Microstructure and Properties of Resistance Element Welded Joints of DP780 Steel and 6061 Aluminum Alloy

This study developed a metallurgical and mechanical hybrid resistance element welding (REW) method to fabricate lightweight Al/steel joints between 2.0 mm 6061 aluminum alloy and 1.2 mm DP780 steel, addressing critical challenges of interfacial intermetallic compounds (IMC layer thickness: 4.6–8.3 μ...

Full description

Saved in:
Bibliographic Details
Published inMetals (Basel ) Vol. 15; no. 3; p. 283
Main Authors Wu, Qinglong, Yang, Yue, Li, Yingzhe, Guo, Qing, Luo, Shuyue, Luo, Zhen
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study developed a metallurgical and mechanical hybrid resistance element welding (REW) method to fabricate lightweight Al/steel joints between 2.0 mm 6061 aluminum alloy and 1.2 mm DP780 steel, addressing critical challenges of interfacial intermetallic compounds (IMC layer thickness: 4.6–8.3 μm) in dissimilar metal welding. In addition, the scanning electron microscope (SEM), electron backscatter diffraction (EBSD), and electron probe microanalysis (EPMA) were used to observe the microstructure characteristics and element distribution. The lath martensite and solidification microstructure were observed in the steel-nugget zone and Al-nugget zone, respectively. Furthermore, the microhardness distribution, volume fraction of the α phase, tensile–shear load, and failure mode of REWed joint were studied. Process optimization demonstrated welding current’s pivotal role in joint performance, achieving a maximum tensile–shear load of 6914.1 N under 10 kA conditions with a button pull-out failure (BPF) mechanism.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2075-4701
2075-4701
DOI:10.3390/met15030283