Microstructure and Properties of Resistance Element Welded Joints of DP780 Steel and 6061 Aluminum Alloy
This study developed a metallurgical and mechanical hybrid resistance element welding (REW) method to fabricate lightweight Al/steel joints between 2.0 mm 6061 aluminum alloy and 1.2 mm DP780 steel, addressing critical challenges of interfacial intermetallic compounds (IMC layer thickness: 4.6–8.3 μ...
Saved in:
Published in | Metals (Basel ) Vol. 15; no. 3; p. 283 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study developed a metallurgical and mechanical hybrid resistance element welding (REW) method to fabricate lightweight Al/steel joints between 2.0 mm 6061 aluminum alloy and 1.2 mm DP780 steel, addressing critical challenges of interfacial intermetallic compounds (IMC layer thickness: 4.6–8.3 μm) in dissimilar metal welding. In addition, the scanning electron microscope (SEM), electron backscatter diffraction (EBSD), and electron probe microanalysis (EPMA) were used to observe the microstructure characteristics and element distribution. The lath martensite and solidification microstructure were observed in the steel-nugget zone and Al-nugget zone, respectively. Furthermore, the microhardness distribution, volume fraction of the α phase, tensile–shear load, and failure mode of REWed joint were studied. Process optimization demonstrated welding current’s pivotal role in joint performance, achieving a maximum tensile–shear load of 6914.1 N under 10 kA conditions with a button pull-out failure (BPF) mechanism. |
---|---|
AbstractList | This study developed a metallurgical and mechanical hybrid resistance element welding (REW) method to fabricate lightweight Al/steel joints between 2.0 mm 6061 aluminum alloy and 1.2 mm DP780 steel, addressing critical challenges of interfacial intermetallic compounds (IMC layer thickness: 4.6–8.3 μm) in dissimilar metal welding. In addition, the scanning electron microscope (SEM), electron backscatter diffraction (EBSD), and electron probe microanalysis (EPMA) were used to observe the microstructure characteristics and element distribution. The lath martensite and solidification microstructure were observed in the steel-nugget zone and Al-nugget zone, respectively. Furthermore, the microhardness distribution, volume fraction of the α phase, tensile–shear load, and failure mode of REWed joint were studied. Process optimization demonstrated welding current’s pivotal role in joint performance, achieving a maximum tensile–shear load of 6914.1 N under 10 kA conditions with a button pull-out failure (BPF) mechanism. |
Audience | Academic |
Author | Guo, Qing Luo, Zhen Wu, Qinglong Luo, Shuyue Yang, Yue Li, Yingzhe |
Author_xml | – sequence: 1 givenname: Qinglong surname: Wu fullname: Wu, Qinglong – sequence: 2 givenname: Yue surname: Yang fullname: Yang, Yue – sequence: 3 givenname: Yingzhe surname: Li fullname: Li, Yingzhe – sequence: 4 givenname: Qing surname: Guo fullname: Guo, Qing – sequence: 5 givenname: Shuyue surname: Luo fullname: Luo, Shuyue – sequence: 6 givenname: Zhen surname: Luo fullname: Luo, Zhen |
BookMark | eNpNkUlPHDEQha2ISBDgxB-wlCMa8Nbd9nHEFhARKItytLxUE4-67YntPvDvY2aiCPvgUunVp-d6n9BBTBEQOqPkgnNFLmeotCOcMMk_oCNGhm4lBkIP3tWH6LSUDWlHsp4odYR-fw0up1Lz4uqSAZvo8XNOW8g1QMFpxN-ghFJNdIBvJpghVvwLJg8eP6QQ605z_TxIgr9XgGlH6ElP8Xpa5hCXuRVTej1BH0czFTj99x6jn7c3P66-rB6f7u6v1o8rx3teV06B8SNTVCgiiBSOd4x0Yuy5UsI6423XK9JbSgYm_ADWD6aTHaXSMyEN8GN0v-f6ZDZ6m8Ns8qtOJuhdI-UXbdrf3ATaCiktNcZYJgR4UM6CbwsUQkkyUttYn_esbU5_FihVb9KSY7OvOZW0F3Tgoqku9qoX06Ahjqlm49r1MAfXMhpD668lH5p1JmUbON8PvG2-ZBj_26REv0Wp30XJ_wLmNZBy |
Cites_doi | 10.1016/j.jmst.2023.05.057 10.3390/met14121448 10.1016/j.jmatprotec.2017.03.020 10.3901/JME.2020.06.057 10.5781/JWJ.2023.41.1.4 10.1016/j.matlet.2021.129312 10.1002/adem.202201795 10.29391/2020.99.021 10.1016/j.jmatprotec.2019.04.018 10.1007/s40194-021-01122-2 10.1007/s00170-021-07683-2 10.1016/j.jmrt.2022.01.064 10.1016/j.jmatprotec.2019.116351 10.1016/j.promfg.2018.07.057 10.1016/j.matchemphys.2022.127254 10.1016/j.msea.2023.145314 10.1016/j.jmapro.2017.10.009 10.1007/s11665-014-0962-3 10.1016/j.jmapro.2022.07.067 10.1016/j.mtcomm.2020.101965 10.1016/j.matdes.2016.07.076 10.1016/j.matdes.2019.107795 10.1007/s40194-017-0431-3 10.1016/j.jmatprotec.2008.11.003 10.1016/j.jmrt.2022.01.041 10.1007/s40194-019-00842-w 10.1007/s40194-013-0098-3 10.1016/j.jmrt.2023.07.101 10.1016/j.jmapro.2022.08.062 10.1016/j.jmapro.2024.01.049 10.1016/j.optlastec.2021.107218 10.1016/j.jmatprotec.2018.10.011 10.1080/10426914.2019.1683574 10.1007/s10098-018-01662-0 10.1016/j.jmatprotec.2019.116292 10.1007/s00170-021-08442-z |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/met15030283 |
DatabaseName | CrossRef METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2075-4701 |
ExternalDocumentID | oai_doaj_org_article_b488b1aaab244ede9cbed03044980f1b A837569288 10_3390_met15030283 |
GeographicLocations | China Japan |
GeographicLocations_xml | – name: China – name: Japan |
GroupedDBID | .4S 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION D1I GROUPED_DOAJ HCIFZ IAO ITC KB. KQ8 MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PROAC TUS PMFND 8BQ 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c363t-c9eadf2914904084c352054f63994bcadb56906b10724d7ebd7a585118d248ae3 |
IEDL.DBID | DOA |
ISSN | 2075-4701 |
IngestDate | Wed Aug 27 01:19:20 EDT 2025 Fri Jul 25 11:57:18 EDT 2025 Fri Jun 06 07:02:10 EDT 2025 Tue Jul 01 05:26:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-c9eadf2914904084c352054f63994bcadb56906b10724d7ebd7a585118d248ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/b488b1aaab244ede9cbed03044980f1b |
PQID | 3181641734 |
PQPubID | 2032361 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b488b1aaab244ede9cbed03044980f1b proquest_journals_3181641734 gale_infotracacademiconefile_A837569288 crossref_primary_10_3390_met15030283 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Metals (Basel ) |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Schmal (ref_36) 2020; 64 Wang (ref_18) 2019; 34 Funabiki (ref_41) 2024; 115 Han (ref_19) 2020; 56 Shim (ref_34) 2023; 41 Varma (ref_17) 2022; 34 ref_32 Yang (ref_9) 2022; 82 Baek (ref_29) 2022; 17 Meschut (ref_38) 2017; 61 Rajak (ref_23) 2023; 296 Talebizadehsardari (ref_10) 2021; 26 Bao (ref_3) 2021; 287 Rao (ref_31) 2021; 117 Yang (ref_35) 2023; 25 Yang (ref_12) 2021; 142 Chen (ref_7) 2017; 30 Wang (ref_20) 2022; 17 Shen (ref_21) 2015; 18 Liu (ref_8) 2023; 25 Meschut (ref_5) 2014; 23 Absar (ref_16) 2018; 26 Zhang (ref_22) 2024; 180 Cai (ref_33) 2022; 31 Seungyeop (ref_27) 2021; 833 Oliveira (ref_15) 2019; 273 Zhao (ref_13) 2022; 119 Zhang (ref_14) 2017; 246 Meschut (ref_30) 2021; 65 Akhshik (ref_1) 2019; 21 Qiu (ref_24) 2009; 209 Wang (ref_2) 2019; 174 Chen (ref_25) 2019; 265 Meschut (ref_37) 2013; 58 Pan (ref_39) 2022; 83 Singh (ref_11) 2019; 233 Hu (ref_26) 2020; 99 Manladan (ref_28) 2019; 274 Fang (ref_6) 2020; 275 Sun (ref_40) 2022; 109 Ding (ref_4) 2023; 880 |
References_xml | – volume: 180 start-page: 160 year: 2024 ident: ref_22 article-title: Revealing microstructural evolutions and mechanical properties of resistance spot welded NiTi-stainless steel with Ni or Nb interlayer publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2023.05.057 – ident: ref_32 doi: 10.3390/met14121448 – volume: 246 start-page: 313 year: 2017 ident: ref_14 article-title: The interface control of butt joints in laser braze welding of aluminium-steel with coaxial powder feeding publication-title: J. Mater. Process Technol. doi: 10.1016/j.jmatprotec.2017.03.020 – volume: 56 start-page: 57 year: 2020 ident: ref_19 article-title: Research on riveting-laser arc welding hybrid joining mechanism of aluminum alloy and high strength steel publication-title: J. Mech. Eng. doi: 10.3901/JME.2020.06.057 – volume: 41 start-page: 37 year: 2023 ident: ref_34 article-title: An Overview of Resistance Element Welding with Focus on Mechanical and Microstructure Joint and Optimization in Automotive Metal Joints publication-title: J. Weld. Join. doi: 10.5781/JWJ.2023.41.1.4 – volume: 287 start-page: 129312 year: 2021 ident: ref_3 article-title: Microstructural and mechanical characteristics of direct laser welding 7075 super hard aluminum alloy/D6AC ultra-high strength alloy structural steel publication-title: Mater. Lett. doi: 10.1016/j.matlet.2021.129312 – volume: 25 start-page: 2201795 year: 2023 ident: ref_35 article-title: Microstructure and Mechanical Properties of Resistance Element Welded Joints for DP780 Steel and 6061 Aluminum Alloy publication-title: Adv. Eng. Mater. doi: 10.1002/adem.202201795 – volume: 99 start-page: 224 year: 2020 ident: ref_26 article-title: Comparison of the resistance spot weldability of AA5754 and AA6022 aluminum to steels publication-title: Weld. J. doi: 10.29391/2020.99.021 – volume: 273 start-page: 116192 year: 2019 ident: ref_15 article-title: Combining resistance spot welding and friction element welding for dissimilar joining of aluminum to high strength steels publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2019.04.018 – volume: 65 start-page: 1899 year: 2021 ident: ref_30 article-title: Joining of ultra-high-strength steels using resistance element welding on conventional resistance spot welding guns publication-title: Weld. World doi: 10.1007/s40194-021-01122-2 – volume: 117 start-page: 227 year: 2021 ident: ref_31 article-title: Preventing nugget shifting in joining of dissimilar steels via resistance element welding: A numerical simulation publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-021-07683-2 – volume: 17 start-page: 1043 year: 2022 ident: ref_20 article-title: Effect of pulsed laser and laser-arc hybrid on aluminum/steel riveting-welding hybrid bonding technology publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2022.01.064 – volume: 275 start-page: 116351 year: 2020 ident: ref_6 article-title: Hybrid joining of a modular multi-material body-in-white structure publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2019.116351 – volume: 233 start-page: 2444 year: 2019 ident: ref_11 article-title: Investigation on the microstructure and mechanical properties of a dissimilar friction stir welded joint of magnesium alloys publication-title: J. Mater. Des. Appl. – volume: 26 start-page: 485 year: 2018 ident: ref_16 article-title: Temperature measurement in friction element welding process with micro thin film thermocouples publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2018.07.057 – volume: 296 start-page: 127254 year: 2023 ident: ref_23 article-title: Investigation of a novel TIG-spot welding vis-à-vis resistance spot welding of dual-phase 590 (DP590) steel: Processing-microstructure-mechanical properties correlation publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2022.127254 – volume: 880 start-page: 145314 year: 2023 ident: ref_4 article-title: Role of the position of the laser spot in the failure transition during the tensile test for the laser welding-brazing of galvanized CRRA1000 steel to 5754 aluminum alloy in an overlapped joint publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2023.145314 – volume: 30 start-page: 396 year: 2017 ident: ref_7 article-title: Improvement of resistance-spot-welded joints for DP600 steel and A5052 aluminum alloy with Zn slice interlayer publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2017.10.009 – volume: 34 start-page: 75 year: 2022 ident: ref_17 article-title: Numerical study of chipping during friction element welding publication-title: Manuf. Lett. – volume: 23 start-page: 1515 year: 2014 ident: ref_5 article-title: Innovative and Highly Productive Joining Technologies for Multi-Material Lightweight Car Body Structures publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-014-0962-3 – volume: 18 start-page: 270 year: 2015 ident: ref_21 article-title: Role of welding parameters on interfacial bonding in dissimilar steel/aluminum friction stir welds publication-title: Eng. Sci. Technol. – volume: 82 start-page: 230 year: 2022 ident: ref_9 article-title: Research progress on the microstructure and mechanical properties of friction stir welded Al-Li alloy joints publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2022.07.067 – volume: 26 start-page: 101965 year: 2021 ident: ref_10 article-title: Underwater friction stir welding of Al-Mg alloy: Thermo-mechanical modeling and validation publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2020.101965 – volume: 109 start-page: 596 year: 2022 ident: ref_40 article-title: Microstructures and mechanical properties of resistance spot welded joints of 16Mn steel and 6063-T6 aluminum alloy with different electrodes publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.07.076 – volume: 174 start-page: 107795 year: 2019 ident: ref_2 article-title: Evaluation of intermetallic compound layer at aluminum/steel interface joined by friction stir scribe technology publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.107795 – volume: 61 start-page: 435 year: 2017 ident: ref_38 article-title: Process characteristics and load-bearing capacities of joints welded with elements for the application in multi-material design publication-title: Weld. World doi: 10.1007/s40194-017-0431-3 – volume: 209 start-page: 4186 year: 2009 ident: ref_24 article-title: Interfacial microstructure and strength of steel/aluminum alloy joints welded by resistance spot welding with cover plate publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2008.11.003 – volume: 17 start-page: 658 year: 2022 ident: ref_29 article-title: Microstructural and interface geometrical influence on the mechanical fatigue property of aluminum/high-strength steel lap joints using resistance element welding for lightweight vehicles: Experimental and computational investigation publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2022.01.041 – volume: 31 start-page: 1 year: 2022 ident: ref_33 article-title: Microstructural and mechanical characterization of steel-DP780/Al-5052 joints formed using resistance element welding with concealed rivet cover publication-title: Compos. Adv. Mater. – volume: 64 start-page: 437 year: 2020 ident: ref_36 article-title: Process characteristics and influences of production-related disturbances in resistance element welding of hybrid materials with steel cover sheets and polymer core publication-title: Weld. World doi: 10.1007/s40194-019-00842-w – volume: 58 start-page: 65 year: 2013 ident: ref_37 article-title: Innovative joining technologies for multi-material structures publication-title: Weld. World doi: 10.1007/s40194-013-0098-3 – volume: 25 start-page: 6380 year: 2023 ident: ref_8 article-title: Quasi-in-situ characterization of microstructure evolution in friction stir welding of aluminum alloy publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2023.07.101 – volume: 83 start-page: 212 year: 2022 ident: ref_39 article-title: Understanding formation mechanisms of intermetallic compounds in dissimilar Al/steel joint processed by resistance spot welding publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2022.08.062 – volume: 115 start-page: 40 year: 2024 ident: ref_41 article-title: Convection and joint characteristics in aluminum alloy melting zone during resistance spot welding of dissimilar Fe-Al material in external magnetic field publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2024.01.049 – volume: 142 start-page: 107218 year: 2021 ident: ref_12 article-title: Effect of heat input on interfacial microstructure, tensile and bending properties of dissimilar Al/steel lap joints by laser welding-brazing publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2021.107218 – volume: 265 start-page: 158 year: 2019 ident: ref_25 article-title: Schedule and electrode design for resistance spot weld bonding Al to steels publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2018.10.011 – volume: 34 start-page: 1671 year: 2019 ident: ref_18 article-title: Riveting-welding hybrid bonding of high-strength steel and aluminum alloy publication-title: Mater. Manuf. Process. doi: 10.1080/10426914.2019.1683574 – volume: 21 start-page: 625 year: 2019 ident: ref_1 article-title: The effect of lightweighting on greenhouse gas emissions and life cycle energy for automotive composite parts publication-title: Clean. Technol. Environ. Policy doi: 10.1007/s10098-018-01662-0 – volume: 274 start-page: 116292 year: 2019 ident: ref_28 article-title: Resistance element welding of magnesium alloy and austenitic stainless steel in three-sheet configurations publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2019.116292 – volume: 833 start-page: 142378 year: 2021 ident: ref_27 article-title: Robust bonding and microstructure behavior of aluminum/high-strength steel lap joints using resistance element welding process for lightweight vehicles: Experimental and numerical investigation publication-title: Mater. Sci. Eng. A – volume: 119 start-page: 4149 year: 2022 ident: ref_13 article-title: Research progress of transition layer and filler wire for laser welding of steel and aluminum dissimilar metals publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-021-08442-z |
SSID | ssj0000826099 |
Score | 2.3051805 |
Snippet | This study developed a metallurgical and mechanical hybrid resistance element welding (REW) method to fabricate lightweight Al/steel joints between 2.0 mm 6061... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 283 |
SubjectTerms | Alloys Aluminum aluminum alloy Aluminum alloys Aluminum base alloys Automobile industry Dissimilar material joining Dissimilar metals DP780 steel Dual phase steels Electrodes Electron back scatter Electron probe microanalysis failure mode Failure modes High strength steels Intermetallic compounds Investigations Martensite Mechanical properties Microhardness Microstructure Morphology resistance element welding Solidification Specialty metals industry Spectrum analysis Steel Thickness Welded joints Welding Welding current |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-NADLbYcmEPCFjQdiloDkicIkgy6aQn1EIRQgJVsAhuo3k4LFJJ2DYc-PfYyZTHAW5RMooSPz97PDbAnjJ9MouJi5CwRCTJ50U2UyoqZJobzkO6jA8nX1z2z27k-V12FxJu81BWubCJjaH2leMc-QHJHiH7WKXy6Ol_xFOjeHc1jND4ActkgvO8A8uj8eXk6i3LQg6uTxioPZiXUnx_8Ig1YaCU3eonV9R07P_KLjfO5nQNVgNKFMOWreuwhOUG_PzQO_AX_LvgUrq2_evzDIUpvZhwZn3GLVJFVYgrnDM4JK6KcVskLm5x6tGL8-qhrJs1JxOVH4rrGnHavIECjVgMyWA9lM-PdDGtXjbh5nT89_gsCmMTIpf20zpyA5KOIhlQ7EMamktHGIuAWcFYRFpnvM24O7GlwC-RXqH1yvDmYJz7ROYG0y3olFWJv0GgVM65pLCpM1L5zJoGYylLwMPIwnRhb0FB_dR2x9AUVTCh9QdCd2HE1H1bwi2tmxvV7F4HDdGWTImNjTGWEAd6HDiLnjdu5SA_LGLbhX3mjWbFq2fGmXB-gL6UW1jpIYXa9GMkBV3oLding0bO9bv8_Pn-8TasJDzjt6kz60GH-Ig7BDxquxuk6xWeCtcz priority: 102 providerName: ProQuest |
Title | Microstructure and Properties of Resistance Element Welded Joints of DP780 Steel and 6061 Aluminum Alloy |
URI | https://www.proquest.com/docview/3181641734 https://doaj.org/article/b488b1aaab244ede9cbed03044980f1b |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT-MwEB3xcYHDamFBlIXKh0p7iiCJU7vHstuCkFpVXdBys_wxEUglRSUc9t_vjBNQ94C4cIsiK3Jm7Jn37PEzQE_ZPoXFzCdIWCKRlPMSVyiVlDLXltchfcGHkyfT_tWtvL4r7tau-uKasEYeuDHcmaMR5lJrraNEhAEH3mHg_Tw50Odl6jj6Us5bI1MxBhNqJuzTHMjLidefPWJN2CfndPpfCopK_e_F45hkxl_hS4sOxbDp1R5sYLUPu2uagd_gfsIldI3s68sKha2CmPGK-oqlUcWyFHN8ZlBI3hSjpjhc_MFFwCCulw9VHdv8mil9Ln7XiIv4BSIYqRhSoHqoXh7pYbH8ewC349HNz6ukvS4h8Xk_rxM_oFFRZgPiPDQztfSErQiQlYxBpPM2uIJViR0RvkwGhS4oy5uCqQ6Z1BbzQ9iqlhUegUCpvPdZ6XJvpQqFsxFbKUeAw8rSdqD3akHz1KhiGGITbGizZugOXLB135qwlHV8QQ42rYPNRw7uwA_2jeEJV6-st-25AeopS1eZIVFs-rFM6w6cvLrPtDPx2VDMIkaYqlwef0ZvvsNOxjcAxyq0E9gib-MpwZLadWFTjy-7sH0xms7m3Tge_wHtoOHt |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKOQAHVF5ioYU5FHGKukkmO9lDVS20y_axVQWt6G06DwcqbZOymwr1T_EbsSdJKQe49RZlRqPE9tifPWMbYF2ZAanFxEVIWCKSZPMimykVFTLNDcchXcbJydPDweRE7p1mp0vwq8uF4WuVnU4MitpXjmPkGyR7hOxjlcqtyx8Rd43i09WuhUYjFvt4_ZNctsXm7jbx912SjHeOP06itqtA5NJBWkduSMQrkiG5BiTAuXQEQQi3FGyqpXXG24yL91ryixLpFVqvDJ-dxblPZG4wpXXvwX2ZkiXnzPTxp5uYDpnTASGuJg2QxvsbF1gT4krZiP9l-EJ_gH9ZgWDaxivwuMWkYtQI0RNYwvIpPLpVqfAZfJ_yxb2m2OzVHIUpvTjiOP6cC7KKqhCfccFQlGRI7DRX0sVXnHn0Yq86L-swZ_tI5X3xpUachRXIrYnFiNTjeXl1QQ-z6vo5nNwJOV_AclmV-BIESuWcSwqbOiOVz6wJiE5ZgjlGFqYH6x0F9WVTi0OTD8OE1rcI3YMPTN2bKVxAO7yo5t90ux-1JcVlY2OMJXyDHofOoudjYjnM-0Vse_CeeaN5m9dz40ybrUBfygWz9Igce_qxJM97sNqxT7f7f6H_SOur_w-_hQeT4-mBPtg93H8NDxPuLhxuuK3CMvEU1wjy1PZNkDMBZ3ct2L8BvbMRbg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDzVQIE9FHGyEu-us_YBoZQk6oNGUaGit2VfhkqpXRJXqH-NX8eMH6Uc4NabZa8se_bbmW9mZ2cAdpQZoVrkLgrIJSKJNi-yiVJRLkVqKA7pEjqcfDQf7Z3Ig9PkdAN-dWdhKK2y04m1ovaloxj5ALGHzD5WQg7yNi1iMZm9v_gRUQcp2mnt2mk0EDkMVz_RfVu_25_gXL_hfDb9_GEvajsMRE6MRBW5DAWZ8wzdBARzKh3SEeQwOZltaZ3xNqFCvhZ9JC69CtYrQ_toceq5TE0Q-N47sKnIK-rB5u50vji-jvCgcR0h_2oOBQqRDQfnoUL-Jcik_2UG624B_7IJtaGbPYQHLUNl4wZSj2AjFI_h_o26hU_g-xGl8TWlZy9XgZnCswVF9VdUnpWVOTsOayKmiCg2bRLU2Zew9MGzg_KsqOoxk4VKh-xTFcKyfgM6OTEbo7I8Ky7P8WJZXj2Fk1sR6DPoFWURtoAFqZxzPLfCGal8Yk3N75RF0mNkbvqw00lQXzSVOTR6NCRofUPQfdgl6V4PoXLa9Y1y9U23q1NbVGM2NsZYZDvBh8zZ4GnTWGbpMI9tH97S3Gha9NXKONOeXcAvpfJZeoxuPv4YT9M-bHfTp1ttsNZ_sPv8_49fw10Etf64Pz98Afc4tRqu0922oYdTGl4i_6nsqxZoDL7eNrZ_A_uMFwA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructure+and+Properties+of+Resistance+Element+Welded+Joints+of+DP780+Steel+and+6061+Aluminum+Alloy&rft.jtitle=Metals+%28Basel+%29&rft.au=Wu%2C+Qinglong&rft.au=Yang%2C+Yue&rft.au=Li%2C+Yingzhe&rft.au=Guo%2C+Qing&rft.date=2025-03-01&rft.pub=MDPI+AG&rft.issn=2075-4701&rft.eissn=2075-4701&rft.volume=15&rft.issue=3&rft_id=info:doi/10.3390%2Fmet15030283&rft.externalDocID=A837569288 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4701&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4701&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4701&client=summon |