The impact of UV cross-linking on corneal stromal cell migration, differentiation and patterning

Previous studies have demonstrated that UV cross-linking (CXL) increases stromal stiffness and produces alterations in extracellular matrix (ECM) microstructure. In order to investigate how CXL impacts both keratocyte differentiation and patterning within the stroma, and fibroblast migration and myo...

Full description

Saved in:
Bibliographic Details
Published inExperimental eye research Vol. 233; p. 109523
Main Authors Petroll, W. Matthew, Miron-Mendoza, Miguel, Sunkara, Yukta, Ikebe, Hikaru R., Sripathi, Nishith R., Hassaniardekani, Hajar
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Previous studies have demonstrated that UV cross-linking (CXL) increases stromal stiffness and produces alterations in extracellular matrix (ECM) microstructure. In order to investigate how CXL impacts both keratocyte differentiation and patterning within the stroma, and fibroblast migration and myofibroblast differentiation on top of the stroma, we combined CXL with superficial phototherapeutic keratectomy (PTK) in a rabbit model. Twenty-six rabbits underwent a 6 mm diameter, 70 μm deep phototherapeutic keratectomy (PTK) with an excimer laser to remove the epithelium and anterior basement membrane. In 14 rabbits, standard CXL was performed in the same eye immediately after PTK. Contralateral eyes served as controls. In vivo confocal microscopy through focusing (CMTF) was used to analyze corneal epithelial and stromal thickness, as well as stromal keratocyte activation and corneal haze. CMTF scans were collected pre-operatively, and from 7 to 120 days after the procedure. A subset of rabbits was sacrificed at each time point, and corneas were fixed and labeled in situ for multiphoton fluorescence microscopy and second harmonic generation imaging. In vivo and in situ imaging demonstrated that haze after PTK was primarily derived from a layer of myofibroblasts that formed on top of the native stroma. Over time, this fibrotic layer was remodeled into more transparent stromal lamellae, and quiescent cells replaced myofibroblasts. Migrating cells within the native stroma underneath the photoablated area were elongated, co-aligned with collagen, and lacked stress fibers. In contrast, following PTK + CXL, haze was derived primarily from highly reflective necrotic “ghost cells” in the anterior stroma, and fibrosis on top of the photoablated stroma was not observed at any time point evaluated. Cells formed clusters as they migrated into the cross-linked stromal tissue and expressed stress fibers; some cells at the edge of the CXL area also expressed α-SM actin, suggesting myofibroblast transformation. Stromal thickness increased significantly between 21 and 90 days after PTK + CXL (P < 0.001) and was over 35 μm higher than baseline at Day 90 (P < 0.05). Overall, these data suggest that cross-linking inhibits interlamellar cell movement, and that these changes lead to a disruption of normal keratocyte patterning and increased activation during stromal repopulation. Interestingly, CXL also prevents PTK-induced fibrosis on top of the stroma, and results in long term increases in stromal thickness in the rabbit model. •Cross-linking (CXL) disrupts keratoctye patterning during instrastromal migration.•Cell clustering and stress fiber formation is observed after CXL.•CXL blocks fibrosis after phototherapeutic keratectomy (PTK).•PTK + CXL induces a progressive increase in stromal thickness in the rabbit model.
AbstractList Previous studies have demonstrated that UV cross-linking (CXL) increases stromal stiffness and produces alterations in extracellular matrix (ECM) microstructure. In order to investigate how CXL impacts both keratocyte differentiation and patterning within the stroma, and fibroblast migration and myofibroblast differentiation on top of the stroma, we combined CXL with superficial phototherapeutic keratectomy (PTK) in a rabbit model. Twenty-six rabbits underwent a 6 mm diameter, 70 μm deep phototherapeutic keratectomy (PTK) with an excimer laser to remove the epithelium and anterior basement membrane. In 14 rabbits, standard CXL was performed in the same eye immediately after PTK. Contralateral eyes served as controls. In vivo confocal microscopy through focusing (CMTF) was used to analyze corneal epithelial and stromal thickness, as well as stromal keratocyte activation and corneal haze. CMTF scans were collected pre-operatively, and from 7 to 120 days after the procedure. A subset of rabbits was sacrificed at each time point, and corneas were fixed and labeled in situ for multiphoton fluorescence microscopy and second harmonic generation imaging. In vivo and in situ imaging demonstrated that haze after PTK was primarily derived from a layer of myofibroblasts that formed on top of the native stroma. Over time, this fibrotic layer was remodeled into more transparent stromal lamellae, and quiescent cells replaced myofibroblasts. Migrating cells within the native stroma underneath the photoablated area were elongated, co-aligned with collagen, and lacked stress fibers. In contrast, following PTK + CXL, haze was derived primarily from highly reflective necrotic "ghost cells" in the anterior stroma, and fibrosis on top of the photoablated stroma was not observed at any time point evaluated. Cells formed clusters as they migrated into the cross-linked stromal tissue and expressed stress fibers; some cells at the edge of the CXL area also expressed α-SM actin, suggesting myofibroblast transformation. Stromal thickness increased significantly between 21 and 90 days after PTK + CXL (P < 0.001) and was over 35 μm higher than baseline at Day 90 (P < 0.05). Overall, these data suggest that cross-linking inhibits interlamellar cell movement, and that these changes lead to a disruption of normal keratocyte patterning and increased activation during stromal repopulation. Interestingly, CXL also prevents PTK-induced fibrosis on top of the stroma, and results in long term increases in stromal thickness in the rabbit model.
Previous studies have demonstrated that UV cross-linking (CXL) increases stromal stiffness and produces alterations in extracellular matrix (ECM) microstructure. In order to investigate how CXL impacts both keratocyte differentiation and patterning within the stroma, and fibroblast migration and myofibroblast differentiation on top of the stroma, we combined CXL with superficial phototherapeutic keratectomy (PTK) in a rabbit model. Twenty-six rabbits underwent a 6 mm diameter, 70 μm deep phototherapeutic keratectomy (PTK) with an excimer laser to remove the epithelium and anterior basement membrane. In 14 rabbits, standard CXL was performed in the same eye immediately after PTK. Contralateral eyes served as controls. In vivo confocal microscopy through focusing (CMTF) was used to analyze corneal epithelial and stromal thickness, as well as stromal keratocyte activation and corneal haze. CMTF scans were collected pre-operatively, and from 7 to 120 days after the procedure. A subset of rabbits was sacrificed at each time point, and corneas were fixed and labeled in situ for multiphoton fluorescence microscopy and second harmonic generation imaging. In vivo and in situ imaging demonstrated that haze after PTK was primarily derived from a layer of myofibroblasts that formed on top of the native stroma. Over time, this fibrotic layer was remodeled into more transparent stromal lamellae, and quiescent cells replaced myofibroblasts. Migrating cells within the native stroma underneath the photoablated area were elongated, co-aligned with collagen, and lacked stress fibers. In contrast, following PTK+CXL, haze was derived primarily from highly reflective necrotic “ghost cells” in the anterior stroma, and fibrosis on top of the photoablated stroma was not observed at any time point evaluated. Cells formed clusters as they migrated into the cross-linked stromal tissue and expressed stress fibers; some cells at the edge of the CXL area also expressed α-SM actin, suggesting myofibroblast transformation. Stromal thickness increased significantly between 21 and 90 days after PTK+CXL (P < 0.001) and was over 35 μm higher than baseline at Day 90 (P < 0.05). Overall, these data suggest that cross-linking inhibits interlamellar cell movement, and that these changes lead to a disruption of normal keratocyte patterning and increased activation during stromal repopulation. Interestingly, CXL also prevents PTK-induced fibrosis on top of the stroma, and results in long term increases in stromal thickness in the rabbit model.
Previous studies have demonstrated that UV cross-linking (CXL) increases stromal stiffness and produces alterations in extracellular matrix (ECM) microstructure. In order to investigate how CXL impacts both keratocyte differentiation and patterning within the stroma, and fibroblast migration and myofibroblast differentiation on top of the stroma, we combined CXL with superficial phototherapeutic keratectomy (PTK) in a rabbit model. Twenty-six rabbits underwent a 6 mm diameter, 70 μm deep phototherapeutic keratectomy (PTK) with an excimer laser to remove the epithelium and anterior basement membrane. In 14 rabbits, standard CXL was performed in the same eye immediately after PTK. Contralateral eyes served as controls. In vivo confocal microscopy through focusing (CMTF) was used to analyze corneal epithelial and stromal thickness, as well as stromal keratocyte activation and corneal haze. CMTF scans were collected pre-operatively, and from 7 to 120 days after the procedure. A subset of rabbits was sacrificed at each time point, and corneas were fixed and labeled in situ for multiphoton fluorescence microscopy and second harmonic generation imaging. In vivo and in situ imaging demonstrated that haze after PTK was primarily derived from a layer of myofibroblasts that formed on top of the native stroma. Over time, this fibrotic layer was remodeled into more transparent stromal lamellae, and quiescent cells replaced myofibroblasts. Migrating cells within the native stroma underneath the photoablated area were elongated, co-aligned with collagen, and lacked stress fibers. In contrast, following PTK + CXL, haze was derived primarily from highly reflective necrotic "ghost cells" in the anterior stroma, and fibrosis on top of the photoablated stroma was not observed at any time point evaluated. Cells formed clusters as they migrated into the cross-linked stromal tissue and expressed stress fibers; some cells at the edge of the CXL area also expressed α-SM actin, suggesting myofibroblast transformation. Stromal thickness increased significantly between 21 and 90 days after PTK + CXL (P < 0.001) and was over 35 μm higher than baseline at Day 90 (P < 0.05). Overall, these data suggest that cross-linking inhibits interlamellar cell movement, and that these changes lead to a disruption of normal keratocyte patterning and increased activation during stromal repopulation. Interestingly, CXL also prevents PTK-induced fibrosis on top of the stroma, and results in long term increases in stromal thickness in the rabbit model.Previous studies have demonstrated that UV cross-linking (CXL) increases stromal stiffness and produces alterations in extracellular matrix (ECM) microstructure. In order to investigate how CXL impacts both keratocyte differentiation and patterning within the stroma, and fibroblast migration and myofibroblast differentiation on top of the stroma, we combined CXL with superficial phototherapeutic keratectomy (PTK) in a rabbit model. Twenty-six rabbits underwent a 6 mm diameter, 70 μm deep phototherapeutic keratectomy (PTK) with an excimer laser to remove the epithelium and anterior basement membrane. In 14 rabbits, standard CXL was performed in the same eye immediately after PTK. Contralateral eyes served as controls. In vivo confocal microscopy through focusing (CMTF) was used to analyze corneal epithelial and stromal thickness, as well as stromal keratocyte activation and corneal haze. CMTF scans were collected pre-operatively, and from 7 to 120 days after the procedure. A subset of rabbits was sacrificed at each time point, and corneas were fixed and labeled in situ for multiphoton fluorescence microscopy and second harmonic generation imaging. In vivo and in situ imaging demonstrated that haze after PTK was primarily derived from a layer of myofibroblasts that formed on top of the native stroma. Over time, this fibrotic layer was remodeled into more transparent stromal lamellae, and quiescent cells replaced myofibroblasts. Migrating cells within the native stroma underneath the photoablated area were elongated, co-aligned with collagen, and lacked stress fibers. In contrast, following PTK + CXL, haze was derived primarily from highly reflective necrotic "ghost cells" in the anterior stroma, and fibrosis on top of the photoablated stroma was not observed at any time point evaluated. Cells formed clusters as they migrated into the cross-linked stromal tissue and expressed stress fibers; some cells at the edge of the CXL area also expressed α-SM actin, suggesting myofibroblast transformation. Stromal thickness increased significantly between 21 and 90 days after PTK + CXL (P < 0.001) and was over 35 μm higher than baseline at Day 90 (P < 0.05). Overall, these data suggest that cross-linking inhibits interlamellar cell movement, and that these changes lead to a disruption of normal keratocyte patterning and increased activation during stromal repopulation. Interestingly, CXL also prevents PTK-induced fibrosis on top of the stroma, and results in long term increases in stromal thickness in the rabbit model.
Previous studies have demonstrated that UV cross-linking (CXL) increases stromal stiffness and produces alterations in extracellular matrix (ECM) microstructure. In order to investigate how CXL impacts both keratocyte differentiation and patterning within the stroma, and fibroblast migration and myofibroblast differentiation on top of the stroma, we combined CXL with superficial phototherapeutic keratectomy (PTK) in a rabbit model. Twenty-six rabbits underwent a 6 mm diameter, 70 μm deep phototherapeutic keratectomy (PTK) with an excimer laser to remove the epithelium and anterior basement membrane. In 14 rabbits, standard CXL was performed in the same eye immediately after PTK. Contralateral eyes served as controls. In vivo confocal microscopy through focusing (CMTF) was used to analyze corneal epithelial and stromal thickness, as well as stromal keratocyte activation and corneal haze. CMTF scans were collected pre-operatively, and from 7 to 120 days after the procedure. A subset of rabbits was sacrificed at each time point, and corneas were fixed and labeled in situ for multiphoton fluorescence microscopy and second harmonic generation imaging. In vivo and in situ imaging demonstrated that haze after PTK was primarily derived from a layer of myofibroblasts that formed on top of the native stroma. Over time, this fibrotic layer was remodeled into more transparent stromal lamellae, and quiescent cells replaced myofibroblasts. Migrating cells within the native stroma underneath the photoablated area were elongated, co-aligned with collagen, and lacked stress fibers. In contrast, following PTK + CXL, haze was derived primarily from highly reflective necrotic “ghost cells” in the anterior stroma, and fibrosis on top of the photoablated stroma was not observed at any time point evaluated. Cells formed clusters as they migrated into the cross-linked stromal tissue and expressed stress fibers; some cells at the edge of the CXL area also expressed α-SM actin, suggesting myofibroblast transformation. Stromal thickness increased significantly between 21 and 90 days after PTK + CXL (P < 0.001) and was over 35 μm higher than baseline at Day 90 (P < 0.05). Overall, these data suggest that cross-linking inhibits interlamellar cell movement, and that these changes lead to a disruption of normal keratocyte patterning and increased activation during stromal repopulation. Interestingly, CXL also prevents PTK-induced fibrosis on top of the stroma, and results in long term increases in stromal thickness in the rabbit model. •Cross-linking (CXL) disrupts keratoctye patterning during instrastromal migration.•Cell clustering and stress fiber formation is observed after CXL.•CXL blocks fibrosis after phototherapeutic keratectomy (PTK).•PTK + CXL induces a progressive increase in stromal thickness in the rabbit model.
ArticleNumber 109523
Author Miron-Mendoza, Miguel
Sunkara, Yukta
Ikebe, Hikaru R.
Hassaniardekani, Hajar
Sripathi, Nishith R.
Petroll, W. Matthew
AuthorAffiliation 2 Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX
1 Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX
AuthorAffiliation_xml – name: 2 Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX
– name: 1 Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX
Author_xml – sequence: 1
  givenname: W. Matthew
  orcidid: 0000-0003-0795-4539
  surname: Petroll
  fullname: Petroll, W. Matthew
  email: matthew.petroll@utsouthwestern.edu
  organization: Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
– sequence: 2
  givenname: Miguel
  surname: Miron-Mendoza
  fullname: Miron-Mendoza, Miguel
  organization: Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
– sequence: 3
  givenname: Yukta
  surname: Sunkara
  fullname: Sunkara, Yukta
  organization: Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
– sequence: 4
  givenname: Hikaru R.
  surname: Ikebe
  fullname: Ikebe, Hikaru R.
  organization: Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
– sequence: 5
  givenname: Nishith R.
  surname: Sripathi
  fullname: Sripathi, Nishith R.
  organization: Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
– sequence: 6
  givenname: Hajar
  surname: Hassaniardekani
  fullname: Hassaniardekani, Hajar
  organization: Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37271309$$D View this record in MEDLINE/PubMed
BookMark eNp9UctuFDEQtFAQ2QR-gAPykQOz-DnjkZAQinhJkXJJuBqv3d54mbEX2xslf483GyK45NStclW5u-sEHcUUAaHXlCwpof37zRJuIS8ZYbwBo2T8GVq0pu8IIcMRWhBCRScUl8fopJRNQ7kYxAt0zAc2UE7GBfp5eQ04zFtjK04eX_3ANqdSuinEXyGucYrYphzBTLjUnOZWLUwTnsM6mxpSfIdd8B4yxBruAWyiw1tTK-TYHF6i595MBV491FN09eXz5dm37vzi6_ezT-ed5T2vnXVeECe5IH50isqeDwBCUaPYyAYlhbJGCEl6M4Jw_eCpIGa14p5ZkKAEP0UfD77b3WoGZ9s82Ux6m8Ns8p1OJuj_X2K41ut0oylRTKpxbA5vHxxy-r2DUvUcyn5ZEyHtimaKsYH0RNJGZQfq_bEy-Md_KNH7bPRG77PR-2z0IZsmevPvhI-Sv2E0wocDAdqdbkKTFxsgWnAhg63apfCU_x98raNc
Cites_doi 10.1016/j.preteyeres.2021.101016
10.1016/S0002-9394(02)02220-1
10.1016/j.bpj.2020.08.040
10.3390/jfb3010183
10.1111/j.1755-3768.2008.01190.x
10.1111/j.1442-9071.2011.02634.x
10.1016/j.actbio.2017.05.051
10.1038/srep42896
10.1016/j.jtos.2015.04.007
10.3390/ijms24087437
10.1016/j.jtos.2015.05.002
10.3928/1081597X-20101201-02
10.1007/s00018-022-04184-7
10.1016/S1350-9462(98)00021-4
10.1167/iovs.11-9092
10.1167/iovs.09-4074
10.1242/jcs.112.5.613
10.1016/j.ajoc.2019.02.008
10.1016/j.exer.2020.108089
10.1167/iovs.15-16584
10.1038/s41433-018-0075-6
10.1242/jcs.00383
10.1097/ICL.0b013e3181ee8992
10.1016/j.yexcr.2006.08.009
10.1016/j.exer.2022.109112
10.1016/j.jcrs.2016.06.040
10.1016/j.bpj.2009.04.024
10.1097/01.icu.0000233954.86723.25
10.1097/ICO.0b013e31824d701b
10.1038/s41598-018-30372-2
10.1097/ICO.0b013e3181bdf1cc
10.1016/S0039-6257(97)00119-7
10.1167/iovs.11-8155
10.1167/tvst.11.7.9
10.1016/j.exer.2018.08.009
10.1016/j.clae.2021.101559
10.1167/iovs.08-1983
10.1080/08820538.2022.2152716
10.1167/iovs.12-11575
10.1002/jbm.a.30089
10.1167/iovs.11-7184
10.1167/iovs.02-1188
10.1167/iovs.11-7982
10.3928/1081597X-20190625-02
10.1097/01.ico.0000151544.23360.17
10.1097/ICO.0000000000002781
10.1167/iovs.61.2.28
10.1167/iovs.02-0860
10.1167/iovs.12-11007
10.1097/00003226-199811000-00011
10.1016/j.ophtha.2013.09.014
10.1167/iovs.11-8609
10.1038/s41598-018-30964-y
10.1016/j.ajo.2016.12.015
10.3928/1081597X-20090813-12
10.1016/j.jcrs.2019.06.027
10.1016/j.exer.2020.108228
10.1016/j.exer.2007.06.009
10.3389/fcell.2022.886759
10.1097/ICO.0000000000001047
10.3390/jfb9040054
10.1007/s10544-019-0436-3
10.1097/ICL.0000000000000892
10.1073/pnas.1313561110
10.1364/OE.18.024983
10.1038/srep25534
10.1016/j.exer.2017.05.003
10.1167/iovs.09-4200
10.3390/nu14040913
10.1016/S0161-6420(00)00142-1
10.1016/j.jtos.2020.03.006
10.1016/j.survophthal.2015.02.004
10.1016/j.jcrs.2012.11.036
10.1016/j.exer.2016.10.009
10.1016/j.jcrs.2013.01.026
10.1016/S0161-6420(97)30307-8
10.1097/00003226-200401000-00008
10.3390/jfb6020422
10.1016/j.ajo.2008.05.042
10.1016/S0014-4835(02)00251-8
10.1167/tvst.8.6.35
10.1016/j.bpj.2015.06.058
10.1097/ICO.0b013e31825ec44e
10.1371/journal.pone.0200704
10.2147/OPTH.S2800
10.1167/iovs.15-17978
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1016/j.exer.2023.109523
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1096-0007
EndPage 109523
ExternalDocumentID 10_1016_j_exer_2023_109523
37271309
S0014483523001446
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: T35 EY026510
– fundername: NEI NIH HHS
  grantid: R01 EY013322
– fundername: NEI NIH HHS
  grantid: P30 EY030413
GroupedDBID ---
--K
--M
.55
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29G
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AAAJQ
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AAXLA
AAXUO
ABBQC
ABCQJ
ABFNM
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHPSJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CAG
CJTIS
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEA
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
L7B
LCYCR
LG5
LUGTX
LZ2
M29
M2U
M41
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SSH
SSI
SSN
SSZ
T5K
TEORI
WUQ
X7M
XPP
ZA5
ZGI
ZMT
ZU3
~G-
AAXKI
AFJKZ
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c363t-cdf40d5340f9d815637ee481a829278548ca44506a9e4d67f140abb3f2ce5e843
IEDL.DBID AIKHN
ISSN 0014-4835
1096-0007
IngestDate Tue Sep 17 21:28:54 EDT 2024
Wed Aug 07 11:44:54 EDT 2024
Thu Sep 26 19:55:30 EDT 2024
Wed Oct 02 05:23:38 EDT 2024
Fri Feb 23 02:35:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Corneal wound healing
Confocal microscopy
Extracellular matrix
Corneal cross-linking
Second harmonic generation imaging
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-cdf40d5340f9d815637ee481a829278548ca44506a9e4d67f140abb3f2ce5e843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0795-4539
PMID 37271309
PQID 2822706051
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10825899
proquest_miscellaneous_2822706051
crossref_primary_10_1016_j_exer_2023_109523
pubmed_primary_37271309
elsevier_sciencedirect_doi_10_1016_j_exer_2023_109523
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Experimental eye research
PublicationTitleAlternate Exp Eye Res
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mazzotta, Hafezi, Kymionis, Caragiuli, Jacob, Traversi, Barabino, Randleman (bib46) 2015; 13
Tan, Chang, Lo, Hsueh, Chen, Ghazaryan, Hu, Young, Chen, Dong (bib79) 2013; 39
Helena, Baerveldt, Kim, Wilson (bib20) 1998; 39
Kim, Lakshman, Petroll (bib35) 2006; 312
Kivanany, Grose, Tippani, Su, Petroll (bib37) 2018; 8
Moller-Pedersen, Cavanagh, Petroll, Jester (bib52) 1998; 17
Wilson, Chaurasia, Medeiros (bib87) 2007; 85
Maruri, Miron-Mendoza, Kivanany, Hack, Schmidtke, Petroll, Varner (bib45) 2020; 119
Teixeira, Abrams, Bertics, Murphy, Nealey (bib80) 2003; 116
Blalock, Duncan, Varela, Goldstein, Tuli, Grotensdorst, Schultz (bib6) 2003; 44
McKay, Hjortdal, Sejersen, Asara, Wu, Karamichos (bib48) 2016; 6
de Oliveira, Wilson (bib11) 2020; 61
Stewart, Lee, Wong, Schultz, Lamy (bib77) 2011; 52
Jester, Brown, Pappa, Vasiliou (bib26) 2012; 53
Petroll, Kivanany, Hagenasr, Graham (bib61) 2015; 56
Hovakimyan, Guthoff, Reichard, Wree, Nolte, Stachs (bib21) 2011; 39
Farid, Morishige, Lam, Wahlert, Steinert, Jester (bib14) 2008; 49
Rabinowitz (bib67) 1998; 42
Raghunathan, Thomasy, Strom, Yanez-Soto, Garland, Sermeno, Reilly, Murphy (bib69) 2017; 58
Lakshman, Petroll (bib39) 2012; 53
Wilson (bib83) 2019; 35
Lasagni Vitar, Bonelli, Rama, Ferrari (bib41) 2022; 14
Netto, Mohan, Ambrosio, Hutcheon, Zieske, Wilson (bib57) 2005; 24
Beckman, Gupta, Farid, Berdahl, Yeu, Ayres, Chan, Gomes, Holland, Kim, Starr, Mah, Committee (bib2) 2019; 45
Santodomingo-Rubido, Carracedo, Suzaki, Villa-Collar, Vincent, Wolffsohn (bib73) 2022; 45
Marino, Santhiago, Santhanam, Lassance, Thangavadivel, Medeiros, Bose, Tam, Wilson (bib43) 2017; 161
Sharif, Fowler, Karamichos (bib74) 2018; 13
Bradford, Mikula, Kim, Xie, Juhasz, Brown, Jester (bib7) 2019; 8
Wollensak, Spoerl, Wilsch, Seiler (bib92) 2004; 23
Godefrooij, de Wit, Uiterwaal, Imhof, Wisse (bib18) 2017; 175
Jester, Petroll, Barry, Cavanagh (bib29) 1995; 186
Petroll, Varner, Schmidtke (bib64) 2020; 200
Jester, Moller-Pedersen, Huang, Sax, Kays, Cavanagh, Petroll, Piatigorsky (bib28) 1999; 112
Sampaio, Hilgert, Shiju, Santhiago, Wilson (bib72) 2022; 11
Garana, Petroll, Chen, Herman, Barry, Andrews, Cavanagh, Jester (bib16) 1992; 33
Parker, van Dijk, Melles (bib58) 2015; 60
Young, Knupp, Pinali, Png, Ralphs, Bushby, Starborg, Kadler, Quantock (bib93) 2014; 111
Jester, Petroll, Cavanagh (bib30) 1999; 18
Myrna, Mendonsa, Russell, Pot, Liliensiek, Jester, Nealey, Brown, Murphy (bib56) 2012; 53
Moller-Pedersen, Li, Petroll, Cavanagh, Jester (bib54) 1998; 39
Kivanany, Grose, Yonet-Tanyeri, Manohar, Sunkara, Lam, Schmidtke, Varner, Petroll (bib38) 2018; 9
Bradford, Mikula, Juhasz, Brown, Jester (bib9) 2018; 177
Hovakimyan, Stachs, Celine, Guthoff (bib22) 2016; 35
Ferrari, Rama (bib15) 2020; 18
Jester, Winkler, Jester, Nien, Chai, Brown (bib31) 2010; 36
Wilson (bib84) 2020; 197
Akoto, Cai, Nicholas, McCord, Estes, Xu, Karamichos, Liu (bib1) 2023; 24
Moller-Pedersen, Cavanagh, Petroll, Jester (bib53) 2000; 107
Jeon, Hindman, Bubel, McDaniel, DeMagistris, Callan, Huxlin (bib24) 2018; 8
Jordan, Patel, Abeysekera, McGhee (bib32) 2014; 121
Sivaguru, Durgam, Ambekar, Luedtke, Fried, Stewart, Toussaint (bib76) 2010; 18
Lyon, McKay, Sarkar-Nag, Priyadarsini, Karamichos (bib42) 2015; 6
Esquenazi, He, Li, Bazan (bib13) 2010; 29
Peponis, Kontomichos, Chatziralli, Kontadakis, Parikakis (bib60) 2019; 14
Petroll, Lakshman, Ma (bib62) 2012; 3
McKay, Hjortdal, Sejersen, Karamichos (bib49) 2017; 7
Raiskup, Hoyer, Spoerl (bib70) 2009; 25
Mazzotta, Traversi, Baiocchi, Caporossi, Bovone, Sparano, Balestrazzi, Caporossi (bib47) 2008; 146
Raghunathan, Morgan, Dreier, Reilly, Thomasy, Wood, Ly, Tuyen, Hughbanks, Murphy, Russell (bib68) 2013; 54
Stramer, Zieske, Jung, Austin, Fini (bib78) 2003; 44
Winkler, Shoa, Tran, Xie, Thomasy, Raghunathan, Murphy, Brown, Jester (bib88) 2015; 56
Sharif, Sejersen, Frank, Hjortdal, Karamichos (bib75) 2018; 32
He, Liu, Li, Ma, Huo, Ji (bib19) 2015; 109
Lam, Kivanany, Grose, Yonet-Tanyeri, Alsmadi, Varner, Petroll, Schmidtke (bib40) 2019; 21
Parsa, Rodriguez, Robertson, Bowman, Petroll (bib59) 2022; 48
Jester, Huang, Barry-Lane, Kao, Petroll, Cavanagh (bib27) 1999; 40
Bueno, Gualda, Giakoumaki, Perez-Merino, Marcos, Artal (bib10) 2011; 52
Wollensak, Iomdina (bib90) 2009; 87
Karamichos, Escandon, Vasini, Nicholas, Van, Dang, Cunningham, Riaz (bib33) 2022; 88
Kivanany, Grose, Petroll (bib36) 2016; 153
Wollensak, Spoerl, Seiler (bib91) 2003; 135
Messmer, Meyer, Herwig, Loeffler, Schirra, Seitz, Thiel, Reinhard, Kampik, Auw-Haedrich (bib50) 2013; 32
Moller-Pedersen, Vogel, Li, Petroll, Cavanagh, Jester (bib55) 1997; 104
Petroll, Weaver, Vaidya, McCulley, Cavanagh (bib65) 2013; 32
Jester, Barry, Lind, Petroll, Garana, Cavanagh (bib25) 1994; 35
Salomao, Chaurasia, Sinha-Roy, Ambrosio, Esposito, Sepulveda, Agrawal, Wilson (bib71) 2011; 27
Wollensak (bib89) 2006; 17
Belin, Jang, Borgstrom (bib3) 2022; 41
Tomkins, Garzozi (bib82) 2008; 2
Iyer, Maruri, Peak, Schmidtke, Petroll, Varner (bib23) 2022; 220
Bevara, Vaddavalli (bib5) 2023; 38
Wilson (bib85) 2022; 79
Teixeira, Nealey, Murphy (bib81) 2004; 71A
Wilson (bib86) 2022
Bradford, Brown, Juhasz, Mikula, Jester (bib8) 2016; 42
Maruri, Iyer, Schmidtke, Petroll, Varner (bib44) 2022; 10
Beshtawi, O'Donnell, Radhakrishnan (bib4) 2013; 39
Pot, Liliensiek, Myrna, Bentley, Jester, Nealey, Murphy (bib66) 2010; 51
Dreier, Thomasy, Mendonsa, Raghunathan, Russell, Murphy (bib12) 2013; 54
Kim, Lakshman, Karamichos, Petroll (bib34) 2010; 51
Mohan, Hutcheon, Choi, Hong, Lee, Mohan, Ambrósio, Zieske, Wilson (bib51) 2003; 76
Ghibaudo, Trichet, Le Digabel, Richert, Hersen, Ladoux (bib17) 2009; 97
Petroll, Robertson (bib63) 2015; 13
Bevara (10.1016/j.exer.2023.109523_bib5) 2023; 38
Wilson (10.1016/j.exer.2023.109523_bib87) 2007; 85
Hovakimyan (10.1016/j.exer.2023.109523_bib21) 2011; 39
Mohan (10.1016/j.exer.2023.109523_bib51) 2003; 76
Petroll (10.1016/j.exer.2023.109523_bib65) 2013; 32
Wollensak (10.1016/j.exer.2023.109523_bib89) 2006; 17
Beckman (10.1016/j.exer.2023.109523_bib2) 2019; 45
Moller-Pedersen (10.1016/j.exer.2023.109523_bib53) 2000; 107
Sharif (10.1016/j.exer.2023.109523_bib75) 2018; 32
Lam (10.1016/j.exer.2023.109523_bib40) 2019; 21
Rabinowitz (10.1016/j.exer.2023.109523_bib67) 1998; 42
Petroll (10.1016/j.exer.2023.109523_bib64) 2020; 200
Sampaio (10.1016/j.exer.2023.109523_bib72) 2022; 11
Jester (10.1016/j.exer.2023.109523_bib30) 1999; 18
Jordan (10.1016/j.exer.2023.109523_bib32) 2014; 121
Moller-Pedersen (10.1016/j.exer.2023.109523_bib55) 1997; 104
Helena (10.1016/j.exer.2023.109523_bib20) 1998; 39
Wollensak (10.1016/j.exer.2023.109523_bib91) 2003; 135
He (10.1016/j.exer.2023.109523_bib19) 2015; 109
Messmer (10.1016/j.exer.2023.109523_bib50) 2013; 32
Karamichos (10.1016/j.exer.2023.109523_bib33) 2022; 88
Moller-Pedersen (10.1016/j.exer.2023.109523_bib52) 1998; 17
Peponis (10.1016/j.exer.2023.109523_bib60) 2019; 14
Teixeira (10.1016/j.exer.2023.109523_bib80) 2003; 116
Salomao (10.1016/j.exer.2023.109523_bib71) 2011; 27
Kivanany (10.1016/j.exer.2023.109523_bib36) 2016; 153
McKay (10.1016/j.exer.2023.109523_bib48) 2016; 6
Esquenazi (10.1016/j.exer.2023.109523_bib13) 2010; 29
Farid (10.1016/j.exer.2023.109523_bib14) 2008; 49
Kivanany (10.1016/j.exer.2023.109523_bib38) 2018; 9
Jester (10.1016/j.exer.2023.109523_bib28) 1999; 112
Winkler (10.1016/j.exer.2023.109523_bib88) 2015; 56
Teixeira (10.1016/j.exer.2023.109523_bib81) 2004; 71A
Maruri (10.1016/j.exer.2023.109523_bib45) 2020; 119
Wollensak (10.1016/j.exer.2023.109523_bib90) 2009; 87
Wilson (10.1016/j.exer.2023.109523_bib84) 2020; 197
Bradford (10.1016/j.exer.2023.109523_bib7) 2019; 8
Myrna (10.1016/j.exer.2023.109523_bib56) 2012; 53
Mazzotta (10.1016/j.exer.2023.109523_bib46) 2015; 13
Kivanany (10.1016/j.exer.2023.109523_bib37) 2018; 8
Raiskup (10.1016/j.exer.2023.109523_bib70) 2009; 25
de Oliveira (10.1016/j.exer.2023.109523_bib11) 2020; 61
Kim (10.1016/j.exer.2023.109523_bib35) 2006; 312
Santodomingo-Rubido (10.1016/j.exer.2023.109523_bib73) 2022; 45
Bueno (10.1016/j.exer.2023.109523_bib10) 2011; 52
Petroll (10.1016/j.exer.2023.109523_bib61) 2015; 56
Petroll (10.1016/j.exer.2023.109523_bib62) 2012; 3
Mazzotta (10.1016/j.exer.2023.109523_bib47) 2008; 146
Wilson (10.1016/j.exer.2023.109523_bib85) 2022; 79
Jester (10.1016/j.exer.2023.109523_bib29) 1995; 186
Marino (10.1016/j.exer.2023.109523_bib43) 2017; 161
Maruri (10.1016/j.exer.2023.109523_bib44) 2022; 10
Belin (10.1016/j.exer.2023.109523_bib3) 2022; 41
Bradford (10.1016/j.exer.2023.109523_bib8) 2016; 42
Stramer (10.1016/j.exer.2023.109523_bib78) 2003; 44
Iyer (10.1016/j.exer.2023.109523_bib23) 2022; 220
Tomkins (10.1016/j.exer.2023.109523_bib82) 2008; 2
Wilson (10.1016/j.exer.2023.109523_bib83) 2019; 35
Ferrari (10.1016/j.exer.2023.109523_bib15) 2020; 18
Lyon (10.1016/j.exer.2023.109523_bib42) 2015; 6
Stewart (10.1016/j.exer.2023.109523_bib77) 2011; 52
Wollensak (10.1016/j.exer.2023.109523_bib92) 2004; 23
Sivaguru (10.1016/j.exer.2023.109523_bib76) 2010; 18
Dreier (10.1016/j.exer.2023.109523_bib12) 2013; 54
Lasagni Vitar (10.1016/j.exer.2023.109523_bib41) 2022; 14
Garana (10.1016/j.exer.2023.109523_bib16) 1992; 33
Jester (10.1016/j.exer.2023.109523_bib27) 1999; 40
Sharif (10.1016/j.exer.2023.109523_bib74) 2018; 13
Tan (10.1016/j.exer.2023.109523_bib79) 2013; 39
Lakshman (10.1016/j.exer.2023.109523_bib39) 2012; 53
Moller-Pedersen (10.1016/j.exer.2023.109523_bib54) 1998; 39
Jeon (10.1016/j.exer.2023.109523_bib24) 2018; 8
Parker (10.1016/j.exer.2023.109523_bib58) 2015; 60
Raghunathan (10.1016/j.exer.2023.109523_bib68) 2013; 54
Akoto (10.1016/j.exer.2023.109523_bib1) 2023; 24
Jester (10.1016/j.exer.2023.109523_bib31) 2010; 36
Petroll (10.1016/j.exer.2023.109523_bib63) 2015; 13
Jester (10.1016/j.exer.2023.109523_bib26) 2012; 53
Jester (10.1016/j.exer.2023.109523_bib25) 1994; 35
McKay (10.1016/j.exer.2023.109523_bib49) 2017; 7
Bradford (10.1016/j.exer.2023.109523_bib9) 2018; 177
Kim (10.1016/j.exer.2023.109523_bib34) 2010; 51
Beshtawi (10.1016/j.exer.2023.109523_bib4) 2013; 39
Raghunathan (10.1016/j.exer.2023.109523_bib69) 2017; 58
Parsa (10.1016/j.exer.2023.109523_bib59) 2022; 48
Ghibaudo (10.1016/j.exer.2023.109523_bib17) 2009; 97
Pot (10.1016/j.exer.2023.109523_bib66) 2010; 51
Wilson (10.1016/j.exer.2023.109523_bib86) 2022
Young (10.1016/j.exer.2023.109523_bib93) 2014; 111
Blalock (10.1016/j.exer.2023.109523_bib6) 2003; 44
Godefrooij (10.1016/j.exer.2023.109523_bib18) 2017; 175
Hovakimyan (10.1016/j.exer.2023.109523_bib22) 2016; 35
Netto (10.1016/j.exer.2023.109523_bib57) 2005; 24
References_xml – year: 2022
  ident: bib86
  article-title: Fibrosis Is a Basement Membrane-Related Disease in the Cornea: Injury and Defective Regeneration of Basement Membranes May Underlie Fibrosis in Other Organs
  contributor:
    fullname: Wilson
– volume: 25
  start-page: S824
  year: 2009
  end-page: S828
  ident: bib70
  article-title: Permanent corneal haze after riboflavin-UVA-induced cross-linking in keratoconus
  publication-title: J. Refract. Surg.
  contributor:
    fullname: Spoerl
– volume: 9
  year: 2018
  ident: bib38
  article-title: An in vitro model for assessing corneal keratocyte spreading and migration on aligned fibrillar collagen
  publication-title: J. Funct. Biomater.
  contributor:
    fullname: Petroll
– volume: 18
  start-page: 24983
  year: 2010
  end-page: 24993
  ident: bib76
  article-title: Quantitative analysis of collagen fiber organization in injured tendons using Fourier transform-second harmonic generation imaging
  publication-title: Opt Express
  contributor:
    fullname: Toussaint
– volume: 61
  start-page: 28
  year: 2020
  ident: bib11
  article-title: Fibrocytes, wound healing, and corneal fibrosis
  publication-title: Invest. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Wilson
– volume: 8
  year: 2018
  ident: bib37
  article-title: Assessment of corneal stromal remodeling and regeneration after photorefractive keratectomy
  publication-title: Sci. Rep.
  contributor:
    fullname: Petroll
– volume: 6
  start-page: 422
  year: 2015
  end-page: 438
  ident: bib42
  article-title: Human keratoconus cell contractility is mediated by transforming growth factor-beta isoforms
  publication-title: J. Funct. Biomater.
  contributor:
    fullname: Karamichos
– volume: 52
  start-page: 9275
  year: 2011
  end-page: 9278
  ident: bib77
  article-title: Cross-linking with ultraviolet-a and riboflavin reduces corneal permeability
  publication-title: Invest. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Lamy
– volume: 41
  start-page: 1
  year: 2022
  end-page: 11
  ident: bib3
  article-title: Keratoconus: diagnosis and staging
  publication-title: Cornea
  contributor:
    fullname: Borgstrom
– volume: 14
  year: 2022
  ident: bib41
  article-title: Nutritional and metabolic imbalance in keratoconus
  publication-title: Nutrients
  contributor:
    fullname: Ferrari
– volume: 42
  start-page: 297
  year: 1998
  end-page: 319
  ident: bib67
  article-title: Keratoconus
  publication-title: Surv. Ophthalmol.
  contributor:
    fullname: Rabinowitz
– volume: 27
  start-page: 401
  year: 2011
  end-page: 407
  ident: bib71
  article-title: Corneal wound healing after ultraviolet-A/riboflavin collagen cross-linking: a rabbit study
  publication-title: J. Refract. Surg.
  contributor:
    fullname: Wilson
– volume: 177
  start-page: 173
  year: 2018
  end-page: 180
  ident: bib9
  article-title: Collagen fiber crimping following in vivo UVA-induced corneal crosslinking
  publication-title: Exp. Eye Res.
  contributor:
    fullname: Jester
– volume: 85
  start-page: 305
  year: 2007
  end-page: 311
  ident: bib87
  article-title: Apoptosis in the initiation, modulation and termination of the corneal wound healing response
  publication-title: Exp. Eye Res.
  contributor:
    fullname: Medeiros
– volume: 51
  start-page: 864
  year: 2010
  end-page: 875
  ident: bib34
  article-title: Growth factor regulation of corneal keratocyte differentiation and migration in compressed collagen matrices
  publication-title: Invest. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Petroll
– volume: 39
  start-page: 487
  year: 1998
  end-page: 501
  ident: bib54
  article-title: Confocal microscopic characterization of wound repair after photorefractive keratectomy using in vivo confocal microscopy
  publication-title: Invest. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Jester
– volume: 60
  start-page: 459
  year: 2015
  end-page: 480
  ident: bib58
  article-title: Treatment options for advanced keratoconus: a review
  publication-title: Surv. Ophthalmol.
  contributor:
    fullname: Melles
– volume: 44
  start-page: 4237
  year: 2003
  end-page: 4246
  ident: bib78
  article-title: Molecular mechanisms controlling the fibrotic repair phenotype in cornea: implications for surgical outcomes
  publication-title: Invest. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Fini
– volume: 119
  start-page: 1865
  year: 2020
  end-page: 1877
  ident: bib45
  article-title: ECM stiffness controls the activation and contractility of corneal keratocytes in response to TGF-beta1
  publication-title: Biophys. J.
  contributor:
    fullname: Varner
– volume: 24
  start-page: 509
  year: 2005
  end-page: 522
  ident: bib57
  article-title: Wound healing in the cornea: a review of refractive surgery complications and new prospects for therapy
  publication-title: Cornea
  contributor:
    fullname: Wilson
– volume: 79
  start-page: 144
  year: 2022
  ident: bib85
  article-title: Defective perlecan-associated basement membrane regeneration and altered modulation of transforming growth factor beta in corneal fibrosis
  publication-title: Cell. Mol. Life Sci.
  contributor:
    fullname: Wilson
– volume: 35
  start-page: 506
  year: 2019
  end-page: 516
  ident: bib83
  article-title: Coordinated modulation of corneal scarring by the epithelial basement membrane and descemet's basement membrane
  publication-title: J. Refract. Surg.
  contributor:
    fullname: Wilson
– volume: 32
  start-page: e36
  year: 2013
  end-page: e43
  ident: bib65
  article-title: Quantitative 3-dimensional corneal imaging in vivo using a modified HRT-RCM confocal microscope
  publication-title: Cornea
  contributor:
    fullname: Cavanagh
– volume: 104
  start-page: 360
  year: 1997
  end-page: 368
  ident: bib55
  article-title: Quantification of stromal thinning, epithelial thickness, and corneal haze after photorefractive keratectomy using in vivo confocal microscopy
  publication-title: Ophthalmology
  contributor:
    fullname: Jester
– volume: 3
  start-page: 183
  year: 2012
  end-page: 198
  ident: bib62
  article-title: Experimental models for investigating intra-stromal migration of corneal keratocytes, fibroblasts and myofibroblasts
  publication-title: J. Funct. Biomater.
  contributor:
    fullname: Ma
– volume: 121
  start-page: 469
  year: 2014
  end-page: 474
  ident: bib32
  article-title: In vivo confocal microscopy analyses of corneal microstructural changes in a prospective study of collagen cross-linking in keratoconus
  publication-title: Ophthalmology
  contributor:
    fullname: McGhee
– volume: 17
  start-page: 627
  year: 1998
  end-page: 639
  ident: bib52
  article-title: Corneal haze development after PRK is regulated by volume of stromal tissue removal
  publication-title: Cornea
  contributor:
    fullname: Jester
– volume: 42
  start-page: 1660
  year: 2016
  end-page: 1665
  ident: bib8
  article-title: Nonlinear optical corneal collagen crosslinking of ex vivo rabbit eyes
  publication-title: J. Cataract Refract. Surg.
  contributor:
    fullname: Jester
– volume: 51
  start-page: 1373
  year: 2010
  end-page: 1381
  ident: bib66
  article-title: Nanoscale topography-induced modulation of fundamental cell behaviors of rabbit corneal keratocytes, fibroblasts, and myofibroblasts
  publication-title: Invest. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Murphy
– volume: 58
  start-page: 291
  year: 2017
  end-page: 301
  ident: bib69
  article-title: Tissue and cellular biomechanics during corneal wound injury and repair
  publication-title: Acta Biomater.
  contributor:
    fullname: Murphy
– volume: 40
  start-page: 1959
  year: 1999
  end-page: 1967
  ident: bib27
  article-title: Transforming growth factor(beta)-mediated corneal myofibroblast differentiation requires actin and fibronectin assembly
  publication-title: Invest. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Cavanagh
– volume: 7
  year: 2017
  ident: bib49
  article-title: Differential effects of hormones on cellular metabolism in keratoconus in vitro
  publication-title: Sci. Rep.
  contributor:
    fullname: Karamichos
– volume: 45
  year: 2022
  ident: bib73
  article-title: Keratoconus: an updated review
  publication-title: Contact Lens Anterior Eye
  contributor:
    fullname: Wolffsohn
– volume: 53
  start-page: 811
  year: 2012
  end-page: 816
  ident: bib56
  article-title: Substratum topography modulates corneal fibroblast to myofibroblast transformation
  publication-title: Invest. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Murphy
– volume: 135
  start-page: 620
  year: 2003
  end-page: 627
  ident: bib91
  article-title: Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus
  publication-title: Am. J. Ophthalmol.
  contributor:
    fullname: Seiler
– volume: 53
  start-page: 770
  year: 2012
  end-page: 778
  ident: bib26
  article-title: Myofibroblast differentiation modulates keratocyte crystallin protein expression, concentration, and cellular light scattering
  publication-title: Invest. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Vasiliou
– volume: 56
  start-page: 7352
  year: 2015
  end-page: 7361
  ident: bib61
  article-title: Corneal fibroblast migration patterns during intrastromal wound healing correlate with ECM structure and alignment
  publication-title: Invest. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Graham
– volume: 29
  start-page: 412
  year: 2010
  end-page: 417
  ident: bib13
  article-title: Immunofluorescence of rabbit corneas after collagen cross-linking treatment with riboflavin and ultraviolet A
  publication-title: Cornea
  contributor:
    fullname: Bazan
– volume: 52
  start-page: 5325
  year: 2011
  end-page: 5331
  ident: bib10
  article-title: Multiphoton microscopy of ex vivo corneas after collagen cross-linking
  publication-title: Invest. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Artal
– volume: 32
  start-page: 1271
  year: 2018
  end-page: 1281
  ident: bib75
  article-title: Effects of collagen cross-linking on the keratoconus metabolic network
  publication-title: Eye
  contributor:
    fullname: Karamichos
– volume: 8
  start-page: 35
  year: 2019
  ident: bib7
  article-title: Nonlinear optical corneal crosslinking, mechanical stiffening, and corneal flattening using amplified femtosecond pulses
  publication-title: Transl Vis Sci Technol
  contributor:
    fullname: Jester
– volume: 17
  start-page: 356
  year: 2006
  end-page: 360
  ident: bib89
  article-title: Crosslinking treatment of progressive keratoconus: new hope
  publication-title: Curr. Opin. Ophthalmol.
  contributor:
    fullname: Wollensak
– volume: 35
  start-page: 730
  year: 1994
  end-page: 743
  ident: bib25
  article-title: Corneal keratocytes: in situ and in vitro organization of cytoskeletal contractile proteins
  publication-title: Invest. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Cavanagh
– volume: 200
  year: 2020
  ident: bib64
  article-title: Keratocyte mechanobiology
  publication-title: Exp. Eye Res.
  contributor:
    fullname: Schmidtke
– volume: 54
  start-page: 378
  year: 2013
  end-page: 386
  ident: bib68
  article-title: Role of substratum stiffness in modulating genes associated with extracellular matrix and mechanotransducers YAP and TAZ
  publication-title: Invest. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Russell
– volume: 153
  start-page: 56
  year: 2016
  end-page: 64
  ident: bib36
  article-title: Temporal and spatial analysis of stromal cell and extracellular matrix patterning following lamellar keratectomy
  publication-title: Exp. Eye Res.
  contributor:
    fullname: Petroll
– volume: 13
  start-page: 187
  year: 2015
  end-page: 203
  ident: bib63
  article-title: In vivo confocal microscopy of the cornea: new developments in image acquisition, reconstruction, and analysis using the HRT-Rostock Corneal Module
  publication-title: Ocul. Surf.
  contributor:
    fullname: Robertson
– volume: 38
  start-page: 265
  year: 2023
  end-page: 274
  ident: bib5
  article-title: The evolution of diagnostics for keratoconus: from ophthalmometry to biomechanics
  publication-title: Semin. Ophthalmol.
  contributor:
    fullname: Vaddavalli
– volume: 53
  start-page: 1077
  year: 2012
  end-page: 1086
  ident: bib39
  article-title: Growth factor regulation of corneal keratocyte mechanical phenotypes in 3-D collagen matrices
  publication-title: Invest. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Petroll
– volume: 87
  start-page: 48
  year: 2009
  end-page: 51
  ident: bib90
  article-title: Long-term biomechanical properties of rabbit cornea after photodynamic collagen crosslinking
  publication-title: Acta Ophthalmol.
  contributor:
    fullname: Iomdina
– volume: 111
  start-page: 687
  year: 2014
  end-page: 692
  ident: bib93
  article-title: Three-dimensional aspects of matrix assembly by cells in the developing cornea
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  contributor:
    fullname: Quantock
– volume: 56
  start-page: 2764
  year: 2015
  end-page: 2772
  ident: bib88
  article-title: A comparative study of vertebrate corneal structure: the evolution of a refractive lens
  publication-title: Invest. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Jester
– volume: 39
  start-page: 779
  year: 2013
  end-page: 788
  ident: bib79
  article-title: Characterizing the morphologic changes in collagen crosslinked-treated corneas by Fourier transform-second harmonic generation imaging
  publication-title: J. Cataract Refract. Surg.
  contributor:
    fullname: Dong
– volume: 197
  year: 2020
  ident: bib84
  article-title: Corneal wound healing
  publication-title: Exp. Eye Res.
  contributor:
    fullname: Wilson
– volume: 33
  start-page: 3271
  year: 1992
  end-page: 3282
  ident: bib16
  article-title: Radial keratotomy II: the role of the myofibroblast in corneal wound contraction
  publication-title: Invest. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Jester
– volume: 107
  start-page: 1235
  year: 2000
  end-page: 1245
  ident: bib53
  article-title: Stromal wound healing explains refractive instability and haze development after photorefractive keratectomy: a 1-year confocal microscopic study
  publication-title: Ophthalmology
  contributor:
    fullname: Jester
– volume: 13
  year: 2018
  ident: bib74
  article-title: Collagen cross-linking impact on keratoconus extracellular matrix
  publication-title: PLoS One
  contributor:
    fullname: Karamichos
– volume: 49
  start-page: 4377
  year: 2008
  end-page: 4383
  ident: bib14
  article-title: Detection of corneal fibrosis by imaging second harmonic-generated signals in rabbit corneas treated with mitomycin C after excimer laser surface ablation
  publication-title: Invest. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Jester
– volume: 186
  start-page: 301
  year: 1995
  end-page: 311
  ident: bib29
  article-title: Temporal, 3-dimensional, cellular anatomy of corneal wound tissue
  publication-title: J. Anat.
  contributor:
    fullname: Cavanagh
– volume: 220
  year: 2022
  ident: bib23
  article-title: ECM stiffness modulates the proliferation but not the motility of primary corneal keratocytes in response to PDGF-BB
  publication-title: Exp. Eye Res.
  contributor:
    fullname: Varner
– volume: 13
  start-page: 298
  year: 2015
  end-page: 314
  ident: bib46
  article-title: In vivo confocal microscopy after corneal collagen crosslinking
  publication-title: Ocul. Surf.
  contributor:
    fullname: Randleman
– volume: 54
  start-page: 5901
  year: 2013
  end-page: 5907
  ident: bib12
  article-title: Substratum compliance modulates corneal fibroblast to myofibroblast transformation
  publication-title: Invest. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Murphy
– volume: 11
  start-page: 9
  year: 2022
  ident: bib72
  article-title: Topical losartan and corticosteroid additively inhibit corneal stromal myofibroblast generation and scarring fibrosis after alkali burn injury
  publication-title: Transl Vis Sci Technol
  contributor:
    fullname: Wilson
– volume: 76
  start-page: 71
  year: 2003
  end-page: 87
  ident: bib51
  article-title: Apoptosis, necrosis, proliferation, and myofibroblast generation in the stroma following LASIK and PRK
  publication-title: Exp. Eye Res.
  contributor:
    fullname: Wilson
– volume: 32
  start-page: 111
  year: 2013
  end-page: 117
  ident: bib50
  article-title: Morphological and immunohistochemical changes after corneal cross-linking
  publication-title: Cornea
  contributor:
    fullname: Auw-Haedrich
– volume: 18
  start-page: 311
  year: 1999
  end-page: 356
  ident: bib30
  article-title: Corneal stromal wound healing in refractive surgery: the role of the myofibroblast
  publication-title: Prog. Retin. Eye Res.
  contributor:
    fullname: Cavanagh
– volume: 36
  start-page: 260
  year: 2010
  end-page: 264
  ident: bib31
  article-title: Evaluating corneal collagen organization using high-resolution nonlinear optical macroscopy
  publication-title: Eye Contact Lens
  contributor:
    fullname: Brown
– volume: 6
  year: 2016
  ident: bib48
  article-title: Endocrine and metabolic pathways linked to keratoconus: implications for the role of hormones in the stromal microenvironment
  publication-title: Sci. Rep.
  contributor:
    fullname: Karamichos
– volume: 21
  start-page: 99
  year: 2019
  ident: bib40
  article-title: A high-throughput microfluidic method for fabricating aligned collagen fibrils to study Keratocyte behavior
  publication-title: Biomed. Microdevices
  contributor:
    fullname: Schmidtke
– volume: 112
  start-page: 613
  year: 1999
  end-page: 622
  ident: bib28
  article-title: The cellular basis of corneal transparency: evidence for 'corneal crystallins'
  publication-title: J. Cell Sci.
  contributor:
    fullname: Piatigorsky
– volume: 44
  start-page: 1879
  year: 2003
  end-page: 1887
  ident: bib6
  article-title: Connective tissue growth factor expression and action in human corneal fibroblast cultures and rat corneas after photorefractive keratectomy
  publication-title: Invest. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Schultz
– volume: 2
  start-page: 863
  year: 2008
  end-page: 867
  ident: bib82
  article-title: Collagen cross-linking: strengthening the unstable cornea
  publication-title: Clin. Ophthalmol.
  contributor:
    fullname: Garzozi
– volume: 88
  year: 2022
  ident: bib33
  article-title: Anterior pituitary, sex hormones, and keratoconus: beyond traditional targets
  publication-title: Prog. Retin. Eye Res.
  contributor:
    fullname: Riaz
– volume: 175
  start-page: 169
  year: 2017
  end-page: 172
  ident: bib18
  article-title: Age-specific incidence and prevalence of keratoconus: a nationwide registration study
  publication-title: Am. J. Ophthalmol.
  contributor:
    fullname: Wisse
– volume: 109
  start-page: 489
  year: 2015
  end-page: 500
  ident: bib19
  article-title: Dissecting collective cell behavior in polarization and alignment on micropatterned substrates
  publication-title: Biophys. J.
  contributor:
    fullname: Ji
– volume: 35
  start-page: 1638
  year: 2016
  end-page: 1643
  ident: bib22
  article-title: Matrix-based regenerating agent for corneal wound healing after collagen cross-linking
  publication-title: Cornea
  contributor:
    fullname: Guthoff
– volume: 312
  start-page: 3683
  year: 2006
  end-page: 3692
  ident: bib35
  article-title: Quantitative assessment of local collagen matrix remodeling in 3-D culture: the role of Rho kinase
  publication-title: Exp. Cell Res.
  contributor:
    fullname: Petroll
– volume: 71A
  start-page: 369
  year: 2004
  end-page: 376
  ident: bib81
  article-title: Responses of human keratocytes to micro- and nanostructured substrates
  publication-title: J. Biomed. Mater. Res.
  contributor:
    fullname: Murphy
– volume: 146
  start-page: 527
  year: 2008
  end-page: 533
  ident: bib47
  article-title: Corneal healing after riboflavin ultraviolet-A collagen cross-linking determined by confocal laser scanning microscopy in vivo: early and late modifications
  publication-title: Am. J. Ophthalmol.
  contributor:
    fullname: Caporossi
– volume: 24
  year: 2023
  ident: bib1
  article-title: Unravelling the impact of cyclic mechanical stretch in keratoconus-A transcriptomic profiling study
  publication-title: Int. J. Mol. Sci.
  contributor:
    fullname: Liu
– volume: 18
  start-page: 363
  year: 2020
  end-page: 373
  ident: bib15
  article-title: The keratoconus enigma: a review with emphasis on pathogenesis
  publication-title: Ocul. Surf.
  contributor:
    fullname: Rama
– volume: 14
  start-page: 64
  year: 2019
  end-page: 66
  ident: bib60
  article-title: Late onset corneal haze after corneal cross-linking for progressive keratoconus
  publication-title: Am J Ophthalmol Case Rep
  contributor:
    fullname: Parikakis
– volume: 39
  start-page: 451
  year: 2013
  end-page: 462
  ident: bib4
  article-title: Biomechanical properties of corneal tissue after ultraviolet-A-riboflavin crosslinking
  publication-title: J. Cataract Refract. Surg.
  contributor:
    fullname: Radhakrishnan
– volume: 97
  start-page: 357
  year: 2009
  end-page: 368
  ident: bib17
  article-title: Substrate topography induces a crossover from 2D to 3D behavior in fibroblast migration
  publication-title: Biophys. J.
  contributor:
    fullname: Ladoux
– volume: 45
  start-page: 1670
  year: 2019
  end-page: 1679
  ident: bib2
  article-title: Corneal crosslinking: current protocols and clinical approach
  publication-title: J. Cataract Refract. Surg.
  contributor:
    fullname: Committee
– volume: 8
  year: 2018
  ident: bib24
  article-title: Corneal myofibroblasts inhibit regenerating nerves during wound healing
  publication-title: Sci. Rep.
  contributor:
    fullname: Huxlin
– volume: 48
  start-page: 308
  year: 2022
  end-page: 312
  ident: bib59
  article-title: Temporal and spatial assessment of the corneal response to UV cross-linking using 3-dimensional in vivo confocal microscopy
  publication-title: Eye Contact Lens
  contributor:
    fullname: Petroll
– volume: 39
  start-page: 276
  year: 1998
  end-page: 283
  ident: bib20
  article-title: Keratocyte apoptosis after corneal surgery
  publication-title: Invest. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Wilson
– volume: 39
  start-page: 899
  year: 2011
  end-page: 909
  ident: bib21
  article-title: In vivo confocal laser-scanning microscopy to characterize wound repair in rabbit corneas after collagen cross-linking
  publication-title: Clin. Exp. Ophthalmol.
  contributor:
    fullname: Stachs
– volume: 161
  start-page: 101
  year: 2017
  end-page: 105
  ident: bib43
  article-title: Epithelial basement membrane injury and regeneration modulates corneal fibrosis after pseudomonas corneal ulcers in rabbits
  publication-title: Exp. Eye Res.
  contributor:
    fullname: Wilson
– volume: 10
  year: 2022
  ident: bib44
  article-title: Signaling downstream of focal adhesions regulates stiffness-dependent differences in the TGF-beta1-mediated myofibroblast differentiation of corneal keratocytes
  publication-title: Front. Cell Dev. Biol.
  contributor:
    fullname: Varner
– volume: 23
  start-page: 43
  year: 2004
  end-page: 49
  ident: bib92
  article-title: Keratocyte apoptosis after corneal collagen cross-linking using riboflavin/UVA treatment
  publication-title: Cornea
  contributor:
    fullname: Seiler
– volume: 116
  start-page: 1881
  year: 2003
  end-page: 1892
  ident: bib80
  article-title: Epithelial contact guidance on well-defined micro- and nanostructured substrates
  publication-title: J. Cell Sci.
  contributor:
    fullname: Nealey
– volume: 88
  year: 2022
  ident: 10.1016/j.exer.2023.109523_bib33
  article-title: Anterior pituitary, sex hormones, and keratoconus: beyond traditional targets
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2021.101016
  contributor:
    fullname: Karamichos
– volume: 135
  start-page: 620
  year: 2003
  ident: 10.1016/j.exer.2023.109523_bib91
  article-title: Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/S0002-9394(02)02220-1
  contributor:
    fullname: Wollensak
– volume: 119
  start-page: 1865
  year: 2020
  ident: 10.1016/j.exer.2023.109523_bib45
  article-title: ECM stiffness controls the activation and contractility of corneal keratocytes in response to TGF-beta1
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2020.08.040
  contributor:
    fullname: Maruri
– volume: 3
  start-page: 183
  year: 2012
  ident: 10.1016/j.exer.2023.109523_bib62
  article-title: Experimental models for investigating intra-stromal migration of corneal keratocytes, fibroblasts and myofibroblasts
  publication-title: J. Funct. Biomater.
  doi: 10.3390/jfb3010183
  contributor:
    fullname: Petroll
– volume: 87
  start-page: 48
  year: 2009
  ident: 10.1016/j.exer.2023.109523_bib90
  article-title: Long-term biomechanical properties of rabbit cornea after photodynamic collagen crosslinking
  publication-title: Acta Ophthalmol.
  doi: 10.1111/j.1755-3768.2008.01190.x
  contributor:
    fullname: Wollensak
– volume: 39
  start-page: 899
  year: 2011
  ident: 10.1016/j.exer.2023.109523_bib21
  article-title: In vivo confocal laser-scanning microscopy to characterize wound repair in rabbit corneas after collagen cross-linking
  publication-title: Clin. Exp. Ophthalmol.
  doi: 10.1111/j.1442-9071.2011.02634.x
  contributor:
    fullname: Hovakimyan
– volume: 186
  start-page: 301
  issue: Pt 2
  year: 1995
  ident: 10.1016/j.exer.2023.109523_bib29
  article-title: Temporal, 3-dimensional, cellular anatomy of corneal wound tissue
  publication-title: J. Anat.
  contributor:
    fullname: Jester
– volume: 58
  start-page: 291
  year: 2017
  ident: 10.1016/j.exer.2023.109523_bib69
  article-title: Tissue and cellular biomechanics during corneal wound injury and repair
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.05.051
  contributor:
    fullname: Raghunathan
– volume: 7
  year: 2017
  ident: 10.1016/j.exer.2023.109523_bib49
  article-title: Differential effects of hormones on cellular metabolism in keratoconus in vitro
  publication-title: Sci. Rep.
  doi: 10.1038/srep42896
  contributor:
    fullname: McKay
– volume: 13
  start-page: 298
  year: 2015
  ident: 10.1016/j.exer.2023.109523_bib46
  article-title: In vivo confocal microscopy after corneal collagen crosslinking
  publication-title: Ocul. Surf.
  doi: 10.1016/j.jtos.2015.04.007
  contributor:
    fullname: Mazzotta
– volume: 24
  year: 2023
  ident: 10.1016/j.exer.2023.109523_bib1
  article-title: Unravelling the impact of cyclic mechanical stretch in keratoconus-A transcriptomic profiling study
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms24087437
  contributor:
    fullname: Akoto
– volume: 13
  start-page: 187
  year: 2015
  ident: 10.1016/j.exer.2023.109523_bib63
  article-title: In vivo confocal microscopy of the cornea: new developments in image acquisition, reconstruction, and analysis using the HRT-Rostock Corneal Module
  publication-title: Ocul. Surf.
  doi: 10.1016/j.jtos.2015.05.002
  contributor:
    fullname: Petroll
– volume: 27
  start-page: 401
  year: 2011
  ident: 10.1016/j.exer.2023.109523_bib71
  article-title: Corneal wound healing after ultraviolet-A/riboflavin collagen cross-linking: a rabbit study
  publication-title: J. Refract. Surg.
  doi: 10.3928/1081597X-20101201-02
  contributor:
    fullname: Salomao
– volume: 79
  start-page: 144
  year: 2022
  ident: 10.1016/j.exer.2023.109523_bib85
  article-title: Defective perlecan-associated basement membrane regeneration and altered modulation of transforming growth factor beta in corneal fibrosis
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-022-04184-7
  contributor:
    fullname: Wilson
– volume: 18
  start-page: 311
  year: 1999
  ident: 10.1016/j.exer.2023.109523_bib30
  article-title: Corneal stromal wound healing in refractive surgery: the role of the myofibroblast
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/S1350-9462(98)00021-4
  contributor:
    fullname: Jester
– volume: 53
  start-page: 770
  year: 2012
  ident: 10.1016/j.exer.2023.109523_bib26
  article-title: Myofibroblast differentiation modulates keratocyte crystallin protein expression, concentration, and cellular light scattering
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.11-9092
  contributor:
    fullname: Jester
– volume: 51
  start-page: 1373
  year: 2010
  ident: 10.1016/j.exer.2023.109523_bib66
  article-title: Nanoscale topography-induced modulation of fundamental cell behaviors of rabbit corneal keratocytes, fibroblasts, and myofibroblasts
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.09-4074
  contributor:
    fullname: Pot
– volume: 112
  start-page: 613
  year: 1999
  ident: 10.1016/j.exer.2023.109523_bib28
  article-title: The cellular basis of corneal transparency: evidence for 'corneal crystallins'
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.112.5.613
  contributor:
    fullname: Jester
– volume: 14
  start-page: 64
  year: 2019
  ident: 10.1016/j.exer.2023.109523_bib60
  article-title: Late onset corneal haze after corneal cross-linking for progressive keratoconus
  publication-title: Am J Ophthalmol Case Rep
  doi: 10.1016/j.ajoc.2019.02.008
  contributor:
    fullname: Peponis
– volume: 197
  year: 2020
  ident: 10.1016/j.exer.2023.109523_bib84
  article-title: Corneal wound healing
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2020.108089
  contributor:
    fullname: Wilson
– volume: 56
  start-page: 2764
  year: 2015
  ident: 10.1016/j.exer.2023.109523_bib88
  article-title: A comparative study of vertebrate corneal structure: the evolution of a refractive lens
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.15-16584
  contributor:
    fullname: Winkler
– volume: 32
  start-page: 1271
  year: 2018
  ident: 10.1016/j.exer.2023.109523_bib75
  article-title: Effects of collagen cross-linking on the keratoconus metabolic network
  publication-title: Eye
  doi: 10.1038/s41433-018-0075-6
  contributor:
    fullname: Sharif
– volume: 116
  start-page: 1881
  year: 2003
  ident: 10.1016/j.exer.2023.109523_bib80
  article-title: Epithelial contact guidance on well-defined micro- and nanostructured substrates
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.00383
  contributor:
    fullname: Teixeira
– volume: 36
  start-page: 260
  year: 2010
  ident: 10.1016/j.exer.2023.109523_bib31
  article-title: Evaluating corneal collagen organization using high-resolution nonlinear optical macroscopy
  publication-title: Eye Contact Lens
  doi: 10.1097/ICL.0b013e3181ee8992
  contributor:
    fullname: Jester
– year: 2022
  ident: 10.1016/j.exer.2023.109523_bib86
  contributor:
    fullname: Wilson
– volume: 312
  start-page: 3683
  year: 2006
  ident: 10.1016/j.exer.2023.109523_bib35
  article-title: Quantitative assessment of local collagen matrix remodeling in 3-D culture: the role of Rho kinase
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2006.08.009
  contributor:
    fullname: Kim
– volume: 39
  start-page: 276
  year: 1998
  ident: 10.1016/j.exer.2023.109523_bib20
  article-title: Keratocyte apoptosis after corneal surgery
  publication-title: Invest. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Helena
– volume: 220
  year: 2022
  ident: 10.1016/j.exer.2023.109523_bib23
  article-title: ECM stiffness modulates the proliferation but not the motility of primary corneal keratocytes in response to PDGF-BB
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2022.109112
  contributor:
    fullname: Iyer
– volume: 42
  start-page: 1660
  year: 2016
  ident: 10.1016/j.exer.2023.109523_bib8
  article-title: Nonlinear optical corneal collagen crosslinking of ex vivo rabbit eyes
  publication-title: J. Cataract Refract. Surg.
  doi: 10.1016/j.jcrs.2016.06.040
  contributor:
    fullname: Bradford
– volume: 97
  start-page: 357
  year: 2009
  ident: 10.1016/j.exer.2023.109523_bib17
  article-title: Substrate topography induces a crossover from 2D to 3D behavior in fibroblast migration
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2009.04.024
  contributor:
    fullname: Ghibaudo
– volume: 17
  start-page: 356
  year: 2006
  ident: 10.1016/j.exer.2023.109523_bib89
  article-title: Crosslinking treatment of progressive keratoconus: new hope
  publication-title: Curr. Opin. Ophthalmol.
  doi: 10.1097/01.icu.0000233954.86723.25
  contributor:
    fullname: Wollensak
– volume: 32
  start-page: 111
  year: 2013
  ident: 10.1016/j.exer.2023.109523_bib50
  article-title: Morphological and immunohistochemical changes after corneal cross-linking
  publication-title: Cornea
  doi: 10.1097/ICO.0b013e31824d701b
  contributor:
    fullname: Messmer
– volume: 8
  year: 2018
  ident: 10.1016/j.exer.2023.109523_bib37
  article-title: Assessment of corneal stromal remodeling and regeneration after photorefractive keratectomy
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-30372-2
  contributor:
    fullname: Kivanany
– volume: 29
  start-page: 412
  year: 2010
  ident: 10.1016/j.exer.2023.109523_bib13
  article-title: Immunofluorescence of rabbit corneas after collagen cross-linking treatment with riboflavin and ultraviolet A
  publication-title: Cornea
  doi: 10.1097/ICO.0b013e3181bdf1cc
  contributor:
    fullname: Esquenazi
– volume: 42
  start-page: 297
  year: 1998
  ident: 10.1016/j.exer.2023.109523_bib67
  article-title: Keratoconus
  publication-title: Surv. Ophthalmol.
  doi: 10.1016/S0039-6257(97)00119-7
  contributor:
    fullname: Rabinowitz
– volume: 52
  start-page: 9275
  year: 2011
  ident: 10.1016/j.exer.2023.109523_bib77
  article-title: Cross-linking with ultraviolet-a and riboflavin reduces corneal permeability
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.11-8155
  contributor:
    fullname: Stewart
– volume: 11
  start-page: 9
  year: 2022
  ident: 10.1016/j.exer.2023.109523_bib72
  article-title: Topical losartan and corticosteroid additively inhibit corneal stromal myofibroblast generation and scarring fibrosis after alkali burn injury
  publication-title: Transl Vis Sci Technol
  doi: 10.1167/tvst.11.7.9
  contributor:
    fullname: Sampaio
– volume: 177
  start-page: 173
  year: 2018
  ident: 10.1016/j.exer.2023.109523_bib9
  article-title: Collagen fiber crimping following in vivo UVA-induced corneal crosslinking
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2018.08.009
  contributor:
    fullname: Bradford
– volume: 45
  year: 2022
  ident: 10.1016/j.exer.2023.109523_bib73
  article-title: Keratoconus: an updated review
  publication-title: Contact Lens Anterior Eye
  doi: 10.1016/j.clae.2021.101559
  contributor:
    fullname: Santodomingo-Rubido
– volume: 49
  start-page: 4377
  year: 2008
  ident: 10.1016/j.exer.2023.109523_bib14
  article-title: Detection of corneal fibrosis by imaging second harmonic-generated signals in rabbit corneas treated with mitomycin C after excimer laser surface ablation
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.08-1983
  contributor:
    fullname: Farid
– volume: 38
  start-page: 265
  year: 2023
  ident: 10.1016/j.exer.2023.109523_bib5
  article-title: The evolution of diagnostics for keratoconus: from ophthalmometry to biomechanics
  publication-title: Semin. Ophthalmol.
  doi: 10.1080/08820538.2022.2152716
  contributor:
    fullname: Bevara
– volume: 54
  start-page: 5901
  year: 2013
  ident: 10.1016/j.exer.2023.109523_bib12
  article-title: Substratum compliance modulates corneal fibroblast to myofibroblast transformation
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.12-11575
  contributor:
    fullname: Dreier
– volume: 71A
  start-page: 369
  year: 2004
  ident: 10.1016/j.exer.2023.109523_bib81
  article-title: Responses of human keratocytes to micro- and nanostructured substrates
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.a.30089
  contributor:
    fullname: Teixeira
– volume: 52
  start-page: 5325
  year: 2011
  ident: 10.1016/j.exer.2023.109523_bib10
  article-title: Multiphoton microscopy of ex vivo corneas after collagen cross-linking
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.11-7184
  contributor:
    fullname: Bueno
– volume: 44
  start-page: 4237
  year: 2003
  ident: 10.1016/j.exer.2023.109523_bib78
  article-title: Molecular mechanisms controlling the fibrotic repair phenotype in cornea: implications for surgical outcomes
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.02-1188
  contributor:
    fullname: Stramer
– volume: 53
  start-page: 811
  year: 2012
  ident: 10.1016/j.exer.2023.109523_bib56
  article-title: Substratum topography modulates corneal fibroblast to myofibroblast transformation
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.11-7982
  contributor:
    fullname: Myrna
– volume: 35
  start-page: 506
  year: 2019
  ident: 10.1016/j.exer.2023.109523_bib83
  article-title: Coordinated modulation of corneal scarring by the epithelial basement membrane and descemet's basement membrane
  publication-title: J. Refract. Surg.
  doi: 10.3928/1081597X-20190625-02
  contributor:
    fullname: Wilson
– volume: 24
  start-page: 509
  year: 2005
  ident: 10.1016/j.exer.2023.109523_bib57
  article-title: Wound healing in the cornea: a review of refractive surgery complications and new prospects for therapy
  publication-title: Cornea
  doi: 10.1097/01.ico.0000151544.23360.17
  contributor:
    fullname: Netto
– volume: 41
  start-page: 1
  year: 2022
  ident: 10.1016/j.exer.2023.109523_bib3
  article-title: Keratoconus: diagnosis and staging
  publication-title: Cornea
  doi: 10.1097/ICO.0000000000002781
  contributor:
    fullname: Belin
– volume: 61
  start-page: 28
  year: 2020
  ident: 10.1016/j.exer.2023.109523_bib11
  article-title: Fibrocytes, wound healing, and corneal fibrosis
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.61.2.28
  contributor:
    fullname: de Oliveira
– volume: 44
  start-page: 1879
  year: 2003
  ident: 10.1016/j.exer.2023.109523_bib6
  article-title: Connective tissue growth factor expression and action in human corneal fibroblast cultures and rat corneas after photorefractive keratectomy
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.02-0860
  contributor:
    fullname: Blalock
– volume: 54
  start-page: 378
  year: 2013
  ident: 10.1016/j.exer.2023.109523_bib68
  article-title: Role of substratum stiffness in modulating genes associated with extracellular matrix and mechanotransducers YAP and TAZ
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.12-11007
  contributor:
    fullname: Raghunathan
– volume: 17
  start-page: 627
  year: 1998
  ident: 10.1016/j.exer.2023.109523_bib52
  article-title: Corneal haze development after PRK is regulated by volume of stromal tissue removal
  publication-title: Cornea
  doi: 10.1097/00003226-199811000-00011
  contributor:
    fullname: Moller-Pedersen
– volume: 121
  start-page: 469
  year: 2014
  ident: 10.1016/j.exer.2023.109523_bib32
  article-title: In vivo confocal microscopy analyses of corneal microstructural changes in a prospective study of collagen cross-linking in keratoconus
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2013.09.014
  contributor:
    fullname: Jordan
– volume: 40
  start-page: 1959
  year: 1999
  ident: 10.1016/j.exer.2023.109523_bib27
  article-title: Transforming growth factor(beta)-mediated corneal myofibroblast differentiation requires actin and fibronectin assembly
  publication-title: Invest. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Jester
– volume: 53
  start-page: 1077
  year: 2012
  ident: 10.1016/j.exer.2023.109523_bib39
  article-title: Growth factor regulation of corneal keratocyte mechanical phenotypes in 3-D collagen matrices
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.11-8609
  contributor:
    fullname: Lakshman
– volume: 8
  year: 2018
  ident: 10.1016/j.exer.2023.109523_bib24
  article-title: Corneal myofibroblasts inhibit regenerating nerves during wound healing
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-30964-y
  contributor:
    fullname: Jeon
– volume: 175
  start-page: 169
  year: 2017
  ident: 10.1016/j.exer.2023.109523_bib18
  article-title: Age-specific incidence and prevalence of keratoconus: a nationwide registration study
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2016.12.015
  contributor:
    fullname: Godefrooij
– volume: 25
  start-page: S824
  year: 2009
  ident: 10.1016/j.exer.2023.109523_bib70
  article-title: Permanent corneal haze after riboflavin-UVA-induced cross-linking in keratoconus
  publication-title: J. Refract. Surg.
  doi: 10.3928/1081597X-20090813-12
  contributor:
    fullname: Raiskup
– volume: 45
  start-page: 1670
  year: 2019
  ident: 10.1016/j.exer.2023.109523_bib2
  article-title: Corneal crosslinking: current protocols and clinical approach
  publication-title: J. Cataract Refract. Surg.
  doi: 10.1016/j.jcrs.2019.06.027
  contributor:
    fullname: Beckman
– volume: 200
  year: 2020
  ident: 10.1016/j.exer.2023.109523_bib64
  article-title: Keratocyte mechanobiology
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2020.108228
  contributor:
    fullname: Petroll
– volume: 85
  start-page: 305
  year: 2007
  ident: 10.1016/j.exer.2023.109523_bib87
  article-title: Apoptosis in the initiation, modulation and termination of the corneal wound healing response
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2007.06.009
  contributor:
    fullname: Wilson
– volume: 10
  year: 2022
  ident: 10.1016/j.exer.2023.109523_bib44
  article-title: Signaling downstream of focal adhesions regulates stiffness-dependent differences in the TGF-beta1-mediated myofibroblast differentiation of corneal keratocytes
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2022.886759
  contributor:
    fullname: Maruri
– volume: 35
  start-page: 1638
  year: 2016
  ident: 10.1016/j.exer.2023.109523_bib22
  article-title: Matrix-based regenerating agent for corneal wound healing after collagen cross-linking
  publication-title: Cornea
  doi: 10.1097/ICO.0000000000001047
  contributor:
    fullname: Hovakimyan
– volume: 9
  year: 2018
  ident: 10.1016/j.exer.2023.109523_bib38
  article-title: An in vitro model for assessing corneal keratocyte spreading and migration on aligned fibrillar collagen
  publication-title: J. Funct. Biomater.
  doi: 10.3390/jfb9040054
  contributor:
    fullname: Kivanany
– volume: 21
  start-page: 99
  year: 2019
  ident: 10.1016/j.exer.2023.109523_bib40
  article-title: A high-throughput microfluidic method for fabricating aligned collagen fibrils to study Keratocyte behavior
  publication-title: Biomed. Microdevices
  doi: 10.1007/s10544-019-0436-3
  contributor:
    fullname: Lam
– volume: 48
  start-page: 308
  year: 2022
  ident: 10.1016/j.exer.2023.109523_bib59
  article-title: Temporal and spatial assessment of the corneal response to UV cross-linking using 3-dimensional in vivo confocal microscopy
  publication-title: Eye Contact Lens
  doi: 10.1097/ICL.0000000000000892
  contributor:
    fullname: Parsa
– volume: 111
  start-page: 687
  year: 2014
  ident: 10.1016/j.exer.2023.109523_bib93
  article-title: Three-dimensional aspects of matrix assembly by cells in the developing cornea
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1313561110
  contributor:
    fullname: Young
– volume: 18
  start-page: 24983
  year: 2010
  ident: 10.1016/j.exer.2023.109523_bib76
  article-title: Quantitative analysis of collagen fiber organization in injured tendons using Fourier transform-second harmonic generation imaging
  publication-title: Opt Express
  doi: 10.1364/OE.18.024983
  contributor:
    fullname: Sivaguru
– volume: 6
  year: 2016
  ident: 10.1016/j.exer.2023.109523_bib48
  article-title: Endocrine and metabolic pathways linked to keratoconus: implications for the role of hormones in the stromal microenvironment
  publication-title: Sci. Rep.
  doi: 10.1038/srep25534
  contributor:
    fullname: McKay
– volume: 35
  start-page: 730
  year: 1994
  ident: 10.1016/j.exer.2023.109523_bib25
  article-title: Corneal keratocytes: in situ and in vitro organization of cytoskeletal contractile proteins
  publication-title: Invest. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Jester
– volume: 161
  start-page: 101
  year: 2017
  ident: 10.1016/j.exer.2023.109523_bib43
  article-title: Epithelial basement membrane injury and regeneration modulates corneal fibrosis after pseudomonas corneal ulcers in rabbits
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2017.05.003
  contributor:
    fullname: Marino
– volume: 51
  start-page: 864
  year: 2010
  ident: 10.1016/j.exer.2023.109523_bib34
  article-title: Growth factor regulation of corneal keratocyte differentiation and migration in compressed collagen matrices
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.09-4200
  contributor:
    fullname: Kim
– volume: 14
  year: 2022
  ident: 10.1016/j.exer.2023.109523_bib41
  article-title: Nutritional and metabolic imbalance in keratoconus
  publication-title: Nutrients
  doi: 10.3390/nu14040913
  contributor:
    fullname: Lasagni Vitar
– volume: 107
  start-page: 1235
  year: 2000
  ident: 10.1016/j.exer.2023.109523_bib53
  article-title: Stromal wound healing explains refractive instability and haze development after photorefractive keratectomy: a 1-year confocal microscopic study
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(00)00142-1
  contributor:
    fullname: Moller-Pedersen
– volume: 18
  start-page: 363
  year: 2020
  ident: 10.1016/j.exer.2023.109523_bib15
  article-title: The keratoconus enigma: a review with emphasis on pathogenesis
  publication-title: Ocul. Surf.
  doi: 10.1016/j.jtos.2020.03.006
  contributor:
    fullname: Ferrari
– volume: 60
  start-page: 459
  year: 2015
  ident: 10.1016/j.exer.2023.109523_bib58
  article-title: Treatment options for advanced keratoconus: a review
  publication-title: Surv. Ophthalmol.
  doi: 10.1016/j.survophthal.2015.02.004
  contributor:
    fullname: Parker
– volume: 39
  start-page: 779
  year: 2013
  ident: 10.1016/j.exer.2023.109523_bib79
  article-title: Characterizing the morphologic changes in collagen crosslinked-treated corneas by Fourier transform-second harmonic generation imaging
  publication-title: J. Cataract Refract. Surg.
  doi: 10.1016/j.jcrs.2012.11.036
  contributor:
    fullname: Tan
– volume: 153
  start-page: 56
  year: 2016
  ident: 10.1016/j.exer.2023.109523_bib36
  article-title: Temporal and spatial analysis of stromal cell and extracellular matrix patterning following lamellar keratectomy
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2016.10.009
  contributor:
    fullname: Kivanany
– volume: 39
  start-page: 451
  year: 2013
  ident: 10.1016/j.exer.2023.109523_bib4
  article-title: Biomechanical properties of corneal tissue after ultraviolet-A-riboflavin crosslinking
  publication-title: J. Cataract Refract. Surg.
  doi: 10.1016/j.jcrs.2013.01.026
  contributor:
    fullname: Beshtawi
– volume: 104
  start-page: 360
  year: 1997
  ident: 10.1016/j.exer.2023.109523_bib55
  article-title: Quantification of stromal thinning, epithelial thickness, and corneal haze after photorefractive keratectomy using in vivo confocal microscopy
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(97)30307-8
  contributor:
    fullname: Moller-Pedersen
– volume: 23
  start-page: 43
  year: 2004
  ident: 10.1016/j.exer.2023.109523_bib92
  article-title: Keratocyte apoptosis after corneal collagen cross-linking using riboflavin/UVA treatment
  publication-title: Cornea
  doi: 10.1097/00003226-200401000-00008
  contributor:
    fullname: Wollensak
– volume: 6
  start-page: 422
  year: 2015
  ident: 10.1016/j.exer.2023.109523_bib42
  article-title: Human keratoconus cell contractility is mediated by transforming growth factor-beta isoforms
  publication-title: J. Funct. Biomater.
  doi: 10.3390/jfb6020422
  contributor:
    fullname: Lyon
– volume: 146
  start-page: 527
  year: 2008
  ident: 10.1016/j.exer.2023.109523_bib47
  article-title: Corneal healing after riboflavin ultraviolet-A collagen cross-linking determined by confocal laser scanning microscopy in vivo: early and late modifications
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2008.05.042
  contributor:
    fullname: Mazzotta
– volume: 76
  start-page: 71
  year: 2003
  ident: 10.1016/j.exer.2023.109523_bib51
  article-title: Apoptosis, necrosis, proliferation, and myofibroblast generation in the stroma following LASIK and PRK
  publication-title: Exp. Eye Res.
  doi: 10.1016/S0014-4835(02)00251-8
  contributor:
    fullname: Mohan
– volume: 33
  start-page: 3271
  year: 1992
  ident: 10.1016/j.exer.2023.109523_bib16
  article-title: Radial keratotomy II: the role of the myofibroblast in corneal wound contraction
  publication-title: Invest. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Garana
– volume: 8
  start-page: 35
  year: 2019
  ident: 10.1016/j.exer.2023.109523_bib7
  article-title: Nonlinear optical corneal crosslinking, mechanical stiffening, and corneal flattening using amplified femtosecond pulses
  publication-title: Transl Vis Sci Technol
  doi: 10.1167/tvst.8.6.35
  contributor:
    fullname: Bradford
– volume: 109
  start-page: 489
  year: 2015
  ident: 10.1016/j.exer.2023.109523_bib19
  article-title: Dissecting collective cell behavior in polarization and alignment on micropatterned substrates
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2015.06.058
  contributor:
    fullname: He
– volume: 39
  start-page: 487
  year: 1998
  ident: 10.1016/j.exer.2023.109523_bib54
  article-title: Confocal microscopic characterization of wound repair after photorefractive keratectomy using in vivo confocal microscopy
  publication-title: Invest. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Moller-Pedersen
– volume: 32
  start-page: e36
  year: 2013
  ident: 10.1016/j.exer.2023.109523_bib65
  article-title: Quantitative 3-dimensional corneal imaging in vivo using a modified HRT-RCM confocal microscope
  publication-title: Cornea
  doi: 10.1097/ICO.0b013e31825ec44e
  contributor:
    fullname: Petroll
– volume: 13
  year: 2018
  ident: 10.1016/j.exer.2023.109523_bib74
  article-title: Collagen cross-linking impact on keratoconus extracellular matrix
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0200704
  contributor:
    fullname: Sharif
– volume: 2
  start-page: 863
  year: 2008
  ident: 10.1016/j.exer.2023.109523_bib82
  article-title: Collagen cross-linking: strengthening the unstable cornea
  publication-title: Clin. Ophthalmol.
  doi: 10.2147/OPTH.S2800
  contributor:
    fullname: Tomkins
– volume: 56
  start-page: 7352
  year: 2015
  ident: 10.1016/j.exer.2023.109523_bib61
  article-title: Corneal fibroblast migration patterns during intrastromal wound healing correlate with ECM structure and alignment
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.15-17978
  contributor:
    fullname: Petroll
SSID ssj0003474
Score 2.431599
Snippet Previous studies have demonstrated that UV cross-linking (CXL) increases stromal stiffness and produces alterations in extracellular matrix (ECM)...
SourceID pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 109523
SubjectTerms Actins - metabolism
Animals
Cell Differentiation
Cell Movement
Confocal microscopy
Corneal cross-linking
Corneal Stroma - metabolism
Corneal wound healing
Cross-Linking Reagents - pharmacology
Extracellular matrix
Fibrosis
Photorefractive Keratectomy
Rabbits
Second harmonic generation imaging
Wound Healing
Title The impact of UV cross-linking on corneal stromal cell migration, differentiation and patterning
URI https://dx.doi.org/10.1016/j.exer.2023.109523
https://www.ncbi.nlm.nih.gov/pubmed/37271309
https://www.proquest.com/docview/2822706051/abstract/
https://pubmed.ncbi.nlm.nih.gov/PMC10825899
Volume 233
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61WwlxQdDy2AKVkRAXSJvEjzjHVUW1gNoTi3ozTmyXRVpn1aaHXvjteGJnxYLgwCnvaOSZzCsz3wC85sZWIq9NxoRkGTPSZbotq8w49N-NNnzIQ55fiPmCfbzklztwOvbCYFll0v1Rpw_aOp05Sat5sl4uscc3BAPoQNBhT-zCXjBHjE1gb_bh0_xio5ApS2DMBcPcGU-9M7HMCycbHeMMcQRW4iX9m3360__8vYzyF7t09hAeJIeSzCLNj2DH-n04mPkQTK_uyBsylHgOufN9uHee_qQfwNcgHyS2SJLOkcUXMtCTpVkKpPMkxKU-uJHkpr_uVmGLOX6yWl5FmXlHxtkqfeQu0d6Q9QDXibmWx7A4e__5dJ6laQtZSwXts9Y4lhtOWe5qgxgytLKWyULLsi4rGSKbVjPGc6Fry4yoXAjNdNNQV7aWW8noE5j4zttnQGpJ8ya8rRThJuu4bKumdaxpuTRC82oKb8c1VusIqqHGarPvCjmikCMqcmQKfGSD2hINFbT-P597NfJMhW8GF0l7293eKCydRdQgXkzhaeThhg4aHLpg1-spyC3ubm5APO7tK375bcDlLjDcDvHr4X8S_Bzu41EsL3wBk_761r4MLk_fHMHu8Y_iKAn2Tx1XATM
link.rule.ids 230,315,786,790,891,4521,24144,27957,27958,45620,45714
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VrQRcELRQlk8jIS4QmsR24hxXFdWWdvfURb0ZJ7bpIq2zatMD_x5P7Ky6VHDglChOopGfM56ZzLwBeM-1KYu00gkrBEuYFjZRTV4m2qL9rpXmfRxyNi-mC_b1gl_swNFQC4NplVH3B53ea-t45TDO5uF6ucQaX-8MoAFB-7PiHuwyXmZsBLuTk9PpfKOQKYtkzBnD2BmPtTMhzQs7G33GHuJIrMRz-rf96a79-Wca5a196fgxPIoGJZkEmZ_AjnF7sD9x3ple_SIfSJ_i2cfO9-D-LP5J34fvfn2QUCJJWksW30gvTxJ7KZDWEe-XOm9Gkuvuql35I8b4yWr5I6yZT2TordIFdIlymqx7uk6MtTyFxfGX86NpErstJA0taJc02rJUc8pSW2nkkKGlMUxkSuRVXgrv2TSKMZ4WqjJMF6X1rpmqa2rzxnAjGH0GI9c68xxIJWha-7flhb_JWC6asm4sqxsudKF4OYaPwxzLdSDVkEO22U-JiEhERAZExsAHGOTW0pBe6__zuXcDZtJ_MzhJypn25lpi6iyyBvFsDAcBw40c1Bt0fl-vxiC20N3cgHzc2yNuednzcmfobnv_9cV_CvwWHkzPZ2fy7GR--hIe4khINXwFo-7qxrz25k9Xv4nL-zdO4AMl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+impact+of+UV+cross-linking+on+corneal+stromal+cell+migration%2C+differentiation+and+patterning&rft.jtitle=Experimental+eye+research&rft.au=Petroll%2C+W.+Matthew&rft.au=Miron-Mendoza%2C+Miguel&rft.au=Sunkara%2C+Yukta&rft.au=Ikebe%2C+Hikaru+R.&rft.date=2023-08-01&rft.issn=0014-4835&rft.volume=233&rft.spage=109523&rft_id=info:doi/10.1016%2Fj.exer.2023.109523&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_exer_2023_109523
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4835&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4835&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4835&client=summon