1718942115
10.1016/j.ymssp.2020.107106
10.1242/jeb.004432
10.1017/S0962492900002804
10.1090/S0025-5718-68-99866-9
10.1007/s00362-023-01439-8
10.1016/j.jco.2010.02.002
10.1007/BF01406511
10.1017/S1446181112000077
10.1016/j.jco.2010.06.001
10.1007/978-3-642-33105-3_3
10.1137/19M1274067
10.1137/S1064827503426863
10.1017/S0962492904000182
10.4208/cicp.OA-2020-0191
10.1007/978-3-0348-6338-4_1
10.1007/s40304-018-0127-z
10.1051/m2an/2022055
10.1007/s002110050231
10.1016/j.jcp.2018.08.029
10.1109/83.650119
10.1023/A:1019129717644
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math11194191
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central - New (Subscription)
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_a4bf229644a9427eac8f532c57b25208
A772098668
10_3390_math11194191
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
RNS
PMFND
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c363t-db702259de43cc4bbbed0f12ace33e61df00b5bdf32fe462a7cb156175079bea3
IEDL.DBID DOA
ISSN 2227-7390
IngestDate Wed Aug 27 01:18:32 EDT 2025
Sun Jul 13 05:36:01 EDT 2025
Tue Jun 10 21:16:51 EDT 2025
Tue Jul 01 01:53:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-db702259de43cc4bbbed0f12ace33e61df00b5bdf32fe462a7cb156175079bea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9191-9092
OpenAccessLink https://doaj.org/article/a4bf229644a9427eac8f532c57b25208
PQID 2876576771
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_a4bf229644a9427eac8f532c57b25208
proquest_journals_2876576771
gale_infotracacademiconefile_A772098668
crossref_primary_10_3390_math11194191
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Han (ref_18) 2018; 115
Yang (ref_21) 2023; 457
Wipf (ref_14) 2013; Volume 100
Bungartz (ref_7) 2014; 13
Wu (ref_26) 2021; 147
ref_33
ref_30
Lu (ref_16) 2021; 63
Gerstner (ref_6) 1998; 18
Xu (ref_19) 2020; 28
Deluzet (ref_25) 2022; 56
Barraquand (ref_3) 1995; 30
Griebel (ref_1) 2010; 26
Dick (ref_10) 2013; 22
LaValle (ref_2) 1997; 6
Hickernell (ref_11) 2010; 26
E (ref_15) 2018; 6
ref_23
Quackenbush (ref_4) 2007; 210
ref_22
Azevedo (ref_5) 2012; 12
Kuo (ref_12) 2011; 53
ref_20
Novak (ref_31) 1996; 75
Wynn (ref_24) 2023; 64
ref_29
Patterson (ref_32) 1968; 22
Ogata (ref_9) 1989; 55
ref_27
Caflisch (ref_8) 1998; 7
Sirignano (ref_17) 2018; 375
Paskov (ref_28) 1993; 9
Lu (ref_13) 2004; 26
References_xml – ident: ref_30
– ident: ref_20
  doi: 10.21203/rs.3.rs-2891450/v1
– volume: 9
  start-page: 291
  year: 1993
  ident: ref_28
  article-title: Average case complexity of multivariate integration for smooth functions
  publication-title: J. Complex.
  doi: 10.1006/jcom.1993.1019
– volume: 12
  start-page: 1051
  year: 2012
  ident: ref_5
  article-title: A numerical comparison between quasi-Monte Carlo and sparse grid stochastic collocation methods
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.260111.230911a
– volume: 22
  start-page: 133
  year: 2013
  ident: ref_10
  article-title: High-dimensional integration: The quasi-Monte Carlo way
  publication-title: Acta Numer.
  doi: 10.1017/S0962492913000044
– volume: 30
  start-page: 383
  year: 1995
  ident: ref_3
  article-title: Numerical valuation of high dimensional multivariate American securities
  publication-title: J. Financ. Quant. Anal.
  doi: 10.2307/2331347
– volume: 115
  start-page: 8505
  year: 2018
  ident: ref_18
  article-title: Solving high-dimensional partial differential equations using deep learning
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1718942115
– volume: 147
  start-page: 107106
  year: 2021
  ident: ref_26
  article-title: On reliability analysis method through rotational sparse grid nodes
  publication-title: Mech. Sys. Signal Process.
  doi: 10.1016/j.ymssp.2020.107106
– volume: 457
  start-page: 128192
  year: 2023
  ident: ref_21
  article-title: A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity
  publication-title: Appl. Math. Comput.
– volume: 210
  start-page: 1507
  year: 2007
  ident: ref_4
  article-title: Extracting biology from high-dimensional biological data
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.004432
– volume: 7
  start-page: 1
  year: 1998
  ident: ref_8
  article-title: Monte Carlo and quasi-Monte Carlo methods
  publication-title: Acta Numer.
  doi: 10.1017/S0962492900002804
– volume: 22
  start-page: 847
  year: 1968
  ident: ref_32
  article-title: The optimum addition of points to quadrature formulae
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-68-99866-9
– ident: ref_23
– volume: 64
  start-page: 1233
  year: 2023
  ident: ref_24
  article-title: Sparse polynomial prediction
  publication-title: Stat. Pap.
  doi: 10.1007/s00362-023-01439-8
– volume: 26
  start-page: 229
  year: 2010
  ident: ref_11
  article-title: Multi-level Monte Carlo algorithms for infinite-dimensional integration on RN
  publication-title: J. Complexity
  doi: 10.1016/j.jco.2010.02.002
– volume: 55
  start-page: 137
  year: 1989
  ident: ref_9
  article-title: A Monte Carlo method for high dimensional integration
  publication-title: Numer. Math.
  doi: 10.1007/BF01406511
– volume: 53
  start-page: 1
  year: 2011
  ident: ref_12
  article-title: Quasi-Monte Carlo methods for high-dimensional integration: The standard (weighted Hilbert space) setting and beyond
  publication-title: ANZIAM J.
  doi: 10.1017/S1446181112000077
– volume: 26
  start-page: 455
  year: 2010
  ident: ref_1
  article-title: Dimension-wise integration of high-dimensional functions with applications to finance
  publication-title: J. Complex.
  doi: 10.1016/j.jco.2010.06.001
– volume: Volume 100
  start-page: 25
  year: 2013
  ident: ref_14
  article-title: High-Dimensional Integrals
  publication-title: Statistical Approach to Quantum Field Theory
  doi: 10.1007/978-3-642-33105-3_3
– ident: ref_29
– ident: ref_33
– volume: 63
  start-page: 208
  year: 2021
  ident: ref_16
  article-title: DeepXDE: A deep learning library for solving differential equations
  publication-title: SIAM Rev.
  doi: 10.1137/19M1274067
– volume: 26
  start-page: 613
  year: 2004
  ident: ref_13
  article-title: Higher-dimensional integration with Gaussian weight for applications in probabilistic design
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827503426863
– volume: 13
  start-page: 147
  year: 2014
  ident: ref_7
  article-title: Sparse grids
  publication-title: Acta Numer.
  doi: 10.1017/S0962492904000182
– volume: 28
  start-page: 1707
  year: 2020
  ident: ref_19
  article-title: Finite neuron method and convergence analysis
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.OA-2020-0191
– ident: ref_27
  doi: 10.1007/978-3-0348-6338-4_1
– volume: 6
  start-page: 1
  year: 2018
  ident: ref_15
  article-title: The deep Ritz method: A deep learning-based numerical algorithm for solving variational problems
  publication-title: Commun. Math. Stat.
  doi: 10.1007/s40304-018-0127-z
– volume: 56
  start-page: 1809
  year: 2022
  ident: ref_25
  article-title: Sparse grid reconstructions for Particle-In-Cell methods
  publication-title: ESAIM: Math. Model. Numer. Anal.
  doi: 10.1051/m2an/2022055
– ident: ref_22
– volume: 75
  start-page: 79
  year: 1996
  ident: ref_31
  article-title: High dimensional integration of smooth functions over cubes
  publication-title: Numer. Math.
  doi: 10.1007/s002110050231
– volume: 375
  start-page: 1339
  year: 2018
  ident: ref_17
  article-title: DGM: A deep learning algorithm for solving partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.08.029
– volume: 6
  start-page: 1659
  year: 1997
  ident: ref_2
  article-title: Methods for numerical integration of high-dimensional posterior densities with application to statistical image models
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.650119
– volume: 18
  start-page: 209
  year: 1998
  ident: ref_6
  article-title: Numerical integration using sparse grids
  publication-title: Numer. Algorithms
  doi: 10.1023/A:1019129717644
SSID ssj0000913849
Score 2.2336733
Snippet This paper is concerned with developing an efficient numerical algorithm for the fast implementation of the sparse grid method for computing the d-dimensional...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 4191
SubjectTerms Algorithms
curse of dimensionality
Efficiency
Grid method
high-dimensional integration
Image processing
Integrals
Iterative methods
Mathematical analysis
Methods
multilevel dimension iteration (MDI)
Numerical analysis
Numerical integration
numerical quadrature rules
Polynomials
sparse grid (SG) method
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYoXNoDKi-xQJEPoJ4s4lcSn9C2sDwkuBQQN8tPqESzy274_4wT70IPcHV8SMbz-GY8-QahA0eN9LXgxJVCEWEcJcaJSOpQVB7sydKQCvpX1-X5rbi8l_e54DbLbZVzn9g5aj92qUZ-BMi-BGxcVfR48kzS1Kh0u5pHaHxBKxQiTdLwenS2qLEkzstaqL7fnUN2fwQo8BGsWwmq6H-RqCPs_8gtd7Fm9B2tZpCIh_2prqGl0Kyjb1cLhtXZBrobNvi0o3-AqIFN4_HIzFr8ZwKJasBn078eD58e4APax38YgClODR3kJHH59zwc-Pqlv6x5wheZMgLWN9Ht6PTm9znJMxKI4yVvibcVRGGpfBDcOWGtDb6IlBkXOA8l9bEorLQ-chaDKJmpnIWUDUBDUSkbDN9Cy824CdsIWwVox0tLrWfCeWa9EiFyp6JUPHg3QIdzeelJT4WhIYVIctXv5TpAv5IwF3sSgXW3MJ4-6GwP2ggbWbryFUYJVoH7r6PkzMnKMsmKeoB-pqPQyczaqXEm_y0Ar5oIq_QQsoJC1WUJO_fmp6Wz_c30m7bsfP54F31NA-T79rw9tNxOX8IPgBmt3e906RVvv9O8
  priority: 102
  providerName: ProQuest
Title An Efficient and Fast Sparse Grid Algorithm for High-Dimensional Numerical Integration
URI https://www.proquest.com/docview/2876576771
https://doaj.org/article/a4bf229644a9427eac8f532c57b25208
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELZKeimHqtBWTQuRD6CeVlm_dtfHpM0DJCLUNlVulp-ARBeULP-_4_UGhQPiwtXywZrZmfm-9fgbhE4s0cJVnGW24DLj2pJMWx6yyuelg3gyxMcf-heLYr7k5yux2hn1FXvCkjxwMtxQcxNovBvkWnJaQp6ogmDUitJQQdMzX6h5O2SqzcGSsIrL1OnOgNcPAf9dQ1xLTiR5UoNaqf7nEnJbZaYf0PsOHuJROtYBeuPrQ7R_8aituvmI_o5qPGmFH6BeYF07PNWbBv--B4rq8Wx94_Do9uoOSP_1PwyQFMdWjuxnVPFPChx48ZCuaW7xWScWAeuf0HI6-fNjnnXTETLLCtZkzpRQf4V0njNruTHGuzwQqq1nzBfEhTw3wrjAaPC8oLq0BsgawIW8lMZr9hn16rvaf0HYSMA5ThhiHOXWUeMk94FZGYRk3tk-Ot3aS90nEQwF5CHaVe3atY_G0ZiPe6J0dbsADlWdQ9VLDu2j79EVKgZYs9ZWd-8E4KhRqkqNgA_ksioK2Hm09ZbqIm-jgAEWwKHKknx9jdN8Q-_igPnUvneEes36wR8DDGnMAO1V09kAvR1PFpe_Bu339x92T936
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOQAHVF4iUIoPVJysrl-76wNCoW2a0CYXWtSb8bNFKpuQbIX4U_xGxvtI4QC3Xm1rtRrPzDdjj79B6I2jRvpScOJyoYgwjhLjRCRlyAoP9mRpSAf601k-PhMfz-X5BvrVv4VJZZW9T2wctZ-7dEa-B5F9DrFxUdD3i-8kdY1Kt6t9C41WLY7Dzx-Qsq3eTQ5gf3cZGx2e7o9J11WAOJ7zmnhbAG5J5YPgzglrbfBZpMy4wHnIqY9ZZqX1kbMYRM5M4SwkOQCzWaFsMBy-ewfdFZyrVEJYjo7WZzqJY7MUqq2vh_lsD6LOS_AmSlBF_0K-pkHAv2CgwbbRFnrYBaV42GrRI7QRqsfowXTN6Lp6gj4PK3zY0E0ASmFTeTwyqxp_WkBiHPDR8qvHw6sLEFh9-Q1DIIxTAQk5SL0DWt4PPLtuL4eu8KSjqIDxp-jsVqT3DG1W8yo8R9gqiK68tNR6Jpxn1isRIncqSsWDdwO028tLL1rqDQ0pS5Kr_lOuA_QhCXO9JhFmNwPz5YXu7E8bYSNLV8zCKMEKgJsySs6cLCyTLCsH6G3aCp3Mul4aZ7rXCfCriSBLDyELyVSZ57Byu98t3dn7St9o54v_T79G98an0xN9Mpkdv0T3U_P6tjRwG23Wy-vwCkKc2u40eoXRl9tW5N_NmxJz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEE91oYAPVJysdfxI4gNCC9u0S-kKCYp6M362SCW77KZC_DV-HeM8FjjArVcniqLxjOcbe_x9CD13mZG-FJy4XCgijMuIcSKSMtDCQzzZLKQN_eN5fngi3p7K0y30c7gLk9oqhzWxXaj9wqU98jEg-xywcVFk49i3RbyfVq-W30hSkEonrYOcRuciR-HHdyjf1i9nU5jrPcaq_Y9vDkmvMEAcz3lDvC0gh0nlg-DOCWtt8DRmzLjAecgzHym10vrIWQwiZ6ZwFgoeSLm0UDYYDt-9hq4XvKRJPaGsDjb7O4lvsxSq67XnXNExINBzWFmUyFT2VxZsxQL-lRLaPFfdQbd7gIonnUfdRVuhvoduHW_YXdf30adJjfdb6gnIWNjUHldm3eAPSyiSAz5YffF4cnEGBmvOv2IAxTg1k5Bp0hHoOEDw_LI7KLrAs56uAsYfoJMrsd5DtF0v6rCDsFWAtLy0mfVMOM-sVyJE7lSUigfvRmhvsJdedjQcGsqXZFf9p11H6HUy5uadRJ7dDixWZ7qPRW2EjSwdNwujBCsg9ZRRcuZkYZlktByhF2kqdArxZmWc6W8qwK8msiw9gYqEqjLP4c3dYbZ0H_tr_dtTH_3_8TN0A1xYv5vNjx6jm0nHvusS3EXbzeoyPAG009inrVth9Pmq_fgXFjcWoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+and+Fast+Sparse+Grid+Algorithm+for+High-Dimensional+Numerical+Integration&rft.jtitle=Mathematics+%28Basel%29&rft.au=Huicong+Zhong&rft.au=Xiaobing+Feng&rft.date=2023-10-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=11&rft.issue=19&rft.spage=4191&rft_id=info:doi/10.3390%2Fmath11194191&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a4bf229644a9427eac8f532c57b25208
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon