A hybrid extreme learning machine model with harris hawks optimisation algorithm: an optimised model for product demand forecasting applications

Accurate and real-time product demand forecasting is the need of the hour in the world of supply chain management. Predicting future product demand from historical sales data is a highly non-linear problem, subject to various external and environmental factors. In this work, we propose an optimised...

Full description

Saved in:
Bibliographic Details
Published inApplied intelligence (Dordrecht, Netherlands) Vol. 52; no. 10; pp. 11489 - 11505
Main Authors Chaudhuri, Koushiki Dasgupta, Alkan, Bugra
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate and real-time product demand forecasting is the need of the hour in the world of supply chain management. Predicting future product demand from historical sales data is a highly non-linear problem, subject to various external and environmental factors. In this work, we propose an optimised forecasting model - an extreme learning machine (ELM) model coupled with the Harris Hawks optimisation (HHO) algorithm to forecast product demand in an e-commerce company. ELM is preferred over traditional neural networks mainly due to its fast computational speed, which allows efficient demand forecasting in real-time. Our ELM-HHO model performed significantly better than ARIMA models that are commonly used in industries to forecast product demand. The performance of the proposed ELM-HHO model was also compared with traditional ELM, ELM auto-tuned using Bayesian Optimisation (ELM-BO), Gated Recurrent Unit (GRU) based recurrent neural network and Long Short Term Memory (LSTM) recurrent neural network models. Different performance metrics, i.e., Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean Percentage Error (MPE) were used for the comparison of the selected models. Horizon forecasting at 3 days and 7 days ahead was also performed using the proposed approach. The results revealed that the proposed approach is superior to traditional product demand forecasting models in terms of prediction accuracy and it can be applied in real-time to predict future product demand based on the previous week’s sales data. In particular, considering RMSE of forecasting, the proposed ELM-HHO model performed 62.73% better than the statistical ARIMA(7,1,0) model, 40.73% better than the neural network based GRU model, 34.05% better than the neural network based LSTM model, 27.16% better than the traditional non-optimised ELM model with 100 hidden nodes and 11.63% better than the ELM-BO model in forecasting product demand for future 3 months. The novelty of the proposed approach lies in the way the fast computational speed of ELMs has been combined with the accuracy gained by tuning hyperparameters using HHO. An increased number of hyperparameters has been optimised in our methodology compared to available models. The majority of approaches to improve the accuracy of ELM so far have only focused on tuning the weights and the biases of the hidden layer. In our hybrid model, we tune the number of hidden nodes, the number of input time lags and even the type of activation function used in the hidden layer in addition to tuning the weights and the biases. This has resulted in a significant increase in accuracy over previous methods. Our work presents an original way of performing product demand forecasting in real-time in industry with highly accurate results which are much better than pre-existing demand forecasting models.
AbstractList Accurate and real-time product demand forecasting is the need of the hour in the world of supply chain management. Predicting future product demand from historical sales data is a highly non-linear problem, subject to various external and environmental factors. In this work, we propose an optimised forecasting model - an extreme learning machine (ELM) model coupled with the Harris Hawks optimisation (HHO) algorithm to forecast product demand in an e-commerce company. ELM is preferred over traditional neural networks mainly due to its fast computational speed, which allows efficient demand forecasting in real-time. Our ELM-HHO model performed significantly better than ARIMA models that are commonly used in industries to forecast product demand. The performance of the proposed ELM-HHO model was also compared with traditional ELM, ELM auto-tuned using Bayesian Optimisation (ELM-BO), Gated Recurrent Unit (GRU) based recurrent neural network and Long Short Term Memory (LSTM) recurrent neural network models. Different performance metrics, i.e., Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean Percentage Error (MPE) were used for the comparison of the selected models. Horizon forecasting at 3 days and 7 days ahead was also performed using the proposed approach. The results revealed that the proposed approach is superior to traditional product demand forecasting models in terms of prediction accuracy and it can be applied in real-time to predict future product demand based on the previous week’s sales data. In particular, considering RMSE of forecasting, the proposed ELM-HHO model performed 62.73% better than the statistical ARIMA(7,1,0) model, 40.73% better than the neural network based GRU model, 34.05% better than the neural network based LSTM model, 27.16% better than the traditional non-optimised ELM model with 100 hidden nodes and 11.63% better than the ELM-BO model in forecasting product demand for future 3 months. The novelty of the proposed approach lies in the way the fast computational speed of ELMs has been combined with the accuracy gained by tuning hyperparameters using HHO. An increased number of hyperparameters has been optimised in our methodology compared to available models. The majority of approaches to improve the accuracy of ELM so far have only focused on tuning the weights and the biases of the hidden layer. In our hybrid model, we tune the number of hidden nodes, the number of input time lags and even the type of activation function used in the hidden layer in addition to tuning the weights and the biases. This has resulted in a significant increase in accuracy over previous methods. Our work presents an original way of performing product demand forecasting in real-time in industry with highly accurate results which are much better than pre-existing demand forecasting models.
Author Alkan, Bugra
Chaudhuri, Koushiki Dasgupta
Author_xml – sequence: 1
  givenname: Koushiki Dasgupta
  surname: Chaudhuri
  fullname: Chaudhuri, Koushiki Dasgupta
  organization: Department of Mathematics, IIT Kharagpur
– sequence: 2
  givenname: Bugra
  orcidid: 0000-0002-5994-4351
  surname: Alkan
  fullname: Alkan, Bugra
  email: alkanb@lsbu.ac.uk
  organization: School of Engineering, London South Bank University
BookMark eNp9kM1uFDEQhC0UJDaBF-BkifNA-2fGM9yiCAJSJC4gcbN6x727DjP2YHsV8hZ5ZLy7QUg55NRSd33VpTpnZyEGYuytgPcCwHzIAnQ_NCBlA0q2ojEv2Eq0RjVGD-aMrWCQuum64ecrdp7zLQAoBWLFHi757n6dvOP0pySaiU-EKfiw5TOOOx-Iz9HRxO982fEdpuRzHXe_Mo9L8bPPWHwMHKdtTFUyf-QY_p3IPcKbmPiSotuPhTuaMbjDikbM5fAJl2Xy49Eov2YvNzhlevM4L9iPz5--X31pbr5df726vGlG1anSuLZ1RvcaBiUcELYInehRozGo9YaMGaHrVduuZTugXINGXWUgDUq37khdsHcn35rr955ysbdxn0J9aWXXi06Zal5V_Uk1pphzoo0dfTkGLQn9ZAXYQ__21L-t_dtj_9ZUVD5Bl-RnTPfPQ-oE5SoOW0r_Uz1D_QXKpp09
CitedBy_id crossref_primary_10_1016_j_physc_2023_1354430
crossref_primary_10_1007_s11831_024_10092_9
crossref_primary_10_1007_s00521_024_09679_x
crossref_primary_10_3390_app14135735
crossref_primary_10_3389_fenrg_2023_1323073
crossref_primary_10_1080_00207543_2023_2231098
crossref_primary_10_1177_00368504231165679
crossref_primary_10_1016_j_compgeo_2022_105112
crossref_primary_10_1108_IJCHM_05_2023_0652
crossref_primary_10_1515_nleng_2022_0257
crossref_primary_10_3390_app14020866
crossref_primary_10_1016_j_asoc_2024_111734
crossref_primary_10_1080_1528008X_2024_2435030
crossref_primary_10_1177_17568293221150171
crossref_primary_10_1007_s10668_023_04271_0
crossref_primary_10_3390_su142315701
crossref_primary_10_1007_s00500_023_09391_3
Cites_doi 10.1109/IJCNN.2011.6033535
10.1016/j.ifacol.2018.08.206
10.3139/120.111478
10.1016/j.neucom.2005.12.126
10.1504/EJIE.2018.089883
10.1080/0267257X.1994.9964277
10.1109/TNN.2006.880583
10.1016/j.procs.2019.01.100
10.1109/YAC.2016.7804912
10.1109/TSMCB.2011.2168604
10.1109/CEC.2011.5949670
10.1016/j.asoc.2020.106347
10.1109/ICPR.2016.7900023
10.1007/s00521-012-0858-9
10.15439/2017F224
10.1109/ACCESS.2021.3072955
10.1109/TEVC.2009.2039139
10.1016/j.asr.2020.06.021
10.1016/j.jhydrol.2016.09.035
10.1016/j.knosys.2015.03.010
10.1007/s00366-020-01028-5
10.1016/j.procir.2019.02.042
10.1007/s10845-010-0390-7
10.1016/j.future.2019.02.028
10.1109/ISGT-Asia.2015.7387113
10.1016/j.neucom.2011.12.062
10.1016/j.ins.2011.09.015
10.3115/v1/D14-1179
10.1109/IJCNN.2000.857823
10.1007/978-1-4419-6485-4_6
10.1109/TNN.2006.875977
10.3139/120.111378
10.1016/j.jestch.2021.02.016
10.1177/1847979018808673
10.1016/j.engappai.2019.06.017
10.1109/TNN.2009.2036259
10.1016/j.procs.2015.12.172
10.1201/9781482275605-13
10.1109/ACCESS.2020.3029728
10.1007/s13042-018-0833-6
10.1080/01605682.2020.1779622
10.1109/72.279181
10.1109/TPWRS.2013.2287871
10.1109/EAIT.2018.8470406
10.1016/j.neunet.2014.10.001
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-022-03251-7
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection‎ (ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (Proquest)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 11505
ExternalDocumentID 10_1007_s10489_022_03251_7
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c363t-d55d74840931d0ea5a0618a4a77a44fe77c068355b259a2b04a40ea027a2db6e3
IEDL.DBID BENPR
ISSN 0924-669X
IngestDate Fri Jul 25 12:16:26 EDT 2025
Thu Apr 24 22:55:33 EDT 2025
Tue Jul 01 03:31:48 EDT 2025
Fri Feb 21 02:46:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Supply chain management
Harris hawks optimisation
Extreme learning machines
Optimisation
Demand forecasting
ARIMA
Artificial neural networks
Hyperparameter tuning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-d55d74840931d0ea5a0618a4a77a44fe77c068355b259a2b04a40ea027a2db6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5994-4351
OpenAccessLink https://doi.org/10.1007/s10489-022-03251-7
PQID 2681637840
PQPubID 326365
PageCount 17
ParticipantIDs proquest_journals_2681637840
crossref_citationtrail_10_1007_s10489_022_03251_7
crossref_primary_10_1007_s10489_022_03251_7
springer_journals_10_1007_s10489_022_03251_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References CaoJLinZHuangG-BLiuNVoting based extreme learning machineInformation Sciences201218516677285287810.1016/j.ins.2011.09.015
HuangG-BChenLSiewCKUniversal approximation using incremental constructive feedforward networks with random hidden nodesIEEE Trans. Neural Networks200617487989210.1109/TNN.2006.875977
HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: Algorithm and applicationsFuture Generation Computer Systems20199784987210.1016/j.future.2019.02.028
CaoZXiaJZhangMJinJDengLWangXQuJOptimization of gear blank preforms based on a new r-gplvm model utilizing ga-elmKnowledge-Based Systems201583668010.1016/j.knosys.2015.03.010
HuangG-BZhuQ-YSiewC-KExtreme learning machine: theory and applicationsNeurocomputing2006701–348950110.1016/j.neucom.2005.12.126
Teo TT, Logenthiran T, Woo WL (2015) Forecasting of photovoltaic power using extreme learning machine. In: 2015 IEEE innovative smart grid technologies-asia (ISGT ASIA). IEEE, pp 1–6
Prügel-BennettABenefits of a population: Five mechanisms that advantage population-based algorithmsIEEE Transactions on Evolutionary Computation201014450051710.1109/TEVC.2009.2039139
Joy TT, Rana S, Gupta S, Venkatesh S (2016) Hyperparameter tuning for big data using bayesian optimisation. In: 2016 23rd International conference on pattern recognition (ICPR). IEEE, pp 2574–2579
Lu D (2011) Fundamentals of supply chain management. Bookboon, London
HuangG-BZhouHDingXZhangRExtreme learning machine for regression and multiclass classificationIEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)201142251352910.1109/TSMCB.2011.2168604
TanizakiTHoshinoTShimmuraTTakenakaTDemand forecasting in restaurants using machine learning and statistical analysisProcedia CIRP20197967968310.1016/j.procir.2019.02.042
Abd ElazizMHeidariAAFujitaHMoayediHA competitive chain-based harris hawks optimizer for global optimization and multi-level image thresholding problemsApplied Soft Computing20209510.1016/j.asoc.2020.106347
AlkanBVeraDAhmadMAhmadBHarrisonRComplexity in manufacturing systems and its measures: A literature reviewEuropean J of Industrial Engineering20181211615010.1504/EJIE.2018.089883
Huang G-B, Zhu Q-Y, Siew C-K (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: 2004 IEEE international joint conference on neural networks (IEEE Cat. No. 04CH37541). vol 2, Ieee, pp 985–990
AlkanBBullockSAssessing operational complexity of manufacturing systems based on algorithmic complexity of key performance indicator time-seriesJournal of the Operational Research Society2021722241225510.1080/01605682.2020.1779622
YıldızARYıldızBSSaitSMBureeratSPholdeeNA new hybrid harris hawks-nelder-mead optimization algorithm for solving design and manufacturing problemsMaterials Testing201961873574310.3139/120.111378
Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv:1406.1078
ElgamalZMYasinNBMTubishatMAlswaittiMMirjaliliSAn improved harris hawks optimization algorithm with simulated annealing for feature selection in the medical fieldIEEE Access2020818663818665210.1109/ACCESS.2020.3029728
ZhangZDingSJiaWA hybrid optimization algorithm based on cuckoo search and differential evolution for solving constrained engineering problemsEngineering Applications of Artificial Intelligence20198525426810.1016/j.engappai.2019.06.017
ChangP-CLinJ-JDzanW-YForecasting of manufacturing cost in mobile phone products by case-based reasoning and artificial neural network modelsJournal of Intelligent Manufacturing201223351753110.1007/s10845-010-0390-7
Silva DN, Pacifico LD, Ludermir TB (2011) An evolutionary extreme learning machine based on group search optimization. In: 2011 IEEE congress of evolutionary computation (CEC). IEEE, pp 574–580
Fattah J, Ezzine L, Aman Z, El Moussami H, Lachhab A (2018) Forecasting of demand using arima model. International Journal of Engineering Business Management 10:1847979018808673
Wilson D, Martinez T (2001) The need for small learning rates on large problems. In: IJCNN’01. International joint conference on neural networks. proceedings (Cat. No.01CH37222). vol 1, pp 115 – 119
HanFYaoH-FLingQ-HAn improved evolutionary extreme learning machine based on particle swarm optimizationNeurocomputing2013116879310.1016/j.neucom.2011.12.062
AnggraeniWVinartiRAKurniawatiYDPerformance comparisons between arima and arimax method in moslem kids clothes demand forecasting: Case studyProcedia Computer Science20157263063710.1016/j.procs.2015.12.172
Kumar S, Hussain L, Banarjee S, Reza M (2018) Energy load forecasting using deep learning approach-lstm and gru in spark cluster. In: 2018 Fifth international conference on emerging applications of information technology (EAIT). IEEE, pp 1–4
YaseenZMJaafarODeoRCKisiOAdamowskiJQuiltyJEl-ShafieAStream-flow forecasting using extreme learning machines: a case study in a semi-arid region in iraqJournal of Hydrology201654260361410.1016/j.jhydrol.2016.09.035
SahuRKShawBNayakJRShort/medium term solar power forecasting of chhattisgarh state of india using modified tlbo optimized elmEngineering Science and Technology, an International Journal20212451180120010.1016/j.jestch.2021.02.016
FurfaroRBaroccoRLinaresRTopputoFReddyVSimoJLe CorreLModeling irregular small bodies gravity field via extreme learning machines and bayesian optimizationAdvances in Space Research202167161763810.1016/j.asr.2020.06.021
HuangGHuangG-BSongSYouKTrends in extreme learning machines: A reviewNeural Networks201561324810.1016/j.neunet.2014.10.001
Ribeiro GH, Neto PSDM, Cavalcanti GD, Tsang R (2011) Lag selection for time series forecasting using particle swarm optimization. In: The 2011 International joint conference on neural networks. IEEE, pp 2437–2444
Hosking JRM (2011) Demand forecasting problems in production planning. International Series in Operations Research & Management Science. In: Kempf KG, Keskinocak P, Uzsoy R (eds) Planning Production and Inventories in the Extended Enterprise, chapter 0, pp 103–117, Springer
LiangN-YHuangG-BSaratchandranPSundararajanNA fast and accurate online sequential learning algorithm for feedforward networksIEEE Transactions on Neural Networks20061761411142310.1109/TNN.2006.880583
Islek I, Ögüdücü SG (2017) A decision support system for demand forecasting based on classifier ensemble. In: FedCSIS (Communication Papers), pp 35–41
GabbottMHoggGConsumer behaviour and services: a reviewJournal of Marketing Management199410431132410.1080/0267257X.1994.9964277
LiBLiYRongXThe extreme learning machine learning algorithm with tunable activation functionNeural Computing and Applications2013223531539
AlkanBBullockSGalvinKIdentifying optimal granularity level of modular assembly supply chains based on complexity-modularity trade-offIEEE Access20219579075792110.1109/ACCESS.2021.3072955
Lawrence S, Giles CL (2000) Overfitting and neural networks: conjugate gradient and backpropagation. In: Proceedings of the IEEE-INNS-ENNS international joint conference on neural networks. IJCNN 2000. neural computing: new challenges and perspectives for the new millennium. vol 1, IEEE, pp 114–119
Christopher M (2016) Logistics & supply chain management. Pearson UK, London
BengioYSimardPFrasconiPLearning long-term dependencies with gradient descent is difficultIEEE Transactions on Neural Networks19945215716610.1109/72.279181
Fu R, Zhang Z, Li L (2016) Using lstm and gru neural network methods for traffic flow prediction. In: 2016 31st youth academic annual conference of chinese association of automation (YAC). IEEE, pp 324–328
Zhang Y, Liu R, Wang X, Chen H, Li C (2020) Boosted binary harris hawks optimizer and feature selection. Eng Comput
MerkuryevaGValbergaASmirnovADemand forecasting in pharmaceutical supply chains: A case studyProcedia Computer Science201914931010.1016/j.procs.2019.01.100
Kurtuluş E, Yıldız AR AR, Sait SM, Bureerat S (2020) A novel hybrid harris hawks-simulated annealing algorithm and rbf-based metamodel for design optimization of highway guardrails. Materials Testing 62(3):251–260
Archer B et al (1987) Demand forecasting and estimation. Demand Forecasting and Estimation:77–85
EshtayMFarisHObeidNMetaheuristic-based extreme learning machines: a review of design formulations and applicationsInternational Journal of Machine Learning and Cybernetics20191061543156110.1007/s13042-018-0833-6
Rammurthy D, Mahesh P (2020) Whale harris hawks optimization based deep learning classifier for brain tumor detection using mri images. Journal of King Saud University - Computer and Information Sciences
HamicheKAbouaïssaHGoncalvesGHsuTA robust and easy approach for demand forecasting in supply chainsIFAC-PapersOnLine201851111732173710.1016/j.ifacol.2018.08.206
WanCXuZPinsonPDongZYWongKPProbabilistic forecasting of wind power generation using extreme learning machineIEEE Transactions on Power Systems20132931033104410.1109/TPWRS.2013.2287871
MicheYSorjamaaABasPSimulaOJuttenCLendasseAOp-elm: optimally pruned extreme learning machineIEEE Transactions on Neural Networks200921115816210.1109/TNN.2009.2036259
M Abd Elaziz (3251_CR48) 2020; 95
3251_CR9
3251_CR7
3251_CR49
C Wan (3251_CR22) 2013; 29
AR Yıldız (3251_CR31) 2019; 61
3251_CR45
3251_CR43
J Cao (3251_CR28) 2012; 185
3251_CR40
B Alkan (3251_CR8) 2021; 9
M Gabbott (3251_CR10) 1994; 10
B Alkan (3251_CR47) 2021; 72
N-Y Liang (3251_CR27) 2006; 17
Z Zhang (3251_CR6) 2019; 85
M Eshtay (3251_CR41) 2019; 10
Z Cao (3251_CR24) 2015; 83
G-B Huang (3251_CR4) 2011; 42
W Anggraeni (3251_CR14) 2015; 72
3251_CR38
3251_CR37
3251_CR36
R Furfaro (3251_CR25) 2021; 67
3251_CR34
3251_CR33
3251_CR32
RK Sahu (3251_CR20) 2021; 24
G Huang (3251_CR29) 2015; 61
3251_CR1
A Prügel-Bennett (3251_CR39) 2010; 14
P-C Chang (3251_CR16) 2012; 23
3251_CR23
K Hamiche (3251_CR2) 2018; 51
G-B Huang (3251_CR3) 2006; 70
B Li (3251_CR44) 2013; 22
B Alkan (3251_CR46) 2018; 12
Y Bengio (3251_CR35) 1994; 5
3251_CR19
3251_CR18
3251_CR17
3251_CR13
3251_CR11
ZM Yaseen (3251_CR21) 2016; 542
T Tanizaki (3251_CR15) 2019; 79
G Merkuryeva (3251_CR12) 2019; 149
F Han (3251_CR42) 2013; 116
ZM Elgamal (3251_CR50) 2020; 8
AA Heidari (3251_CR30) 2019; 97
G-B Huang (3251_CR5) 2006; 17
Y Miche (3251_CR26) 2009; 21
References_xml – reference: Islek I, Ögüdücü SG (2017) A decision support system for demand forecasting based on classifier ensemble. In: FedCSIS (Communication Papers), pp 35–41
– reference: YaseenZMJaafarODeoRCKisiOAdamowskiJQuiltyJEl-ShafieAStream-flow forecasting using extreme learning machines: a case study in a semi-arid region in iraqJournal of Hydrology201654260361410.1016/j.jhydrol.2016.09.035
– reference: BengioYSimardPFrasconiPLearning long-term dependencies with gradient descent is difficultIEEE Transactions on Neural Networks19945215716610.1109/72.279181
– reference: Wilson D, Martinez T (2001) The need for small learning rates on large problems. In: IJCNN’01. International joint conference on neural networks. proceedings (Cat. No.01CH37222). vol 1, pp 115 – 119
– reference: Lawrence S, Giles CL (2000) Overfitting and neural networks: conjugate gradient and backpropagation. In: Proceedings of the IEEE-INNS-ENNS international joint conference on neural networks. IJCNN 2000. neural computing: new challenges and perspectives for the new millennium. vol 1, IEEE, pp 114–119
– reference: Christopher M (2016) Logistics & supply chain management. Pearson UK, London
– reference: WanCXuZPinsonPDongZYWongKPProbabilistic forecasting of wind power generation using extreme learning machineIEEE Transactions on Power Systems20132931033104410.1109/TPWRS.2013.2287871
– reference: Zhang Y, Liu R, Wang X, Chen H, Li C (2020) Boosted binary harris hawks optimizer and feature selection. Eng Comput
– reference: Fu R, Zhang Z, Li L (2016) Using lstm and gru neural network methods for traffic flow prediction. In: 2016 31st youth academic annual conference of chinese association of automation (YAC). IEEE, pp 324–328
– reference: MicheYSorjamaaABasPSimulaOJuttenCLendasseAOp-elm: optimally pruned extreme learning machineIEEE Transactions on Neural Networks200921115816210.1109/TNN.2009.2036259
– reference: Ribeiro GH, Neto PSDM, Cavalcanti GD, Tsang R (2011) Lag selection for time series forecasting using particle swarm optimization. In: The 2011 International joint conference on neural networks. IEEE, pp 2437–2444
– reference: YıldızARYıldızBSSaitSMBureeratSPholdeeNA new hybrid harris hawks-nelder-mead optimization algorithm for solving design and manufacturing problemsMaterials Testing201961873574310.3139/120.111378
– reference: HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: Algorithm and applicationsFuture Generation Computer Systems20199784987210.1016/j.future.2019.02.028
– reference: Joy TT, Rana S, Gupta S, Venkatesh S (2016) Hyperparameter tuning for big data using bayesian optimisation. In: 2016 23rd International conference on pattern recognition (ICPR). IEEE, pp 2574–2579
– reference: ElgamalZMYasinNBMTubishatMAlswaittiMMirjaliliSAn improved harris hawks optimization algorithm with simulated annealing for feature selection in the medical fieldIEEE Access2020818663818665210.1109/ACCESS.2020.3029728
– reference: AnggraeniWVinartiRAKurniawatiYDPerformance comparisons between arima and arimax method in moslem kids clothes demand forecasting: Case studyProcedia Computer Science20157263063710.1016/j.procs.2015.12.172
– reference: HuangGHuangG-BSongSYouKTrends in extreme learning machines: A reviewNeural Networks201561324810.1016/j.neunet.2014.10.001
– reference: Prügel-BennettABenefits of a population: Five mechanisms that advantage population-based algorithmsIEEE Transactions on Evolutionary Computation201014450051710.1109/TEVC.2009.2039139
– reference: CaoJLinZHuangG-BLiuNVoting based extreme learning machineInformation Sciences201218516677285287810.1016/j.ins.2011.09.015
– reference: GabbottMHoggGConsumer behaviour and services: a reviewJournal of Marketing Management199410431132410.1080/0267257X.1994.9964277
– reference: Teo TT, Logenthiran T, Woo WL (2015) Forecasting of photovoltaic power using extreme learning machine. In: 2015 IEEE innovative smart grid technologies-asia (ISGT ASIA). IEEE, pp 1–6
– reference: CaoZXiaJZhangMJinJDengLWangXQuJOptimization of gear blank preforms based on a new r-gplvm model utilizing ga-elmKnowledge-Based Systems201583668010.1016/j.knosys.2015.03.010
– reference: HanFYaoH-FLingQ-HAn improved evolutionary extreme learning machine based on particle swarm optimizationNeurocomputing2013116879310.1016/j.neucom.2011.12.062
– reference: AlkanBBullockSGalvinKIdentifying optimal granularity level of modular assembly supply chains based on complexity-modularity trade-offIEEE Access20219579075792110.1109/ACCESS.2021.3072955
– reference: TanizakiTHoshinoTShimmuraTTakenakaTDemand forecasting in restaurants using machine learning and statistical analysisProcedia CIRP20197967968310.1016/j.procir.2019.02.042
– reference: Abd ElazizMHeidariAAFujitaHMoayediHA competitive chain-based harris hawks optimizer for global optimization and multi-level image thresholding problemsApplied Soft Computing20209510.1016/j.asoc.2020.106347
– reference: EshtayMFarisHObeidNMetaheuristic-based extreme learning machines: a review of design formulations and applicationsInternational Journal of Machine Learning and Cybernetics20191061543156110.1007/s13042-018-0833-6
– reference: HuangG-BZhouHDingXZhangRExtreme learning machine for regression and multiclass classificationIEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)201142251352910.1109/TSMCB.2011.2168604
– reference: FurfaroRBaroccoRLinaresRTopputoFReddyVSimoJLe CorreLModeling irregular small bodies gravity field via extreme learning machines and bayesian optimizationAdvances in Space Research202167161763810.1016/j.asr.2020.06.021
– reference: SahuRKShawBNayakJRShort/medium term solar power forecasting of chhattisgarh state of india using modified tlbo optimized elmEngineering Science and Technology, an International Journal20212451180120010.1016/j.jestch.2021.02.016
– reference: HuangG-BChenLSiewCKUniversal approximation using incremental constructive feedforward networks with random hidden nodesIEEE Trans. Neural Networks200617487989210.1109/TNN.2006.875977
– reference: ZhangZDingSJiaWA hybrid optimization algorithm based on cuckoo search and differential evolution for solving constrained engineering problemsEngineering Applications of Artificial Intelligence20198525426810.1016/j.engappai.2019.06.017
– reference: ChangP-CLinJ-JDzanW-YForecasting of manufacturing cost in mobile phone products by case-based reasoning and artificial neural network modelsJournal of Intelligent Manufacturing201223351753110.1007/s10845-010-0390-7
– reference: Kurtuluş E, Yıldız AR AR, Sait SM, Bureerat S (2020) A novel hybrid harris hawks-simulated annealing algorithm and rbf-based metamodel for design optimization of highway guardrails. Materials Testing 62(3):251–260
– reference: Fattah J, Ezzine L, Aman Z, El Moussami H, Lachhab A (2018) Forecasting of demand using arima model. International Journal of Engineering Business Management 10:1847979018808673
– reference: HuangG-BZhuQ-YSiewC-KExtreme learning machine: theory and applicationsNeurocomputing2006701–348950110.1016/j.neucom.2005.12.126
– reference: LiBLiYRongXThe extreme learning machine learning algorithm with tunable activation functionNeural Computing and Applications2013223531539
– reference: AlkanBBullockSAssessing operational complexity of manufacturing systems based on algorithmic complexity of key performance indicator time-seriesJournal of the Operational Research Society2021722241225510.1080/01605682.2020.1779622
– reference: Silva DN, Pacifico LD, Ludermir TB (2011) An evolutionary extreme learning machine based on group search optimization. In: 2011 IEEE congress of evolutionary computation (CEC). IEEE, pp 574–580
– reference: HamicheKAbouaïssaHGoncalvesGHsuTA robust and easy approach for demand forecasting in supply chainsIFAC-PapersOnLine201851111732173710.1016/j.ifacol.2018.08.206
– reference: Huang G-B, Zhu Q-Y, Siew C-K (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: 2004 IEEE international joint conference on neural networks (IEEE Cat. No. 04CH37541). vol 2, Ieee, pp 985–990
– reference: Lu D (2011) Fundamentals of supply chain management. Bookboon, London
– reference: Rammurthy D, Mahesh P (2020) Whale harris hawks optimization based deep learning classifier for brain tumor detection using mri images. Journal of King Saud University - Computer and Information Sciences
– reference: Kumar S, Hussain L, Banarjee S, Reza M (2018) Energy load forecasting using deep learning approach-lstm and gru in spark cluster. In: 2018 Fifth international conference on emerging applications of information technology (EAIT). IEEE, pp 1–4
– reference: LiangN-YHuangG-BSaratchandranPSundararajanNA fast and accurate online sequential learning algorithm for feedforward networksIEEE Transactions on Neural Networks20061761411142310.1109/TNN.2006.880583
– reference: Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv:1406.1078
– reference: AlkanBVeraDAhmadMAhmadBHarrisonRComplexity in manufacturing systems and its measures: A literature reviewEuropean J of Industrial Engineering20181211615010.1504/EJIE.2018.089883
– reference: Hosking JRM (2011) Demand forecasting problems in production planning. International Series in Operations Research & Management Science. In: Kempf KG, Keskinocak P, Uzsoy R (eds) Planning Production and Inventories in the Extended Enterprise, chapter 0, pp 103–117, Springer
– reference: Archer B et al (1987) Demand forecasting and estimation. Demand Forecasting and Estimation:77–85
– reference: MerkuryevaGValbergaASmirnovADemand forecasting in pharmaceutical supply chains: A case studyProcedia Computer Science201914931010.1016/j.procs.2019.01.100
– ident: 3251_CR40
  doi: 10.1109/IJCNN.2011.6033535
– ident: 3251_CR33
– volume: 51
  start-page: 1732
  issue: 11
  year: 2018
  ident: 3251_CR2
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.08.206
– ident: 3251_CR49
  doi: 10.3139/120.111478
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  ident: 3251_CR3
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 12
  start-page: 116
  year: 2018
  ident: 3251_CR46
  publication-title: European J of Industrial Engineering
  doi: 10.1504/EJIE.2018.089883
– volume: 10
  start-page: 311
  issue: 4
  year: 1994
  ident: 3251_CR10
  publication-title: Journal of Marketing Management
  doi: 10.1080/0267257X.1994.9964277
– volume: 17
  start-page: 1411
  issue: 6
  year: 2006
  ident: 3251_CR27
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2006.880583
– volume: 149
  start-page: 3
  year: 2019
  ident: 3251_CR12
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2019.01.100
– ident: 3251_CR37
  doi: 10.1109/YAC.2016.7804912
– volume: 42
  start-page: 513
  issue: 2
  year: 2011
  ident: 3251_CR4
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
  doi: 10.1109/TSMCB.2011.2168604
– ident: 3251_CR43
  doi: 10.1109/CEC.2011.5949670
– volume: 95
  year: 2020
  ident: 3251_CR48
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106347
– ident: 3251_CR34
  doi: 10.1109/ICPR.2016.7900023
– volume: 22
  start-page: 531
  issue: 3
  year: 2013
  ident: 3251_CR44
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-012-0858-9
– ident: 3251_CR11
  doi: 10.15439/2017F224
– volume: 9
  start-page: 57907
  year: 2021
  ident: 3251_CR8
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3072955
– ident: 3251_CR9
– volume: 14
  start-page: 500
  issue: 4
  year: 2010
  ident: 3251_CR39
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2009.2039139
– volume: 67
  start-page: 617
  issue: 1
  year: 2021
  ident: 3251_CR25
  publication-title: Advances in Space Research
  doi: 10.1016/j.asr.2020.06.021
– volume: 542
  start-page: 603
  year: 2016
  ident: 3251_CR21
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2016.09.035
– volume: 83
  start-page: 66
  year: 2015
  ident: 3251_CR24
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.03.010
– ident: 3251_CR32
  doi: 10.1007/s00366-020-01028-5
– volume: 79
  start-page: 679
  year: 2019
  ident: 3251_CR15
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2019.02.042
– volume: 23
  start-page: 517
  issue: 3
  year: 2012
  ident: 3251_CR16
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-010-0390-7
– ident: 3251_CR18
– volume: 97
  start-page: 849
  year: 2019
  ident: 3251_CR30
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.02.028
– ident: 3251_CR23
  doi: 10.1109/ISGT-Asia.2015.7387113
– volume: 116
  start-page: 87
  year: 2013
  ident: 3251_CR42
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.12.062
– volume: 185
  start-page: 66
  issue: 1
  year: 2012
  ident: 3251_CR28
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2011.09.015
– ident: 3251_CR38
  doi: 10.3115/v1/D14-1179
– ident: 3251_CR17
  doi: 10.1109/IJCNN.2000.857823
– ident: 3251_CR45
  doi: 10.1007/978-1-4419-6485-4_6
– volume: 17
  start-page: 879
  issue: 4
  year: 2006
  ident: 3251_CR5
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2006.875977
– volume: 61
  start-page: 735
  issue: 8
  year: 2019
  ident: 3251_CR31
  publication-title: Materials Testing
  doi: 10.3139/120.111378
– volume: 24
  start-page: 1180
  issue: 5
  year: 2021
  ident: 3251_CR20
  publication-title: Engineering Science and Technology, an International Journal
  doi: 10.1016/j.jestch.2021.02.016
– ident: 3251_CR13
  doi: 10.1177/1847979018808673
– ident: 3251_CR7
– volume: 85
  start-page: 254
  year: 2019
  ident: 3251_CR6
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2019.06.017
– volume: 21
  start-page: 158
  issue: 1
  year: 2009
  ident: 3251_CR26
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2009.2036259
– ident: 3251_CR19
– volume: 72
  start-page: 630
  year: 2015
  ident: 3251_CR14
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2015.12.172
– ident: 3251_CR1
  doi: 10.1201/9781482275605-13
– volume: 8
  start-page: 186638
  year: 2020
  ident: 3251_CR50
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3029728
– volume: 10
  start-page: 1543
  issue: 6
  year: 2019
  ident: 3251_CR41
  publication-title: International Journal of Machine Learning and Cybernetics
  doi: 10.1007/s13042-018-0833-6
– volume: 72
  start-page: 2241
  year: 2021
  ident: 3251_CR47
  publication-title: Journal of the Operational Research Society
  doi: 10.1080/01605682.2020.1779622
– volume: 5
  start-page: 157
  issue: 2
  year: 1994
  ident: 3251_CR35
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.279181
– volume: 29
  start-page: 1033
  issue: 3
  year: 2013
  ident: 3251_CR22
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2013.2287871
– ident: 3251_CR36
  doi: 10.1109/EAIT.2018.8470406
– volume: 61
  start-page: 32
  year: 2015
  ident: 3251_CR29
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.10.001
SSID ssj0003301
Score 2.4102778
Snippet Accurate and real-time product demand forecasting is the need of the hour in the world of supply chain management. Predicting future product demand from...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11489
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Artificial neural networks
Autoregressive models
Computer Science
Demand
Economic forecasting
Forecasting
Machine learning
Machines
Manufacturing
Mechanical Engineering
Neural networks
Nodes
Optimization
Performance measurement
Processes
Real time
Recurrent neural networks
Root-mean-square errors
Sales
Statistical analysis
Supply chains
Tuning
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L178FqdTcvCmhTbNV72N4RiCnhzsVtIm3cC1G9tE_C_8k33J0k2HCp4KzUugfcn7yHvv9xC6FgnJtQTpR6ghAZWaBqCGVWDRxrg2oSGO049PvNenDwM28DA5thZmI35vS9yoTeoBlymMQRcHYhvtsCgWtk1Dh3dWUhf8ctcdD_yJgPNk4Atkfl7juxJaW5YbwVCnY7oHaM8bh7i95OYh2jLVEdqvGy9gfw6P0Ucbj95tqRUG0Wov-LBv_jDEpUuONNh1uMH2lhWP1AxOMjzeXuZ4AiKi9Ck8WI2HkxmQlHdYVfWQ0X4ymLN4ugSExdqUqtL2lcnV3KZK46-h7xPU794_d3qBb60Q5DGPF4FmTFsU0TCJIx0axRTodamoEkJRWhgh8pCDccYycI8UyUKqKJCBD6uIzriJT1GjmlTmDOEk0zqWhmaRlNREYcYYU4UsVM4MGGdFE0X1v05zjztu21-M0zVisuVPCvxJHX9S0UQ3qznTJerGn9StmoWpP4HzlHAJpqaAT2yi25qt6-HfVzv_H_kF2iVuZ9mcwBZqLGav5hLslEV25TboJ9oY3w4
  priority: 102
  providerName: Springer Nature
Title A hybrid extreme learning machine model with harris hawks optimisation algorithm: an optimised model for product demand forecasting applications
URI https://link.springer.com/article/10.1007/s10489-022-03251-7
https://www.proquest.com/docview/2681637840
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB5Be-HCG1GWrXzgxlqbOrbjckFt1YdAVCu0lcopcmK3laBpoV0h_gU_ecepQwEJLrEUP6Rk7Hl7PoCzqM5So5D7MW4Z5cpwimJYU1dtTBobWJZT-qYvewN-NRRD73Bb-LTKgifmjNrMUucj_82kQtUhQnvkcv5IHWqUi656CI1NKCMLVqoE5Wa7_-f2jRejtZ5j5qGVQaWsD_21GX95jrt0ITTGghClPI0-iqa1vvkpRJpLns4ubHuVkTRWNN6DDZvtw04Bx0D86TyA1waZvLgLWAQZrnP7EQ8JMSbTPGXSkhz3hjjfK5noJzzf2DzfL8gMGcfUJ_YQ_TDGD19OphdEZ0WXNX4yKrlkvioTS4yd6sy4VzbVC5dATd4HxA9h0Gn_bfWoB1ygaSjDJTVCGFdbNKiHNRNYLTRKe6W5jiLN-chGURpIVNlEgkaTZknANcdhaNlqZhJpwyMoZbPMHgOpJ8aEyvKkphS3tSARQuiRGulUWFTZRhWoFf86Tn01cgeK8RCv6yg7-sRInzinTxxV4PxtznxVi-Pb0acFCWN_LhfxehdV4FdB1nX316udfL_aD9hi-U5ymYGnUFo-_bM_UVtZJlXYVJ1uFcqNTrPZd2337rpd9RsVe1uyhc8Ba_wHa5PtcQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NThsxEB4BPZQLtJSqoZTOgZ7A6sZr724qVRWiTUP5OYGU2-JdTxKpZJOSIMRb9El4RsaOl1CkcuO00q7tg2f2m2_s-QHYTluytBmjn1QkhcqsEmyGjXDVxhJLEUkv6eOTpHOmfnV1dwFu61wYF1ZZY6IHajsq3Rn5Z5lkTB1S9ke-jf8I1zXK3a7WLTRmanFIN9fssk2-Hnxn-X6Ssv3jdL8jQlcBUcZJPBVWa-sKaLIr37QRGW3YpGVGmTQ1SvUoTcsoYV6iC_YMjCwiZRQPY_fNSFskFPO6i_BCxWzJXWZ6--c98sexb7ccsU8jkqTVDUk6IVVPueAkdv2imDmFSP81hHN2--hC1tu59itYCQQV92Ya9RoWqFqD1br5AwYseAN_93Bw49K9kOHdHTJiaEDRx6EP0CT0XXbQnfTiwFwymvDj-vcERwxTwxBGhOaiz9s8HQy_oKnqT2TDZKbUOJ4VpUVLQ1NZ94pKM3Hh2vjw-n0dzp5FEG9hqRpV9A6wVVgbZ6SKZpYpakaF1tr0sp4pNTFB7DWgWe91Xoba564Fx0U-r9rs5JOzfHIvnzxtwM79nPGs8seTozdrEeYBBSb5XGcbsFuLdf75_6ttPL3aR3jZOT0-yo8OTg7fw7L0WuViEjdhaXp5RR-YJ02LLa-cCOfP_TfcAQB-Ihg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VVEJcoBQQoS3MoT2B1Y3XXm-QECq0UX-jClEpt8W7nm0kmk3aBFV9C56Hp2O88TaARG89rbT-OXjGM9_Y4_kANk1XFi5l6ycVSaFSpwS7YSt8tbHEUUSylvRJP9k_U4cDPViCX81bGJ9W2djE2lC7ceHPyLdlkjJ0MByPbJchLeJ0t_dxcik8g5S_aW3oNOYqckQ31xy-TT8c7LKst6Ts7X39vC8Cw4Ao4iSeCae188U0OazvuIistuzeUqusMVapkowpooQxis45SrAyj5RV3I1DOStdnlDM8z6AZeOjohYsf9rrn3659QNxXJMvRxzhiCTpDsKTnfBwT_lUJQ4Eo5gRhjB_u8UF1v3nerb2er0VeBzgKu7M9espLFG1Ck8aKggMluEZ_NzB4Y1__IW8Yv7IEQMdxTmO6nRNwppzB_25Lw7tFdsW_lx_n-KYjdYoJBWhvTjnhZ4NR-_RVk0TuTCYATZO5iVq0dHIVs7_osJOffI2_nkZ_xzO7kUUL6BVjSt6CdjNnYtTUnknTRV1olxrbcu0tIUmhotlGzrNWmdFqITuCTkuskUNZy-fjOWT1fLJTBve3o6ZzOuA3Nl7vRFhFmzCNFtocBveNWJdNP9_tld3z_YGHvJOyI4P-kdr8EjWSuUTFNehNbv6QRsMmmb566CdCN_ue0P8BmUIJ6o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+extreme+learning+machine+model+with+harris+hawks+optimisation+algorithm%3A+an+optimised+model+for+product+demand+forecasting+applications&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Chaudhuri%2C+Koushiki+Dasgupta&rft.au=Alkan%2C+Bugra&rft.date=2022-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=52&rft.issue=10&rft.spage=11489&rft.epage=11505&rft_id=info:doi/10.1007%2Fs10489-022-03251-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon