A Lucas–Lehmer approach to generalised Lebesgue–Ramanujan–Nagell equations

We describe a computationally efficient approach to resolving equations of the form C 1 x 2 + C 2 = y n in coprime integers, for fixed values of C 1 , C 2 subject to further conditions. We make use of a factorisation argument and the Primitive Divisor Theorem due to Bilu, Hanrot and Voutier.

Saved in:
Bibliographic Details
Published inThe Ramanujan journal Vol. 56; no. 2; pp. 585 - 596
Main Author Patel, Vandita
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We describe a computationally efficient approach to resolving equations of the form C 1 x 2 + C 2 = y n in coprime integers, for fixed values of C 1 , C 2 subject to further conditions. We make use of a factorisation argument and the Primitive Divisor Theorem due to Bilu, Hanrot and Voutier.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1382-4090
1572-9303
DOI:10.1007/s11139-021-00408-9