Infrared-driving actuation based on bilayer graphene oxide-poly(N-isopropylacrylamide) nanocomposite hydrogels

Stimulus-responsive hydrogels are utilized as smart materials in actuators for transforming external stimuli into actuation movements. Infrared (IR) irradiation is considered to be an ideal driving energy because it can penetrate into biomaterials without direct contact and can be remotely controlle...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 2; no. 37; pp. 15633 - 15639
Main Authors Zhang, Enzhong, Wang, Tao, Hong, Wei, Sun, Weixiang, Liu, Xinxing, Tong, Zhen
Format Journal Article
LanguageEnglish
Published 01.01.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Stimulus-responsive hydrogels are utilized as smart materials in actuators for transforming external stimuli into actuation movements. Infrared (IR) irradiation is considered to be an ideal driving energy because it can penetrate into biomaterials without direct contact and can be remotely controlled. In the present work, a new IR-driving bilayer hydrogel actuator is prepared by stacking a graphene oxide (GO)-hectorite clay-poly(N-isopropylacrylamide) (PNIPAm) gel layer onto a hectorite clay-PNIPAm gel layer, synthesized through stepwise in situpolymerization. GO in the gel absorbs the IR irradiation and rapidly and efficiently transforms it into thermal energy, resulting in a much faster temperature increase in the GO-containing gel layer than that of the gel layer without GO, and the temperature of the former becomes higher than that of the latter. This bilayer structure with different temperatures changes the isotropic volume contraction into an anisotropic deformation, i.e., bending, which is always toward the GO-containing layer. Moreover, this bending occurs in the atmosphere, owing to the self-supporting capability of the tough gels. The repetition of the bending recovery is realized by turning the IR light on and off. According to these observations, the bilayer gel with GO provides a tough and IR-driving material for new soft actuators.
AbstractList Stimulus-responsive hydrogels are utilized as smart materials in actuators for transforming external stimuli into actuation movements. Infrared (IR) irradiation is considered to be an ideal driving energy because it can penetrate into biomaterials without direct contact and can be remotely controlled. In the present work, a new IR-driving bilayer hydrogel actuator is prepared by stacking a graphene oxide (GO)-hectorite clay-poly(N-isopropylacrylamide) (PNIPAm) gel layer onto a hectorite clay-PNIPAm gel layer, synthesized through stepwise in situpolymerization. GO in the gel absorbs the IR irradiation and rapidly and efficiently transforms it into thermal energy, resulting in a much faster temperature increase in the GO-containing gel layer than that of the gel layer without GO, and the temperature of the former becomes higher than that of the latter. This bilayer structure with different temperatures changes the isotropic volume contraction into an anisotropic deformation, i.e., bending, which is always toward the GO-containing layer. Moreover, this bending occurs in the atmosphere, owing to the self-supporting capability of the tough gels. The repetition of the bending recovery is realized by turning the IR light on and off. According to these observations, the bilayer gel with GO provides a tough and IR-driving material for new soft actuators.
Stimulus-responsive hydrogels are utilized as smart materials in actuators for transforming external stimuli into actuation movements. Infrared (IR) irradiation is considered to be an ideal driving energy because it can penetrate into biomaterials without direct contact and can be remotely controlled. In the present work, a new IR-driving bilayer hydrogel actuator is prepared by stacking a graphene oxide (GO)-hectorite clay-poly(N-isopropylacrylamide) (PNIPAm) gel layer onto a hectorite clay-PNIPAm gel layer, synthesized through stepwise in situ polymerization. GO in the gel absorbs the IR irradiation and rapidly and efficiently transforms it into thermal energy, resulting in a much faster temperature increase in the GO-containing gel layer than that of the gel layer without GO, and the temperature of the former becomes higher than that of the latter. This bilayer structure with different temperatures changes the isotropic volume contraction into an anisotropic deformation, i.e., bending, which is always toward the GO-containing layer. Moreover, this bending occurs in the atmosphere, owing to the self-supporting capability of the tough gels. The repetition of the bending recovery is realized by turning the IR light on and off. According to these observations, the bilayer gel with GO provides a tough and IR-driving material for new soft actuators.
Author Liu, Xinxing
Zhang, Enzhong
Hong, Wei
Wang, Tao
Tong, Zhen
Sun, Weixiang
Author_xml – sequence: 1
  givenname: Enzhong
  surname: Zhang
  fullname: Zhang, Enzhong
– sequence: 2
  givenname: Tao
  surname: Wang
  fullname: Wang, Tao
– sequence: 3
  givenname: Wei
  surname: Hong
  fullname: Hong, Wei
– sequence: 4
  givenname: Weixiang
  surname: Sun
  fullname: Sun, Weixiang
– sequence: 5
  givenname: Xinxing
  surname: Liu
  fullname: Liu, Xinxing
– sequence: 6
  givenname: Zhen
  surname: Tong
  fullname: Tong, Zhen
BookMark eNqFUU1LAzEQDVLBWnvxF-yxCqv52GaTYyl-VIpe6nnJJrNtZJusyVbcf-_WioIIDsPMg3nvMcycooHzDhA6J_iKYCav59lqhqng_OEIDSme4jTPJB98YyFO0DjGF9yHwJhLOURu4aqgApjUBPtm3TpRut2p1nqXlCqCSfbA1qqDkKyDajbgIPHv1kDa-LqbPKY2-ib4pquVDn3Z9qOLxCnntd82PtoWkk1ngl9DHc_QcaXqCOOvPkLPtzer-X26fLpbzGfLVDPO2lRLPDVTLkoOQuQMK6ONISZjOlOUlqZiFVPcYFlqqCpqKCUkl4zkCqYmk4yN0OTg22_2uoPYFlsbNdS1cuB3saCM5pJjmYt_qYSTPkWe7V3xgaqDjzFAVWjbft6qDcrWBcHF_hHFzyN6yeUvSRPsVoXuL_IHPYaMrg
CitedBy_id crossref_primary_10_1002_adfm_202102685
crossref_primary_10_1016_j_supmat_2021_100002
crossref_primary_10_3390_polym9070270
crossref_primary_10_1515_ipp_2020_3904
crossref_primary_10_1002_marc_201800337
crossref_primary_10_1021_acs_langmuir_4c01522
crossref_primary_10_1039_D0TB02524K
crossref_primary_10_1002_adma_201804540
crossref_primary_10_1016_j_nanoen_2021_105965
crossref_primary_10_1039_D0MH01406K
crossref_primary_10_1021_acsami_0c22484
crossref_primary_10_1002_app_51509
crossref_primary_10_1016_j_nanoso_2020_100500
crossref_primary_10_1039_C9RA04558A
crossref_primary_10_1039_D0TA06965E
crossref_primary_10_1016_j_eml_2019_100463
crossref_primary_10_1039_C5SM02232K
crossref_primary_10_1021_acsanm_9b02338
crossref_primary_10_1021_acsnano_7b01937
crossref_primary_10_1002_mame_202000256
crossref_primary_10_1016_j_snb_2017_09_137
crossref_primary_10_1039_D1PY00404B
crossref_primary_10_1021_acsmaterialslett_3c00435
crossref_primary_10_1007_s13233_018_6084_2
crossref_primary_10_1002_mame_201600359
crossref_primary_10_3390_biomimetics9100585
crossref_primary_10_1021_acsami_5b08609
crossref_primary_10_1016_j_optmat_2020_110437
crossref_primary_10_1038_s41598_018_21871_3
crossref_primary_10_1038_natrevmats_2017_46
crossref_primary_10_1021_acsami_1c04110
crossref_primary_10_1021_acsami_6b11043
crossref_primary_10_1016_j_dyepig_2019_108042
crossref_primary_10_1016_j_nanoen_2018_07_025
crossref_primary_10_1515_epoly_2019_0022
crossref_primary_10_1016_j_colsurfb_2016_03_079
crossref_primary_10_3390_ijms221910563
crossref_primary_10_1039_D0TC00139B
crossref_primary_10_1002_pola_27965
crossref_primary_10_1186_s40580_019_0188_z
crossref_primary_10_1016_j_pmatsci_2021_100870
crossref_primary_10_3390_app11188563
crossref_primary_10_1039_D4TC03610G
crossref_primary_10_1002_mame_201600384
crossref_primary_10_1016_j_jmbbm_2017_11_043
crossref_primary_10_1021_acsami_7b00138
crossref_primary_10_1002_marc_202200271
crossref_primary_10_1016_j_colsurfb_2019_01_058
crossref_primary_10_1002_adma_201502777
crossref_primary_10_1002_asia_201900292
crossref_primary_10_1021_acsami_7b17907
crossref_primary_10_1002_adfm_201802235
crossref_primary_10_1021_acs_iecr_6b00432
crossref_primary_10_3390_polym9060237
crossref_primary_10_1002_adfm_201503434
crossref_primary_10_1016_j_matpr_2018_04_171
crossref_primary_10_1021_jacs_1c03588
crossref_primary_10_1021_am507100m
crossref_primary_10_1016_j_snb_2023_133932
crossref_primary_10_1016_j_carbpol_2017_09_030
crossref_primary_10_1039_C7TB02853A
crossref_primary_10_1002_marc_202100499
crossref_primary_10_1039_D1TA04134G
crossref_primary_10_1039_C7CP07915J
crossref_primary_10_1021_acsami_0c16719
crossref_primary_10_1002_adma_201604691
crossref_primary_10_1002_adom_201800458
crossref_primary_10_1007_s10118_017_1970_1
crossref_primary_10_1002_adom_201700442
crossref_primary_10_1515_epoly_2020_0033
crossref_primary_10_1021_acsami_6b00197
crossref_primary_10_1021_acs_analchem_4c05363
crossref_primary_10_1039_C8NR05301D
crossref_primary_10_1088_1361_665X_ad5944
crossref_primary_10_1002_polb_24724
crossref_primary_10_1002_adom_201900069
crossref_primary_10_1002_mame_201700184
crossref_primary_10_1021_acsami_0c17085
crossref_primary_10_1021_acsami_6b00867
crossref_primary_10_1002_marc_202000127
crossref_primary_10_1007_s10853_021_06335_w
crossref_primary_10_1039_C7TB02119D
crossref_primary_10_1002_admi_202300169
crossref_primary_10_1002_slct_202002424
crossref_primary_10_1021_acsami_6b04325
crossref_primary_10_1021_acsami_0c06342
crossref_primary_10_1002_smll_202204288
crossref_primary_10_1007_s11431_020_1735_9
crossref_primary_10_1021_acsami_6b07713
crossref_primary_10_1039_C9TC06407A
crossref_primary_10_1063_5_0020596
crossref_primary_10_1039_C8TB02896F
crossref_primary_10_1002_adfm_201500420
crossref_primary_10_1002_adfm_201903471
crossref_primary_10_1038_s41467_023_43576_6
crossref_primary_10_1002_marc_201900270
crossref_primary_10_1021_acs_chemmater_9b03670
crossref_primary_10_1016_j_carbpol_2017_04_035
crossref_primary_10_1039_C7TC05710E
crossref_primary_10_1016_j_scitotenv_2019_02_407
crossref_primary_10_1021_acsapm_9b00654
crossref_primary_10_3390_gels8050280
crossref_primary_10_1016_j_cclet_2021_03_073
crossref_primary_10_1002_marc_201700421
crossref_primary_10_1039_C5TA05807D
crossref_primary_10_1016_j_pmatsci_2020_100702
crossref_primary_10_3390_polym15193905
crossref_primary_10_1016_j_jcis_2025_01_126
crossref_primary_10_1021_acsami_5b08248
crossref_primary_10_1021_acsami_8b13235
crossref_primary_10_1021_acsami_7b10348
crossref_primary_10_1088_1361_665X_ab8a02
crossref_primary_10_1039_C6TB01606E
crossref_primary_10_1016_j_carbpol_2022_119727
crossref_primary_10_1002_aisy_202100030
crossref_primary_10_1002_marc_202300205
crossref_primary_10_1016_j_mtcomm_2024_110247
crossref_primary_10_1002_adom_202102186
crossref_primary_10_3390_coatings13081310
crossref_primary_10_1016_j_cej_2018_09_078
crossref_primary_10_1002_mame_202200228
crossref_primary_10_1016_j_cej_2020_127762
crossref_primary_10_1098_rspa_2017_0092
crossref_primary_10_1002_adfm_201601389
crossref_primary_10_1016_j_cej_2018_12_026
crossref_primary_10_1002_admt_201800366
crossref_primary_10_1016_j_compscitech_2017_08_016
crossref_primary_10_1016_j_matlet_2018_11_116
crossref_primary_10_1021_acsapm_4c00548
crossref_primary_10_1039_D0NJ04409A
crossref_primary_10_1038_srep15124
crossref_primary_10_1002_mame_202100379
crossref_primary_10_1016_j_matchemphys_2020_123332
crossref_primary_10_1002_adfm_201905514
crossref_primary_10_1016_j_snb_2019_126908
crossref_primary_10_1021_acsami_0c15195
crossref_primary_10_1002_advs_201801584
Cites_doi 10.1039/C1SM06484C
10.1007/s10118-010-9191-x
10.1038/srep00857
10.1177/1045389X9300400106
10.1021/jz1011143
10.1021/nl401088b
10.1039/c1sm05797a
10.1038/nmat2858
10.1039/c2jm15536b
10.1039/c2sm25511a
10.1002/adfm.201201020
10.1039/C1SM06970E
10.1002/mabi.200900297
10.1039/c1jm10276a
10.1002/adma.200800494
10.1016/S0009-2614(01)00653-4
10.1039/c1jm13311j
10.1039/c2jm32541a
10.1039/c2jm30753g
10.1038/nmat1059
10.1021/ja2010175
10.1021/ma300874n
10.1038/nmat1391
10.1021/ja067171+
10.1002/adma.200401239
10.1021/ja01539a017
10.1021/jp901284d
10.1021/nl201503e
10.1039/c1sm00011j
10.1088/0957-4484/18/30/305502
10.1002/adfm.201101072
10.1073/pnas.1007862108
10.1021/ma990062d
10.1126/science.269.5223.525
10.1021/am403071k
10.1039/c3nr01486j
10.1016/j.reactfunctpolym.2011.01.004
10.1038/ncomms2280
10.1021/nl200494t
10.1016/j.addr.2011.06.009
10.1016/j.carbon.2013.06.003
10.1021/cm049764u
10.1021/ja057254a
10.1002/adfm.201200245
10.1016/j.carbon.2011.12.049
10.1039/c3ee42812e
10.1039/c2py00577h
10.1016/S0169-409X(01)00203-4
10.1126/science.1230262
ContentType Journal Article
DBID AAYXX
CITATION
7ST
7U6
C1K
7S9
L.6
DOI 10.1039/C4TA02866J
DatabaseName CrossRef
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Environment Abstracts
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 15639
ExternalDocumentID 10_1039_C4TA02866J
GroupedDBID 0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3G
J3H
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRC
RSCEA
SKA
SKF
SLH
7ST
7U6
C1K
7S9
L.6
ID FETCH-LOGICAL-c363t-c905d568b6e88730adcdd1d43c4a22bdf3f3a6d09bceff2d221179317ae5d4933
ISSN 2050-7488
2050-7496
IngestDate Fri Jul 11 07:29:42 EDT 2025
Fri Jul 11 06:19:40 EDT 2025
Thu Apr 24 23:08:38 EDT 2025
Tue Jul 01 04:17:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 37
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c363t-c905d568b6e88730adcdd1d43c4a22bdf3f3a6d09bceff2d221179317ae5d4933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1611618743
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_2327960978
proquest_miscellaneous_1611618743
crossref_citationtrail_10_1039_C4TA02866J
crossref_primary_10_1039_C4TA02866J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2014
References Grady (C4TA02866J-(cit5)/*[position()=1]) 2009; 2
Lu (C4TA02866J-(cit30)/*[position()=1]) 2007; 18
Abdelsayed (C4TA02866J-(cit33)/*[position()=1]) 2010; 1
Hoare (C4TA02866J-(cit15)/*[position()=1]) 2011; 11
Zhu (C4TA02866J-(cit18)/*[position()=1]) 2012; 22
Hou (C4TA02866J-(cit38)/*[position()=1]) 2012; 50
Shao (C4TA02866J-(cit4)/*[position()=1]) 2012; 22
Qi (C4TA02866J-(cit47)/*[position()=1]) 2012; 3
Liang (C4TA02866J-(cit9)/*[position()=1]) 2009; 113
Takashima (C4TA02866J-(cit26)/*[position()=1]) 2012; 3
Feng (C4TA02866J-(cit11)/*[position()=1]) 2013; 5
Satoh (C4TA02866J-(cit25)/*[position()=1]) 2011; 7
Zhao (C4TA02866J-(cit16)/*[position()=1]) 2011; 108
Zhang (C4TA02866J-(cit7)/*[position()=1]) 2011; 11
Wang (C4TA02866J-(cit49)/*[position()=1]) 2011; 71
Lv (C4TA02866J-(cit35)/*[position()=1]) 2012; 22
Wu (C4TA02866J-(cit10)/*[position()=1]) 2011; 21
Tomatsu (C4TA02866J-(cit24)/*[position()=1]) 2011; 63
Chan (C4TA02866J-(cit19)/*[position()=1]) 2012; 2
Acik (C4TA02866J-(cit34)/*[position()=1]) 2010; 9
Okuzaki (C4TA02866J-(cit21)/*[position()=1]) 1993; 4
Lo (C4TA02866J-(cit23)/*[position()=1]) 2011; 7
Liang (C4TA02866J-(cit3)/*[position()=1]) 2011; 21
Katz (C4TA02866J-(cit29)/*[position()=1]) 2010; 10
Pelah (C4TA02866J-(cit14)/*[position()=1]) 2007; 129
Sun (C4TA02866J-(cit50)/*[position()=1]) 2011; 21
Robinson (C4TA02866J-(cit27)/*[position()=1]) 2011; 133
Yang (C4TA02866J-(cit48)/*[position()=1]) 2013; 5
Koerner (C4TA02866J-(cit1)/*[position()=1]) 2004; 3
Fujigaya (C4TA02866J-(cit22)/*[position()=1]) 2008; 20
Wang (C4TA02866J-(cit41)/*[position()=1]) 2013; 13
Zhang (C4TA02866J-(cit44)/*[position()=1]) 2013; 62
Tong (C4TA02866J-(cit46)/*[position()=1]) 1999; 32
Hu (C4TA02866J-(cit20)/*[position()=1]) 1995; 269
Zhao (C4TA02866J-(cit39)/*[position()=1]) 2013; 6
Hummers (C4TA02866J-(cit45)/*[position()=1]) 1958; 80
Sershen (C4TA02866J-(cit17)/*[position()=1]) 2005; 17
Ahir (C4TA02866J-(cit2)/*[position()=1]) 2005; 4
Huang (C4TA02866J-(cit28)/*[position()=1]) 2006; 128
Ma (C4TA02866J-(cit8)/*[position()=1]) 2013; 339
Mohamed (C4TA02866J-(cit32)/*[position()=1]) 2001; 343
Liu (C4TA02866J-(cit36)/*[position()=1]) 2012; 22
Huang (C4TA02866J-(cit40)/*[position()=1]) 2012; 22
Shen (C4TA02866J-(cit37)/*[position()=1]) 2012; 8
Wang (C4TA02866J-(cit42)/*[position()=1]) 2012; 8
Zhang (C4TA02866J-(cit6)/*[position()=1]) 2012; 8
Qiu (C4TA02866J-(cit12)/*[position()=1]) 2001; 53
Lian (C4TA02866J-(cit43)/*[position()=1]) 2012; 45
Yang (C4TA02866J-(cit13)/*[position()=1]) 2010; 28
Kim (C4TA02866J-(cit31)/*[position()=1]) 2004; 16
References_xml – volume: 8
  start-page: 774
  year: 2012
  ident: C4TA02866J-(cit42)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C1SM06484C
– volume: 28
  start-page: 951
  year: 2010
  ident: C4TA02866J-(cit13)/*[position()=1]
  publication-title: Chin. J. Polym. Sci.
  doi: 10.1007/s10118-010-9191-x
– volume: 2
  start-page: 8
  year: 2012
  ident: C4TA02866J-(cit19)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep00857
– volume: 4
  start-page: 50
  year: 1993
  ident: C4TA02866J-(cit21)/*[position()=1]
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X9300400106
– volume: 1
  start-page: 2804
  year: 2010
  ident: C4TA02866J-(cit33)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz1011143
– volume: 13
  start-page: 2826
  year: 2013
  ident: C4TA02866J-(cit41)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl401088b
– volume: 7
  start-page: 8030
  year: 2011
  ident: C4TA02866J-(cit25)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/c1sm05797a
– volume: 9
  start-page: 840
  year: 2010
  ident: C4TA02866J-(cit34)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2858
– volume: 22
  start-page: 3671
  year: 2012
  ident: C4TA02866J-(cit40)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm15536b
– volume: 8
  start-page: 5750
  year: 2012
  ident: C4TA02866J-(cit6)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/c2sm25511a
– volume: 22
  start-page: 4017
  year: 2012
  ident: C4TA02866J-(cit18)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201201020
– volume: 8
  start-page: 1831
  year: 2012
  ident: C4TA02866J-(cit37)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C1SM06970E
– volume: 10
  start-page: 339
  year: 2010
  ident: C4TA02866J-(cit29)/*[position()=1]
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.200900297
– volume: 21
  start-page: 4095
  year: 2011
  ident: C4TA02866J-(cit50)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm10276a
– volume: 20
  start-page: 3610
  year: 2008
  ident: C4TA02866J-(cit22)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200800494
– volume: 343
  start-page: 55
  year: 2001
  ident: C4TA02866J-(cit32)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(01)00653-4
– volume: 21
  start-page: 18584
  year: 2011
  ident: C4TA02866J-(cit10)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm13311j
– volume: 22
  start-page: 14160
  year: 2012
  ident: C4TA02866J-(cit36)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm32541a
– volume: 22
  start-page: 11290
  year: 2012
  ident: C4TA02866J-(cit35)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm30753g
– volume: 3
  start-page: 115
  year: 2004
  ident: C4TA02866J-(cit1)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1059
– volume: 133
  start-page: 6825
  year: 2011
  ident: C4TA02866J-(cit27)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2010175
– volume: 45
  start-page: 7220
  year: 2012
  ident: C4TA02866J-(cit43)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma300874n
– volume: 4
  start-page: 491
  year: 2005
  ident: C4TA02866J-(cit2)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1391
– volume: 129
  start-page: 468
  year: 2007
  ident: C4TA02866J-(cit14)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja067171+
– volume: 17
  start-page: 1366
  year: 2005
  ident: C4TA02866J-(cit17)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200401239
– volume: 80
  start-page: 1339
  year: 1958
  ident: C4TA02866J-(cit45)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01539a017
– volume: 113
  start-page: 9921
  year: 2009
  ident: C4TA02866J-(cit9)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp901284d
– volume: 11
  start-page: 3239
  year: 2011
  ident: C4TA02866J-(cit7)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl201503e
– volume: 7
  start-page: 5604
  year: 2011
  ident: C4TA02866J-(cit23)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/c1sm00011j
– volume: 18
  start-page: 305502
  year: 2007
  ident: C4TA02866J-(cit30)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/30/305502
– volume: 2
  start-page: 343
  year: 2009
  ident: C4TA02866J-(cit5)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
– volume: 21
  start-page: 3778
  year: 2011
  ident: C4TA02866J-(cit3)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201101072
– volume: 108
  start-page: 67
  year: 2011
  ident: C4TA02866J-(cit16)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1007862108
– volume: 32
  start-page: 4488
  year: 1999
  ident: C4TA02866J-(cit46)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma990062d
– volume: 269
  start-page: 525
  year: 1995
  ident: C4TA02866J-(cit20)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.269.5223.525
– volume: 5
  start-page: 10882
  year: 2013
  ident: C4TA02866J-(cit11)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am403071k
– volume: 5
  start-page: 5720
  year: 2013
  ident: C4TA02866J-(cit48)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c3nr01486j
– volume: 71
  start-page: 447
  year: 2011
  ident: C4TA02866J-(cit49)/*[position()=1]
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2011.01.004
– volume: 3
  start-page: 8
  year: 2012
  ident: C4TA02866J-(cit26)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2280
– volume: 11
  start-page: 1395
  year: 2011
  ident: C4TA02866J-(cit15)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl200494t
– volume: 63
  start-page: 1257
  year: 2011
  ident: C4TA02866J-(cit24)/*[position()=1]
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2011.06.009
– volume: 62
  start-page: 117
  year: 2013
  ident: C4TA02866J-(cit44)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.06.003
– volume: 16
  start-page: 3647
  year: 2004
  ident: C4TA02866J-(cit31)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm049764u
– volume: 128
  start-page: 2115
  year: 2006
  ident: C4TA02866J-(cit28)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja057254a
– volume: 22
  start-page: 3029
  year: 2012
  ident: C4TA02866J-(cit4)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200245
– volume: 50
  start-page: 1959
  year: 2012
  ident: C4TA02866J-(cit38)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.12.049
– volume: 6
  start-page: 3520
  year: 2013
  ident: C4TA02866J-(cit39)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee42812e
– volume: 3
  start-page: 621
  year: 2012
  ident: C4TA02866J-(cit47)/*[position()=1]
  publication-title: Polym. Chem.
  doi: 10.1039/c2py00577h
– volume: 53
  start-page: 321
  year: 2001
  ident: C4TA02866J-(cit12)/*[position()=1]
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/S0169-409X(01)00203-4
– volume: 339
  start-page: 186
  year: 2013
  ident: C4TA02866J-(cit8)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1230262
SSID ssj0000800699
Score 2.466206
Snippet Stimulus-responsive hydrogels are utilized as smart materials in actuators for transforming external stimuli into actuation movements. Infrared (IR)...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 15633
SubjectTerms actuators
anisotropy
biocompatible materials
deformation
direct contact
graphene
graphene oxide
hydrogels
irradiation
isotropy
nanocomposites
polymerization
temperature
thermal energy
Title Infrared-driving actuation based on bilayer graphene oxide-poly(N-isopropylacrylamide) nanocomposite hydrogels
URI https://www.proquest.com/docview/1611618743
https://www.proquest.com/docview/2327960978
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6lcGkPVZ8qfclVeyiyTB2vvdjHCKUCVHEyKrdon2ApXUcmkYDfxQ9kdtdeO5BKtJeVtdnYcubLzOzszDcIfRvLmIJdMnE3TKJU5SoqOImjHMNeQmS5UMKyfZ6Qw9P0-Cw7G41uB1lLqyXb4zcb60r-R6owB3I1VbL_IFl_U5iAa5AvjCBhGB8l4yOtGpNAHommsoEBaspBrESNdRLmJIBVcwpudWiZqUGxhfVVJWS0qE2L6fwkqi5rUKKL6znlDQx_KsPDW4Sa6tqkm5ucLhleXIumPnfMy5t8WXB73fuGvGsgtxdOXC1Q94nlFneVhjZY31VumeRcH9f38eupvrmoW6tq4_1uuqS1B2KbTPxbVv3Jlm5nrgD158OIxjgdRDSs4kviLDYcp04vy-Gc637bae5kAFBHHdOqYdiUOnqNBwYixoZf9SAtJ-BYEXLcm8Hu6P-edfQ5i_a0Hhez_rtP0HYCmxPQrtuTaXn0y8f2jBdObOtS_yodMy4ufvQ3WPeF1l0B69-UL9DzVpjBxKHsJRpJ_Qo9G9BVvkb6Pt4Cj7fA4i0wFw5vQYe3oMfb941o2w3WsBZ4rL1Bpz-n5cFh1PbriDgmeBnxIs5ERnJGJJguHFPBhRiLFPOUJgkTCitMiYgLxqVSiUgSw0cIDiyVmUgLjN-iLV1r-Q4FnIPfzyRhhOZpEiuWkjHnCc8FKxQj2Q7a7X65GW_J7E1PlfnsoZh20Fe_duEoXDau-tIJYAb_E3NsRrWsV5cz2BOZrhLgav99DexL9g13437-_lFP-4Ce9sj_iLaWzUp-Au92yT63YLoD2terow
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Infrared-driving+actuation+based+on+bilayer+graphene+oxide-poly%28N-isopropylacrylamide%29+nanocomposite+hydrogels&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Zhang%2C+Enzhong&rft.au=Wang%2C+Tao&rft.au=Hong%2C+Wei&rft.au=Sun%2C+Weixiang&rft.date=2014-01-01&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=2&rft.issue=37&rft.spage=15633&rft_id=info:doi/10.1039%2FC4TA02866J&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C4TA02866J
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon