Dynamic Behavior of a 10 MW Floating Wind Turbine Concrete Platform under Harsh Conditions

To ensure the safe and stable operation of a 10 MW floating wind turbine concrete platform under harsh sea conditions, the fluid–structure coupling theory was used to apply wind, wave, and current loads to a concrete semi-submersible floating platform, and strength analysis was performed to calculat...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 12; no. 3; p. 412
Main Authors Chen, Xiaocui, Wang, Qirui, Zhang, Yuquan, Zheng, Yuan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To ensure the safe and stable operation of a 10 MW floating wind turbine concrete platform under harsh sea conditions, the fluid–structure coupling theory was used to apply wind, wave, and current loads to a concrete semi-submersible floating platform, and strength analysis was performed to calculate its stress and deformation under environmental loads. Moreover, the safety factor and fatigue life prediction of the platform were also conducted. The results indicated that the incident angles of the environmental loads had a significant impact on motion response in the surge, sway, pitch, and yaw directions. As the incident angles increased, the motion response in the surge and pitch directions gradually decreased, the motion response in the sway direction gradually increased, and the yaw motion response showed a trend of first increasing and then decreasing. In addition, the maximum stress of the floating platform under harsh sea conditions was 12.718 MPa, mainly concentrated at the connection of the middle column and pontoon and the connection of the heave plate and Y-shaped pontoon, which meets the use strength requirements. However, the stress concentration zone exhibited a significantly shorter fatigue life with a magnitude of 106. This implies a higher susceptibility to fatigue damage and the potential occurrence of structural failure. This research holds paramount significance in ensuring the safe and stable operation of floating wind turbine platforms, particularly under harsh sea conditions.
AbstractList To ensure the safe and stable operation of a 10 MW floating wind turbine concrete platform under harsh sea conditions, the fluid–structure coupling theory was used to apply wind, wave, and current loads to a concrete semi-submersible floating platform, and strength analysis was performed to calculate its stress and deformation under environmental loads. Moreover, the safety factor and fatigue life prediction of the platform were also conducted. The results indicated that the incident angles of the environmental loads had a significant impact on motion response in the surge, sway, pitch, and yaw directions. As the incident angles increased, the motion response in the surge and pitch directions gradually decreased, the motion response in the sway direction gradually increased, and the yaw motion response showed a trend of first increasing and then decreasing. In addition, the maximum stress of the floating platform under harsh sea conditions was 12.718 MPa, mainly concentrated at the connection of the middle column and pontoon and the connection of the heave plate and Y-shaped pontoon, which meets the use strength requirements. However, the stress concentration zone exhibited a significantly shorter fatigue life with a magnitude of 106. This implies a higher susceptibility to fatigue damage and the potential occurrence of structural failure. This research holds paramount significance in ensuring the safe and stable operation of floating wind turbine platforms, particularly under harsh sea conditions.
To ensure the safe and stable operation of a 10 MW floating wind turbine concrete platform under harsh sea conditions, the fluid–structure coupling theory was used to apply wind, wave, and current loads to a concrete semi-submersible floating platform, and strength analysis was performed to calculate its stress and deformation under environmental loads. Moreover, the safety factor and fatigue life prediction of the platform were also conducted. The results indicated that the incident angles of the environmental loads had a significant impact on motion response in the surge, sway, pitch, and yaw directions. As the incident angles increased, the motion response in the surge and pitch directions gradually decreased, the motion response in the sway direction gradually increased, and the yaw motion response showed a trend of first increasing and then decreasing. In addition, the maximum stress of the floating platform under harsh sea conditions was 12.718 MPa, mainly concentrated at the connection of the middle column and pontoon and the connection of the heave plate and Y-shaped pontoon, which meets the use strength requirements. However, the stress concentration zone exhibited a significantly shorter fatigue life with a magnitude of 10[sup.6]. This implies a higher susceptibility to fatigue damage and the potential occurrence of structural failure. This research holds paramount significance in ensuring the safe and stable operation of floating wind turbine platforms, particularly under harsh sea conditions.
Audience Academic
Author Chen, Xiaocui
Wang, Qirui
Zhang, Yuquan
Zheng, Yuan
Author_xml – sequence: 1
  givenname: Xiaocui
  surname: Chen
  fullname: Chen, Xiaocui
– sequence: 2
  givenname: Qirui
  surname: Wang
  fullname: Wang, Qirui
– sequence: 3
  givenname: Yuquan
  orcidid: 0000-0001-6102-1663
  surname: Zhang
  fullname: Zhang, Yuquan
– sequence: 4
  givenname: Yuan
  surname: Zheng
  fullname: Zheng, Yuan
BookMark eNpNUctKRDEMLaLgc-cHFNw62tftbZc6PkHRhSK4KZk-ZjrMtNrbEfx7qyNiQkhIcg4hZxdtppw8QoeUnHCuyekS6owywomgbAPtMMb6Ud8Gm__qbXQwDHPSTFOuhN5BrxefCZbR4nM_g4-YC84BA6YE37_gq0WGGtMUv8Tk8NOqTGLyeJyTLb56_LiAGnJZ4lVyvuAbKMPse-pijTkN-2grwGLwB795Dz1fXT6Nb0Z3D9e347O7keWS15F1QgGxvNdUCxk8YzpITqjQ1moAKl3XuX4ibC-lsJooYR0LLTrpFEw030O3a16XYW7eSlxC-TQZovlp5DI1UGq0C2-46kQvOyKY8sI3MKXCByUU0ZIFzxvX0ZrrreT3lR-qmedVSe18wzTjWgjNVNs6WW9NoZHGFHItYJs7317ZZAmx9c96xdqfpeob4HgNsCUPQ_Hh70xKzLd65r96_AsN4ovd
Cites_doi 10.1016/j.oceaneng.2022.112987
10.1299/jfst.6.372
10.3390/math10071131
10.3390/en16010002
10.1016/j.energy.2021.122767
10.1016/j.apor.2023.103808
10.3390/math10193674
10.2172/979456
10.3390/en12091809
10.20944/preprints202309.0949.v1
10.1016/j.rser.2014.09.032
10.3390/w14030283
10.2172/947422
10.1016/j.oceaneng.2022.112754
10.1016/j.renene.2021.07.136
10.1016/j.oceaneng.2020.107103
10.1016/j.oceaneng.2023.116372
10.3390/en15155485
10.3390/math9050475
10.1016/j.oceaneng.2020.107909
10.2172/972932
10.1016/j.apor.2011.04.001
10.1016/j.conbuildmat.2020.120657
10.1016/j.engstruct.2023.116474
10.1080/17445302.2020.1733315
10.1016/j.oceaneng.2015.05.035
10.3390/math9121364
10.1115/OMAE2006-92029
10.3390/math11184013
10.1016/j.ijnaoe.2017.09.010
10.1115/1.4009458
10.1016/j.oceaneng.2021.109070
10.1002/we.2518
10.1029/JZ069i024p05181
10.1016/j.apenergy.2021.116729
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math12030412
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_38547650428e4eab9114ef8480962fe3
A782091687
10_3390_math12030412
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
RNS
PMFND
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c363t-cd48a0c3791946fe229f630149cc9aa16d55d7b4c7664c9084cd2fcd256d8ab93
IEDL.DBID DOA
ISSN 2227-7390
IngestDate Wed Aug 27 01:31:46 EDT 2025
Fri Jul 25 10:34:39 EDT 2025
Tue Jun 10 21:12:31 EDT 2025
Tue Jul 01 01:53:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-cd48a0c3791946fe229f630149cc9aa16d55d7b4c7664c9084cd2fcd256d8ab93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6102-1663
OpenAccessLink https://doaj.org/article/38547650428e4eab9114ef8480962fe3
PQID 2923944928
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_38547650428e4eab9114ef8480962fe3
proquest_journals_2923944928
gale_infotracacademiconefile_A782091687
crossref_primary_10_3390_math12030412
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 20240101
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ahn (ref_9) 2017; 11
Nielsen (ref_28) 2020; 23
ref_36
ref_13
Wang (ref_35) 2014; 13
ref_32
Suzuki (ref_18) 2011; 6
ref_19
ref_17
ref_39
ref_38
Leishman (ref_29) 2011; 1
ref_37
Zhang (ref_1) 2021; 290
Matthew (ref_12) 2015; 104
Xu (ref_15) 2020; 15
Jiang (ref_31) 2022; 266
Jiang (ref_11) 2021; 233
Yue (ref_10) 2020; 201
Greaves (ref_5) 2015; 42
Yang (ref_27) 2022; 217
ref_23
ref_22
ref_21
ref_20
Jiang (ref_14) 2023; 142
ref_41
Pierson (ref_30) 1964; 69
Li (ref_7) 2022; 266
Wang (ref_25) 2024; 291
ref_2
Wang (ref_16) 2023; 291
Zhao (ref_34) 2011; 33
Yu (ref_40) 2020; 259
Chen (ref_42) 2023; 5
Wang (ref_24) 2021; 179
ref_26
Tavares (ref_3) 2022; 240
ref_8
Miner (ref_33) 1945; 12
ref_4
ref_6
References_xml – volume: 266
  start-page: 112987
  year: 2022
  ident: ref_7
  article-title: Hydrodynamic response and energy analysis in a very large floating structure supporting a marine airport under typhoon-driven waves
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.112987
– volume: 6
  start-page: 372
  year: 2011
  ident: ref_18
  article-title: Initial design of tension leg platform for offshore wind farm
  publication-title: J. Fluid Sci. Technol.
  doi: 10.1299/jfst.6.372
– ident: ref_4
  doi: 10.3390/math10071131
– ident: ref_6
  doi: 10.3390/en16010002
– ident: ref_32
– volume: 240
  start-page: 122767
  year: 2022
  ident: ref_3
  article-title: Influence of the WRF model and atmospheric reanalysis on the offshore wind resource potential and cost estimation: A case study for Rio de Janeiro State
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122767
– volume: 142
  start-page: 103808
  year: 2023
  ident: ref_14
  article-title: Research on dynamic response prediction of semi-submersible wind turbine platform in real sea test model based on machine learning
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2023.103808
– ident: ref_2
  doi: 10.3390/math10193674
– ident: ref_8
  doi: 10.2172/979456
– ident: ref_13
  doi: 10.3390/en12091809
– ident: ref_23
  doi: 10.20944/preprints202309.0949.v1
– ident: ref_39
– volume: 13
  start-page: 893
  year: 2014
  ident: ref_35
  article-title: Wind wave characteristics and engineering environment of the south china sea
  publication-title: Ocean. Coast. Sea Res.
– volume: 42
  start-page: 141
  year: 2015
  ident: ref_5
  article-title: A review of combined wave and offshore wind energy
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.09.032
– ident: ref_20
  doi: 10.3390/w14030283
– ident: ref_37
  doi: 10.2172/947422
– volume: 266
  start-page: 112754
  year: 2022
  ident: ref_31
  article-title: Capability of a potential-flow solver to analyze articulated multibody offshore modules
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.112754
– volume: 179
  start-page: 1618
  year: 2021
  ident: ref_24
  article-title: A comparative study of fully coupled and de-coupled methods on dynamic behaviour of floating wind turbine drivetrains
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.07.136
– volume: 1
  start-page: 1
  year: 2011
  ident: ref_29
  article-title: Aerodynamics of horizontal-axis wind turbines
  publication-title: Environ. Sci. Eng.
– volume: 201
  start-page: 107103
  year: 2020
  ident: ref_10
  article-title: Effects of heave plate on dynamic response of floating wind turbine spar platform under the coupling effect of wind and wave
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107103
– volume: 291
  start-page: 116372
  year: 2024
  ident: ref_25
  article-title: Analysis of extreme internal load effects in columns in a semi-submersible support structure for large floating wind turbines
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.116372
– ident: ref_26
  doi: 10.3390/en15155485
– ident: ref_21
  doi: 10.3390/math9050475
– volume: 217
  start-page: 107909
  year: 2022
  ident: ref_27
  article-title: Wind-wave coupling effects on the fatigue damage of tendons for a 10MW multi-body floating wind turbine
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107909
– ident: ref_17
  doi: 10.2172/972932
– volume: 5
  start-page: 1
  year: 2023
  ident: ref_42
  article-title: Fatigue crack propagation simulation of vertical centrifugal pump runner using the extended finite element method
  publication-title: Mech. Adv. Mater. Struct.
– volume: 33
  start-page: 169
  year: 2011
  ident: ref_34
  article-title: Hydrodynamics identities and wave-drift force of a porous body
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2011.04.001
– volume: 259
  start-page: 120657
  year: 2020
  ident: ref_40
  article-title: Using graphene oxide to improve the properties of ultra-high-performance concrete with fine recycled aggregate
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.120657
– volume: 291
  start-page: 116474
  year: 2023
  ident: ref_16
  article-title: Design, local structural stress, and global dynamic response analysis of a steel semi-submersible hull for a 10-MW floating wind turbine
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2023.116474
– volume: 15
  start-page: S46
  year: 2020
  ident: ref_15
  article-title: Extreme loads analysis of a site-specific semi-submersible type wind turbine
  publication-title: Ships Offshore Struct.
  doi: 10.1080/17445302.2020.1733315
– volume: 104
  start-page: 590
  year: 2015
  ident: ref_12
  article-title: Validation of a lumped-mass mooring line model with DeepCwind semisubmersible model test data
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2015.05.035
– ident: ref_22
  doi: 10.3390/math9121364
– ident: ref_38
  doi: 10.1115/OMAE2006-92029
– ident: ref_41
  doi: 10.3390/math11184013
– volume: 11
  start-page: 1
  year: 2017
  ident: ref_9
  article-title: Model test and numerical simulation of OC3 spar type floating offshore wind turbine
  publication-title: Int. J. Nav. Archit. Ocean Eng.
  doi: 10.1016/j.ijnaoe.2017.09.010
– ident: ref_36
– ident: ref_19
– volume: 12
  start-page: 159
  year: 1945
  ident: ref_33
  article-title: Cumulative damage in fatigue
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4009458
– volume: 233
  start-page: 109070
  year: 2021
  ident: ref_11
  article-title: Feasibility studies of a novel spar-type floating wind turbine for moderate water depths: Hydrodynamic perspective with model test
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2021.109070
– volume: 23
  start-page: 1810
  year: 2020
  ident: ref_28
  article-title: Evaluation of different wind fields for the investigation of the dynamic response of offshore wind turbines
  publication-title: Wind Energy
  doi: 10.1002/we.2518
– volume: 69
  start-page: 5181
  year: 1964
  ident: ref_30
  article-title: A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/JZ069i024p05181
– volume: 290
  start-page: 116729
  year: 2021
  ident: ref_1
  article-title: The influence of waves propagating with the current on the wake of a tidal stream turbine
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.116729
SSID ssj0000913849
Score 2.2501895
Snippet To ensure the safe and stable operation of a 10 MW floating wind turbine concrete platform under harsh sea conditions, the fluid–structure coupling theory was...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 412
SubjectTerms 10 MW wind turbine
Air-turbines
Alternative energy sources
Buildings and facilities
Combustion
Concrete
concrete floating platform
Design
Energy minerals
Environmental impact
Fatigue failure
Fatigue life
Floating platforms
Fossil fuels
Global temperature changes
Life prediction
Load
Marine corrosion
motion response
Numerical analysis
Offshore
Offshore platforms
Performance evaluation
Pitch (inclination)
Renewable resources
Safety factors
Scale models
Stress concentration
Structural failure
structural strength
Turbine industry
Turbines
United States
Water pollution
Wind power
Wind turbines
Yaw
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BTtwwEB2V5VIOqNBWbKHIBypOEYnjOPYJ7VJWK6RFCIFAvViOY3cPaEOz4f-Z2Xi37QEOuSQ5WDOemffG4xmAk7RCyiXQvp2UVUIOL6kK5ZIi9zboNITU0-Xk2bWc3ourx-IxJtyWsaxy7RNXjrpuHOXIz7imId5Cc3X-_CehqVF0uhpHaGzBNrpgpQawPb68vrndZFmo66USuq94z5HfnyEOnGecDgQz_l8sWrXsf8sxr6LN5BPsRpjIRr1e9-CDX-zDzmzTY3X5GX797IfJs9jisGVNYJZlKZs9sMlTY6mgmT0g52Z3Ly0SYM8umgWCxM6zmyfbEVpldIWsZVNkt3P6WvcFXF_gfnJ5dzFN4qSExOUy7xJXC2VTl5c600IGz7kOksiSdk5bm8m6KOqyEq6UUjidKuFqHvApZK1spfOvMFg0C38AzAsrU1_6EuM4qq6yGOKzCmGed6lDrjaEH2uZmee-IYZBIkGyNf_KdghjEujmH2pjvXrRtL9NtAqTq0KUiBGRA3nhcSHIznxQQiGx4sHnQzgldRgytq61zsY7A7hUaltlRtTtDwGuKodwtNaYiVa4NH_3zLf3Px_CR45gpU-tHMGga1_8dwQbXXUcd9QrtAzSlQ
  priority: 102
  providerName: ProQuest
Title Dynamic Behavior of a 10 MW Floating Wind Turbine Concrete Platform under Harsh Conditions
URI https://www.proquest.com/docview/2923944928
https://doaj.org/article/38547650428e4eab9114ef8480962fe3
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5BWWBAPEV5VB5ATBGJ4zj2WB6lQipCCARisRzHFkPVohD-P3dJQGVALAxZkgzWnc_3fcnddwDHcYGUS2B8OymLiA68qMiUi7LU26DjEGJPzcmTWzl-FDfP2fPCqC-qCWvlgVvDnaUqEznCCITJXnhbYHAKH5RQiL158I3OJ-a8BTLVnME6SZXQbaV7irz-DPHfa8LpR2DCf-SgRqr_twO5yTKjDVjv4CEbtsvahCU_24K1ybe26vs2vFy2Q-RZJ21YsXlgliUxmzyx0XRuqZCZPSHXZg8fFRJfzy7mMwSHtWd3U1sTSmXUOlaxMbLaV3patoVbO_A4unq4GEfdhITIpTKtI1cKZWOX5jrRQgbPuQ6SSJJ2TlubyDLLyrwQLpdSOB0r4Uoe8MpkqdCW6S70ZvOZ3wPmhZWxz32O-RtdVlhM7UmB8M672CFH68PJl83MWyuEYZBAkG3Nom37cE4G_X6H5KubG-hU0znV_OXUPpySOwwFWV1ZZ7teAVwqyVWZIan8IbBVeR8Ovzxmuuh7N1zTwHehudr_j9UcwCpHKNN-eDmEXl19-COEInUxgGU1uh7AyvnV7d39oNmDn6e-2tM
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcEE-xUMAHKk5RHcdx7ANCpWXZ0m7FYatWXIzj2O2h2pRsKsSf4jcyk8cCB7j1kEucgzWex_c58wB4zUukXBLt2ytVJuTwkjLXPsmz4KLhMfJAxcnzYzU7kZ_O8rMN-DnWwlBa5egTO0dd1Z7uyHeEoSHe0gj97upbQlOj6O_qOEKjV4vD8OM7UrbV24N9PN9tIaYfFnuzZJgqkPhMZW3iK6kd91lhkL-rGIQwURGxMN4b51JV5XlVlNIXSklvuJa-EhGfXFXaldR8CV3-LZlhJKfK9OnH9Z0O9djU0vT59bjOdxB1XqSCfj-m4q_I1w0I-FcY6GLb9D7cG0Ap2-216AFshOVDuDtfd3RdPYIv-_3oejY0VGxYHZljKWfzUza9rB2lT7NTZPhscd0g3Q5sr14iJG0D-3zpWsLGjArWGjZDLn1Bq1WfLvYYTm5Egk9gc1kvw1NgQTrFQxEKRA2oKKVDQJGWCCqD5x6Z4QS2R5nZq779hkXaQrK1f8p2Au9JoOtvqGl296Juzu1ggzbTuSwQkSLjCjLgRpALhqilRhonYsgm8IaOw5Jpt43zbqhQwK1Skyy7S70FEU7rYgJb44nZweZX9reGPvv_8iu4PVvMj-zRwfHhc7gjECb1lzpbsNk21-EFwpy2fNnpFoOvN63MvwCgTQ4O
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1VWwnBAVE-xEIBH6g4RZs4jmMfEGq7XW0pu1qhVq24GMex6aHalGwqxF_j1zGzSbZwgFsPuSQ5WOPx-D175g3A27hAyiVwfTspi4gCXlRkykVZ6m3QcQixp-Lk2VxOz8THi-xiC371tTCUVtnHxHWgLitHZ-QjrqmJt9BcjUKXFrEYTz5cf4-ogxTdtPbtNFoXOfE_fyB9W70_HuNc73E-OTo9nEZdh4HIpTJtIlcKZWOX5hq5vAyecx0kkQztnLY2kWWWlXkhXC6lcDpWwpU84JPJUtmChJgw_G_nxIoGsH1wNF983pzwkOKmErrNtk9THY8Qg14mnC4jE_7XPrhuF_CvTWG9000ewcMOorL91qd2YMsvH8OD2UbfdfUEvozbRvask1esWRWYZUnMZudsclVZSqZm58j32elNjeTbs8NqiQC18WxxZRtCyozK12o2RWZ9SV_LNnnsKZzdiQ2fwWBZLf1zYF5YGfvc54gh0G0Ki_AiKRBiehc75IlD2OttZq5bMQ6DJIZsa_607RAOyKCbf0hCe_2iqr-ZbkWaVGUiR3yK_MsLjwNBZuiDEgpJHQ8-HcI7mg5DC72prbNdvQIOlSSzzD4pDSK4VvkQdvsZM10EWJlbf33x_89v4B46svl0PD95Cfc5Yqb2hGcXBk19418h5mmK151zMfh61_78G6hCE6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Behavior+of+a+10+MW+Floating+Wind+Turbine+Concrete+Platform+under+Harsh+Conditions&rft.jtitle=Mathematics+%28Basel%29&rft.au=Chen%2C+Xiaocui&rft.au=Wang%2C+Qirui&rft.au=Zhang%2C+Yuquan&rft.au=Zheng%2C+Yuan&rft.date=2024-01-01&rft.pub=MDPI+AG&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=12&rft.issue=3&rft_id=info:doi/10.3390%2Fmath12030412&rft.externalDocID=A782091687
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon