Dynamic Behavior of a 10 MW Floating Wind Turbine Concrete Platform under Harsh Conditions
To ensure the safe and stable operation of a 10 MW floating wind turbine concrete platform under harsh sea conditions, the fluid–structure coupling theory was used to apply wind, wave, and current loads to a concrete semi-submersible floating platform, and strength analysis was performed to calculat...
Saved in:
Published in | Mathematics (Basel) Vol. 12; no. 3; p. 412 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To ensure the safe and stable operation of a 10 MW floating wind turbine concrete platform under harsh sea conditions, the fluid–structure coupling theory was used to apply wind, wave, and current loads to a concrete semi-submersible floating platform, and strength analysis was performed to calculate its stress and deformation under environmental loads. Moreover, the safety factor and fatigue life prediction of the platform were also conducted. The results indicated that the incident angles of the environmental loads had a significant impact on motion response in the surge, sway, pitch, and yaw directions. As the incident angles increased, the motion response in the surge and pitch directions gradually decreased, the motion response in the sway direction gradually increased, and the yaw motion response showed a trend of first increasing and then decreasing. In addition, the maximum stress of the floating platform under harsh sea conditions was 12.718 MPa, mainly concentrated at the connection of the middle column and pontoon and the connection of the heave plate and Y-shaped pontoon, which meets the use strength requirements. However, the stress concentration zone exhibited a significantly shorter fatigue life with a magnitude of 106. This implies a higher susceptibility to fatigue damage and the potential occurrence of structural failure. This research holds paramount significance in ensuring the safe and stable operation of floating wind turbine platforms, particularly under harsh sea conditions. |
---|---|
AbstractList | To ensure the safe and stable operation of a 10 MW floating wind turbine concrete platform under harsh sea conditions, the fluid–structure coupling theory was used to apply wind, wave, and current loads to a concrete semi-submersible floating platform, and strength analysis was performed to calculate its stress and deformation under environmental loads. Moreover, the safety factor and fatigue life prediction of the platform were also conducted. The results indicated that the incident angles of the environmental loads had a significant impact on motion response in the surge, sway, pitch, and yaw directions. As the incident angles increased, the motion response in the surge and pitch directions gradually decreased, the motion response in the sway direction gradually increased, and the yaw motion response showed a trend of first increasing and then decreasing. In addition, the maximum stress of the floating platform under harsh sea conditions was 12.718 MPa, mainly concentrated at the connection of the middle column and pontoon and the connection of the heave plate and Y-shaped pontoon, which meets the use strength requirements. However, the stress concentration zone exhibited a significantly shorter fatigue life with a magnitude of 106. This implies a higher susceptibility to fatigue damage and the potential occurrence of structural failure. This research holds paramount significance in ensuring the safe and stable operation of floating wind turbine platforms, particularly under harsh sea conditions. To ensure the safe and stable operation of a 10 MW floating wind turbine concrete platform under harsh sea conditions, the fluid–structure coupling theory was used to apply wind, wave, and current loads to a concrete semi-submersible floating platform, and strength analysis was performed to calculate its stress and deformation under environmental loads. Moreover, the safety factor and fatigue life prediction of the platform were also conducted. The results indicated that the incident angles of the environmental loads had a significant impact on motion response in the surge, sway, pitch, and yaw directions. As the incident angles increased, the motion response in the surge and pitch directions gradually decreased, the motion response in the sway direction gradually increased, and the yaw motion response showed a trend of first increasing and then decreasing. In addition, the maximum stress of the floating platform under harsh sea conditions was 12.718 MPa, mainly concentrated at the connection of the middle column and pontoon and the connection of the heave plate and Y-shaped pontoon, which meets the use strength requirements. However, the stress concentration zone exhibited a significantly shorter fatigue life with a magnitude of 10[sup.6]. This implies a higher susceptibility to fatigue damage and the potential occurrence of structural failure. This research holds paramount significance in ensuring the safe and stable operation of floating wind turbine platforms, particularly under harsh sea conditions. |
Audience | Academic |
Author | Chen, Xiaocui Wang, Qirui Zhang, Yuquan Zheng, Yuan |
Author_xml | – sequence: 1 givenname: Xiaocui surname: Chen fullname: Chen, Xiaocui – sequence: 2 givenname: Qirui surname: Wang fullname: Wang, Qirui – sequence: 3 givenname: Yuquan orcidid: 0000-0001-6102-1663 surname: Zhang fullname: Zhang, Yuquan – sequence: 4 givenname: Yuan surname: Zheng fullname: Zheng, Yuan |
BookMark | eNpNUctKRDEMLaLgc-cHFNw62tftbZc6PkHRhSK4KZk-ZjrMtNrbEfx7qyNiQkhIcg4hZxdtppw8QoeUnHCuyekS6owywomgbAPtMMb6Ud8Gm__qbXQwDHPSTFOuhN5BrxefCZbR4nM_g4-YC84BA6YE37_gq0WGGtMUv8Tk8NOqTGLyeJyTLb56_LiAGnJZ4lVyvuAbKMPse-pijTkN-2grwGLwB795Dz1fXT6Nb0Z3D9e347O7keWS15F1QgGxvNdUCxk8YzpITqjQ1moAKl3XuX4ibC-lsJooYR0LLTrpFEw030O3a16XYW7eSlxC-TQZovlp5DI1UGq0C2-46kQvOyKY8sI3MKXCByUU0ZIFzxvX0ZrrreT3lR-qmedVSe18wzTjWgjNVNs6WW9NoZHGFHItYJs7317ZZAmx9c96xdqfpeob4HgNsCUPQ_Hh70xKzLd65r96_AsN4ovd |
Cites_doi | 10.1016/j.oceaneng.2022.112987 10.1299/jfst.6.372 10.3390/math10071131 10.3390/en16010002 10.1016/j.energy.2021.122767 10.1016/j.apor.2023.103808 10.3390/math10193674 10.2172/979456 10.3390/en12091809 10.20944/preprints202309.0949.v1 10.1016/j.rser.2014.09.032 10.3390/w14030283 10.2172/947422 10.1016/j.oceaneng.2022.112754 10.1016/j.renene.2021.07.136 10.1016/j.oceaneng.2020.107103 10.1016/j.oceaneng.2023.116372 10.3390/en15155485 10.3390/math9050475 10.1016/j.oceaneng.2020.107909 10.2172/972932 10.1016/j.apor.2011.04.001 10.1016/j.conbuildmat.2020.120657 10.1016/j.engstruct.2023.116474 10.1080/17445302.2020.1733315 10.1016/j.oceaneng.2015.05.035 10.3390/math9121364 10.1115/OMAE2006-92029 10.3390/math11184013 10.1016/j.ijnaoe.2017.09.010 10.1115/1.4009458 10.1016/j.oceaneng.2021.109070 10.1002/we.2518 10.1029/JZ069i024p05181 10.1016/j.apenergy.2021.116729 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/math12030412 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_38547650428e4eab9114ef8480962fe3 A782091687 10_3390_math12030412 |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS RNS PMFND 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c363t-cd48a0c3791946fe229f630149cc9aa16d55d7b4c7664c9084cd2fcd256d8ab93 |
IEDL.DBID | DOA |
ISSN | 2227-7390 |
IngestDate | Wed Aug 27 01:31:46 EDT 2025 Fri Jul 25 10:34:39 EDT 2025 Tue Jun 10 21:12:31 EDT 2025 Tue Jul 01 01:53:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-cd48a0c3791946fe229f630149cc9aa16d55d7b4c7664c9084cd2fcd256d8ab93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6102-1663 |
OpenAccessLink | https://doaj.org/article/38547650428e4eab9114ef8480962fe3 |
PQID | 2923944928 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_38547650428e4eab9114ef8480962fe3 proquest_journals_2923944928 gale_infotracacademiconefile_A782091687 crossref_primary_10_3390_math12030412 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 20240101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Ahn (ref_9) 2017; 11 Nielsen (ref_28) 2020; 23 ref_36 ref_13 Wang (ref_35) 2014; 13 ref_32 Suzuki (ref_18) 2011; 6 ref_19 ref_17 ref_39 ref_38 Leishman (ref_29) 2011; 1 ref_37 Zhang (ref_1) 2021; 290 Matthew (ref_12) 2015; 104 Xu (ref_15) 2020; 15 Jiang (ref_31) 2022; 266 Jiang (ref_11) 2021; 233 Yue (ref_10) 2020; 201 Greaves (ref_5) 2015; 42 Yang (ref_27) 2022; 217 ref_23 ref_22 ref_21 ref_20 Jiang (ref_14) 2023; 142 ref_41 Pierson (ref_30) 1964; 69 Li (ref_7) 2022; 266 Wang (ref_25) 2024; 291 ref_2 Wang (ref_16) 2023; 291 Zhao (ref_34) 2011; 33 Yu (ref_40) 2020; 259 Chen (ref_42) 2023; 5 Wang (ref_24) 2021; 179 ref_26 Tavares (ref_3) 2022; 240 ref_8 Miner (ref_33) 1945; 12 ref_4 ref_6 |
References_xml | – volume: 266 start-page: 112987 year: 2022 ident: ref_7 article-title: Hydrodynamic response and energy analysis in a very large floating structure supporting a marine airport under typhoon-driven waves publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.112987 – volume: 6 start-page: 372 year: 2011 ident: ref_18 article-title: Initial design of tension leg platform for offshore wind farm publication-title: J. Fluid Sci. Technol. doi: 10.1299/jfst.6.372 – ident: ref_4 doi: 10.3390/math10071131 – ident: ref_6 doi: 10.3390/en16010002 – ident: ref_32 – volume: 240 start-page: 122767 year: 2022 ident: ref_3 article-title: Influence of the WRF model and atmospheric reanalysis on the offshore wind resource potential and cost estimation: A case study for Rio de Janeiro State publication-title: Energy doi: 10.1016/j.energy.2021.122767 – volume: 142 start-page: 103808 year: 2023 ident: ref_14 article-title: Research on dynamic response prediction of semi-submersible wind turbine platform in real sea test model based on machine learning publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2023.103808 – ident: ref_2 doi: 10.3390/math10193674 – ident: ref_8 doi: 10.2172/979456 – ident: ref_13 doi: 10.3390/en12091809 – ident: ref_23 doi: 10.20944/preprints202309.0949.v1 – ident: ref_39 – volume: 13 start-page: 893 year: 2014 ident: ref_35 article-title: Wind wave characteristics and engineering environment of the south china sea publication-title: Ocean. Coast. Sea Res. – volume: 42 start-page: 141 year: 2015 ident: ref_5 article-title: A review of combined wave and offshore wind energy publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.09.032 – ident: ref_20 doi: 10.3390/w14030283 – ident: ref_37 doi: 10.2172/947422 – volume: 266 start-page: 112754 year: 2022 ident: ref_31 article-title: Capability of a potential-flow solver to analyze articulated multibody offshore modules publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.112754 – volume: 179 start-page: 1618 year: 2021 ident: ref_24 article-title: A comparative study of fully coupled and de-coupled methods on dynamic behaviour of floating wind turbine drivetrains publication-title: Renew. Energy doi: 10.1016/j.renene.2021.07.136 – volume: 1 start-page: 1 year: 2011 ident: ref_29 article-title: Aerodynamics of horizontal-axis wind turbines publication-title: Environ. Sci. Eng. – volume: 201 start-page: 107103 year: 2020 ident: ref_10 article-title: Effects of heave plate on dynamic response of floating wind turbine spar platform under the coupling effect of wind and wave publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107103 – volume: 291 start-page: 116372 year: 2024 ident: ref_25 article-title: Analysis of extreme internal load effects in columns in a semi-submersible support structure for large floating wind turbines publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.116372 – ident: ref_26 doi: 10.3390/en15155485 – ident: ref_21 doi: 10.3390/math9050475 – volume: 217 start-page: 107909 year: 2022 ident: ref_27 article-title: Wind-wave coupling effects on the fatigue damage of tendons for a 10MW multi-body floating wind turbine publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107909 – ident: ref_17 doi: 10.2172/972932 – volume: 5 start-page: 1 year: 2023 ident: ref_42 article-title: Fatigue crack propagation simulation of vertical centrifugal pump runner using the extended finite element method publication-title: Mech. Adv. Mater. Struct. – volume: 33 start-page: 169 year: 2011 ident: ref_34 article-title: Hydrodynamics identities and wave-drift force of a porous body publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2011.04.001 – volume: 259 start-page: 120657 year: 2020 ident: ref_40 article-title: Using graphene oxide to improve the properties of ultra-high-performance concrete with fine recycled aggregate publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.120657 – volume: 291 start-page: 116474 year: 2023 ident: ref_16 article-title: Design, local structural stress, and global dynamic response analysis of a steel semi-submersible hull for a 10-MW floating wind turbine publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2023.116474 – volume: 15 start-page: S46 year: 2020 ident: ref_15 article-title: Extreme loads analysis of a site-specific semi-submersible type wind turbine publication-title: Ships Offshore Struct. doi: 10.1080/17445302.2020.1733315 – volume: 104 start-page: 590 year: 2015 ident: ref_12 article-title: Validation of a lumped-mass mooring line model with DeepCwind semisubmersible model test data publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2015.05.035 – ident: ref_22 doi: 10.3390/math9121364 – ident: ref_38 doi: 10.1115/OMAE2006-92029 – ident: ref_41 doi: 10.3390/math11184013 – volume: 11 start-page: 1 year: 2017 ident: ref_9 article-title: Model test and numerical simulation of OC3 spar type floating offshore wind turbine publication-title: Int. J. Nav. Archit. Ocean Eng. doi: 10.1016/j.ijnaoe.2017.09.010 – ident: ref_36 – ident: ref_19 – volume: 12 start-page: 159 year: 1945 ident: ref_33 article-title: Cumulative damage in fatigue publication-title: J. Appl. Mech. doi: 10.1115/1.4009458 – volume: 233 start-page: 109070 year: 2021 ident: ref_11 article-title: Feasibility studies of a novel spar-type floating wind turbine for moderate water depths: Hydrodynamic perspective with model test publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2021.109070 – volume: 23 start-page: 1810 year: 2020 ident: ref_28 article-title: Evaluation of different wind fields for the investigation of the dynamic response of offshore wind turbines publication-title: Wind Energy doi: 10.1002/we.2518 – volume: 69 start-page: 5181 year: 1964 ident: ref_30 article-title: A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii publication-title: J. Geophys. Res. Atmos. doi: 10.1029/JZ069i024p05181 – volume: 290 start-page: 116729 year: 2021 ident: ref_1 article-title: The influence of waves propagating with the current on the wake of a tidal stream turbine publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116729 |
SSID | ssj0000913849 |
Score | 2.2501895 |
Snippet | To ensure the safe and stable operation of a 10 MW floating wind turbine concrete platform under harsh sea conditions, the fluid–structure coupling theory was... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 412 |
SubjectTerms | 10 MW wind turbine Air-turbines Alternative energy sources Buildings and facilities Combustion Concrete concrete floating platform Design Energy minerals Environmental impact Fatigue failure Fatigue life Floating platforms Fossil fuels Global temperature changes Life prediction Load Marine corrosion motion response Numerical analysis Offshore Offshore platforms Performance evaluation Pitch (inclination) Renewable resources Safety factors Scale models Stress concentration Structural failure structural strength Turbine industry Turbines United States Water pollution Wind power Wind turbines Yaw |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BTtwwEB2V5VIOqNBWbKHIBypOEYnjOPYJ7VJWK6RFCIFAvViOY3cPaEOz4f-Z2Xi37QEOuSQ5WDOemffG4xmAk7RCyiXQvp2UVUIOL6kK5ZIi9zboNITU0-Xk2bWc3ourx-IxJtyWsaxy7RNXjrpuHOXIz7imId5Cc3X-_CehqVF0uhpHaGzBNrpgpQawPb68vrndZFmo66USuq94z5HfnyEOnGecDgQz_l8sWrXsf8sxr6LN5BPsRpjIRr1e9-CDX-zDzmzTY3X5GX797IfJs9jisGVNYJZlKZs9sMlTY6mgmT0g52Z3Ly0SYM8umgWCxM6zmyfbEVpldIWsZVNkt3P6WvcFXF_gfnJ5dzFN4qSExOUy7xJXC2VTl5c600IGz7kOksiSdk5bm8m6KOqyEq6UUjidKuFqHvApZK1spfOvMFg0C38AzAsrU1_6EuM4qq6yGOKzCmGed6lDrjaEH2uZmee-IYZBIkGyNf_KdghjEujmH2pjvXrRtL9NtAqTq0KUiBGRA3nhcSHIznxQQiGx4sHnQzgldRgytq61zsY7A7hUaltlRtTtDwGuKodwtNaYiVa4NH_3zLf3Px_CR45gpU-tHMGga1_8dwQbXXUcd9QrtAzSlQ priority: 102 providerName: ProQuest |
Title | Dynamic Behavior of a 10 MW Floating Wind Turbine Concrete Platform under Harsh Conditions |
URI | https://www.proquest.com/docview/2923944928 https://doaj.org/article/38547650428e4eab9114ef8480962fe3 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5BWWBAPEV5VB5ATBGJ4zj2WB6lQipCCARisRzHFkPVohD-P3dJQGVALAxZkgzWnc_3fcnddwDHcYGUS2B8OymLiA68qMiUi7LU26DjEGJPzcmTWzl-FDfP2fPCqC-qCWvlgVvDnaUqEznCCITJXnhbYHAKH5RQiL158I3OJ-a8BTLVnME6SZXQbaV7irz-DPHfa8LpR2DCf-SgRqr_twO5yTKjDVjv4CEbtsvahCU_24K1ybe26vs2vFy2Q-RZJ21YsXlgliUxmzyx0XRuqZCZPSHXZg8fFRJfzy7mMwSHtWd3U1sTSmXUOlaxMbLaV3patoVbO_A4unq4GEfdhITIpTKtI1cKZWOX5jrRQgbPuQ6SSJJ2TlubyDLLyrwQLpdSOB0r4Uoe8MpkqdCW6S70ZvOZ3wPmhZWxz32O-RtdVlhM7UmB8M672CFH68PJl83MWyuEYZBAkG3Nom37cE4G_X6H5KubG-hU0znV_OXUPpySOwwFWV1ZZ7teAVwqyVWZIan8IbBVeR8Ovzxmuuh7N1zTwHehudr_j9UcwCpHKNN-eDmEXl19-COEInUxgGU1uh7AyvnV7d39oNmDn6e-2tM |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcEE-xUMAHKk5RHcdx7ANCpWXZ0m7FYatWXIzj2O2h2pRsKsSf4jcyk8cCB7j1kEucgzWex_c58wB4zUukXBLt2ytVJuTwkjLXPsmz4KLhMfJAxcnzYzU7kZ_O8rMN-DnWwlBa5egTO0dd1Z7uyHeEoSHe0gj97upbQlOj6O_qOEKjV4vD8OM7UrbV24N9PN9tIaYfFnuzZJgqkPhMZW3iK6kd91lhkL-rGIQwURGxMN4b51JV5XlVlNIXSklvuJa-EhGfXFXaldR8CV3-LZlhJKfK9OnH9Z0O9djU0vT59bjOdxB1XqSCfj-m4q_I1w0I-FcY6GLb9D7cG0Ap2-216AFshOVDuDtfd3RdPYIv-_3oejY0VGxYHZljKWfzUza9rB2lT7NTZPhscd0g3Q5sr14iJG0D-3zpWsLGjArWGjZDLn1Bq1WfLvYYTm5Egk9gc1kvw1NgQTrFQxEKRA2oKKVDQJGWCCqD5x6Z4QS2R5nZq779hkXaQrK1f8p2Au9JoOtvqGl296Juzu1ggzbTuSwQkSLjCjLgRpALhqilRhonYsgm8IaOw5Jpt43zbqhQwK1Skyy7S70FEU7rYgJb44nZweZX9reGPvv_8iu4PVvMj-zRwfHhc7gjECb1lzpbsNk21-EFwpy2fNnpFoOvN63MvwCgTQ4O |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1VWwnBAVE-xEIBH6g4RZs4jmMfEGq7XW0pu1qhVq24GMex6aHalGwqxF_j1zGzSbZwgFsPuSQ5WOPx-D175g3A27hAyiVwfTspi4gCXlRkykVZ6m3QcQixp-Lk2VxOz8THi-xiC371tTCUVtnHxHWgLitHZ-QjrqmJt9BcjUKXFrEYTz5cf4-ogxTdtPbtNFoXOfE_fyB9W70_HuNc73E-OTo9nEZdh4HIpTJtIlcKZWOX5hq5vAyecx0kkQztnLY2kWWWlXkhXC6lcDpWwpU84JPJUtmChJgw_G_nxIoGsH1wNF983pzwkOKmErrNtk9THY8Qg14mnC4jE_7XPrhuF_CvTWG9000ewcMOorL91qd2YMsvH8OD2UbfdfUEvozbRvask1esWRWYZUnMZudsclVZSqZm58j32elNjeTbs8NqiQC18WxxZRtCyozK12o2RWZ9SV_LNnnsKZzdiQ2fwWBZLf1zYF5YGfvc54gh0G0Ki_AiKRBiehc75IlD2OttZq5bMQ6DJIZsa_607RAOyKCbf0hCe_2iqr-ZbkWaVGUiR3yK_MsLjwNBZuiDEgpJHQ8-HcI7mg5DC72prbNdvQIOlSSzzD4pDSK4VvkQdvsZM10EWJlbf33x_89v4B46svl0PD95Cfc5Yqb2hGcXBk19418h5mmK151zMfh61_78G6hCE6A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Behavior+of+a+10+MW+Floating+Wind+Turbine+Concrete+Platform+under+Harsh+Conditions&rft.jtitle=Mathematics+%28Basel%29&rft.au=Chen%2C+Xiaocui&rft.au=Wang%2C+Qirui&rft.au=Zhang%2C+Yuquan&rft.au=Zheng%2C+Yuan&rft.date=2024-01-01&rft.pub=MDPI+AG&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=12&rft.issue=3&rft_id=info:doi/10.3390%2Fmath12030412&rft.externalDocID=A782091687 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |