Autonomous flight cycles and extreme landings of airliners beyond the current limits and capabilities using artificial neural networks

We describe the Intelligent Autopilot System (IAS), a fully autonomous autopilot capable of piloting large jets such as airliners by learning from experienced human pilots using Artificial Neural Networks. The IAS is capable of autonomously executing the required piloting tasks and handling the diff...

Full description

Saved in:
Bibliographic Details
Published inApplied intelligence (Dordrecht, Netherlands) Vol. 51; no. 9; pp. 6349 - 6375
Main Authors Baomar, Haitham, Bentley, Peter J.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We describe the Intelligent Autopilot System (IAS), a fully autonomous autopilot capable of piloting large jets such as airliners by learning from experienced human pilots using Artificial Neural Networks. The IAS is capable of autonomously executing the required piloting tasks and handling the different flight phases to fly an aircraft from one airport to another including takeoff, climb, cruise, navigate, descent, approach, and land in simulation. In addition, the IAS is capable of autonomously landing large jets in the presence of extreme weather conditions including severe crosswind, gust, wind shear, and turbulence. The IAS is a potential solution to the limitations and robustness problems of modern autopilots such as the inability to execute complete flights, the inability to handle extreme weather conditions especially during approach and landing where the aircraft’s speed is relatively low, and the uncertainty factor is high, and the pilots shortage problem compared to the increasing aircraft demand. In this paper, we present the work done by collaborating with the aviation industry to provide training data for the IAS to learn from. The training data is used by Artificial Neural Networks to generate control models automatically. The control models imitate the skills of the human pilot when executing all the piloting tasks required to pilot an aircraft between two airports. In addition, we introduce new ANNs trained to control the aircraft’s elevators, elevators’ trim, throttle, flaps, and new ailerons and rudder ANNs to counter the effects of extreme weather conditions and land safely. Experiments show that small datasets containing single demonstrations are sufficient to train the IAS and achieve excellent performance by using clearly separable and traceable neural network modules which eliminate the black-box problem of large Artificial Intelligence methods such as Deep Learning. In addition, experiments show that the IAS can handle landing in extreme weather conditions beyond the capabilities of modern autopilots and even experienced human pilots. The proposed IAS is a novel approach towards achieving full control autonomy of large jets using ANN models that match the skills and abilities of experienced human pilots and beyond.
AbstractList We describe the Intelligent Autopilot System (IAS), a fully autonomous autopilot capable of piloting large jets such as airliners by learning from experienced human pilots using Artificial Neural Networks. The IAS is capable of autonomously executing the required piloting tasks and handling the different flight phases to fly an aircraft from one airport to another including takeoff, climb, cruise, navigate, descent, approach, and land in simulation. In addition, the IAS is capable of autonomously landing large jets in the presence of extreme weather conditions including severe crosswind, gust, wind shear, and turbulence. The IAS is a potential solution to the limitations and robustness problems of modern autopilots such as the inability to execute complete flights, the inability to handle extreme weather conditions especially during approach and landing where the aircraft’s speed is relatively low, and the uncertainty factor is high, and the pilots shortage problem compared to the increasing aircraft demand. In this paper, we present the work done by collaborating with the aviation industry to provide training data for the IAS to learn from. The training data is used by Artificial Neural Networks to generate control models automatically. The control models imitate the skills of the human pilot when executing all the piloting tasks required to pilot an aircraft between two airports. In addition, we introduce new ANNs trained to control the aircraft’s elevators, elevators’ trim, throttle, flaps, and new ailerons and rudder ANNs to counter the effects of extreme weather conditions and land safely. Experiments show that small datasets containing single demonstrations are sufficient to train the IAS and achieve excellent performance by using clearly separable and traceable neural network modules which eliminate the black-box problem of large Artificial Intelligence methods such as Deep Learning. In addition, experiments show that the IAS can handle landing in extreme weather conditions beyond the capabilities of modern autopilots and even experienced human pilots. The proposed IAS is a novel approach towards achieving full control autonomy of large jets using ANN models that match the skills and abilities of experienced human pilots and beyond.
Abstract We describe the Intelligent Autopilot System (IAS), a fully autonomous autopilot capable of piloting large jets such as airliners by learning from experienced human pilots using Artificial Neural Networks. The IAS is capable of autonomously executing the required piloting tasks and handling the different flight phases to fly an aircraft from one airport to another including takeoff, climb, cruise, navigate, descent, approach, and land in simulation. In addition, the IAS is capable of autonomously landing large jets in the presence of extreme weather conditions including severe crosswind, gust, wind shear, and turbulence. The IAS is a potential solution to the limitations and robustness problems of modern autopilots such as the inability to execute complete flights, the inability to handle extreme weather conditions especially during approach and landing where the aircraft’s speed is relatively low, and the uncertainty factor is high, and the pilots shortage problem compared to the increasing aircraft demand. In this paper, we present the work done by collaborating with the aviation industry to provide training data for the IAS to learn from. The training data is used by Artificial Neural Networks to generate control models automatically. The control models imitate the skills of the human pilot when executing all the piloting tasks required to pilot an aircraft between two airports. In addition, we introduce new ANNs trained to control the aircraft’s elevators, elevators’ trim, throttle, flaps, and new ailerons and rudder ANNs to counter the effects of extreme weather conditions and land safely. Experiments show that small datasets containing single demonstrations are sufficient to train the IAS and achieve excellent performance by using clearly separable and traceable neural network modules which eliminate the black-box problem of large Artificial Intelligence methods such as Deep Learning. In addition, experiments show that the IAS can handle landing in extreme weather conditions beyond the capabilities of modern autopilots and even experienced human pilots. The proposed IAS is a novel approach towards achieving full control autonomy of large jets using ANN models that match the skills and abilities of experienced human pilots and beyond.
Author Baomar, Haitham
Bentley, Peter J.
Author_xml – sequence: 1
  givenname: Haitham
  orcidid: 0000-0003-0703-365X
  surname: Baomar
  fullname: Baomar, Haitham
  email: h.baomar@cs.ucl.ac.uk
  organization: Department of Computer Science, University College London
– sequence: 2
  givenname: Peter J.
  surname: Bentley
  fullname: Bentley, Peter J.
  organization: Department of Computer Science, University College London
BookMark eNp9kMtKAzEUhoNUsK2-gKuA69HcJtNZluINCm66cBcymaRNnSY1yaDzAj63sSO4c3E4HPi-_8A_AxPnnQbgGqNbjFB1FzFii7pABOchiBTDGZjisqJFxepqAqaoJqzgvH69ALMY9wghShGegq9ln7zzB99HaDq73SWoBtXpCKVrof5MQR807PJh3TZCb6C0obNOhwgbPfgMpZ2Gqg9BuwQ7e7BpdJU8ysZ2Ntkc1sesQxmSNVZZ2UGn-3Ba6cOHt3gJzo3sor763XOwebjfrJ6K9cvj82q5LhTlNBUtbhe8aWi7YPUCNUQ2LVPGGJZPpitOMJeY16WhZdsqrQiqqpqVBNWVZETSObgZY4_Bv_c6JrH3fXD5oyAlJ5RnlGaKjJQKPsagjTgGe5BhEBiJn7rFWLfIdYtT3WLIEh2lmGG31eEv-h_rG4vQiIs
CitedBy_id crossref_primary_10_3390_atmos14020395
crossref_primary_10_1590_jatm_v15_1312
crossref_primary_10_1016_j_jocs_2024_102343
Cites_doi 10.1109/ICUAS.2016.7502578
10.1155/2018/3823201
10.1177/0954410018764944
10.1109/TCYB.2019.2921057
10.23919/ChiCC.2017.8027538
10.1109/SSCI.2017.8280916
10.1109/ICMIC.2017.8321624
10.1109/CCTA.2017.8062608
10.1016/j.conengprac.2018.04.010
10.1109/ACCESS.2019.2893062
10.1007/978-3-319-40663-3_42
10.1109/ICEENG45378.2020.9171702
10.1080/0305215X.2018.1435646
10.1007/978-3-319-55795-3_13
10.2523/IPTC-20111-MS
10.2514/6.2016-0582
10.1109/SEFM.2010.13
10.1109/ICIICII.2015.119
10.1007/s13272-018-0315-2
10.1108/AEAT-11-2017-0250
10.1109/RED-UAS.2017.8101661
10.1016/j.ifacol.2016.09.030
10.1109/CoDIT.2019.8820660
10.1109/ICUAS48674.2020.9213850
10.1145/1015330.1015430
10.1109/MILTECHS.2015.7153726
10.14429/dsj.64.4933
10.1007/978-3-030-20257-6_36
10.1007/BF01068419
10.1016/j.cja.2016.12.019
10.1109/ICISC.2018.8399001
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-021-02202-y
DatabaseName Springer Open Access
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Access via ABI/INFORM (ProQuest)
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
ProQuest Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Collection
Computing Database
ProQuest Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
CrossRef
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Open Access
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 6375
ExternalDocumentID 10_1007_s10489_021_02202_y
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAOBN
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWWR
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADGRI
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYWE
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z87
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z91
Z92
ZMTXR
ZY4
~A9
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
PQBZA
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c363t-d1d86bb3d84980b2abd4cfff44984e76216a1695f35ddcec20779452097a42a3
IEDL.DBID AGYKE
ISSN 0924-669X
IngestDate Thu Oct 10 18:03:15 EDT 2024
Thu Sep 12 16:55:12 EDT 2024
Sat Dec 16 12:09:06 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Autonomous control
Intelligent autopilot system
Learning from demonstration
Neural networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-d1d86bb3d84980b2abd4cfff44984e76216a1695f35ddcec20779452097a42a3
ORCID 0000-0003-0703-365X
OpenAccessLink https://proxy.k.utb.cz/login?url=http://link.springer.com/10.1007/s10489-021-02202-y
PQID 2562365203
PQPubID 326365
PageCount 27
ParticipantIDs proquest_journals_2562365203
crossref_primary_10_1007_s10489_021_02202_y
springer_journals_10_1007_s10489_021_02202_y
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References LunguRLunguMAutomatic landing system using neural networks and radio-technical subsystemsChin J Aeronaut201730139941110.1016/j.cja.2016.12.019
Evdokimenkov V., Kim R., Krasilshchikov M., Sebrjakov G. (2016) Individually adapted neural network for pilot’s final approach actions modeling. In: Cheng L., Liu Q., Ronzhin A. (eds) Advances in neural networks – ISNN 2016. ISNN 2016
E. L’hotellier and J. Salzmann (2017) Top of descent calculation. [online] the international virtual aviation organisation, IVAO. Available at: https://www.ivao.aero/training/documentation/books/SPP_APC_Top_of_descent.pdf
H. Baomar and P. J. Bentley (2017) Autonomous landing and go-around of airliners under severe weather conditions using Artificial Neural Networks, 2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS), Linköping, Sweden, 2017, pp. 162–167. https://doi.org/10.1109/RED-UAS.2017.8101661.
DongJZhouDShaoCWuSNonlinear system controllability analysis and autopilot design for bank-to-turn aircraft with two flapsProc Inst Mech Eng Part G: J Aerosp Eng201823351772178310.1177/0954410018764944
N. C. Mumm and F. Holzapfel (2017) Vertical speed command performance improvement of a load factor command based autopilot for automatic landing by shaping the desired command during flare. 2017 IEEE conference on control technology and applications (CCTA). Mauna Lani, HI, pp. 1117–1122
F. Wei, A. Bower, L. Gates, A. Rose, and D. T. Vasko (2016) The full-scale helicopter flight simulator design and fabrication at CCSU. 57th AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference
H. Baomar and P. J. Bentley (2016) An intelligent autopilot system that learns piloting skills from human pilots by imitation. 2016 international conference on unmanned aircraft systems (ICUAS). Arlington, VA, USA, pp. 1023–1031
E. Alvis, D. Bhatt, B. Hall, K. Driscoll, A. Murugesan Aerospace Advanced Technology Labs, Honeywell International, Inc (2018) Final technical report for NASA project. Assurance reasoning for increasingly autonomous systems (ARIAS). [online] Available at: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20180006312.pdf
H. Baomar and P. J. Bentley (2017) Autonomous navigation and landing of large jets using artificial neural networks and learning by imitation. 2017 IEEE symposium series on computational intelligence (SSCI). Honolulu, HI, pp. 1–10
MoteaZWahidHZahidJLwinSHassanAA comparative analysis of intelligent and PID controllers for an aircraft pitch control systemAppl Model Simul (AMS)2018211725
BianQNenerBWangXControl parameter tuning for aircraft crosswind landing via multi-solution particle swarm optimizationEng Optim2018501119141925385117210.1080/0305215X.2018.1435646
A. Elbatal, M. M. Elkhatib and A. M. Youssef (2020) Intelligent autopilot design based on adaptive neuro -fuzzy technique and genetic algorithm. 2020 12th international conference on electrical engineering (ICEENG). Cairo, Egypt, pp. 377–382
J. McCaffrey (2014) Understanding neural networks using .NET, [Presentation]. The microsoft 2014 build conference. San Francisco, USA
Abbeel, P., & Ng, A. Y. (2004) Apprenticeship learning via inverse reinforcement learning. In: Proc of the twenty-first international conference on machine learning (p. 1)
R. Khan-Persaud (2013) ECCAIRS aviation 1.3.0.12 (VL for ATTrID 391 – event phases). ICAO Safety, [online]. The International Civil Aviation Organization (ICAO). Available: https://www.icao.int/safety/airnavigation/AIG/Documents
KaviyarasuAKumarSSimulation of flapping-wing unmanned aerial vehicle using X-plane and Matlab/SimulinkDef Sci J201464432733110.14429/dsj.64.4933
A. Altun and M. Önder Efe (2019) Aircraft control with neural networks. 2019 6th international conference on control, decision and information technologies (CoDIT). Paris, France, pp. 429–433
M. Jirgl, J. Boril, and R. Jalovecky (2015) The identification possibilities of the measured parameters of an aircraft model and pilot behavior model on the flight simulator, pp. 1–5. https://doi.org/10.1109/MILTECHS.2015.7153726.
H. L. Jeevan, H. K. Narahari and A. T. Sriram (2018) Development of pitch control subsystem of autopilot for a fixed wing unmanned aerial vehicle. 2018 2nd international conference on inventive systems and control (ICISC). Coimbatore, pp. 1233–1238
StukenborgPLucknerREvaluating the influence of continuous flap settings on the take-off performance of an airliner using flight simulationCEAS Aeronaut J20189467168110.1007/s13272-018-0315-2
Nikolai Botkin, Varvara Turova (2015) Aircraft runway acceleration in the presence of severe wind gusts. 27th IFIP conference on system modeling and optimization (CSMO). Sophia Antipolis, France, pp. 147–158
TheisJOssmannDThieleckeFPfiferHRobust autopilot design for landing a large civil aircraft in crosswindControl Eng Pract201876546410.1016/j.conengprac.2018.04.010
MuliadiJKusumoputroBNeural network control system of UAV altitude dynamics and its comparison with the PID control systemJ Adv Transp2018201811810.1155/2018/3823201
SchuirmannDJA comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailabilityJ Pharmacokinet Biopharm198715665768010.1007/BF01068419
de BruinAJonesTAccurate autonomous landing of a fixed-wing unmanned aircraft under crosswind conditionsIFAC-PapersOnLine2016491717017510.1016/j.ifacol.2016.09.030
ZhangLZhaiZHeLNiuWInfrared-based autonomous navigation for civil aircraft precision approach and landingIEEE Access20197286842869510.1109/ACCESS.2019.2893062
OszustMKapuscinskiTWarcholDWysockiMRogalskiTPieniazekJKopeckiGCiecinskiPRzucidloPA vision-based method for supporting autonomous aircraft landingAircr Eng Aerosp Technol201890697398210.1108/AEAT-11-2017-0250
X. Zhai, K. Liu, W.Nash, & D. Castineira, (2020, January 13) Smart autopilot drone system for surface surveillance and anomaly detection via customizable deep neural network. International Petroleum Technology Conference
Y.S Mandloi, Y. Inada (2019) Machine Learning Approach for Drone Perception and Control. https://doi.org/10.1007/978-3-030-20257-6_36.
J. Qiu, I. S. Delshad, Q. Zhu, M. Nibouche and Y. Yao (2017) A U-model based controller design for non-minimum phase systems: application to Boeing 747 altitude-hold autopilot. 2017 9th international conference on modelling, identification and control (ICMIC). Kunming, pp. 122–127
D. Shukla, S. Keshmiri and N. Beckage (2020) Imitation learning for neural network autopilot in fixed-wing unmanned aerial systems. 2020 international conference on unmanned aircraft systems (ICUAS). Athens, Greece, pp. 1508–1517
H. Baomar and P. J. Bentley (2016) An Intelligent Autopilot System that learns piloting skills from human pilots by imitation, 2016 International Conference on Unmanned Aircraft Systems (ICUAS), Arlington, VA, 2016, pp. 1023–1031. https://doi.org/10.1109/ICUAS.2016.7502578.
HeatonJArtificial intelligence for humans, volume 3: deep learning and neural networks2015St. LouisHeaton Research, Inc.
BaiWZhouQLiTLiHAdaptive reinforcement learning neural network control for uncertain nonlinear system with input saturationIEEE Trans Cybern20205083433344310.1109/TCYB.2019.2921057
D. We, H. Xiong and J. Fu (2015) Aircraft autopilot pitch control based on fuzzy active disturbance rejection control. 2015 international conference on industrial informatics – computing technology, intelligent technology, industrial information integration. Wuhan, pp. 144–147
Beygi, Nima, Beigy, Maani and Siahi, Mehdi. (2015) Design Of Fuzzy Self-Tuning PID Controller For Pitch Control System Of Aircraft Autopilot. [online]. Available at: arXiv.org. Accessed 11 Apr 2017.
ViswanathanRLakshmiPA novel method for controlling the roll angle of aircraft using sliding mode control methodologyJ Inst Eng (India): Ser C2017994369372
K. Winter, I. J. Hayes, and R. Colvin (2010) Integrating requirements: the behavior tree philosophy. 2010 8th IEEE international conference on software engineering and formal methods, Pisa, pp. 41–50
S. U. Ali, R. Samar and M. Z. Shah (2017) UAV lateral path following: nonlinear sliding manifold for limited actuation. 2017 36th Chinese control conference (CCC). Dalian, pp. 1348–1353
2202_CR38
2202_CR39
DJ Schuirmann (2202_CR40) 1987; 15
Z Motea (2202_CR9) 2018; 2
2202_CR30
2202_CR31
2202_CR10
2202_CR32
2202_CR33
2202_CR12
J Dong (2202_CR14) 2018; 233
2202_CR34
L Zhang (2202_CR18) 2019; 7
2202_CR36
2202_CR3
2202_CR26
2202_CR2
2202_CR1
2202_CR28
2202_CR29
R Lungu (2202_CR23) 2017; 30
A Kaviyarasu (2202_CR35) 2014; 64
P Stukenborg (2202_CR13) 2018; 9
A de Bruin (2202_CR17) 2016; 49
Q Bian (2202_CR19) 2018; 50
2202_CR8
2202_CR7
2202_CR6
2202_CR5
2202_CR4
J Heaton (2202_CR37) 2015
M Oszust (2202_CR15) 2018; 90
J Muliadi (2202_CR11) 2018; 2018
J Theis (2202_CR16) 2018; 76
W Bai (2202_CR27) 2020; 50
2202_CR21
2202_CR22
R Viswanathan (2202_CR20) 2017; 99
2202_CR24
2202_CR25
References_xml – ident: 2202_CR2
  doi: 10.1109/ICUAS.2016.7502578
– volume: 2018
  start-page: 1
  year: 2018
  ident: 2202_CR11
  publication-title: J Adv Transp
  doi: 10.1155/2018/3823201
  contributor:
    fullname: J Muliadi
– volume: 233
  start-page: 1772
  issue: 5
  year: 2018
  ident: 2202_CR14
  publication-title: Proc Inst Mech Eng Part G: J Aerosp Eng
  doi: 10.1177/0954410018764944
  contributor:
    fullname: J Dong
– volume: 50
  start-page: 3433
  issue: 8
  year: 2020
  ident: 2202_CR27
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2019.2921057
  contributor:
    fullname: W Bai
– ident: 2202_CR21
  doi: 10.23919/ChiCC.2017.8027538
– ident: 2202_CR5
  doi: 10.1109/SSCI.2017.8280916
– volume: 2
  start-page: 17
  issue: 1
  year: 2018
  ident: 2202_CR9
  publication-title: Appl Model Simul (AMS)
  contributor:
    fullname: Z Motea
– ident: 2202_CR10
  doi: 10.1109/ICMIC.2017.8321624
– ident: 2202_CR12
  doi: 10.1109/CCTA.2017.8062608
– volume: 76
  start-page: 54
  year: 2018
  ident: 2202_CR16
  publication-title: Control Eng Pract
  doi: 10.1016/j.conengprac.2018.04.010
  contributor:
    fullname: J Theis
– volume: 7
  start-page: 28684
  year: 2019
  ident: 2202_CR18
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2893062
  contributor:
    fullname: L Zhang
– ident: 2202_CR24
  doi: 10.1007/978-3-319-40663-3_42
– ident: 2202_CR29
  doi: 10.1109/ICEENG45378.2020.9171702
– ident: 2202_CR36
– volume: 99
  start-page: 369
  issue: 4
  year: 2017
  ident: 2202_CR20
  publication-title: J Inst Eng (India): Ser C
  contributor:
    fullname: R Viswanathan
– ident: 2202_CR1
– volume-title: Artificial intelligence for humans, volume 3: deep learning and neural networks
  year: 2015
  ident: 2202_CR37
  contributor:
    fullname: J Heaton
– volume: 50
  start-page: 1914
  issue: 11
  year: 2018
  ident: 2202_CR19
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2018.1435646
  contributor:
    fullname: Q Bian
– ident: 2202_CR22
  doi: 10.1007/978-3-319-55795-3_13
– ident: 2202_CR7
– ident: 2202_CR30
  doi: 10.2523/IPTC-20111-MS
– ident: 2202_CR33
  doi: 10.2514/6.2016-0582
– ident: 2202_CR38
  doi: 10.1109/SEFM.2010.13
– ident: 2202_CR6
  doi: 10.1109/ICIICII.2015.119
– volume: 9
  start-page: 671
  issue: 4
  year: 2018
  ident: 2202_CR13
  publication-title: CEAS Aeronaut J
  doi: 10.1007/s13272-018-0315-2
  contributor:
    fullname: P Stukenborg
– volume: 90
  start-page: 973
  issue: 6
  year: 2018
  ident: 2202_CR15
  publication-title: Aircr Eng Aerosp Technol
  doi: 10.1108/AEAT-11-2017-0250
  contributor:
    fullname: M Oszust
– ident: 2202_CR4
  doi: 10.1109/RED-UAS.2017.8101661
– volume: 49
  start-page: 170
  issue: 17
  year: 2016
  ident: 2202_CR17
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2016.09.030
  contributor:
    fullname: A de Bruin
– ident: 2202_CR31
– ident: 2202_CR25
  doi: 10.1109/CoDIT.2019.8820660
– ident: 2202_CR28
  doi: 10.1109/ICUAS48674.2020.9213850
– ident: 2202_CR32
  doi: 10.1145/1015330.1015430
– ident: 2202_CR34
  doi: 10.1109/MILTECHS.2015.7153726
– ident: 2202_CR3
  doi: 10.1109/ICUAS.2016.7502578
– volume: 64
  start-page: 327
  issue: 4
  year: 2014
  ident: 2202_CR35
  publication-title: Def Sci J
  doi: 10.14429/dsj.64.4933
  contributor:
    fullname: A Kaviyarasu
– ident: 2202_CR39
– ident: 2202_CR26
  doi: 10.1007/978-3-030-20257-6_36
– volume: 15
  start-page: 657
  issue: 6
  year: 1987
  ident: 2202_CR40
  publication-title: J Pharmacokinet Biopharm
  doi: 10.1007/BF01068419
  contributor:
    fullname: DJ Schuirmann
– volume: 30
  start-page: 399
  issue: 1
  year: 2017
  ident: 2202_CR23
  publication-title: Chin J Aeronaut
  doi: 10.1016/j.cja.2016.12.019
  contributor:
    fullname: R Lungu
– ident: 2202_CR8
  doi: 10.1109/ICISC.2018.8399001
SSID ssj0003301
Score 2.3397713
Snippet We describe the Intelligent Autopilot System (IAS), a fully autonomous autopilot capable of piloting large jets such as airliners by learning from experienced...
Abstract We describe the Intelligent Autopilot System (IAS), a fully autonomous autopilot capable of piloting large jets such as airliners by learning from...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 6349
SubjectTerms 30th Anniversary Special Issue
Aerodynamics
Aircraft
Aircraft control
Aircraft landing
Aircraft pilots
Airlines
Airports
Artificial Intelligence
Artificial neural networks
Automatic pilots
Autonomy
Aviation
Computer Science
Crosswinds
Deep learning
Elevators (control surfaces)
Flight data recorders
Human performance
Jet aircraft
Learning theory
Machines
Manufacturing
Mechanical Engineering
Neural networks
Pilots
Processes
Rudders
Skills
Training
Weather
Wind shear
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60Xrz4FqtV5uBNg81ms2lOUsUigiKi0FvYR1aE0qqph_4Bf7czm41BQU8hhN1DZnZmvp1vZhg7znipc1QcxCbSREI5HVHbushZZ3OKITI_ReH2Tl4_iZtxOg4XblWgVTY20RtqOzN0R37GyVHLlPeT89e3iKZGUXY1jNBYZis8FpSmXbm4urt_-LbFiNb9zDxEGZGU-TiUzYTiOUF0IY5wmnO0C4ufrqmNN3-lSL3nGW2wtRAywrCW8SZbKqdbbL0ZxwDhdG6zz-HHnEoUEMuDmxDoBrMg0huoqQU0wnQVCJO6jqWCmQP1Qr2uMAAE7QtZAKNBMHXHJphQ6VO91qBH9SRahNVATPlnII2rm08AtcT0D08or3bY4-jq8fI6CmMWIpPIZB7Z2A6k1okdiHzQ11xpK4xzTuCrKNFYxlLFMk9dklprSsP7GR5ios9kSnCV7LLOdDYt9xjouMwzFJSRCMLyvlIDroxLnaBcap65LjtpfnDxWjfTKNq2ySSOAsVReHEUiy7rNTIowsGqilYNuuy0kUv7-e_d9v_f7YCtcq8KxB7rsc78_aM8xHBjro-CTn0BYVLUUw
  priority: 102
  providerName: ProQuest
Title Autonomous flight cycles and extreme landings of airliners beyond the current limits and capabilities using artificial neural networks
URI https://link.springer.com/article/10.1007/s10489-021-02202-y
https://www.proquest.com/docview/2562365203
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6VcOECpRQRStEceitGyXq9to9plIBARRUKUjhZ-_BWVaOkIs4h_QH93Z1Z201L4cDFK7_W8s54dsb7zTcAH1JRmpwUh2ITZSOpvYmYti7yzrucfYg0VFH4fKMu7-TVNJlu8rgD2L1dkQyG-q9cN8noHkHRr6CIPVpvwXbChF8d2B5c3F-P_hhgCtFDoTwKLSKl8mmTK_N0L__ORxsn89G6aJhuxnswaZN2apTJ9_NVZc7tz_85HF_yJq9ht3E_cVDryz68KudvYK8t7YDNl34AvwaritMdFqsl-hkH8GjXDKBDPXdIBp1_K-KszolZ4sKj_sa8WeRMoglJMUieJdqa_QlnnEZV32tpdg6AXArRkVH3X5G1tyayQKbXDE0Apy_fwmQ8mgwvo6ZkQ2RjFVeR67tMGRO7TOZZzwhtnLTee0m7siTD21e6r_LEx4lztrSil5JBYChOqqXQ8SF05ot5eQRo-mWekj9mFQV0eU_rTGjrEy95XTZPfRc-tnIrftTEHMWGgplHuKARLsIIF-sunLSiLZqPdFkI9v0UPTzuwlkrqs3p53s7ftnl72BHBGkzMu0EOtXDqnxPrkxlTmErG1-cNgpM7afRzZdbOjpUQ9reicFvvBDw8w
link.rule.ids 315,786,790,12792,21416,27955,27956,33406,33777,41114,41153,41556,42183,42222,42625,43633,43838,51609,52144,52267,74390,74657
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagDLDwRhQK3MAGEa3jOMmEEKKU51SkbpEfMUKqWqBl6B_gd3PnOFQgwRRFUTz4np_93R1jxykvdY6Kg9hEmkgopyNqWxc562xOOUTqpyg8PMrek7gdJINw4DYJtMraJ3pHbceGzsjPOAVqmfB2fP76FtHUKLpdDSM0FtmSiGVMep51r789MWJ1PzEPMUYkZT4IRTOhdE4QWYgjmOYcvcLsZ2CaZ5u_Lkh93Omus9WQMMJFJeENtlCONtlaPYwBgm1usc-LjykVKCCSBzckyA1mRpQ3UCML6ILpIBCGVRXLBMYO1At1usL0D7QvYwHMBcFU_ZpgSIVP1b8G46mn0CKoBuLJPwPpW9V6Aqghpn94Ovlkm_W7V_3LXhSGLEQGd2wa2Y7NpNaxzUSetTVX2grjnBP4Kkp0lR2pOjJPXJxYa0rD2ymaMJFnUiW4indYYzQelbsMdKfMUxSTkQjB8rZSGVfGJU7QTWqeuiY7qTe4eK1aaRTzpskkjgLFUXhxFLMma9UyKIJZTYq5EjTZaS2X-ee_V9v7f7UjttzrP9wX9zePd_tshXu1IB5ZizWm7x_lASYeU33otesL3onV2g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60gnjxLVarzsGbBtvNZpOcRNT6Fg8KvYV9ZEUordp66B_wdzuz2VgU9BRCyEIyszPz7Xwzw9h-ykudo-IgNpEmEsrpiNrWRc46m1MMkfopCnf38vJJXPeSXuA_jQKtsraJ3lDboaEz8iNOjlomvB0fuUCLeDjrHr--RTRBijKtYZzGLJujIJvGOGTdi2-rjLjdT89DvBFJmfdCAU0ooxNEHOIIrDlHCzH56aSmkeevZKn3Qd1lthiCRzippL3CZsrBKluqBzNA2Kdr7PPkY0zFCojqwfUJfoOZEP0N1MACfhMdCkK_qmgZwdCBeqGuVxgKgvYlLYBxIZiqdxP0qQiqetegb_V0WgTYQJz5ZyDdq9pQADXH9BdPLR-ts8fu-ePpZRQGLkQmlvE4sh2bSa1jm4k8a2uutBXGOSfwVpRoNjtSdWSeuDix1pSGt1PczkSkSZXgKt5gjcFwUG4y0J0yT1FkRiIcy9tKZVwZlzhBWdU8dU12UP_g4rVqq1FMGyiTOAoUR-HFUUyarFXLoAhbbFRMFaLJDmu5TB__vdrW_6vtsXlUrOL26v5mmy1wrxVEKWuxxvj9o9zBGGSsd71yfQHJIdoP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autonomous+flight+cycles+and+extreme+landings+of+airliners+beyond+the+current+limits+and+capabilities+using+artificial+neural+networks&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Baomar%2C+Haitham&rft.au=Bentley%2C+Peter+J.&rft.date=2021-09-01&rft.pub=Springer+US&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=51&rft.issue=9&rft.spage=6349&rft.epage=6375&rft_id=info:doi/10.1007%2Fs10489-021-02202-y&rft.externalDocID=10_1007_s10489_021_02202_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon