Remote-Sensing Satellite Mission Scheduling Optimisation Method under Dynamic Mission Priorities
Mission scheduling is an essential function of the management control of remote-sensing satellite application systems. With the continuous development of remote-sensing satellite applications, mission scheduling faces significant challenges. Existing work has many inherent shortcomings in dealing wi...
Saved in:
Published in | Mathematics (Basel) Vol. 12; no. 11; p. 1704 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mission scheduling is an essential function of the management control of remote-sensing satellite application systems. With the continuous development of remote-sensing satellite applications, mission scheduling faces significant challenges. Existing work has many inherent shortcomings in dealing with dynamic task scheduling for remote-sensing satellites. In high-load and complex remote sensing task scenarios, there is low scheduling efficiency and a waste of resources. The paper proposes a scheduling method for remote-sensing satellite applications based on dynamic task prioritization. This paper combines the and Bound methodologies with an onboard task queue scheduling band in an active task prioritization context. A purpose-built emotional task priority-based scheduling blueprint is implemented to mitigate the flux and unpredictability characteristics inherent in the traditional satellite scheduling paradigm, improve scheduling efficiency, and fine-tune satellite resource allocation. Therefore, the Branch and Bound method in remote-sensing satellite task scheduling will significantly save space and improve efficiency. The experimental results show that comparing the technique to the three heuristic algorithms (GA, PSO, DE), the BnB method usually performs better in terms of the maximum value of the objective function, always finds a better solution, and reduces about 80% in terms of running time. |
---|---|
AbstractList | Mission scheduling is an essential function of the management control of remote-sensing satellite application systems. With the continuous development of remote-sensing satellite applications, mission scheduling faces significant challenges. Existing work has many inherent shortcomings in dealing with dynamic task scheduling for remote-sensing satellites. In high-load and complex remote sensing task scenarios, there is low scheduling efficiency and a waste of resources. The paper proposes a scheduling method for remote-sensing satellite applications based on dynamic task prioritization. This paper combines the and Bound methodologies with an onboard task queue scheduling band in an active task prioritization context. A purpose-built emotional task priority-based scheduling blueprint is implemented to mitigate the flux and unpredictability characteristics inherent in the traditional satellite scheduling paradigm, improve scheduling efficiency, and fine-tune satellite resource allocation. Therefore, the Branch and Bound method in remote-sensing satellite task scheduling will significantly save space and improve efficiency. The experimental results show that comparing the technique to the three heuristic algorithms (GA, PSO, DE), the BnB method usually performs better in terms of the maximum value of the objective function, always finds a better solution, and reduces about 80% in terms of running time. |
Audience | Academic |
Author | Li, Xiuhong Fan, Huilong Yang, Jiale Sun, Chongxiang |
Author_xml | – sequence: 1 givenname: Xiuhong surname: Li fullname: Li, Xiuhong – sequence: 2 givenname: Chongxiang surname: Sun fullname: Sun, Chongxiang – sequence: 3 givenname: Huilong orcidid: 0000-0003-4350-9299 surname: Fan fullname: Fan, Huilong – sequence: 4 givenname: Jiale surname: Yang fullname: Yang, Jiale |
BookMark | eNpNUU1vGyEURJEjJXFz6w9Yqdeuy9cuyzFKkzZSrFRxe6YsvLWxdsEFfPC_L64ry3Dgad68YfTmDs188IDQR4IXjEn8ZdJ5QyghRGB-hW4ppaIWpTG7qG_QfUpbXI4krOPyFv1-hylkqFfgk_PraqUzjKPLUC1dSi74amU2YPfjsfm2y25ySecjvoS8Cbbaewux-nrwenLmPPQjuhBddpA-oOtBjwnu_79z9Ov56efj9_r17dvL48NrbVjLcm2bQfMOE46JZrSTHXQtkcxYDZYRaAi0tjXQ9IwPpG-EaRspup4S0_ScA2Vz9HLStUFv1S66SceDCtqpf0CIa6VjdmYEZbnBTAxSkoFzS6VuLIXetNCW33knitank9Yuhj97SFltwz76Yl8x3ApOCocX1uLEWusi6vwQctSmXAtlFSWcwRX8QUghcVn-0eLn04CJIaUIw9kmweqYobrMkP0FPSmQhw |
Cites_doi | 10.1287/ijoc.2021.1092 10.1016/j.ijpe.2008.03.015 10.1109/TVT.2020.3045140 10.1109/ACCESS.2019.2928992 10.1109/MNET.2018.1800172 10.1145/3391196 10.1109/SmartIoT.2019.00022 10.1109/TWC.2021.3075289 10.1109/TAES.2021.3098101 10.3390/rs13122377 10.1109/LCOMM.2016.2612219 10.1007/s11227-021-04199-0 10.1109/MWC.2008.4492977 10.1109/TII.2022.3228682 10.1109/JIOT.2021.3085129 10.1109/TGCN.2018.2810141 10.1109/CC.2018.8438270 10.1109/TAES.2009.5089537 10.1002/sat.1467 10.1109/ICIE.2010.77 10.1109/TWC.2017.2764472 10.1109/MNET.011.1900369 10.1109/TSMC.2020.3020732 10.1007/978-3-642-26001-8_58 10.1109/SERVICES48979.2020.00063 10.1016/j.knosys.2021.107526 10.1109/ASMS-SPSC.2010.5586880 10.1016/j.automatica.2022.110390 10.1016/j.ins.2015.06.016 10.1016/j.asej.2020.07.003 10.1016/j.actaastro.2020.09.040 10.3390/s19061430 10.1109/LCOMM.2016.2608899 10.1109/TAES.2019.2915415 10.1016/j.asoc.2021.107607 10.1002/sat.1032 10.1109/TWC.2020.2979126 10.1109/JSYST.2020.3003633 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U DOA |
DOI | 10.3390/math12111704 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_d4c037f991f44d29a5d2ebc6e6401487 A797907392 10_3390_math12111704 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS RNS PMFND 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI Q9U PUEGO |
ID | FETCH-LOGICAL-c363t-d5fa4801401a32898e86193cdaed31e51e6d6ce5b34f1b57c65978b21c5b44e23 |
IEDL.DBID | DOA |
ISSN | 2227-7390 |
IngestDate | Wed Aug 27 01:24:23 EDT 2025 Fri Jul 25 11:51:48 EDT 2025 Tue Jun 10 21:03:44 EDT 2025 Tue Jul 01 01:53:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-d5fa4801401a32898e86193cdaed31e51e6d6ce5b34f1b57c65978b21c5b44e23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4350-9299 |
OpenAccessLink | https://doaj.org/article/d4c037f991f44d29a5d2ebc6e6401487 |
PQID | 3067418734 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d4c037f991f44d29a5d2ebc6e6401487 proquest_journals_3067418734 gale_infotracacademiconefile_A797907392 crossref_primary_10_3390_math12111704 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Guo (ref_21) 2022; 142 Salaht (ref_5) 2020; 53 ref_36 Huang (ref_11) 2016; 20 ref_13 Jiong (ref_25) 2009; 45 Wenjuan (ref_27) 2010; Volume 1 Boero (ref_35) 2018; 15 Wang (ref_1) 2021; 233 ref_31 Yi (ref_23) 2013; 31 ref_19 Qiu (ref_6) 2021; 58 Liang (ref_30) 2019; 18 ref_39 Ruan (ref_26) 2017; 17 Yu (ref_37) 2018; 2 Li (ref_20) 2021; 9 Salman (ref_14) 2015; 322 Gourgand (ref_16) 2009; 121 Lu (ref_17) 2020; 15 Shahriar (ref_34) 2008; 15 Yu (ref_24) 2013; Volume 8739 Yuan (ref_38) 2005; Volume 2 Gong (ref_22) 2019; 56 Chhabra (ref_32) 2022; 78 Wang (ref_10) 2016; 20 Adelgren (ref_42) 2022; 34 He (ref_4) 2020; 52 Zhu (ref_7) 2020; 19 ref_41 Dai (ref_2) 2020; 70 Velliangiri (ref_15) 2021; 12 Wu (ref_40) 2019; 7 ref_28 Wang (ref_29) 2021; 178 Xie (ref_33) 2020; 34 Zhou (ref_3) 2021; 20 Wei (ref_12) 2021; 110 Wang (ref_9) 2022; 41 Fan (ref_8) 2022; 19 Zhang (ref_18) 2019; 33 |
References_xml | – volume: 34 start-page: 909 year: 2022 ident: ref_42 article-title: Branch-and-bound for biobjective mixed-integer linear programming publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.2021.1092 – volume: 121 start-page: 57 year: 2009 ident: ref_16 article-title: Particle swarm optimization: A study of particle displacement for solving continuous and combinatorial optimization problems publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2008.03.015 – volume: 70 start-page: 795 year: 2020 ident: ref_2 article-title: Dynamic scheduling for emergency tasks in space data relay network publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.3045140 – volume: 7 start-page: 103031 year: 2019 ident: ref_40 article-title: Research on task priority model and algorithm for satellite scheduling problem publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2928992 – volume: 33 start-page: 70 year: 2019 ident: ref_18 article-title: Satellite mobile edge computing: Improving QoS of high-speed satellite-terrestrial networks using edge computing techniques publication-title: IEEE Netw. doi: 10.1109/MNET.2018.1800172 – volume: 53 start-page: 1 year: 2020 ident: ref_5 article-title: An overview of service placement problem in fog and edge computing publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/3391196 – ident: ref_19 doi: 10.1109/SmartIoT.2019.00022 – volume: 20 start-page: 6606 year: 2021 ident: ref_3 article-title: Machine learning-based resource allocation in satellite networks supporting internet of remote things publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2021.3075289 – volume: 58 start-page: 189 year: 2021 ident: ref_6 article-title: Scheduling and Planning Framework for Time Delay Integration Imaging by Agile Satellite publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2021.3098101 – ident: ref_13 doi: 10.3390/rs13122377 – volume: 20 start-page: 2406 year: 2016 ident: ref_11 article-title: An optimized snapshot division strategy for satellite network in GNSS publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2016.2612219 – volume: 78 start-page: 9121 year: 2022 ident: ref_32 article-title: Optimizing bag-of-tasks scheduling on cloud data centers using hybrid swarm-intelligence meta-heuristic publication-title: J. Supercomput. doi: 10.1007/s11227-021-04199-0 – volume: 15 start-page: 46 year: 2008 ident: ref_34 article-title: Mobility management protocols for next-generation all-IP satellite networks publication-title: IEEE Wirel. Commun. doi: 10.1109/MWC.2008.4492977 – volume: 19 start-page: 7217 year: 2022 ident: ref_8 article-title: Dynamic Digital Twin and Online Scheduling for Contact Window Resources in Satellite Network publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2022.3228682 – volume: 9 start-page: 695 year: 2021 ident: ref_20 article-title: Service coverage for satellite edge computing publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3085129 – volume: 2 start-page: 795 year: 2018 ident: ref_37 article-title: Minimal energy broadcast for delay-bounded applications in satellite networks publication-title: IEEE Trans. Green Commun. Netw. doi: 10.1109/TGCN.2018.2810141 – volume: 15 start-page: 11 year: 2018 ident: ref_35 article-title: The impact of delay in software-defined integrated terrestrial-satellite networks publication-title: China Commun. doi: 10.1109/CC.2018.8438270 – volume: 45 start-page: 502 year: 2009 ident: ref_25 article-title: TP-satellite: A new transport protocol for satellite IP networks publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2009.5089537 – volume: 41 start-page: 331 year: 2022 ident: ref_9 article-title: Resource scheduling in mobile edge computing using improved ant colony algorithm for space information network publication-title: Int. J. Satell. Commun. Netw. doi: 10.1002/sat.1467 – volume: Volume 1 start-page: 296 year: 2010 ident: ref_27 article-title: An improved connection-oriented routing in LEO satellite networks publication-title: Proceedings of the 2010 WASE International Conference on Information Engineering doi: 10.1109/ICIE.2010.77 – volume: 17 start-page: 210 year: 2017 ident: ref_26 article-title: Energy efficient adaptive transmissions in integrated satellite-terrestrial networks with SER constraints publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2017.2764472 – volume: 34 start-page: 224 year: 2020 ident: ref_33 article-title: Satellite-terrestrial integrated edge computing networks: Architecture, challenges, and open issues publication-title: IEEE Netw. doi: 10.1109/MNET.011.1900369 – volume: 52 start-page: 1463 year: 2020 ident: ref_4 article-title: A generic Markov decision process model and reinforcement learning method for scheduling agile earth observation satellites publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2020.3020732 – ident: ref_28 doi: 10.1007/978-3-642-26001-8_58 – ident: ref_31 doi: 10.1109/SERVICES48979.2020.00063 – volume: 18 start-page: 279 year: 2019 ident: ref_30 article-title: An algorithm based on differential evolution for satellite data transmission scheduling publication-title: Int. J. Comput. Sci. Eng. – volume: 233 start-page: 107526 year: 2021 ident: ref_1 article-title: Deep reinforcement learning for transportation network combinatorial optimization: A survey publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107526 – ident: ref_36 doi: 10.1109/ASMS-SPSC.2010.5586880 – ident: ref_41 – volume: 142 start-page: 110390 year: 2022 ident: ref_21 article-title: Distributed dynamic event-triggered and practical predefined-time resource allocation in cyber–physical systems publication-title: Automatica doi: 10.1016/j.automatica.2022.110390 – volume: 322 start-page: 72 year: 2015 ident: ref_14 article-title: A metaheuristic algorithm to solve satellite broadcast scheduling problem publication-title: Inf. Sci. doi: 10.1016/j.ins.2015.06.016 – volume: 12 start-page: 631 year: 2021 ident: ref_15 article-title: Hybrid electro search with genetic algorithm for task scheduling in cloud computing publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2020.07.003 – volume: 178 start-page: 595 year: 2021 ident: ref_29 article-title: Design of agile satellite constellation based on hybrid-resampling particle swarm optimization method publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2020.09.040 – volume: Volume 2 start-page: 1072 year: 2005 ident: ref_38 article-title: Inter-satellite link design for the LEO/MEO two-layered satellite network publication-title: Proceedings of the Proceedings. 2005 International Conference on Wireless Communications, Networking and Mobile Computing – ident: ref_39 doi: 10.3390/s19061430 – volume: 20 start-page: 2410 year: 2016 ident: ref_10 article-title: Dynamic contact plan design in broadband satellite networks with varying contact capacity publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2016.2608899 – volume: Volume 8739 start-page: 249 year: 2013 ident: ref_24 article-title: On effectiveness of routing algorithms for satellite communication networks publication-title: Proceedings of the Sensors and Systems for Space Applications VI – volume: 56 start-page: 263 year: 2019 ident: ref_22 article-title: Toward optimized network capacity in emerging integrated terrestrial-satellite networks publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2019.2915415 – volume: 110 start-page: 107607 year: 2021 ident: ref_12 article-title: Deep reinforcement learning and parameter transfer based approach for the multi-objective agile earth observation satellite scheduling problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107607 – volume: 31 start-page: 277 year: 2013 ident: ref_23 article-title: Satellite constellation of MEO and IGSO network routing with dynamic grouping publication-title: Int. J. Satell. Commun. Netw. doi: 10.1002/sat.1032 – volume: 19 start-page: 3894 year: 2020 ident: ref_7 article-title: Modeling and performance analysis for satellite data relay networks using two-dimensional markov-modulated process publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2020.2979126 – volume: 15 start-page: 3848 year: 2020 ident: ref_17 article-title: Structural performance of satellite networks: A complex network perspective publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2020.3003633 |
SSID | ssj0000913849 |
Score | 2.2651901 |
Snippet | Mission scheduling is an essential function of the management control of remote-sensing satellite application systems. With the continuous development of... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 1704 |
SubjectTerms | Adaptability Algorithms Artificial satellites in remote sensing Branch and bound methods Deep learning dynamic task priority Efficiency Genetic algorithms Ground stations Heuristic Heuristic methods Management Mathematical optimization Methods Optimization techniques Priority scheduling real-time adaptability Remote control Remote sensing remote-sensing satellite Resource allocation Rocket launches Satellite communications satellite scheduling Scheduling Scheduling (Management) Task scheduling Technology application |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4EDKi-xtEU-gDhFXcd24pxQn6qQtlRdKvVm_BhveyBbsun_ZybxLlzgmsRWNOMZz4w_f8PYR-8USGeaQiQZCgXKo835VHgZSm1wT0yObiPPL6uLG_X1Vt_mgts6wyo3PnFw1HEVqEZ-SKGtEqaW6svDr4K6RtHpam6h8ZTtoAs2ZsJ2js8ur663VRZivTSqGRHvEvP7Q4wD74jWTNS5N9tmLxoo-__lmIfd5nyXvchhIj8a9fqSPYH2FXs-33Ksrl-zH9eAYoZiQRD0dskXbiDX7IHP7wna2vIFKiQS0nzJv6Fn-JmRO3w-dI3mdH2s46djS_rtoKvuftUNNKtv2M352feTiyL3SyiCrGRfRJ3cwAYzE05iImXAYHokQ3QQpQAtoIpVAO2lSsLrOlSYTRhfiqC9UlDKt2zSrlp4x_gsaY8jm5BSVLNYuVB7LRLEgDNFaabs00Zy9mGkxbCYTpCE7d8SnrJjEuv2GyKzHh6suqXNtmGjCjNZJ4xUk1KxbJyOJfhQQaWo3llP2WdSiiWT6zsXXL45gL9K5FX2qG7qhk4cyynb3-jNZltc2z8r5_3_X--xZyWGLCMQbJ9N-u4RDjDk6P2HvK5-Awv12RQ priority: 102 providerName: ProQuest |
Title | Remote-Sensing Satellite Mission Scheduling Optimisation Method under Dynamic Mission Priorities |
URI | https://www.proquest.com/docview/3067418734 https://doaj.org/article/d4c037f991f44d29a5d2ebc6e6401487 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1ReqEH1BYQ29KVD616iljHduIcoWWLKi0gFiRurj_GlENDFcL_79jJrvZS9dJrFEfWTMYzL3nzBuCjsxKF1U3Bo_CFROko5lwsnPCl0pQTo03dyIuL6vxWfr9TdxujvhInbJAHHgx3HKSfiTpSGROlDGVjVSjR-QormT6G5T5yynkbYCqfwQ0XWjYD010Qrj-m-u9nkjPj9TiTbZWDslT_3w7knGXmr2F3LA_ZybCtN7CF7Vt4tVhrqz7twY9rJPNisUzU8_aeLW0W1eyRLR4SpbVlS3JESAzze3ZJJ8KvkbHDFnlaNEttYx37OoyiXy-66h4euyyvug-387ObL-fFOCeh8KISfRFUtFkFZsatIAClURMsEj5YDIKj4liFyqNyQkbuVO0rQhHaldwrJyWW4gC228cWD4HNonK0svExBjkLlfW1Uzxi8PSkIPQEPq0sZ34PchiGYESysNm08AROk1nX9yQR63yBXGtG15p_uXYCn5NTTAq1vrPejh0DtNUkWmVO6qZu0p_GcgJHK7-ZMQafTAJDkutayHf_YzfvYaekgmagiR3Bdt894wcqSHo3hRd6_m0KL0_PLq6up_lN_APTVOJ0 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEO4QOKgHg6-4gtoHiacJ09Pd8zgQg-K6CIPGhYRb089lD8zC7BDDn_I3WjWP1YveuE5PTyb1ru6qrwh5Z7TwXOdFxAK3kfDCgM6ZEBluE5mDTwwau5HLk3RyJr6ey_M18mvohcGyysEmtobaLSyeke9iaCtYnnHx4fomwqlReLs6jNDoxOLI3_2ElG25d3gA_N1JkvHn00-TqJ8qEFme8iZyMugWMyVmmkO6kfsckghunfaOMy-ZT11qvTRcBGZkZlOIuXOTMCuNEB6BDsDkbwgOnhw708dfVmc6iLGZi6Krr4f1eBeizksEUWNZPwlu8HztgIB_uYHWt403yeM-KKX7nRQ9IWu-ekoelStE1-UzcvHDA1N9NMWC92pGp7qF8mw8LedYSFvRKbDfYV37jH4DO3TV1wnRsp1RTbFZraYHd5W-mtvVpu_1fFG3oK7Pydm90PEFWa8WlX9JaBykgZ2FDcGJ2KXaZkay4J2FLzmej8jOQDl13YFwKEhekMLqbwqPyEck6-odhM5uHyzqmeo1UTlhY54FiIuDEC4ptHSJNzb1qcDT1WxE3iNTFCp4U2ur-z4F-FWEylL7WZEVeL-ZjMj2wDfVa_5S_ZHTV_9ffkseTE7LY3V8eHK0RR4mECx1JWjbZL2pb_1rCHYa86aVMEou7lukfwPwvRQJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VqYTggHiKQIE9UHGyYnt3vfYBoZY0aikJUUOl3rb7THOoUxwj1L_Gr2PGj8AFbr36JWtmdh6733xDyDujuWc6L6IkMBtxzw2sORMiw2wqcoiJQWM38nSWHZ_zzxfiYof86nthEFbZ-8TGUbu1xT3yEaa2PMkl46PQwSLm48nHm-8RTpDCk9Z-nEZrIqf-9ieUb5sPJ2PQ9X6aTo6-fTqOugkDkWUZqyMngm74U-JEMyg9cp9DQcGs096xxIvEZy6zXhjGQ2KEtBnk37lJEysM5x5JD8D970qsigZk9_BoNj_b7vAg42bOixZtz1gRjyAHvUJKtUR2c-H6ONiMC_hXUGgi3eQRedilqPSgtanHZMeXT8iD6ZbfdfOUXJ55ULGPFgh_L5d0oRtiz9rT6QphtSVdgDE4RLkv6VfwStcdaohOm4nVFFvXKjq-LfX1ym5fmlerddVQvD4j53ciyedkUK5L_4LQOAgDbxY2BMdjl2krjUiCdxa-5Fg-JPu95NRNS8mhoJRBCau_JTwkhyjW7TNIpN1cWFdL1a1L5biNmQyQJQfOXVpo4VJvbOYzjnutckjeo1IULve60lZ3XQvwq0icpQ5kIQs87UyHZK_Xm-r8wEb9sdqX_7_9ltwDc1ZfTmanr8j9FDKnFo-2RwZ19cO_hsynNm86E6Pk8q6t-jck9xmb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remote-Sensing+Satellite+Mission+Scheduling+Optimisation+Method+under+Dynamic+Mission+Priorities&rft.jtitle=Mathematics+%28Basel%29&rft.au=Xiuhong+Li&rft.au=Chongxiang+Sun&rft.au=Huilong+Fan&rft.au=Jiale+Yang&rft.date=2024-06-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=12&rft.issue=11&rft.spage=1704&rft_id=info:doi/10.3390%2Fmath12111704&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d4c037f991f44d29a5d2ebc6e6401487 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |