Infrared-driving actuation based on bilayer graphene oxide-poly(N-isopropylacrylamide) nanocomposite hydrogels
Stimulus-responsive hydrogels are utilized as smart materials in actuators for transforming external stimuli into actuation movements. Infrared (IR) irradiation is considered to be an ideal driving energy because it can penetrate into biomaterials without direct contact and can be remotely controlle...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 2; no. 37; pp. 15633 - 15639 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
01.01.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Stimulus-responsive hydrogels are utilized as smart materials in actuators for transforming external stimuli into actuation movements. Infrared (IR) irradiation is considered to be an ideal driving energy because it can penetrate into biomaterials without direct contact and can be remotely controlled. In the present work, a new IR-driving bilayer hydrogel actuator is prepared by stacking a graphene oxide (GO)-hectorite clay-poly(N-isopropylacrylamide) (PNIPAm) gel layer onto a hectorite clay-PNIPAm gel layer, synthesized through stepwise in situpolymerization. GO in the gel absorbs the IR irradiation and rapidly and efficiently transforms it into thermal energy, resulting in a much faster temperature increase in the GO-containing gel layer than that of the gel layer without GO, and the temperature of the former becomes higher than that of the latter. This bilayer structure with different temperatures changes the isotropic volume contraction into an anisotropic deformation, i.e., bending, which is always toward the GO-containing layer. Moreover, this bending occurs in the atmosphere, owing to the self-supporting capability of the tough gels. The repetition of the bending recovery is realized by turning the IR light on and off. According to these observations, the bilayer gel with GO provides a tough and IR-driving material for new soft actuators. |
---|---|
AbstractList | Stimulus-responsive hydrogels are utilized as smart materials in actuators for transforming external stimuli into actuation movements. Infrared (IR) irradiation is considered to be an ideal driving energy because it can penetrate into biomaterials without direct contact and can be remotely controlled. In the present work, a new IR-driving bilayer hydrogel actuator is prepared by stacking a graphene oxide (GO)-hectorite clay-poly(N-isopropylacrylamide) (PNIPAm) gel layer onto a hectorite clay-PNIPAm gel layer, synthesized through stepwise in situpolymerization. GO in the gel absorbs the IR irradiation and rapidly and efficiently transforms it into thermal energy, resulting in a much faster temperature increase in the GO-containing gel layer than that of the gel layer without GO, and the temperature of the former becomes higher than that of the latter. This bilayer structure with different temperatures changes the isotropic volume contraction into an anisotropic deformation, i.e., bending, which is always toward the GO-containing layer. Moreover, this bending occurs in the atmosphere, owing to the self-supporting capability of the tough gels. The repetition of the bending recovery is realized by turning the IR light on and off. According to these observations, the bilayer gel with GO provides a tough and IR-driving material for new soft actuators. Stimulus-responsive hydrogels are utilized as smart materials in actuators for transforming external stimuli into actuation movements. Infrared (IR) irradiation is considered to be an ideal driving energy because it can penetrate into biomaterials without direct contact and can be remotely controlled. In the present work, a new IR-driving bilayer hydrogel actuator is prepared by stacking a graphene oxide (GO)-hectorite clay-poly(N-isopropylacrylamide) (PNIPAm) gel layer onto a hectorite clay-PNIPAm gel layer, synthesized through stepwise in situ polymerization. GO in the gel absorbs the IR irradiation and rapidly and efficiently transforms it into thermal energy, resulting in a much faster temperature increase in the GO-containing gel layer than that of the gel layer without GO, and the temperature of the former becomes higher than that of the latter. This bilayer structure with different temperatures changes the isotropic volume contraction into an anisotropic deformation, i.e., bending, which is always toward the GO-containing layer. Moreover, this bending occurs in the atmosphere, owing to the self-supporting capability of the tough gels. The repetition of the bending recovery is realized by turning the IR light on and off. According to these observations, the bilayer gel with GO provides a tough and IR-driving material for new soft actuators. |
Author | Liu, Xinxing Zhang, Enzhong Hong, Wei Wang, Tao Tong, Zhen Sun, Weixiang |
Author_xml | – sequence: 1 givenname: Enzhong surname: Zhang fullname: Zhang, Enzhong – sequence: 2 givenname: Tao surname: Wang fullname: Wang, Tao – sequence: 3 givenname: Wei surname: Hong fullname: Hong, Wei – sequence: 4 givenname: Weixiang surname: Sun fullname: Sun, Weixiang – sequence: 5 givenname: Xinxing surname: Liu fullname: Liu, Xinxing – sequence: 6 givenname: Zhen surname: Tong fullname: Tong, Zhen |
BookMark | eNqFUU1LAzEQDVLBWnvxF-yxCqv52GaTYyl-VIpe6nnJJrNtZJusyVbcf-_WioIIDsPMg3nvMcycooHzDhA6J_iKYCav59lqhqng_OEIDSme4jTPJB98YyFO0DjGF9yHwJhLOURu4aqgApjUBPtm3TpRut2p1nqXlCqCSfbA1qqDkKyDajbgIPHv1kDa-LqbPKY2-ib4pquVDn3Z9qOLxCnntd82PtoWkk1ngl9DHc_QcaXqCOOvPkLPtzer-X26fLpbzGfLVDPO2lRLPDVTLkoOQuQMK6ONISZjOlOUlqZiFVPcYFlqqCpqKCUkl4zkCqYmk4yN0OTg22_2uoPYFlsbNdS1cuB3saCM5pJjmYt_qYSTPkWe7V3xgaqDjzFAVWjbft6qDcrWBcHF_hHFzyN6yeUvSRPsVoXuL_IHPYaMrg |
CitedBy_id | crossref_primary_10_1002_adfm_202102685 crossref_primary_10_1016_j_supmat_2021_100002 crossref_primary_10_3390_polym9070270 crossref_primary_10_1515_ipp_2020_3904 crossref_primary_10_1002_marc_201800337 crossref_primary_10_1021_acs_langmuir_4c01522 crossref_primary_10_1039_D0TB02524K crossref_primary_10_1002_adma_201804540 crossref_primary_10_1016_j_nanoen_2021_105965 crossref_primary_10_1039_D0MH01406K crossref_primary_10_1021_acsami_0c22484 crossref_primary_10_1002_app_51509 crossref_primary_10_1016_j_nanoso_2020_100500 crossref_primary_10_1039_C9RA04558A crossref_primary_10_1039_D0TA06965E crossref_primary_10_1016_j_eml_2019_100463 crossref_primary_10_1039_C5SM02232K crossref_primary_10_1021_acsanm_9b02338 crossref_primary_10_1021_acsnano_7b01937 crossref_primary_10_1002_mame_202000256 crossref_primary_10_1016_j_snb_2017_09_137 crossref_primary_10_1039_D1PY00404B crossref_primary_10_1021_acsmaterialslett_3c00435 crossref_primary_10_1007_s13233_018_6084_2 crossref_primary_10_1002_mame_201600359 crossref_primary_10_3390_biomimetics9100585 crossref_primary_10_1021_acsami_5b08609 crossref_primary_10_1016_j_optmat_2020_110437 crossref_primary_10_1038_s41598_018_21871_3 crossref_primary_10_1038_natrevmats_2017_46 crossref_primary_10_1021_acsami_1c04110 crossref_primary_10_1021_acsami_6b11043 crossref_primary_10_1016_j_dyepig_2019_108042 crossref_primary_10_1016_j_nanoen_2018_07_025 crossref_primary_10_1515_epoly_2019_0022 crossref_primary_10_1016_j_colsurfb_2016_03_079 crossref_primary_10_3390_ijms221910563 crossref_primary_10_1039_D0TC00139B crossref_primary_10_1002_pola_27965 crossref_primary_10_1186_s40580_019_0188_z crossref_primary_10_1016_j_pmatsci_2021_100870 crossref_primary_10_3390_app11188563 crossref_primary_10_1039_D4TC03610G crossref_primary_10_1002_mame_201600384 crossref_primary_10_1016_j_jmbbm_2017_11_043 crossref_primary_10_1021_acsami_7b00138 crossref_primary_10_1002_marc_202200271 crossref_primary_10_1016_j_colsurfb_2019_01_058 crossref_primary_10_1002_adma_201502777 crossref_primary_10_1002_asia_201900292 crossref_primary_10_1021_acsami_7b17907 crossref_primary_10_1002_adfm_201802235 crossref_primary_10_1021_acs_iecr_6b00432 crossref_primary_10_3390_polym9060237 crossref_primary_10_1002_adfm_201503434 crossref_primary_10_1016_j_matpr_2018_04_171 crossref_primary_10_1021_jacs_1c03588 crossref_primary_10_1021_am507100m crossref_primary_10_1016_j_snb_2023_133932 crossref_primary_10_1016_j_carbpol_2017_09_030 crossref_primary_10_1039_C7TB02853A crossref_primary_10_1002_marc_202100499 crossref_primary_10_1039_D1TA04134G crossref_primary_10_1039_C7CP07915J crossref_primary_10_1021_acsami_0c16719 crossref_primary_10_1002_adma_201604691 crossref_primary_10_1002_adom_201800458 crossref_primary_10_1007_s10118_017_1970_1 crossref_primary_10_1002_adom_201700442 crossref_primary_10_1515_epoly_2020_0033 crossref_primary_10_1021_acsami_6b00197 crossref_primary_10_1021_acs_analchem_4c05363 crossref_primary_10_1039_C8NR05301D crossref_primary_10_1088_1361_665X_ad5944 crossref_primary_10_1002_polb_24724 crossref_primary_10_1002_adom_201900069 crossref_primary_10_1002_mame_201700184 crossref_primary_10_1021_acsami_0c17085 crossref_primary_10_1021_acsami_6b00867 crossref_primary_10_1002_marc_202000127 crossref_primary_10_1007_s10853_021_06335_w crossref_primary_10_1039_C7TB02119D crossref_primary_10_1002_admi_202300169 crossref_primary_10_1002_slct_202002424 crossref_primary_10_1021_acsami_6b04325 crossref_primary_10_1021_acsami_0c06342 crossref_primary_10_1002_smll_202204288 crossref_primary_10_1007_s11431_020_1735_9 crossref_primary_10_1021_acsami_6b07713 crossref_primary_10_1039_C9TC06407A crossref_primary_10_1063_5_0020596 crossref_primary_10_1039_C8TB02896F crossref_primary_10_1002_adfm_201500420 crossref_primary_10_1002_adfm_201903471 crossref_primary_10_1038_s41467_023_43576_6 crossref_primary_10_1002_marc_201900270 crossref_primary_10_1021_acs_chemmater_9b03670 crossref_primary_10_1016_j_carbpol_2017_04_035 crossref_primary_10_1039_C7TC05710E crossref_primary_10_1016_j_scitotenv_2019_02_407 crossref_primary_10_1021_acsapm_9b00654 crossref_primary_10_3390_gels8050280 crossref_primary_10_1016_j_cclet_2021_03_073 crossref_primary_10_1002_marc_201700421 crossref_primary_10_1039_C5TA05807D crossref_primary_10_1016_j_pmatsci_2020_100702 crossref_primary_10_3390_polym15193905 crossref_primary_10_1016_j_jcis_2025_01_126 crossref_primary_10_1021_acsami_5b08248 crossref_primary_10_1021_acsami_8b13235 crossref_primary_10_1021_acsami_7b10348 crossref_primary_10_1088_1361_665X_ab8a02 crossref_primary_10_1039_C6TB01606E crossref_primary_10_1016_j_carbpol_2022_119727 crossref_primary_10_1002_aisy_202100030 crossref_primary_10_1002_marc_202300205 crossref_primary_10_1016_j_mtcomm_2024_110247 crossref_primary_10_1002_adom_202102186 crossref_primary_10_3390_coatings13081310 crossref_primary_10_1016_j_cej_2018_09_078 crossref_primary_10_1002_mame_202200228 crossref_primary_10_1016_j_cej_2020_127762 crossref_primary_10_1098_rspa_2017_0092 crossref_primary_10_1002_adfm_201601389 crossref_primary_10_1016_j_cej_2018_12_026 crossref_primary_10_1002_admt_201800366 crossref_primary_10_1016_j_compscitech_2017_08_016 crossref_primary_10_1016_j_matlet_2018_11_116 crossref_primary_10_1021_acsapm_4c00548 crossref_primary_10_1039_D0NJ04409A crossref_primary_10_1038_srep15124 crossref_primary_10_1002_mame_202100379 crossref_primary_10_1016_j_matchemphys_2020_123332 crossref_primary_10_1002_adfm_201905514 crossref_primary_10_1016_j_snb_2019_126908 crossref_primary_10_1021_acsami_0c15195 crossref_primary_10_1002_advs_201801584 |
Cites_doi | 10.1039/C1SM06484C 10.1007/s10118-010-9191-x 10.1038/srep00857 10.1177/1045389X9300400106 10.1021/jz1011143 10.1021/nl401088b 10.1039/c1sm05797a 10.1038/nmat2858 10.1039/c2jm15536b 10.1039/c2sm25511a 10.1002/adfm.201201020 10.1039/C1SM06970E 10.1002/mabi.200900297 10.1039/c1jm10276a 10.1002/adma.200800494 10.1016/S0009-2614(01)00653-4 10.1039/c1jm13311j 10.1039/c2jm32541a 10.1039/c2jm30753g 10.1038/nmat1059 10.1021/ja2010175 10.1021/ma300874n 10.1038/nmat1391 10.1021/ja067171+ 10.1002/adma.200401239 10.1021/ja01539a017 10.1021/jp901284d 10.1021/nl201503e 10.1039/c1sm00011j 10.1088/0957-4484/18/30/305502 10.1002/adfm.201101072 10.1073/pnas.1007862108 10.1021/ma990062d 10.1126/science.269.5223.525 10.1021/am403071k 10.1039/c3nr01486j 10.1016/j.reactfunctpolym.2011.01.004 10.1038/ncomms2280 10.1021/nl200494t 10.1016/j.addr.2011.06.009 10.1016/j.carbon.2013.06.003 10.1021/cm049764u 10.1021/ja057254a 10.1002/adfm.201200245 10.1016/j.carbon.2011.12.049 10.1039/c3ee42812e 10.1039/c2py00577h 10.1016/S0169-409X(01)00203-4 10.1126/science.1230262 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7ST 7U6 C1K 7S9 L.6 |
DOI | 10.1039/C4TA02866J |
DatabaseName | CrossRef Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Environment Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 15639 |
ExternalDocumentID | 10_1039_C4TA02866J |
GroupedDBID | 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANBJS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3G J3H J3I O-G O9- R7C RAOCF RCNCU RNS ROL RPMJG RRC RSCEA SKA SKF SLH 7ST 7U6 C1K 7S9 L.6 |
ID | FETCH-LOGICAL-c363t-c905d568b6e88730adcdd1d43c4a22bdf3f3a6d09bceff2d221179317ae5d4933 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Fri Jul 11 07:29:42 EDT 2025 Fri Jul 11 06:19:40 EDT 2025 Thu Apr 24 23:08:38 EDT 2025 Tue Jul 01 04:17:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c363t-c905d568b6e88730adcdd1d43c4a22bdf3f3a6d09bceff2d221179317ae5d4933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1611618743 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2327960978 proquest_miscellaneous_1611618743 crossref_citationtrail_10_1039_C4TA02866J crossref_primary_10_1039_C4TA02866J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-01-01 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2014 |
References | Grady (C4TA02866J-(cit5)/*[position()=1]) 2009; 2 Lu (C4TA02866J-(cit30)/*[position()=1]) 2007; 18 Abdelsayed (C4TA02866J-(cit33)/*[position()=1]) 2010; 1 Hoare (C4TA02866J-(cit15)/*[position()=1]) 2011; 11 Zhu (C4TA02866J-(cit18)/*[position()=1]) 2012; 22 Hou (C4TA02866J-(cit38)/*[position()=1]) 2012; 50 Shao (C4TA02866J-(cit4)/*[position()=1]) 2012; 22 Qi (C4TA02866J-(cit47)/*[position()=1]) 2012; 3 Liang (C4TA02866J-(cit9)/*[position()=1]) 2009; 113 Takashima (C4TA02866J-(cit26)/*[position()=1]) 2012; 3 Feng (C4TA02866J-(cit11)/*[position()=1]) 2013; 5 Satoh (C4TA02866J-(cit25)/*[position()=1]) 2011; 7 Zhao (C4TA02866J-(cit16)/*[position()=1]) 2011; 108 Zhang (C4TA02866J-(cit7)/*[position()=1]) 2011; 11 Wang (C4TA02866J-(cit49)/*[position()=1]) 2011; 71 Lv (C4TA02866J-(cit35)/*[position()=1]) 2012; 22 Wu (C4TA02866J-(cit10)/*[position()=1]) 2011; 21 Tomatsu (C4TA02866J-(cit24)/*[position()=1]) 2011; 63 Chan (C4TA02866J-(cit19)/*[position()=1]) 2012; 2 Acik (C4TA02866J-(cit34)/*[position()=1]) 2010; 9 Okuzaki (C4TA02866J-(cit21)/*[position()=1]) 1993; 4 Lo (C4TA02866J-(cit23)/*[position()=1]) 2011; 7 Liang (C4TA02866J-(cit3)/*[position()=1]) 2011; 21 Katz (C4TA02866J-(cit29)/*[position()=1]) 2010; 10 Pelah (C4TA02866J-(cit14)/*[position()=1]) 2007; 129 Sun (C4TA02866J-(cit50)/*[position()=1]) 2011; 21 Robinson (C4TA02866J-(cit27)/*[position()=1]) 2011; 133 Yang (C4TA02866J-(cit48)/*[position()=1]) 2013; 5 Koerner (C4TA02866J-(cit1)/*[position()=1]) 2004; 3 Fujigaya (C4TA02866J-(cit22)/*[position()=1]) 2008; 20 Wang (C4TA02866J-(cit41)/*[position()=1]) 2013; 13 Zhang (C4TA02866J-(cit44)/*[position()=1]) 2013; 62 Tong (C4TA02866J-(cit46)/*[position()=1]) 1999; 32 Hu (C4TA02866J-(cit20)/*[position()=1]) 1995; 269 Zhao (C4TA02866J-(cit39)/*[position()=1]) 2013; 6 Hummers (C4TA02866J-(cit45)/*[position()=1]) 1958; 80 Sershen (C4TA02866J-(cit17)/*[position()=1]) 2005; 17 Ahir (C4TA02866J-(cit2)/*[position()=1]) 2005; 4 Huang (C4TA02866J-(cit28)/*[position()=1]) 2006; 128 Ma (C4TA02866J-(cit8)/*[position()=1]) 2013; 339 Mohamed (C4TA02866J-(cit32)/*[position()=1]) 2001; 343 Liu (C4TA02866J-(cit36)/*[position()=1]) 2012; 22 Huang (C4TA02866J-(cit40)/*[position()=1]) 2012; 22 Shen (C4TA02866J-(cit37)/*[position()=1]) 2012; 8 Wang (C4TA02866J-(cit42)/*[position()=1]) 2012; 8 Zhang (C4TA02866J-(cit6)/*[position()=1]) 2012; 8 Qiu (C4TA02866J-(cit12)/*[position()=1]) 2001; 53 Lian (C4TA02866J-(cit43)/*[position()=1]) 2012; 45 Yang (C4TA02866J-(cit13)/*[position()=1]) 2010; 28 Kim (C4TA02866J-(cit31)/*[position()=1]) 2004; 16 |
References_xml | – volume: 8 start-page: 774 year: 2012 ident: C4TA02866J-(cit42)/*[position()=1] publication-title: Soft Matter doi: 10.1039/C1SM06484C – volume: 28 start-page: 951 year: 2010 ident: C4TA02866J-(cit13)/*[position()=1] publication-title: Chin. J. Polym. Sci. doi: 10.1007/s10118-010-9191-x – volume: 2 start-page: 8 year: 2012 ident: C4TA02866J-(cit19)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep00857 – volume: 4 start-page: 50 year: 1993 ident: C4TA02866J-(cit21)/*[position()=1] publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X9300400106 – volume: 1 start-page: 2804 year: 2010 ident: C4TA02866J-(cit33)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz1011143 – volume: 13 start-page: 2826 year: 2013 ident: C4TA02866J-(cit41)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl401088b – volume: 7 start-page: 8030 year: 2011 ident: C4TA02866J-(cit25)/*[position()=1] publication-title: Soft Matter doi: 10.1039/c1sm05797a – volume: 9 start-page: 840 year: 2010 ident: C4TA02866J-(cit34)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2858 – volume: 22 start-page: 3671 year: 2012 ident: C4TA02866J-(cit40)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm15536b – volume: 8 start-page: 5750 year: 2012 ident: C4TA02866J-(cit6)/*[position()=1] publication-title: Soft Matter doi: 10.1039/c2sm25511a – volume: 22 start-page: 4017 year: 2012 ident: C4TA02866J-(cit18)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201201020 – volume: 8 start-page: 1831 year: 2012 ident: C4TA02866J-(cit37)/*[position()=1] publication-title: Soft Matter doi: 10.1039/C1SM06970E – volume: 10 start-page: 339 year: 2010 ident: C4TA02866J-(cit29)/*[position()=1] publication-title: Macromol. Biosci. doi: 10.1002/mabi.200900297 – volume: 21 start-page: 4095 year: 2011 ident: C4TA02866J-(cit50)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c1jm10276a – volume: 20 start-page: 3610 year: 2008 ident: C4TA02866J-(cit22)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200800494 – volume: 343 start-page: 55 year: 2001 ident: C4TA02866J-(cit32)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(01)00653-4 – volume: 21 start-page: 18584 year: 2011 ident: C4TA02866J-(cit10)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c1jm13311j – volume: 22 start-page: 14160 year: 2012 ident: C4TA02866J-(cit36)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm32541a – volume: 22 start-page: 11290 year: 2012 ident: C4TA02866J-(cit35)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm30753g – volume: 3 start-page: 115 year: 2004 ident: C4TA02866J-(cit1)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat1059 – volume: 133 start-page: 6825 year: 2011 ident: C4TA02866J-(cit27)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2010175 – volume: 45 start-page: 7220 year: 2012 ident: C4TA02866J-(cit43)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma300874n – volume: 4 start-page: 491 year: 2005 ident: C4TA02866J-(cit2)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat1391 – volume: 129 start-page: 468 year: 2007 ident: C4TA02866J-(cit14)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja067171+ – volume: 17 start-page: 1366 year: 2005 ident: C4TA02866J-(cit17)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200401239 – volume: 80 start-page: 1339 year: 1958 ident: C4TA02866J-(cit45)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01539a017 – volume: 113 start-page: 9921 year: 2009 ident: C4TA02866J-(cit9)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp901284d – volume: 11 start-page: 3239 year: 2011 ident: C4TA02866J-(cit7)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl201503e – volume: 7 start-page: 5604 year: 2011 ident: C4TA02866J-(cit23)/*[position()=1] publication-title: Soft Matter doi: 10.1039/c1sm00011j – volume: 18 start-page: 305502 year: 2007 ident: C4TA02866J-(cit30)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/18/30/305502 – volume: 2 start-page: 343 year: 2009 ident: C4TA02866J-(cit5)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces – volume: 21 start-page: 3778 year: 2011 ident: C4TA02866J-(cit3)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201101072 – volume: 108 start-page: 67 year: 2011 ident: C4TA02866J-(cit16)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1007862108 – volume: 32 start-page: 4488 year: 1999 ident: C4TA02866J-(cit46)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma990062d – volume: 269 start-page: 525 year: 1995 ident: C4TA02866J-(cit20)/*[position()=1] publication-title: Science doi: 10.1126/science.269.5223.525 – volume: 5 start-page: 10882 year: 2013 ident: C4TA02866J-(cit11)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am403071k – volume: 5 start-page: 5720 year: 2013 ident: C4TA02866J-(cit48)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c3nr01486j – volume: 71 start-page: 447 year: 2011 ident: C4TA02866J-(cit49)/*[position()=1] publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2011.01.004 – volume: 3 start-page: 8 year: 2012 ident: C4TA02866J-(cit26)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms2280 – volume: 11 start-page: 1395 year: 2011 ident: C4TA02866J-(cit15)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl200494t – volume: 63 start-page: 1257 year: 2011 ident: C4TA02866J-(cit24)/*[position()=1] publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2011.06.009 – volume: 62 start-page: 117 year: 2013 ident: C4TA02866J-(cit44)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2013.06.003 – volume: 16 start-page: 3647 year: 2004 ident: C4TA02866J-(cit31)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm049764u – volume: 128 start-page: 2115 year: 2006 ident: C4TA02866J-(cit28)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja057254a – volume: 22 start-page: 3029 year: 2012 ident: C4TA02866J-(cit4)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200245 – volume: 50 start-page: 1959 year: 2012 ident: C4TA02866J-(cit38)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2011.12.049 – volume: 6 start-page: 3520 year: 2013 ident: C4TA02866J-(cit39)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c3ee42812e – volume: 3 start-page: 621 year: 2012 ident: C4TA02866J-(cit47)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/c2py00577h – volume: 53 start-page: 321 year: 2001 ident: C4TA02866J-(cit12)/*[position()=1] publication-title: Adv. Drug Delivery Rev. doi: 10.1016/S0169-409X(01)00203-4 – volume: 339 start-page: 186 year: 2013 ident: C4TA02866J-(cit8)/*[position()=1] publication-title: Science doi: 10.1126/science.1230262 |
SSID | ssj0000800699 |
Score | 2.466206 |
Snippet | Stimulus-responsive hydrogels are utilized as smart materials in actuators for transforming external stimuli into actuation movements. Infrared (IR)... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 15633 |
SubjectTerms | actuators anisotropy biocompatible materials deformation direct contact graphene graphene oxide hydrogels irradiation isotropy nanocomposites polymerization temperature thermal energy |
Title | Infrared-driving actuation based on bilayer graphene oxide-poly(N-isopropylacrylamide) nanocomposite hydrogels |
URI | https://www.proquest.com/docview/1611618743 https://www.proquest.com/docview/2327960978 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6lcGkPVZ8qfclVeyiyTB2vvdjHCKUCVHEyKrdon2ApXUcmkYDfxQ9kdtdeO5BKtJeVtdnYcubLzOzszDcIfRvLmIJdMnE3TKJU5SoqOImjHMNeQmS5UMKyfZ6Qw9P0-Cw7G41uB1lLqyXb4zcb60r-R6owB3I1VbL_IFl_U5iAa5AvjCBhGB8l4yOtGpNAHommsoEBaspBrESNdRLmJIBVcwpudWiZqUGxhfVVJWS0qE2L6fwkqi5rUKKL6znlDQx_KsPDW4Sa6tqkm5ucLhleXIumPnfMy5t8WXB73fuGvGsgtxdOXC1Q94nlFneVhjZY31VumeRcH9f38eupvrmoW6tq4_1uuqS1B2KbTPxbVv3Jlm5nrgD158OIxjgdRDSs4kviLDYcp04vy-Gc637bae5kAFBHHdOqYdiUOnqNBwYixoZf9SAtJ-BYEXLcm8Hu6P-edfQ5i_a0Hhez_rtP0HYCmxPQrtuTaXn0y8f2jBdObOtS_yodMy4ufvQ3WPeF1l0B69-UL9DzVpjBxKHsJRpJ_Qo9G9BVvkb6Pt4Cj7fA4i0wFw5vQYe3oMfb941o2w3WsBZ4rL1Bpz-n5cFh1PbriDgmeBnxIs5ERnJGJJguHFPBhRiLFPOUJgkTCitMiYgLxqVSiUgSw0cIDiyVmUgLjN-iLV1r-Q4FnIPfzyRhhOZpEiuWkjHnCc8FKxQj2Q7a7X65GW_J7E1PlfnsoZh20Fe_duEoXDau-tIJYAb_E3NsRrWsV5cz2BOZrhLgav99DexL9g13437-_lFP-4Ce9sj_iLaWzUp-Au92yT63YLoD2terow |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Infrared-driving+actuation+based+on+bilayer+graphene+oxide-poly%28N-isopropylacrylamide%29+nanocomposite+hydrogels&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Zhang%2C+Enzhong&rft.au=Wang%2C+Tao&rft.au=Hong%2C+Wei&rft.au=Sun%2C+Weixiang&rft.date=2014-01-01&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=2&rft.issue=37&rft.spage=15633&rft_id=info:doi/10.1039%2FC4TA02866J&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C4TA02866J |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |