Remote-Sensing Satellite Mission Scheduling Optimisation Method under Dynamic Mission Priorities

Mission scheduling is an essential function of the management control of remote-sensing satellite application systems. With the continuous development of remote-sensing satellite applications, mission scheduling faces significant challenges. Existing work has many inherent shortcomings in dealing wi...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 12; no. 11; p. 1704
Main Authors Li, Xiuhong, Sun, Chongxiang, Fan, Huilong, Yang, Jiale
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mission scheduling is an essential function of the management control of remote-sensing satellite application systems. With the continuous development of remote-sensing satellite applications, mission scheduling faces significant challenges. Existing work has many inherent shortcomings in dealing with dynamic task scheduling for remote-sensing satellites. In high-load and complex remote sensing task scenarios, there is low scheduling efficiency and a waste of resources. The paper proposes a scheduling method for remote-sensing satellite applications based on dynamic task prioritization. This paper combines the and Bound methodologies with an onboard task queue scheduling band in an active task prioritization context. A purpose-built emotional task priority-based scheduling blueprint is implemented to mitigate the flux and unpredictability characteristics inherent in the traditional satellite scheduling paradigm, improve scheduling efficiency, and fine-tune satellite resource allocation. Therefore, the Branch and Bound method in remote-sensing satellite task scheduling will significantly save space and improve efficiency. The experimental results show that comparing the technique to the three heuristic algorithms (GA, PSO, DE), the BnB method usually performs better in terms of the maximum value of the objective function, always finds a better solution, and reduces about 80% in terms of running time.
AbstractList Mission scheduling is an essential function of the management control of remote-sensing satellite application systems. With the continuous development of remote-sensing satellite applications, mission scheduling faces significant challenges. Existing work has many inherent shortcomings in dealing with dynamic task scheduling for remote-sensing satellites. In high-load and complex remote sensing task scenarios, there is low scheduling efficiency and a waste of resources. The paper proposes a scheduling method for remote-sensing satellite applications based on dynamic task prioritization. This paper combines the and Bound methodologies with an onboard task queue scheduling band in an active task prioritization context. A purpose-built emotional task priority-based scheduling blueprint is implemented to mitigate the flux and unpredictability characteristics inherent in the traditional satellite scheduling paradigm, improve scheduling efficiency, and fine-tune satellite resource allocation. Therefore, the Branch and Bound method in remote-sensing satellite task scheduling will significantly save space and improve efficiency. The experimental results show that comparing the technique to the three heuristic algorithms (GA, PSO, DE), the BnB method usually performs better in terms of the maximum value of the objective function, always finds a better solution, and reduces about 80% in terms of running time.
Audience Academic
Author Li, Xiuhong
Fan, Huilong
Yang, Jiale
Sun, Chongxiang
Author_xml – sequence: 1
  givenname: Xiuhong
  surname: Li
  fullname: Li, Xiuhong
– sequence: 2
  givenname: Chongxiang
  surname: Sun
  fullname: Sun, Chongxiang
– sequence: 3
  givenname: Huilong
  orcidid: 0000-0003-4350-9299
  surname: Fan
  fullname: Fan, Huilong
– sequence: 4
  givenname: Jiale
  surname: Yang
  fullname: Yang, Jiale
BookMark eNpNUU1vGyEURJEjJXFz6w9Yqdeuy9cuyzFKkzZSrFRxe6YsvLWxdsEFfPC_L64ry3Dgad68YfTmDs188IDQR4IXjEn8ZdJ5QyghRGB-hW4ppaIWpTG7qG_QfUpbXI4krOPyFv1-hylkqFfgk_PraqUzjKPLUC1dSi74amU2YPfjsfm2y25ySecjvoS8Cbbaewux-nrwenLmPPQjuhBddpA-oOtBjwnu_79z9Ov56efj9_r17dvL48NrbVjLcm2bQfMOE46JZrSTHXQtkcxYDZYRaAi0tjXQ9IwPpG-EaRspup4S0_ScA2Vz9HLStUFv1S66SceDCtqpf0CIa6VjdmYEZbnBTAxSkoFzS6VuLIXetNCW33knitank9Yuhj97SFltwz76Yl8x3ApOCocX1uLEWusi6vwQctSmXAtlFSWcwRX8QUghcVn-0eLn04CJIaUIw9kmweqYobrMkP0FPSmQhw
Cites_doi 10.1287/ijoc.2021.1092
10.1016/j.ijpe.2008.03.015
10.1109/TVT.2020.3045140
10.1109/ACCESS.2019.2928992
10.1109/MNET.2018.1800172
10.1145/3391196
10.1109/SmartIoT.2019.00022
10.1109/TWC.2021.3075289
10.1109/TAES.2021.3098101
10.3390/rs13122377
10.1109/LCOMM.2016.2612219
10.1007/s11227-021-04199-0
10.1109/MWC.2008.4492977
10.1109/TII.2022.3228682
10.1109/JIOT.2021.3085129
10.1109/TGCN.2018.2810141
10.1109/CC.2018.8438270
10.1109/TAES.2009.5089537
10.1002/sat.1467
10.1109/ICIE.2010.77
10.1109/TWC.2017.2764472
10.1109/MNET.011.1900369
10.1109/TSMC.2020.3020732
10.1007/978-3-642-26001-8_58
10.1109/SERVICES48979.2020.00063
10.1016/j.knosys.2021.107526
10.1109/ASMS-SPSC.2010.5586880
10.1016/j.automatica.2022.110390
10.1016/j.ins.2015.06.016
10.1016/j.asej.2020.07.003
10.1016/j.actaastro.2020.09.040
10.3390/s19061430
10.1109/LCOMM.2016.2608899
10.1109/TAES.2019.2915415
10.1016/j.asoc.2021.107607
10.1002/sat.1032
10.1109/TWC.2020.2979126
10.1109/JSYST.2020.3003633
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOA
DOI 10.3390/math12111704
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_d4c037f991f44d29a5d2ebc6e6401487
A797907392
10_3390_math12111704
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
RNS
PMFND
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQGLB
PQUKI
Q9U
PUEGO
ID FETCH-LOGICAL-c363t-d5fa4801401a32898e86193cdaed31e51e6d6ce5b34f1b57c65978b21c5b44e23
IEDL.DBID DOA
ISSN 2227-7390
IngestDate Wed Aug 27 01:24:23 EDT 2025
Fri Jul 25 11:51:48 EDT 2025
Tue Jun 10 21:03:44 EDT 2025
Tue Jul 01 01:53:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-d5fa4801401a32898e86193cdaed31e51e6d6ce5b34f1b57c65978b21c5b44e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4350-9299
OpenAccessLink https://doaj.org/article/d4c037f991f44d29a5d2ebc6e6401487
PQID 3067418734
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_d4c037f991f44d29a5d2ebc6e6401487
proquest_journals_3067418734
gale_infotracacademiconefile_A797907392
crossref_primary_10_3390_math12111704
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Guo (ref_21) 2022; 142
Salaht (ref_5) 2020; 53
ref_36
Huang (ref_11) 2016; 20
ref_13
Jiong (ref_25) 2009; 45
Wenjuan (ref_27) 2010; Volume 1
Boero (ref_35) 2018; 15
Wang (ref_1) 2021; 233
ref_31
Yi (ref_23) 2013; 31
ref_19
Qiu (ref_6) 2021; 58
Liang (ref_30) 2019; 18
ref_39
Ruan (ref_26) 2017; 17
Yu (ref_37) 2018; 2
Li (ref_20) 2021; 9
Salman (ref_14) 2015; 322
Gourgand (ref_16) 2009; 121
Lu (ref_17) 2020; 15
Shahriar (ref_34) 2008; 15
Yu (ref_24) 2013; Volume 8739
Yuan (ref_38) 2005; Volume 2
Gong (ref_22) 2019; 56
Chhabra (ref_32) 2022; 78
Wang (ref_10) 2016; 20
Adelgren (ref_42) 2022; 34
He (ref_4) 2020; 52
Zhu (ref_7) 2020; 19
ref_41
Dai (ref_2) 2020; 70
Velliangiri (ref_15) 2021; 12
Wu (ref_40) 2019; 7
ref_28
Wang (ref_29) 2021; 178
Xie (ref_33) 2020; 34
Zhou (ref_3) 2021; 20
Wei (ref_12) 2021; 110
Wang (ref_9) 2022; 41
Fan (ref_8) 2022; 19
Zhang (ref_18) 2019; 33
References_xml – volume: 34
  start-page: 909
  year: 2022
  ident: ref_42
  article-title: Branch-and-bound for biobjective mixed-integer linear programming
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2021.1092
– volume: 121
  start-page: 57
  year: 2009
  ident: ref_16
  article-title: Particle swarm optimization: A study of particle displacement for solving continuous and combinatorial optimization problems
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2008.03.015
– volume: 70
  start-page: 795
  year: 2020
  ident: ref_2
  article-title: Dynamic scheduling for emergency tasks in space data relay network
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3045140
– volume: 7
  start-page: 103031
  year: 2019
  ident: ref_40
  article-title: Research on task priority model and algorithm for satellite scheduling problem
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2928992
– volume: 33
  start-page: 70
  year: 2019
  ident: ref_18
  article-title: Satellite mobile edge computing: Improving QoS of high-speed satellite-terrestrial networks using edge computing techniques
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2018.1800172
– volume: 53
  start-page: 1
  year: 2020
  ident: ref_5
  article-title: An overview of service placement problem in fog and edge computing
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/3391196
– ident: ref_19
  doi: 10.1109/SmartIoT.2019.00022
– volume: 20
  start-page: 6606
  year: 2021
  ident: ref_3
  article-title: Machine learning-based resource allocation in satellite networks supporting internet of remote things
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2021.3075289
– volume: 58
  start-page: 189
  year: 2021
  ident: ref_6
  article-title: Scheduling and Planning Framework for Time Delay Integration Imaging by Agile Satellite
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2021.3098101
– ident: ref_13
  doi: 10.3390/rs13122377
– volume: 20
  start-page: 2406
  year: 2016
  ident: ref_11
  article-title: An optimized snapshot division strategy for satellite network in GNSS
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2016.2612219
– volume: 78
  start-page: 9121
  year: 2022
  ident: ref_32
  article-title: Optimizing bag-of-tasks scheduling on cloud data centers using hybrid swarm-intelligence meta-heuristic
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-021-04199-0
– volume: 15
  start-page: 46
  year: 2008
  ident: ref_34
  article-title: Mobility management protocols for next-generation all-IP satellite networks
  publication-title: IEEE Wirel. Commun.
  doi: 10.1109/MWC.2008.4492977
– volume: 19
  start-page: 7217
  year: 2022
  ident: ref_8
  article-title: Dynamic Digital Twin and Online Scheduling for Contact Window Resources in Satellite Network
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2022.3228682
– volume: 9
  start-page: 695
  year: 2021
  ident: ref_20
  article-title: Service coverage for satellite edge computing
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3085129
– volume: 2
  start-page: 795
  year: 2018
  ident: ref_37
  article-title: Minimal energy broadcast for delay-bounded applications in satellite networks
  publication-title: IEEE Trans. Green Commun. Netw.
  doi: 10.1109/TGCN.2018.2810141
– volume: 15
  start-page: 11
  year: 2018
  ident: ref_35
  article-title: The impact of delay in software-defined integrated terrestrial-satellite networks
  publication-title: China Commun.
  doi: 10.1109/CC.2018.8438270
– volume: 45
  start-page: 502
  year: 2009
  ident: ref_25
  article-title: TP-satellite: A new transport protocol for satellite IP networks
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2009.5089537
– volume: 41
  start-page: 331
  year: 2022
  ident: ref_9
  article-title: Resource scheduling in mobile edge computing using improved ant colony algorithm for space information network
  publication-title: Int. J. Satell. Commun. Netw.
  doi: 10.1002/sat.1467
– volume: Volume 1
  start-page: 296
  year: 2010
  ident: ref_27
  article-title: An improved connection-oriented routing in LEO satellite networks
  publication-title: Proceedings of the 2010 WASE International Conference on Information Engineering
  doi: 10.1109/ICIE.2010.77
– volume: 17
  start-page: 210
  year: 2017
  ident: ref_26
  article-title: Energy efficient adaptive transmissions in integrated satellite-terrestrial networks with SER constraints
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2017.2764472
– volume: 34
  start-page: 224
  year: 2020
  ident: ref_33
  article-title: Satellite-terrestrial integrated edge computing networks: Architecture, challenges, and open issues
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.011.1900369
– volume: 52
  start-page: 1463
  year: 2020
  ident: ref_4
  article-title: A generic Markov decision process model and reinforcement learning method for scheduling agile earth observation satellites
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2020.3020732
– ident: ref_28
  doi: 10.1007/978-3-642-26001-8_58
– ident: ref_31
  doi: 10.1109/SERVICES48979.2020.00063
– volume: 18
  start-page: 279
  year: 2019
  ident: ref_30
  article-title: An algorithm based on differential evolution for satellite data transmission scheduling
  publication-title: Int. J. Comput. Sci. Eng.
– volume: 233
  start-page: 107526
  year: 2021
  ident: ref_1
  article-title: Deep reinforcement learning for transportation network combinatorial optimization: A survey
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107526
– ident: ref_36
  doi: 10.1109/ASMS-SPSC.2010.5586880
– ident: ref_41
– volume: 142
  start-page: 110390
  year: 2022
  ident: ref_21
  article-title: Distributed dynamic event-triggered and practical predefined-time resource allocation in cyber–physical systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2022.110390
– volume: 322
  start-page: 72
  year: 2015
  ident: ref_14
  article-title: A metaheuristic algorithm to solve satellite broadcast scheduling problem
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.06.016
– volume: 12
  start-page: 631
  year: 2021
  ident: ref_15
  article-title: Hybrid electro search with genetic algorithm for task scheduling in cloud computing
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2020.07.003
– volume: 178
  start-page: 595
  year: 2021
  ident: ref_29
  article-title: Design of agile satellite constellation based on hybrid-resampling particle swarm optimization method
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2020.09.040
– volume: Volume 2
  start-page: 1072
  year: 2005
  ident: ref_38
  article-title: Inter-satellite link design for the LEO/MEO two-layered satellite network
  publication-title: Proceedings of the Proceedings. 2005 International Conference on Wireless Communications, Networking and Mobile Computing
– ident: ref_39
  doi: 10.3390/s19061430
– volume: 20
  start-page: 2410
  year: 2016
  ident: ref_10
  article-title: Dynamic contact plan design in broadband satellite networks with varying contact capacity
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2016.2608899
– volume: Volume 8739
  start-page: 249
  year: 2013
  ident: ref_24
  article-title: On effectiveness of routing algorithms for satellite communication networks
  publication-title: Proceedings of the Sensors and Systems for Space Applications VI
– volume: 56
  start-page: 263
  year: 2019
  ident: ref_22
  article-title: Toward optimized network capacity in emerging integrated terrestrial-satellite networks
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2019.2915415
– volume: 110
  start-page: 107607
  year: 2021
  ident: ref_12
  article-title: Deep reinforcement learning and parameter transfer based approach for the multi-objective agile earth observation satellite scheduling problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107607
– volume: 31
  start-page: 277
  year: 2013
  ident: ref_23
  article-title: Satellite constellation of MEO and IGSO network routing with dynamic grouping
  publication-title: Int. J. Satell. Commun. Netw.
  doi: 10.1002/sat.1032
– volume: 19
  start-page: 3894
  year: 2020
  ident: ref_7
  article-title: Modeling and performance analysis for satellite data relay networks using two-dimensional markov-modulated process
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2020.2979126
– volume: 15
  start-page: 3848
  year: 2020
  ident: ref_17
  article-title: Structural performance of satellite networks: A complex network perspective
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2020.3003633
SSID ssj0000913849
Score 2.2651901
Snippet Mission scheduling is an essential function of the management control of remote-sensing satellite application systems. With the continuous development of...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 1704
SubjectTerms Adaptability
Algorithms
Artificial satellites in remote sensing
Branch and bound methods
Deep learning
dynamic task priority
Efficiency
Genetic algorithms
Ground stations
Heuristic
Heuristic methods
Management
Mathematical optimization
Methods
Optimization techniques
Priority scheduling
real-time adaptability
Remote control
Remote sensing
remote-sensing satellite
Resource allocation
Rocket launches
Satellite communications
satellite scheduling
Scheduling
Scheduling (Management)
Task scheduling
Technology application
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4EDKi-xtEU-gDhFXcd24pxQn6qQtlRdKvVm_BhveyBbsun_ZybxLlzgmsRWNOMZz4w_f8PYR-8USGeaQiQZCgXKo835VHgZSm1wT0yObiPPL6uLG_X1Vt_mgts6wyo3PnFw1HEVqEZ-SKGtEqaW6svDr4K6RtHpam6h8ZTtoAs2ZsJ2js8ur663VRZivTSqGRHvEvP7Q4wD74jWTNS5N9tmLxoo-__lmIfd5nyXvchhIj8a9fqSPYH2FXs-33Ksrl-zH9eAYoZiQRD0dskXbiDX7IHP7wna2vIFKiQS0nzJv6Fn-JmRO3w-dI3mdH2s46djS_rtoKvuftUNNKtv2M352feTiyL3SyiCrGRfRJ3cwAYzE05iImXAYHokQ3QQpQAtoIpVAO2lSsLrOlSYTRhfiqC9UlDKt2zSrlp4x_gsaY8jm5BSVLNYuVB7LRLEgDNFaabs00Zy9mGkxbCYTpCE7d8SnrJjEuv2GyKzHh6suqXNtmGjCjNZJ4xUk1KxbJyOJfhQQaWo3llP2WdSiiWT6zsXXL45gL9K5FX2qG7qhk4cyynb3-jNZltc2z8r5_3_X--xZyWGLCMQbJ9N-u4RDjDk6P2HvK5-Awv12RQ
  priority: 102
  providerName: ProQuest
Title Remote-Sensing Satellite Mission Scheduling Optimisation Method under Dynamic Mission Priorities
URI https://www.proquest.com/docview/3067418734
https://doaj.org/article/d4c037f991f44d29a5d2ebc6e6401487
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1ReqEH1BYQ29KVD616iljHduIcoWWLKi0gFiRurj_GlENDFcL_79jJrvZS9dJrFEfWTMYzL3nzBuCjsxKF1U3Bo_CFROko5lwsnPCl0pQTo03dyIuL6vxWfr9TdxujvhInbJAHHgx3HKSfiTpSGROlDGVjVSjR-QormT6G5T5yynkbYCqfwQ0XWjYD010Qrj-m-u9nkjPj9TiTbZWDslT_3w7knGXmr2F3LA_ZybCtN7CF7Vt4tVhrqz7twY9rJPNisUzU8_aeLW0W1eyRLR4SpbVlS3JESAzze3ZJJ8KvkbHDFnlaNEttYx37OoyiXy-66h4euyyvug-387ObL-fFOCeh8KISfRFUtFkFZsatIAClURMsEj5YDIKj4liFyqNyQkbuVO0rQhHaldwrJyWW4gC228cWD4HNonK0svExBjkLlfW1Uzxi8PSkIPQEPq0sZ34PchiGYESysNm08AROk1nX9yQR63yBXGtG15p_uXYCn5NTTAq1vrPejh0DtNUkWmVO6qZu0p_GcgJHK7-ZMQafTAJDkutayHf_YzfvYaekgmagiR3Bdt894wcqSHo3hRd6_m0KL0_PLq6up_lN_APTVOJ0
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEO4QOKgHg6-4gtoHiacJ09Pd8zgQg-K6CIPGhYRb089lD8zC7BDDn_I3WjWP1YveuE5PTyb1ru6qrwh5Z7TwXOdFxAK3kfDCgM6ZEBluE5mDTwwau5HLk3RyJr6ey_M18mvohcGyysEmtobaLSyeke9iaCtYnnHx4fomwqlReLs6jNDoxOLI3_2ElG25d3gA_N1JkvHn00-TqJ8qEFme8iZyMugWMyVmmkO6kfsckghunfaOMy-ZT11qvTRcBGZkZlOIuXOTMCuNEB6BDsDkbwgOnhw708dfVmc6iLGZi6Krr4f1eBeizksEUWNZPwlu8HztgIB_uYHWt403yeM-KKX7nRQ9IWu-ekoelStE1-UzcvHDA1N9NMWC92pGp7qF8mw8LedYSFvRKbDfYV37jH4DO3TV1wnRsp1RTbFZraYHd5W-mtvVpu_1fFG3oK7Pydm90PEFWa8WlX9JaBykgZ2FDcGJ2KXaZkay4J2FLzmej8jOQDl13YFwKEhekMLqbwqPyEck6-odhM5uHyzqmeo1UTlhY54FiIuDEC4ptHSJNzb1qcDT1WxE3iNTFCp4U2ur-z4F-FWEylL7WZEVeL-ZjMj2wDfVa_5S_ZHTV_9ffkseTE7LY3V8eHK0RR4mECx1JWjbZL2pb_1rCHYa86aVMEou7lukfwPwvRQJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VqYTggHiKQIE9UHGyYnt3vfYBoZY0aikJUUOl3rb7THOoUxwj1L_Gr2PGj8AFbr36JWtmdh6733xDyDujuWc6L6IkMBtxzw2sORMiw2wqcoiJQWM38nSWHZ_zzxfiYof86nthEFbZ-8TGUbu1xT3yEaa2PMkl46PQwSLm48nHm-8RTpDCk9Z-nEZrIqf-9ieUb5sPJ2PQ9X6aTo6-fTqOugkDkWUZqyMngm74U-JEMyg9cp9DQcGs096xxIvEZy6zXhjGQ2KEtBnk37lJEysM5x5JD8D970qsigZk9_BoNj_b7vAg42bOixZtz1gRjyAHvUJKtUR2c-H6ONiMC_hXUGgi3eQRedilqPSgtanHZMeXT8iD6ZbfdfOUXJ55ULGPFgh_L5d0oRtiz9rT6QphtSVdgDE4RLkv6VfwStcdaohOm4nVFFvXKjq-LfX1ym5fmlerddVQvD4j53ciyedkUK5L_4LQOAgDbxY2BMdjl2krjUiCdxa-5Fg-JPu95NRNS8mhoJRBCau_JTwkhyjW7TNIpN1cWFdL1a1L5biNmQyQJQfOXVpo4VJvbOYzjnutckjeo1IULve60lZ3XQvwq0icpQ5kIQs87UyHZK_Xm-r8wEb9sdqX_7_9ltwDc1ZfTmanr8j9FDKnFo-2RwZ19cO_hsynNm86E6Pk8q6t-jck9xmb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remote-Sensing+Satellite+Mission+Scheduling+Optimisation+Method+under+Dynamic+Mission+Priorities&rft.jtitle=Mathematics+%28Basel%29&rft.au=Xiuhong+Li&rft.au=Chongxiang+Sun&rft.au=Huilong+Fan&rft.au=Jiale+Yang&rft.date=2024-06-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=12&rft.issue=11&rft.spage=1704&rft_id=info:doi/10.3390%2Fmath12111704&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d4c037f991f44d29a5d2ebc6e6401487
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon