A hybrid extreme learning machine model with harris hawks optimisation algorithm: an optimised model for product demand forecasting applications
Accurate and real-time product demand forecasting is the need of the hour in the world of supply chain management. Predicting future product demand from historical sales data is a highly non-linear problem, subject to various external and environmental factors. In this work, we propose an optimised...
Saved in:
Published in | Applied intelligence (Dordrecht, Netherlands) Vol. 52; no. 10; pp. 11489 - 11505 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate and real-time product demand forecasting is the need of the hour in the world of supply chain management. Predicting future product demand from historical sales data is a highly non-linear problem, subject to various external and environmental factors. In this work, we propose an optimised forecasting model - an extreme learning machine (ELM) model coupled with the Harris Hawks optimisation (HHO) algorithm to forecast product demand in an e-commerce company. ELM is preferred over traditional neural networks mainly due to its fast computational speed, which allows efficient demand forecasting in real-time. Our ELM-HHO model performed significantly better than ARIMA models that are commonly used in industries to forecast product demand. The performance of the proposed ELM-HHO model was also compared with traditional ELM, ELM auto-tuned using Bayesian Optimisation (ELM-BO), Gated Recurrent Unit (GRU) based recurrent neural network and Long Short Term Memory (LSTM) recurrent neural network models. Different performance metrics, i.e., Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean Percentage Error (MPE) were used for the comparison of the selected models. Horizon forecasting at 3 days and 7 days ahead was also performed using the proposed approach. The results revealed that the proposed approach is superior to traditional product demand forecasting models in terms of prediction accuracy and it can be applied in real-time to predict future product demand based on the previous week’s sales data. In particular, considering RMSE of forecasting, the proposed ELM-HHO model performed 62.73% better than the statistical ARIMA(7,1,0) model, 40.73% better than the neural network based GRU model, 34.05% better than the neural network based LSTM model, 27.16% better than the traditional non-optimised ELM model with 100 hidden nodes and 11.63% better than the ELM-BO model in forecasting product demand for future 3 months. The novelty of the proposed approach lies in the way the fast computational speed of ELMs has been combined with the accuracy gained by tuning hyperparameters using HHO. An increased number of hyperparameters has been optimised in our methodology compared to available models. The majority of approaches to improve the accuracy of ELM so far have only focused on tuning the weights and the biases of the hidden layer. In our hybrid model, we tune the number of hidden nodes, the number of input time lags and even the type of activation function used in the hidden layer in addition to tuning the weights and the biases. This has resulted in a significant increase in accuracy over previous methods. Our work presents an original way of performing product demand forecasting in real-time in industry with highly accurate results which are much better than pre-existing demand forecasting models. |
---|---|
AbstractList | Accurate and real-time product demand forecasting is the need of the hour in the world of supply chain management. Predicting future product demand from historical sales data is a highly non-linear problem, subject to various external and environmental factors. In this work, we propose an optimised forecasting model - an extreme learning machine (ELM) model coupled with the Harris Hawks optimisation (HHO) algorithm to forecast product demand in an e-commerce company. ELM is preferred over traditional neural networks mainly due to its fast computational speed, which allows efficient demand forecasting in real-time. Our ELM-HHO model performed significantly better than ARIMA models that are commonly used in industries to forecast product demand. The performance of the proposed ELM-HHO model was also compared with traditional ELM, ELM auto-tuned using Bayesian Optimisation (ELM-BO), Gated Recurrent Unit (GRU) based recurrent neural network and Long Short Term Memory (LSTM) recurrent neural network models. Different performance metrics, i.e., Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean Percentage Error (MPE) were used for the comparison of the selected models. Horizon forecasting at 3 days and 7 days ahead was also performed using the proposed approach. The results revealed that the proposed approach is superior to traditional product demand forecasting models in terms of prediction accuracy and it can be applied in real-time to predict future product demand based on the previous week’s sales data. In particular, considering RMSE of forecasting, the proposed ELM-HHO model performed 62.73% better than the statistical ARIMA(7,1,0) model, 40.73% better than the neural network based GRU model, 34.05% better than the neural network based LSTM model, 27.16% better than the traditional non-optimised ELM model with 100 hidden nodes and 11.63% better than the ELM-BO model in forecasting product demand for future 3 months. The novelty of the proposed approach lies in the way the fast computational speed of ELMs has been combined with the accuracy gained by tuning hyperparameters using HHO. An increased number of hyperparameters has been optimised in our methodology compared to available models. The majority of approaches to improve the accuracy of ELM so far have only focused on tuning the weights and the biases of the hidden layer. In our hybrid model, we tune the number of hidden nodes, the number of input time lags and even the type of activation function used in the hidden layer in addition to tuning the weights and the biases. This has resulted in a significant increase in accuracy over previous methods. Our work presents an original way of performing product demand forecasting in real-time in industry with highly accurate results which are much better than pre-existing demand forecasting models. |
Author | Alkan, Bugra Chaudhuri, Koushiki Dasgupta |
Author_xml | – sequence: 1 givenname: Koushiki Dasgupta surname: Chaudhuri fullname: Chaudhuri, Koushiki Dasgupta organization: Department of Mathematics, IIT Kharagpur – sequence: 2 givenname: Bugra orcidid: 0000-0002-5994-4351 surname: Alkan fullname: Alkan, Bugra email: alkanb@lsbu.ac.uk organization: School of Engineering, London South Bank University |
BookMark | eNp9kM1uFDEQhC0UJDaBF-BkifNA-2fGM9yiCAJSJC4gcbN6x727DjP2YHsV8hZ5ZLy7QUg55NRSd33VpTpnZyEGYuytgPcCwHzIAnQ_NCBlA0q2ojEv2Eq0RjVGD-aMrWCQuum64ecrdp7zLQAoBWLFHi757n6dvOP0pySaiU-EKfiw5TOOOx-Iz9HRxO982fEdpuRzHXe_Mo9L8bPPWHwMHKdtTFUyf-QY_p3IPcKbmPiSotuPhTuaMbjDikbM5fAJl2Xy49Eov2YvNzhlevM4L9iPz5--X31pbr5df726vGlG1anSuLZ1RvcaBiUcELYInehRozGo9YaMGaHrVduuZTugXINGXWUgDUq37khdsHcn35rr955ysbdxn0J9aWXXi06Zal5V_Uk1pphzoo0dfTkGLQn9ZAXYQ__21L-t_dtj_9ZUVD5Bl-RnTPfPQ-oE5SoOW0r_Uz1D_QXKpp09 |
CitedBy_id | crossref_primary_10_1016_j_physc_2023_1354430 crossref_primary_10_1007_s11831_024_10092_9 crossref_primary_10_1007_s00521_024_09679_x crossref_primary_10_3390_app14135735 crossref_primary_10_3389_fenrg_2023_1323073 crossref_primary_10_1080_00207543_2023_2231098 crossref_primary_10_1177_00368504231165679 crossref_primary_10_1016_j_compgeo_2022_105112 crossref_primary_10_1108_IJCHM_05_2023_0652 crossref_primary_10_1515_nleng_2022_0257 crossref_primary_10_3390_app14020866 crossref_primary_10_1016_j_asoc_2024_111734 crossref_primary_10_1080_1528008X_2024_2435030 crossref_primary_10_1177_17568293221150171 crossref_primary_10_1007_s10668_023_04271_0 crossref_primary_10_3390_su142315701 crossref_primary_10_1007_s00500_023_09391_3 |
Cites_doi | 10.1109/IJCNN.2011.6033535 10.1016/j.ifacol.2018.08.206 10.3139/120.111478 10.1016/j.neucom.2005.12.126 10.1504/EJIE.2018.089883 10.1080/0267257X.1994.9964277 10.1109/TNN.2006.880583 10.1016/j.procs.2019.01.100 10.1109/YAC.2016.7804912 10.1109/TSMCB.2011.2168604 10.1109/CEC.2011.5949670 10.1016/j.asoc.2020.106347 10.1109/ICPR.2016.7900023 10.1007/s00521-012-0858-9 10.15439/2017F224 10.1109/ACCESS.2021.3072955 10.1109/TEVC.2009.2039139 10.1016/j.asr.2020.06.021 10.1016/j.jhydrol.2016.09.035 10.1016/j.knosys.2015.03.010 10.1007/s00366-020-01028-5 10.1016/j.procir.2019.02.042 10.1007/s10845-010-0390-7 10.1016/j.future.2019.02.028 10.1109/ISGT-Asia.2015.7387113 10.1016/j.neucom.2011.12.062 10.1016/j.ins.2011.09.015 10.3115/v1/D14-1179 10.1109/IJCNN.2000.857823 10.1007/978-1-4419-6485-4_6 10.1109/TNN.2006.875977 10.3139/120.111378 10.1016/j.jestch.2021.02.016 10.1177/1847979018808673 10.1016/j.engappai.2019.06.017 10.1109/TNN.2009.2036259 10.1016/j.procs.2015.12.172 10.1201/9781482275605-13 10.1109/ACCESS.2020.3029728 10.1007/s13042-018-0833-6 10.1080/01605682.2020.1779622 10.1109/72.279181 10.1109/TPWRS.2013.2287871 10.1109/EAIT.2018.8470406 10.1016/j.neunet.2014.10.001 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PSYQQ PTHSS Q9U |
DOI | 10.1007/s10489-022-03251-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection (ProQuest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (Proquest) ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest One Psychology Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-7497 |
EndPage | 11505 |
ExternalDocumentID | 10_1007_s10489_022_03251_7 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR ZY4 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c363t-d55d74840931d0ea5a0618a4a77a44fe77c068355b259a2b04a40ea027a2db6e3 |
IEDL.DBID | BENPR |
ISSN | 0924-669X |
IngestDate | Fri Jul 25 12:16:26 EDT 2025 Thu Apr 24 22:55:33 EDT 2025 Tue Jul 01 03:31:48 EDT 2025 Fri Feb 21 02:46:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Supply chain management Harris hawks optimisation Extreme learning machines Optimisation Demand forecasting ARIMA Artificial neural networks Hyperparameter tuning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-d55d74840931d0ea5a0618a4a77a44fe77c068355b259a2b04a40ea027a2db6e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5994-4351 |
OpenAccessLink | https://doi.org/10.1007/s10489-022-03251-7 |
PQID | 2681637840 |
PQPubID | 326365 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2681637840 crossref_citationtrail_10_1007_s10489_022_03251_7 crossref_primary_10_1007_s10489_022_03251_7 springer_journals_10_1007_s10489_022_03251_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Boston |
PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems |
PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
PublicationTitleAbbrev | Appl Intell |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | CaoJLinZHuangG-BLiuNVoting based extreme learning machineInformation Sciences201218516677285287810.1016/j.ins.2011.09.015 HuangG-BChenLSiewCKUniversal approximation using incremental constructive feedforward networks with random hidden nodesIEEE Trans. Neural Networks200617487989210.1109/TNN.2006.875977 HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: Algorithm and applicationsFuture Generation Computer Systems20199784987210.1016/j.future.2019.02.028 CaoZXiaJZhangMJinJDengLWangXQuJOptimization of gear blank preforms based on a new r-gplvm model utilizing ga-elmKnowledge-Based Systems201583668010.1016/j.knosys.2015.03.010 HuangG-BZhuQ-YSiewC-KExtreme learning machine: theory and applicationsNeurocomputing2006701–348950110.1016/j.neucom.2005.12.126 Teo TT, Logenthiran T, Woo WL (2015) Forecasting of photovoltaic power using extreme learning machine. In: 2015 IEEE innovative smart grid technologies-asia (ISGT ASIA). IEEE, pp 1–6 Prügel-BennettABenefits of a population: Five mechanisms that advantage population-based algorithmsIEEE Transactions on Evolutionary Computation201014450051710.1109/TEVC.2009.2039139 Joy TT, Rana S, Gupta S, Venkatesh S (2016) Hyperparameter tuning for big data using bayesian optimisation. In: 2016 23rd International conference on pattern recognition (ICPR). IEEE, pp 2574–2579 Lu D (2011) Fundamentals of supply chain management. Bookboon, London HuangG-BZhouHDingXZhangRExtreme learning machine for regression and multiclass classificationIEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)201142251352910.1109/TSMCB.2011.2168604 TanizakiTHoshinoTShimmuraTTakenakaTDemand forecasting in restaurants using machine learning and statistical analysisProcedia CIRP20197967968310.1016/j.procir.2019.02.042 Abd ElazizMHeidariAAFujitaHMoayediHA competitive chain-based harris hawks optimizer for global optimization and multi-level image thresholding problemsApplied Soft Computing20209510.1016/j.asoc.2020.106347 AlkanBVeraDAhmadMAhmadBHarrisonRComplexity in manufacturing systems and its measures: A literature reviewEuropean J of Industrial Engineering20181211615010.1504/EJIE.2018.089883 Huang G-B, Zhu Q-Y, Siew C-K (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: 2004 IEEE international joint conference on neural networks (IEEE Cat. No. 04CH37541). vol 2, Ieee, pp 985–990 AlkanBBullockSAssessing operational complexity of manufacturing systems based on algorithmic complexity of key performance indicator time-seriesJournal of the Operational Research Society2021722241225510.1080/01605682.2020.1779622 YıldızARYıldızBSSaitSMBureeratSPholdeeNA new hybrid harris hawks-nelder-mead optimization algorithm for solving design and manufacturing problemsMaterials Testing201961873574310.3139/120.111378 Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv:1406.1078 ElgamalZMYasinNBMTubishatMAlswaittiMMirjaliliSAn improved harris hawks optimization algorithm with simulated annealing for feature selection in the medical fieldIEEE Access2020818663818665210.1109/ACCESS.2020.3029728 ZhangZDingSJiaWA hybrid optimization algorithm based on cuckoo search and differential evolution for solving constrained engineering problemsEngineering Applications of Artificial Intelligence20198525426810.1016/j.engappai.2019.06.017 ChangP-CLinJ-JDzanW-YForecasting of manufacturing cost in mobile phone products by case-based reasoning and artificial neural network modelsJournal of Intelligent Manufacturing201223351753110.1007/s10845-010-0390-7 Silva DN, Pacifico LD, Ludermir TB (2011) An evolutionary extreme learning machine based on group search optimization. In: 2011 IEEE congress of evolutionary computation (CEC). IEEE, pp 574–580 Fattah J, Ezzine L, Aman Z, El Moussami H, Lachhab A (2018) Forecasting of demand using arima model. International Journal of Engineering Business Management 10:1847979018808673 Wilson D, Martinez T (2001) The need for small learning rates on large problems. In: IJCNN’01. International joint conference on neural networks. proceedings (Cat. No.01CH37222). vol 1, pp 115 – 119 HanFYaoH-FLingQ-HAn improved evolutionary extreme learning machine based on particle swarm optimizationNeurocomputing2013116879310.1016/j.neucom.2011.12.062 AnggraeniWVinartiRAKurniawatiYDPerformance comparisons between arima and arimax method in moslem kids clothes demand forecasting: Case studyProcedia Computer Science20157263063710.1016/j.procs.2015.12.172 Kumar S, Hussain L, Banarjee S, Reza M (2018) Energy load forecasting using deep learning approach-lstm and gru in spark cluster. In: 2018 Fifth international conference on emerging applications of information technology (EAIT). IEEE, pp 1–4 YaseenZMJaafarODeoRCKisiOAdamowskiJQuiltyJEl-ShafieAStream-flow forecasting using extreme learning machines: a case study in a semi-arid region in iraqJournal of Hydrology201654260361410.1016/j.jhydrol.2016.09.035 SahuRKShawBNayakJRShort/medium term solar power forecasting of chhattisgarh state of india using modified tlbo optimized elmEngineering Science and Technology, an International Journal20212451180120010.1016/j.jestch.2021.02.016 FurfaroRBaroccoRLinaresRTopputoFReddyVSimoJLe CorreLModeling irregular small bodies gravity field via extreme learning machines and bayesian optimizationAdvances in Space Research202167161763810.1016/j.asr.2020.06.021 HuangGHuangG-BSongSYouKTrends in extreme learning machines: A reviewNeural Networks201561324810.1016/j.neunet.2014.10.001 Ribeiro GH, Neto PSDM, Cavalcanti GD, Tsang R (2011) Lag selection for time series forecasting using particle swarm optimization. In: The 2011 International joint conference on neural networks. IEEE, pp 2437–2444 Hosking JRM (2011) Demand forecasting problems in production planning. International Series in Operations Research & Management Science. In: Kempf KG, Keskinocak P, Uzsoy R (eds) Planning Production and Inventories in the Extended Enterprise, chapter 0, pp 103–117, Springer LiangN-YHuangG-BSaratchandranPSundararajanNA fast and accurate online sequential learning algorithm for feedforward networksIEEE Transactions on Neural Networks20061761411142310.1109/TNN.2006.880583 Islek I, Ögüdücü SG (2017) A decision support system for demand forecasting based on classifier ensemble. In: FedCSIS (Communication Papers), pp 35–41 GabbottMHoggGConsumer behaviour and services: a reviewJournal of Marketing Management199410431132410.1080/0267257X.1994.9964277 LiBLiYRongXThe extreme learning machine learning algorithm with tunable activation functionNeural Computing and Applications2013223531539 AlkanBBullockSGalvinKIdentifying optimal granularity level of modular assembly supply chains based on complexity-modularity trade-offIEEE Access20219579075792110.1109/ACCESS.2021.3072955 Lawrence S, Giles CL (2000) Overfitting and neural networks: conjugate gradient and backpropagation. In: Proceedings of the IEEE-INNS-ENNS international joint conference on neural networks. IJCNN 2000. neural computing: new challenges and perspectives for the new millennium. vol 1, IEEE, pp 114–119 Christopher M (2016) Logistics & supply chain management. Pearson UK, London BengioYSimardPFrasconiPLearning long-term dependencies with gradient descent is difficultIEEE Transactions on Neural Networks19945215716610.1109/72.279181 Fu R, Zhang Z, Li L (2016) Using lstm and gru neural network methods for traffic flow prediction. In: 2016 31st youth academic annual conference of chinese association of automation (YAC). IEEE, pp 324–328 Zhang Y, Liu R, Wang X, Chen H, Li C (2020) Boosted binary harris hawks optimizer and feature selection. Eng Comput MerkuryevaGValbergaASmirnovADemand forecasting in pharmaceutical supply chains: A case studyProcedia Computer Science201914931010.1016/j.procs.2019.01.100 Kurtuluş E, Yıldız AR AR, Sait SM, Bureerat S (2020) A novel hybrid harris hawks-simulated annealing algorithm and rbf-based metamodel for design optimization of highway guardrails. Materials Testing 62(3):251–260 Archer B et al (1987) Demand forecasting and estimation. Demand Forecasting and Estimation:77–85 EshtayMFarisHObeidNMetaheuristic-based extreme learning machines: a review of design formulations and applicationsInternational Journal of Machine Learning and Cybernetics20191061543156110.1007/s13042-018-0833-6 Rammurthy D, Mahesh P (2020) Whale harris hawks optimization based deep learning classifier for brain tumor detection using mri images. Journal of King Saud University - Computer and Information Sciences HamicheKAbouaïssaHGoncalvesGHsuTA robust and easy approach for demand forecasting in supply chainsIFAC-PapersOnLine201851111732173710.1016/j.ifacol.2018.08.206 WanCXuZPinsonPDongZYWongKPProbabilistic forecasting of wind power generation using extreme learning machineIEEE Transactions on Power Systems20132931033104410.1109/TPWRS.2013.2287871 MicheYSorjamaaABasPSimulaOJuttenCLendasseAOp-elm: optimally pruned extreme learning machineIEEE Transactions on Neural Networks200921115816210.1109/TNN.2009.2036259 M Abd Elaziz (3251_CR48) 2020; 95 3251_CR9 3251_CR7 3251_CR49 C Wan (3251_CR22) 2013; 29 AR Yıldız (3251_CR31) 2019; 61 3251_CR45 3251_CR43 J Cao (3251_CR28) 2012; 185 3251_CR40 B Alkan (3251_CR8) 2021; 9 M Gabbott (3251_CR10) 1994; 10 B Alkan (3251_CR47) 2021; 72 N-Y Liang (3251_CR27) 2006; 17 Z Zhang (3251_CR6) 2019; 85 M Eshtay (3251_CR41) 2019; 10 Z Cao (3251_CR24) 2015; 83 G-B Huang (3251_CR4) 2011; 42 W Anggraeni (3251_CR14) 2015; 72 3251_CR38 3251_CR37 3251_CR36 R Furfaro (3251_CR25) 2021; 67 3251_CR34 3251_CR33 3251_CR32 RK Sahu (3251_CR20) 2021; 24 G Huang (3251_CR29) 2015; 61 3251_CR1 A Prügel-Bennett (3251_CR39) 2010; 14 P-C Chang (3251_CR16) 2012; 23 3251_CR23 K Hamiche (3251_CR2) 2018; 51 G-B Huang (3251_CR3) 2006; 70 B Li (3251_CR44) 2013; 22 B Alkan (3251_CR46) 2018; 12 Y Bengio (3251_CR35) 1994; 5 3251_CR19 3251_CR18 3251_CR17 3251_CR13 3251_CR11 ZM Yaseen (3251_CR21) 2016; 542 T Tanizaki (3251_CR15) 2019; 79 G Merkuryeva (3251_CR12) 2019; 149 F Han (3251_CR42) 2013; 116 ZM Elgamal (3251_CR50) 2020; 8 AA Heidari (3251_CR30) 2019; 97 G-B Huang (3251_CR5) 2006; 17 Y Miche (3251_CR26) 2009; 21 |
References_xml | – reference: Islek I, Ögüdücü SG (2017) A decision support system for demand forecasting based on classifier ensemble. In: FedCSIS (Communication Papers), pp 35–41 – reference: YaseenZMJaafarODeoRCKisiOAdamowskiJQuiltyJEl-ShafieAStream-flow forecasting using extreme learning machines: a case study in a semi-arid region in iraqJournal of Hydrology201654260361410.1016/j.jhydrol.2016.09.035 – reference: BengioYSimardPFrasconiPLearning long-term dependencies with gradient descent is difficultIEEE Transactions on Neural Networks19945215716610.1109/72.279181 – reference: Wilson D, Martinez T (2001) The need for small learning rates on large problems. In: IJCNN’01. International joint conference on neural networks. proceedings (Cat. No.01CH37222). vol 1, pp 115 – 119 – reference: Lawrence S, Giles CL (2000) Overfitting and neural networks: conjugate gradient and backpropagation. In: Proceedings of the IEEE-INNS-ENNS international joint conference on neural networks. IJCNN 2000. neural computing: new challenges and perspectives for the new millennium. vol 1, IEEE, pp 114–119 – reference: Christopher M (2016) Logistics & supply chain management. Pearson UK, London – reference: WanCXuZPinsonPDongZYWongKPProbabilistic forecasting of wind power generation using extreme learning machineIEEE Transactions on Power Systems20132931033104410.1109/TPWRS.2013.2287871 – reference: Zhang Y, Liu R, Wang X, Chen H, Li C (2020) Boosted binary harris hawks optimizer and feature selection. Eng Comput – reference: Fu R, Zhang Z, Li L (2016) Using lstm and gru neural network methods for traffic flow prediction. In: 2016 31st youth academic annual conference of chinese association of automation (YAC). IEEE, pp 324–328 – reference: MicheYSorjamaaABasPSimulaOJuttenCLendasseAOp-elm: optimally pruned extreme learning machineIEEE Transactions on Neural Networks200921115816210.1109/TNN.2009.2036259 – reference: Ribeiro GH, Neto PSDM, Cavalcanti GD, Tsang R (2011) Lag selection for time series forecasting using particle swarm optimization. In: The 2011 International joint conference on neural networks. IEEE, pp 2437–2444 – reference: YıldızARYıldızBSSaitSMBureeratSPholdeeNA new hybrid harris hawks-nelder-mead optimization algorithm for solving design and manufacturing problemsMaterials Testing201961873574310.3139/120.111378 – reference: HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: Algorithm and applicationsFuture Generation Computer Systems20199784987210.1016/j.future.2019.02.028 – reference: Joy TT, Rana S, Gupta S, Venkatesh S (2016) Hyperparameter tuning for big data using bayesian optimisation. In: 2016 23rd International conference on pattern recognition (ICPR). IEEE, pp 2574–2579 – reference: ElgamalZMYasinNBMTubishatMAlswaittiMMirjaliliSAn improved harris hawks optimization algorithm with simulated annealing for feature selection in the medical fieldIEEE Access2020818663818665210.1109/ACCESS.2020.3029728 – reference: AnggraeniWVinartiRAKurniawatiYDPerformance comparisons between arima and arimax method in moslem kids clothes demand forecasting: Case studyProcedia Computer Science20157263063710.1016/j.procs.2015.12.172 – reference: HuangGHuangG-BSongSYouKTrends in extreme learning machines: A reviewNeural Networks201561324810.1016/j.neunet.2014.10.001 – reference: Prügel-BennettABenefits of a population: Five mechanisms that advantage population-based algorithmsIEEE Transactions on Evolutionary Computation201014450051710.1109/TEVC.2009.2039139 – reference: CaoJLinZHuangG-BLiuNVoting based extreme learning machineInformation Sciences201218516677285287810.1016/j.ins.2011.09.015 – reference: GabbottMHoggGConsumer behaviour and services: a reviewJournal of Marketing Management199410431132410.1080/0267257X.1994.9964277 – reference: Teo TT, Logenthiran T, Woo WL (2015) Forecasting of photovoltaic power using extreme learning machine. In: 2015 IEEE innovative smart grid technologies-asia (ISGT ASIA). IEEE, pp 1–6 – reference: CaoZXiaJZhangMJinJDengLWangXQuJOptimization of gear blank preforms based on a new r-gplvm model utilizing ga-elmKnowledge-Based Systems201583668010.1016/j.knosys.2015.03.010 – reference: HanFYaoH-FLingQ-HAn improved evolutionary extreme learning machine based on particle swarm optimizationNeurocomputing2013116879310.1016/j.neucom.2011.12.062 – reference: AlkanBBullockSGalvinKIdentifying optimal granularity level of modular assembly supply chains based on complexity-modularity trade-offIEEE Access20219579075792110.1109/ACCESS.2021.3072955 – reference: TanizakiTHoshinoTShimmuraTTakenakaTDemand forecasting in restaurants using machine learning and statistical analysisProcedia CIRP20197967968310.1016/j.procir.2019.02.042 – reference: Abd ElazizMHeidariAAFujitaHMoayediHA competitive chain-based harris hawks optimizer for global optimization and multi-level image thresholding problemsApplied Soft Computing20209510.1016/j.asoc.2020.106347 – reference: EshtayMFarisHObeidNMetaheuristic-based extreme learning machines: a review of design formulations and applicationsInternational Journal of Machine Learning and Cybernetics20191061543156110.1007/s13042-018-0833-6 – reference: HuangG-BZhouHDingXZhangRExtreme learning machine for regression and multiclass classificationIEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)201142251352910.1109/TSMCB.2011.2168604 – reference: FurfaroRBaroccoRLinaresRTopputoFReddyVSimoJLe CorreLModeling irregular small bodies gravity field via extreme learning machines and bayesian optimizationAdvances in Space Research202167161763810.1016/j.asr.2020.06.021 – reference: SahuRKShawBNayakJRShort/medium term solar power forecasting of chhattisgarh state of india using modified tlbo optimized elmEngineering Science and Technology, an International Journal20212451180120010.1016/j.jestch.2021.02.016 – reference: HuangG-BChenLSiewCKUniversal approximation using incremental constructive feedforward networks with random hidden nodesIEEE Trans. Neural Networks200617487989210.1109/TNN.2006.875977 – reference: ZhangZDingSJiaWA hybrid optimization algorithm based on cuckoo search and differential evolution for solving constrained engineering problemsEngineering Applications of Artificial Intelligence20198525426810.1016/j.engappai.2019.06.017 – reference: ChangP-CLinJ-JDzanW-YForecasting of manufacturing cost in mobile phone products by case-based reasoning and artificial neural network modelsJournal of Intelligent Manufacturing201223351753110.1007/s10845-010-0390-7 – reference: Kurtuluş E, Yıldız AR AR, Sait SM, Bureerat S (2020) A novel hybrid harris hawks-simulated annealing algorithm and rbf-based metamodel for design optimization of highway guardrails. Materials Testing 62(3):251–260 – reference: Fattah J, Ezzine L, Aman Z, El Moussami H, Lachhab A (2018) Forecasting of demand using arima model. International Journal of Engineering Business Management 10:1847979018808673 – reference: HuangG-BZhuQ-YSiewC-KExtreme learning machine: theory and applicationsNeurocomputing2006701–348950110.1016/j.neucom.2005.12.126 – reference: LiBLiYRongXThe extreme learning machine learning algorithm with tunable activation functionNeural Computing and Applications2013223531539 – reference: AlkanBBullockSAssessing operational complexity of manufacturing systems based on algorithmic complexity of key performance indicator time-seriesJournal of the Operational Research Society2021722241225510.1080/01605682.2020.1779622 – reference: Silva DN, Pacifico LD, Ludermir TB (2011) An evolutionary extreme learning machine based on group search optimization. In: 2011 IEEE congress of evolutionary computation (CEC). IEEE, pp 574–580 – reference: HamicheKAbouaïssaHGoncalvesGHsuTA robust and easy approach for demand forecasting in supply chainsIFAC-PapersOnLine201851111732173710.1016/j.ifacol.2018.08.206 – reference: Huang G-B, Zhu Q-Y, Siew C-K (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: 2004 IEEE international joint conference on neural networks (IEEE Cat. No. 04CH37541). vol 2, Ieee, pp 985–990 – reference: Lu D (2011) Fundamentals of supply chain management. Bookboon, London – reference: Rammurthy D, Mahesh P (2020) Whale harris hawks optimization based deep learning classifier for brain tumor detection using mri images. Journal of King Saud University - Computer and Information Sciences – reference: Kumar S, Hussain L, Banarjee S, Reza M (2018) Energy load forecasting using deep learning approach-lstm and gru in spark cluster. In: 2018 Fifth international conference on emerging applications of information technology (EAIT). IEEE, pp 1–4 – reference: LiangN-YHuangG-BSaratchandranPSundararajanNA fast and accurate online sequential learning algorithm for feedforward networksIEEE Transactions on Neural Networks20061761411142310.1109/TNN.2006.880583 – reference: Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv:1406.1078 – reference: AlkanBVeraDAhmadMAhmadBHarrisonRComplexity in manufacturing systems and its measures: A literature reviewEuropean J of Industrial Engineering20181211615010.1504/EJIE.2018.089883 – reference: Hosking JRM (2011) Demand forecasting problems in production planning. International Series in Operations Research & Management Science. In: Kempf KG, Keskinocak P, Uzsoy R (eds) Planning Production and Inventories in the Extended Enterprise, chapter 0, pp 103–117, Springer – reference: Archer B et al (1987) Demand forecasting and estimation. Demand Forecasting and Estimation:77–85 – reference: MerkuryevaGValbergaASmirnovADemand forecasting in pharmaceutical supply chains: A case studyProcedia Computer Science201914931010.1016/j.procs.2019.01.100 – ident: 3251_CR40 doi: 10.1109/IJCNN.2011.6033535 – ident: 3251_CR33 – volume: 51 start-page: 1732 issue: 11 year: 2018 ident: 3251_CR2 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.08.206 – ident: 3251_CR49 doi: 10.3139/120.111478 – volume: 70 start-page: 489 issue: 1–3 year: 2006 ident: 3251_CR3 publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 12 start-page: 116 year: 2018 ident: 3251_CR46 publication-title: European J of Industrial Engineering doi: 10.1504/EJIE.2018.089883 – volume: 10 start-page: 311 issue: 4 year: 1994 ident: 3251_CR10 publication-title: Journal of Marketing Management doi: 10.1080/0267257X.1994.9964277 – volume: 17 start-page: 1411 issue: 6 year: 2006 ident: 3251_CR27 publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2006.880583 – volume: 149 start-page: 3 year: 2019 ident: 3251_CR12 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2019.01.100 – ident: 3251_CR37 doi: 10.1109/YAC.2016.7804912 – volume: 42 start-page: 513 issue: 2 year: 2011 ident: 3251_CR4 publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) doi: 10.1109/TSMCB.2011.2168604 – ident: 3251_CR43 doi: 10.1109/CEC.2011.5949670 – volume: 95 year: 2020 ident: 3251_CR48 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106347 – ident: 3251_CR34 doi: 10.1109/ICPR.2016.7900023 – volume: 22 start-page: 531 issue: 3 year: 2013 ident: 3251_CR44 publication-title: Neural Computing and Applications doi: 10.1007/s00521-012-0858-9 – ident: 3251_CR11 doi: 10.15439/2017F224 – volume: 9 start-page: 57907 year: 2021 ident: 3251_CR8 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3072955 – ident: 3251_CR9 – volume: 14 start-page: 500 issue: 4 year: 2010 ident: 3251_CR39 publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2009.2039139 – volume: 67 start-page: 617 issue: 1 year: 2021 ident: 3251_CR25 publication-title: Advances in Space Research doi: 10.1016/j.asr.2020.06.021 – volume: 542 start-page: 603 year: 2016 ident: 3251_CR21 publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2016.09.035 – volume: 83 start-page: 66 year: 2015 ident: 3251_CR24 publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2015.03.010 – ident: 3251_CR32 doi: 10.1007/s00366-020-01028-5 – volume: 79 start-page: 679 year: 2019 ident: 3251_CR15 publication-title: Procedia CIRP doi: 10.1016/j.procir.2019.02.042 – volume: 23 start-page: 517 issue: 3 year: 2012 ident: 3251_CR16 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-010-0390-7 – ident: 3251_CR18 – volume: 97 start-page: 849 year: 2019 ident: 3251_CR30 publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2019.02.028 – ident: 3251_CR23 doi: 10.1109/ISGT-Asia.2015.7387113 – volume: 116 start-page: 87 year: 2013 ident: 3251_CR42 publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.12.062 – volume: 185 start-page: 66 issue: 1 year: 2012 ident: 3251_CR28 publication-title: Information Sciences doi: 10.1016/j.ins.2011.09.015 – ident: 3251_CR38 doi: 10.3115/v1/D14-1179 – ident: 3251_CR17 doi: 10.1109/IJCNN.2000.857823 – ident: 3251_CR45 doi: 10.1007/978-1-4419-6485-4_6 – volume: 17 start-page: 879 issue: 4 year: 2006 ident: 3251_CR5 publication-title: IEEE Trans. Neural Networks doi: 10.1109/TNN.2006.875977 – volume: 61 start-page: 735 issue: 8 year: 2019 ident: 3251_CR31 publication-title: Materials Testing doi: 10.3139/120.111378 – volume: 24 start-page: 1180 issue: 5 year: 2021 ident: 3251_CR20 publication-title: Engineering Science and Technology, an International Journal doi: 10.1016/j.jestch.2021.02.016 – ident: 3251_CR13 doi: 10.1177/1847979018808673 – ident: 3251_CR7 – volume: 85 start-page: 254 year: 2019 ident: 3251_CR6 publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2019.06.017 – volume: 21 start-page: 158 issue: 1 year: 2009 ident: 3251_CR26 publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2009.2036259 – ident: 3251_CR19 – volume: 72 start-page: 630 year: 2015 ident: 3251_CR14 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2015.12.172 – ident: 3251_CR1 doi: 10.1201/9781482275605-13 – volume: 8 start-page: 186638 year: 2020 ident: 3251_CR50 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3029728 – volume: 10 start-page: 1543 issue: 6 year: 2019 ident: 3251_CR41 publication-title: International Journal of Machine Learning and Cybernetics doi: 10.1007/s13042-018-0833-6 – volume: 72 start-page: 2241 year: 2021 ident: 3251_CR47 publication-title: Journal of the Operational Research Society doi: 10.1080/01605682.2020.1779622 – volume: 5 start-page: 157 issue: 2 year: 1994 ident: 3251_CR35 publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.279181 – volume: 29 start-page: 1033 issue: 3 year: 2013 ident: 3251_CR22 publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2013.2287871 – ident: 3251_CR36 doi: 10.1109/EAIT.2018.8470406 – volume: 61 start-page: 32 year: 2015 ident: 3251_CR29 publication-title: Neural Networks doi: 10.1016/j.neunet.2014.10.001 |
SSID | ssj0003301 |
Score | 2.4102778 |
Snippet | Accurate and real-time product demand forecasting is the need of the hour in the world of supply chain management. Predicting future product demand from... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 11489 |
SubjectTerms | Accuracy Algorithms Artificial Intelligence Artificial neural networks Autoregressive models Computer Science Demand Economic forecasting Forecasting Machine learning Machines Manufacturing Mechanical Engineering Neural networks Nodes Optimization Performance measurement Processes Real time Recurrent neural networks Root-mean-square errors Sales Statistical analysis Supply chains Tuning |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L178FqdTcvCmhTbNV72N4RiCnhzsVtIm3cC1G9tE_C_8k33J0k2HCp4KzUugfcn7yHvv9xC6FgnJtQTpR6ghAZWaBqCGVWDRxrg2oSGO049PvNenDwM28DA5thZmI35vS9yoTeoBlymMQRcHYhvtsCgWtk1Dh3dWUhf8ctcdD_yJgPNk4Atkfl7juxJaW5YbwVCnY7oHaM8bh7i95OYh2jLVEdqvGy9gfw6P0Ucbj95tqRUG0Wov-LBv_jDEpUuONNh1uMH2lhWP1AxOMjzeXuZ4AiKi9Ck8WI2HkxmQlHdYVfWQ0X4ymLN4ugSExdqUqtL2lcnV3KZK46-h7xPU794_d3qBb60Q5DGPF4FmTFsU0TCJIx0axRTodamoEkJRWhgh8pCDccYycI8UyUKqKJCBD6uIzriJT1GjmlTmDOEk0zqWhmaRlNREYcYYU4UsVM4MGGdFE0X1v05zjztu21-M0zVisuVPCvxJHX9S0UQ3qznTJerGn9StmoWpP4HzlHAJpqaAT2yi25qt6-HfVzv_H_kF2iVuZ9mcwBZqLGav5hLslEV25TboJ9oY3w4 priority: 102 providerName: Springer Nature |
Title | A hybrid extreme learning machine model with harris hawks optimisation algorithm: an optimised model for product demand forecasting applications |
URI | https://link.springer.com/article/10.1007/s10489-022-03251-7 https://www.proquest.com/docview/2681637840 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB5Be-HCG1GWrXzgxlqbOrbjckFt1YdAVCu0lcopcmK3laBpoV0h_gU_ecepQwEJLrEUP6Rk7Hl7PoCzqM5So5D7MW4Z5cpwimJYU1dtTBobWJZT-qYvewN-NRRD73Bb-LTKgifmjNrMUucj_82kQtUhQnvkcv5IHWqUi656CI1NKCMLVqoE5Wa7_-f2jRejtZ5j5qGVQaWsD_21GX95jrt0ITTGghClPI0-iqa1vvkpRJpLns4ubHuVkTRWNN6DDZvtw04Bx0D86TyA1waZvLgLWAQZrnP7EQ8JMSbTPGXSkhz3hjjfK5noJzzf2DzfL8gMGcfUJ_YQ_TDGD19OphdEZ0WXNX4yKrlkvioTS4yd6sy4VzbVC5dATd4HxA9h0Gn_bfWoB1ygaSjDJTVCGFdbNKiHNRNYLTRKe6W5jiLN-chGURpIVNlEgkaTZknANcdhaNlqZhJpwyMoZbPMHgOpJ8aEyvKkphS3tSARQuiRGulUWFTZRhWoFf86Tn01cgeK8RCv6yg7-sRInzinTxxV4PxtznxVi-Pb0acFCWN_LhfxehdV4FdB1nX316udfL_aD9hi-U5ymYGnUFo-_bM_UVtZJlXYVJ1uFcqNTrPZd2337rpd9RsVe1uyhc8Ba_wHa5PtcQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NThsxEB4BPZQLtJSqoZTOgZ7A6sZr724qVRWiTUP5OYGU2-JdTxKpZJOSIMRb9El4RsaOl1CkcuO00q7tg2f2m2_s-QHYTluytBmjn1QkhcqsEmyGjXDVxhJLEUkv6eOTpHOmfnV1dwFu61wYF1ZZY6IHajsq3Rn5Z5lkTB1S9ke-jf8I1zXK3a7WLTRmanFIN9fssk2-Hnxn-X6Ssv3jdL8jQlcBUcZJPBVWa-sKaLIr37QRGW3YpGVGmTQ1SvUoTcsoYV6iC_YMjCwiZRQPY_fNSFskFPO6i_BCxWzJXWZ6--c98sexb7ccsU8jkqTVDUk6IVVPueAkdv2imDmFSP81hHN2--hC1tu59itYCQQV92Ya9RoWqFqD1br5AwYseAN_93Bw49K9kOHdHTJiaEDRx6EP0CT0XXbQnfTiwFwymvDj-vcERwxTwxBGhOaiz9s8HQy_oKnqT2TDZKbUOJ4VpUVLQ1NZ94pKM3Hh2vjw-n0dzp5FEG9hqRpV9A6wVVgbZ6SKZpYpakaF1tr0sp4pNTFB7DWgWe91Xoba564Fx0U-r9rs5JOzfHIvnzxtwM79nPGs8seTozdrEeYBBSb5XGcbsFuLdf75_6ttPL3aR3jZOT0-yo8OTg7fw7L0WuViEjdhaXp5RR-YJ02LLa-cCOfP_TfcAQB-Ihg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VVEJcoBQQoS3MoT2B1Y3XXm-QECq0UX-jClEpt8W7nm0kmk3aBFV9C56Hp2O88TaARG89rbT-OXjGM9_Y4_kANk1XFi5l6ycVSaFSpwS7YSt8tbHEUUSylvRJP9k_U4cDPViCX81bGJ9W2djE2lC7ceHPyLdlkjJ0MByPbJchLeJ0t_dxcik8g5S_aW3oNOYqckQ31xy-TT8c7LKst6Ts7X39vC8Cw4Ao4iSeCae188U0OazvuIistuzeUqusMVapkowpooQxis45SrAyj5RV3I1DOStdnlDM8z6AZeOjohYsf9rrn3659QNxXJMvRxzhiCTpDsKTnfBwT_lUJQ4Eo5gRhjB_u8UF1v3nerb2er0VeBzgKu7M9espLFG1Ck8aKggMluEZ_NzB4Y1__IW8Yv7IEQMdxTmO6nRNwppzB_25Lw7tFdsW_lx_n-KYjdYoJBWhvTjnhZ4NR-_RVk0TuTCYATZO5iVq0dHIVs7_osJOffI2_nkZ_xzO7kUUL6BVjSt6CdjNnYtTUnknTRV1olxrbcu0tIUmhotlGzrNWmdFqITuCTkuskUNZy-fjOWT1fLJTBve3o6ZzOuA3Nl7vRFhFmzCNFtocBveNWJdNP9_tld3z_YGHvJOyI4P-kdr8EjWSuUTFNehNbv6QRsMmmb566CdCN_ue0P8BmUIJ6o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+extreme+learning+machine+model+with+harris+hawks+optimisation+algorithm%3A+an+optimised+model+for+product+demand+forecasting+applications&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Chaudhuri%2C+Koushiki+Dasgupta&rft.au=Alkan%2C+Bugra&rft.date=2022-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=52&rft.issue=10&rft.spage=11489&rft.epage=11505&rft_id=info:doi/10.1007%2Fs10489-022-03251-7&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |