The role of the Cu dopant on a Mn3O4 spinel SCR catalyst: Improvement of low-temperature activity and sulfur resistance

[Display omitted] •Cu modified Mn3O4 spinel showed excellent SCR performance and SO2 resistance.•The Eley-Rideal mechanism predominated in the low temperature SCR reaction.•The formation of MnSO4 was mainly responsible for the deactivation of Mn3O4.•Cu doping restrained MnSO4 generation by reducing...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 387; p. 124090
Main Authors Xiong, Shangchao, Peng, Yue, Wang, Dong, Huang, Nan, Zhang, Qinfang, Yang, Shijian, Chen, Jianjun, Li, Junhua
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2020
Subjects
Online AccessGet full text
ISSN1385-8947
1873-3212
DOI10.1016/j.cej.2020.124090

Cover

Loading…
Abstract [Display omitted] •Cu modified Mn3O4 spinel showed excellent SCR performance and SO2 resistance.•The Eley-Rideal mechanism predominated in the low temperature SCR reaction.•The formation of MnSO4 was mainly responsible for the deactivation of Mn3O4.•Cu doping restrained MnSO4 generation by reducing the amounts of adjacent Mn. Mn-based oxides are regarded as one of the most promising catalysts for selective catalytic reduction (SCR) of NOx by NH3 at low temperatures, but their applications are extremely restricted by the irreversible poisoning of SO2. Improving the SO2 tolerance of Mn-based catalyst has longtime received the most attentions from both academia and industry. In this work, a series of Cu-modified Mn3O4 spinels were synthesized, and the roles of the Cu dopant were investigated. The (Cu1.0Mn2.0)1–δO4 spinel showed both excellent SCR performance and SO2 resistance at low temperature. Cu doping improved the BET surface area, the quantities of active Mn4+ and the acid sites of Mn3O4 spinels, all of which contributed to the increase in low-temperature SCR activity. The formation of MnSO4 was mainly responsible for the irreversible deactivation of the Mn3O4 spinel upon exposure to SO2. DFT calculations suggested that SO2 was more likely to be adsorbed as “–Mn–O–S–O–Mn–” on Mn3O4 and (Cu1.0Mn2.0)1–δO4 spinels. Therefore, the formation of MnSO4 on the (Cu1.0Mn2.0)1–δO4 spinel was significantly mitigated by Cu doping, mainly due to reduced amounts of adjacent Mn. Moreover, resulting from the electronic transfer between copper and manganese cations within the spinel lattice (Cu2+ + Mn3+ ⇄ Mn4++ Cu+), the (Cu1.0Mn2.0)1–δO4 spinel retained a high surface ratio of Mn4+/Mntotal, which maintained an excellent low-temperature SCR activity under the SO2-containing condition. This work shows that doping with the low–valence dopant of Cu can significantly improve the low-temperature SCR activity and SO2 tolerance of the Mn3O4 spinel, which could be a strategy for the further design of Mn-based SCR catalysts.
AbstractList [Display omitted] •Cu modified Mn3O4 spinel showed excellent SCR performance and SO2 resistance.•The Eley-Rideal mechanism predominated in the low temperature SCR reaction.•The formation of MnSO4 was mainly responsible for the deactivation of Mn3O4.•Cu doping restrained MnSO4 generation by reducing the amounts of adjacent Mn. Mn-based oxides are regarded as one of the most promising catalysts for selective catalytic reduction (SCR) of NOx by NH3 at low temperatures, but their applications are extremely restricted by the irreversible poisoning of SO2. Improving the SO2 tolerance of Mn-based catalyst has longtime received the most attentions from both academia and industry. In this work, a series of Cu-modified Mn3O4 spinels were synthesized, and the roles of the Cu dopant were investigated. The (Cu1.0Mn2.0)1–δO4 spinel showed both excellent SCR performance and SO2 resistance at low temperature. Cu doping improved the BET surface area, the quantities of active Mn4+ and the acid sites of Mn3O4 spinels, all of which contributed to the increase in low-temperature SCR activity. The formation of MnSO4 was mainly responsible for the irreversible deactivation of the Mn3O4 spinel upon exposure to SO2. DFT calculations suggested that SO2 was more likely to be adsorbed as “–Mn–O–S–O–Mn–” on Mn3O4 and (Cu1.0Mn2.0)1–δO4 spinels. Therefore, the formation of MnSO4 on the (Cu1.0Mn2.0)1–δO4 spinel was significantly mitigated by Cu doping, mainly due to reduced amounts of adjacent Mn. Moreover, resulting from the electronic transfer between copper and manganese cations within the spinel lattice (Cu2+ + Mn3+ ⇄ Mn4++ Cu+), the (Cu1.0Mn2.0)1–δO4 spinel retained a high surface ratio of Mn4+/Mntotal, which maintained an excellent low-temperature SCR activity under the SO2-containing condition. This work shows that doping with the low–valence dopant of Cu can significantly improve the low-temperature SCR activity and SO2 tolerance of the Mn3O4 spinel, which could be a strategy for the further design of Mn-based SCR catalysts.
ArticleNumber 124090
Author Peng, Yue
Wang, Dong
Huang, Nan
Yang, Shijian
Li, Junhua
Chen, Jianjun
Zhang, Qinfang
Xiong, Shangchao
Author_xml – sequence: 1
  givenname: Shangchao
  surname: Xiong
  fullname: Xiong, Shangchao
  organization: State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, PR China
– sequence: 2
  givenname: Yue
  orcidid: 0000-0001-5772-3443
  surname: Peng
  fullname: Peng, Yue
  organization: State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, PR China
– sequence: 3
  givenname: Dong
  surname: Wang
  fullname: Wang, Dong
  organization: State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, PR China
– sequence: 4
  givenname: Nan
  surname: Huang
  fullname: Huang, Nan
  organization: State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, PR China
– sequence: 5
  givenname: Qinfang
  orcidid: 0000-0003-3233-3400
  surname: Zhang
  fullname: Zhang, Qinfang
  email: qfangzhang@ycit.edu.cn
  organization: School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
– sequence: 6
  givenname: Shijian
  orcidid: 0000-0002-8275-5225
  surname: Yang
  fullname: Yang, Shijian
  organization: School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
– sequence: 7
  givenname: Jianjun
  orcidid: 0000-0003-4730-7803
  surname: Chen
  fullname: Chen, Jianjun
  email: chenjianjun@tsinghua.edu.cn
  organization: State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, PR China
– sequence: 8
  givenname: Junhua
  orcidid: 0000-0003-3630-8712
  surname: Li
  fullname: Li, Junhua
  organization: State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, PR China
BookMark eNp9kN1KAzEQhYNUsK0-gHd5ga3JZn-yeiXFn0KloPU6pNkJpmyTJcm29O1NqVde9GbmDDPfwDkTNLLOAkL3lMwoodXDdqZgO8tJnua8IA25QmPKa5axnOajpBkvM94U9Q2ahLAlhFQNbcbosP4B7F0H2Gkck54PuHW9tBE7iyX-sGxV4NAbCx3-mn9iJaPsjiE-4sWu924POzjdaty5QxZh14OXcfCApYpmb-IRS9viMHR68NhDMCFKq-AWXWvZBbj761P0_fqynr9ny9XbYv68zBSrWEw1l5Wq-EaVquBtWQLnla5pqXUDVMm6LiTPC1ZrAk3Z8FwWVKm0VhtoWUXZFNXnv8q7EDxooUyU0TgbvTSdoESc8hNbkfITp_zEOb9E0n9k781O-uNF5unMQLK0N-BFUAaS3dZ4UFG0zlygfwGY3ItV
CitedBy_id crossref_primary_10_1016_j_fuel_2024_133862
crossref_primary_10_3389_fchem_2022_957051
crossref_primary_10_1016_j_cej_2023_141466
crossref_primary_10_1016_j_fuel_2021_121239
crossref_primary_10_1016_j_gce_2021_03_002
crossref_primary_10_2139_ssrn_4162917
crossref_primary_10_1016_j_fuel_2023_128038
crossref_primary_10_1016_j_fuel_2022_126772
crossref_primary_10_3390_catal15030241
crossref_primary_10_1016_j_seppur_2024_127054
crossref_primary_10_1039_D3TA05478K
crossref_primary_10_1016_j_apcatb_2023_123353
crossref_primary_10_3389_fchem_2024_1413489
crossref_primary_10_1002_cctc_202200909
crossref_primary_10_1021_acs_inorgchem_3c00444
crossref_primary_10_1021_acsomega_3c02132
crossref_primary_10_1039_D2RA04862K
crossref_primary_10_3390_catal12101248
crossref_primary_10_1007_s11144_024_02600_6
crossref_primary_10_1016_j_jclepro_2024_141528
crossref_primary_10_1016_j_jece_2023_110440
crossref_primary_10_1002_smll_202106680
crossref_primary_10_1002_cjce_24959
crossref_primary_10_1016_j_chemosphere_2022_134740
crossref_primary_10_1016_j_apcatb_2023_123086
crossref_primary_10_1016_j_apcatb_2025_125028
crossref_primary_10_1016_j_inoche_2024_113559
crossref_primary_10_1016_j_seppur_2024_129901
crossref_primary_10_1080_00102202_2023_2300262
crossref_primary_10_1007_s11705_022_2258_8
crossref_primary_10_1021_acs_est_2c00113
crossref_primary_10_1007_s12239_020_0150_4
crossref_primary_10_1007_s10562_021_03759_6
crossref_primary_10_1016_j_surfin_2024_104877
crossref_primary_10_1039_D3RE00498H
crossref_primary_10_1016_j_fuel_2022_126590
crossref_primary_10_1039_D1CY01210J
crossref_primary_10_1039_D2TA06199F
crossref_primary_10_1080_10643389_2024_2303949
crossref_primary_10_1021_acsami_2c20545
crossref_primary_10_1016_j_seppur_2023_123272
crossref_primary_10_1016_j_apcata_2022_118890
crossref_primary_10_1016_j_apcatb_2023_122528
crossref_primary_10_1016_j_jece_2022_108694
crossref_primary_10_1021_acscatal_4c07193
crossref_primary_10_1021_acs_est_1c01314
crossref_primary_10_4491_eer_2020_642
crossref_primary_10_2139_ssrn_4111913
crossref_primary_10_1016_j_jhazmat_2021_125361
crossref_primary_10_3390_catal11050618
crossref_primary_10_1016_j_fuel_2024_131341
crossref_primary_10_1021_acsanm_5c00035
crossref_primary_10_1007_s11356_023_25912_x
crossref_primary_10_1016_j_jece_2024_114400
crossref_primary_10_1016_j_seppur_2025_132063
crossref_primary_10_1016_j_fuel_2022_125390
crossref_primary_10_1021_acs_energyfuels_3c00689
crossref_primary_10_3390_catal14110819
crossref_primary_10_1007_s10562_022_04023_1
crossref_primary_10_1016_j_jhazmat_2021_125637
crossref_primary_10_1016_j_fuel_2022_124185
crossref_primary_10_1016_j_apsusc_2024_160401
crossref_primary_10_1016_j_jcis_2021_12_102
crossref_primary_10_1021_acs_energyfuels_1c03594
crossref_primary_10_1007_s11771_022_5083_9
crossref_primary_10_1016_j_inoche_2023_111093
crossref_primary_10_1039_D2EN00144F
crossref_primary_10_1016_j_seppur_2025_131934
crossref_primary_10_3390_catal12030341
crossref_primary_10_1016_j_apcatb_2023_122416
crossref_primary_10_1016_j_mcat_2020_111225
crossref_primary_10_1016_j_fuel_2024_131878
crossref_primary_10_1016_j_jre_2022_08_004
crossref_primary_10_1002_adfm_202205569
crossref_primary_10_1016_j_cej_2020_128014
crossref_primary_10_1016_j_apsusc_2023_156657
crossref_primary_10_1016_j_mcat_2022_112693
crossref_primary_10_1016_j_fuproc_2023_107956
crossref_primary_10_1016_j_cej_2023_142113
crossref_primary_10_1016_j_jcat_2023_05_004
crossref_primary_10_1021_acsomega_3c05614
crossref_primary_10_1021_acs_langmuir_4c01289
crossref_primary_10_1016_j_jes_2022_07_015
crossref_primary_10_1016_j_materresbull_2022_111928
crossref_primary_10_1021_acs_est_4c01840
crossref_primary_10_1016_j_ces_2024_120336
crossref_primary_10_1039_D4RA05140H
crossref_primary_10_1016_j_apcatb_2023_122742
crossref_primary_10_1016_j_jece_2022_108799
crossref_primary_10_1016_j_apsusc_2021_149148
crossref_primary_10_1016_j_fuel_2022_125885
crossref_primary_10_1016_j_chemosphere_2023_140006
crossref_primary_10_1016_j_psep_2024_09_093
crossref_primary_10_1021_acs_est_3c09875
crossref_primary_10_1002_jctb_6612
crossref_primary_10_1021_acs_iecr_1c01012
crossref_primary_10_1016_j_jhazmat_2022_129665
crossref_primary_10_1016_j_fuel_2024_131126
crossref_primary_10_1016_j_cej_2020_125572
crossref_primary_10_1039_D1RA06325A
crossref_primary_10_1021_acs_est_3c04916
crossref_primary_10_1016_j_apcatb_2025_125065
crossref_primary_10_1016_j_fuel_2023_127491
crossref_primary_10_1021_acsanm_3c06196
crossref_primary_10_1039_D1NJ05290J
crossref_primary_10_1142_S1793604721510097
crossref_primary_10_1016_j_jhazmat_2024_136473
crossref_primary_10_1016_j_apcatb_2021_120054
crossref_primary_10_1016_j_fuel_2022_126986
crossref_primary_10_1021_acs_est_1c01628
crossref_primary_10_3390_catal12050471
crossref_primary_10_1007_s11270_023_06828_1
crossref_primary_10_1016_j_apcatb_2023_123441
crossref_primary_10_1016_j_chemosphere_2021_133156
crossref_primary_10_1021_acs_est_0c08214
crossref_primary_10_1016_j_cej_2023_144751
crossref_primary_10_1021_acssuschemeng_0c05862
crossref_primary_10_1016_j_apsusc_2022_155364
crossref_primary_10_1016_j_mcat_2023_113767
crossref_primary_10_1016_j_apsusc_2023_158194
crossref_primary_10_1039_D2RA04085A
crossref_primary_10_1016_j_mcat_2021_111704
crossref_primary_10_1016_j_jes_2023_10_019
crossref_primary_10_1016_j_jece_2023_109625
crossref_primary_10_1039_D3TA06614B
crossref_primary_10_1080_09593330_2020_1858182
crossref_primary_10_1016_j_seppur_2024_131051
crossref_primary_10_1016_j_compositesb_2021_109609
crossref_primary_10_1016_j_fuel_2024_132594
crossref_primary_10_1007_s13198_021_01332_3
crossref_primary_10_1016_j_apcata_2022_118749
crossref_primary_10_1016_j_cattod_2020_07_084
crossref_primary_10_3390_catal15030234
crossref_primary_10_1016_j_apsusc_2022_154146
crossref_primary_10_1016_j_apsusc_2023_158124
crossref_primary_10_1016_j_jece_2024_112780
crossref_primary_10_1016_j_optmat_2022_112274
crossref_primary_10_1016_j_fuel_2022_126040
crossref_primary_10_1016_j_cej_2025_159622
crossref_primary_10_1021_acs_energyfuels_4c03747
crossref_primary_10_1016_j_jece_2023_111559
crossref_primary_10_1016_j_ceramint_2021_07_078
crossref_primary_10_1016_j_jece_2022_109218
crossref_primary_10_1016_j_jiec_2020_07_005
crossref_primary_10_1016_j_apcatb_2024_124535
crossref_primary_10_1007_s11164_022_04729_2
crossref_primary_10_1088_1361_6463_ac4133
crossref_primary_10_1039_D2CY00434H
crossref_primary_10_1016_j_apcatb_2022_121104
crossref_primary_10_1016_j_fuproc_2022_107213
crossref_primary_10_1016_j_cej_2023_147452
Cites_doi 10.1016/j.cej.2017.02.024
10.1016/j.molcata.2014.02.021
10.1016/j.cej.2017.02.042
10.1016/j.fuel.2018.03.062
10.1016/j.jcat.2017.12.008
10.1021/es505978n
10.1016/j.jhazmat.2008.06.013
10.1021/es304732h
10.1023/B:JTAN.0000046113.50448.63
10.1021/acscatal.5b02642
10.1021/ie303272u
10.1016/j.catcom.2008.12.032
10.1016/j.ultsonch.2008.05.015
10.1016/j.apcatb.2013.09.016
10.1016/S0021-9517(03)00024-1
10.1016/j.apcatb.2008.10.014
10.1016/j.cej.2017.06.015
10.1021/acscatal.8b01357
10.1016/j.apcatb.2015.08.023
10.1016/j.apcatb.2017.01.019
10.1016/j.jcat.2018.11.030
10.1016/j.cej.2018.05.038
10.1557/JMR.1999.0622
10.1016/j.cattod.2018.12.007
10.3390/catal8010011
10.1088/0957-4484/26/30/304002
10.1016/j.apcata.2016.04.023
10.1016/j.catcom.2012.08.022
10.1016/j.apcatb.2013.01.028
10.1021/acsami.5b10264
10.1021/acs.jpcc.5b10577
10.1016/j.jcat.2017.12.009
10.1016/0021-9517(79)90280-X
10.1111/j.1151-2916.1988.tb05057.x
10.1016/j.apcatb.2015.07.027
10.1103/PhysRevB.70.235121
10.1021/acscatal.9b01514
10.1021/cr300418s
10.1016/j.jcat.2007.07.025
10.1021/acsami.6b14031
10.1021/jp048431h
10.1016/j.apcatb.2013.10.049
10.1016/j.apcatb.2004.01.023
10.1016/j.apcatb.2010.06.012
10.1021/jp412828p
10.1016/j.apcatb.2017.09.034
10.1038/nchem.931
10.1016/j.cej.2016.04.094
10.1016/j.cej.2015.02.072
10.1021/ef800259e
10.1016/0021-9517(86)90090-4
10.1016/j.apcata.2004.10.013
10.1021/acs.jpcc.6b05175
10.1016/j.cej.2018.05.049
10.1021/jp312444s
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2020.124090
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2020_124090
S1385894720300814
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
RIG
SEW
SSH
ZY4
ID FETCH-LOGICAL-c363t-c32a6c68bc5c48d55e886f715ff9e1ca774a82437f0e95982a41cc15fcbed3613
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Tue Jul 01 03:52:35 EDT 2025
Thu Apr 24 23:11:05 EDT 2025
Fri Feb 23 02:49:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords low temperature SCR
SO2 tolerance
Cu doping
Spinel
Poisoning of SO2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-c32a6c68bc5c48d55e886f715ff9e1ca774a82437f0e95982a41cc15fcbed3613
ORCID 0000-0001-5772-3443
0000-0002-8275-5225
0000-0003-4730-7803
0000-0003-3233-3400
0000-0003-3630-8712
ParticipantIDs crossref_citationtrail_10_1016_j_cej_2020_124090
crossref_primary_10_1016_j_cej_2020_124090
elsevier_sciencedirect_doi_10_1016_j_cej_2020_124090
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
2020-05-00
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Nuguid, Ferri, Marberger, Nachtegaal, Kröcher (b0015) 2019; 9
Qi, Yang (b0265) 2004; 108
Sikorska-Iwan, Mrozek-Łyszczek (b0235) 2004; 78
Yang, Qi, Xiong, Dang, Liao, Wong, Li (b0280) 2016; 181
Fan, Shi, Gao, Gao, Wang, Wang, He, Niu (b0060) 2018; 348
Xie, Fang, He, Chen, Fu, Chen (b0225) 2012; 28
Xiong, Weng, Liao, Li, Zou, Geng, Xiao, Huang, Yang (b0275) 2016; 120
Liu, Shi, Gao, Niu (b0030) 2016; 522
Wu, Jin, Wang, Liu (b0105) 2009; 10
Tang, Li, Sun, Hao (b0040) 2010; 99
Wan, Zhao, Tang, Li, Wang, Cui, Gu, Li, Shi (b0055) 2014; 148
Yang, Liu, Chang, Ma, Qu, Yan, Wang, Li (b0270) 2013; 52
Wang, Qu, Dong, Tang (b0025) 2017; 9
Tang, Fei, Hou, Zheng, Lou (b0210) 2008; 22
Moon, Awano, Takagi, Fujishiro (b0230) 2011; 14
Meng, Xu, Jiao, Guo, Guo, Wang, Lu, Zhan (b0050) 2018; 221
Zhang, Chang, Li, Peng, Li, Li (b0005) 2018; 349
Xiao, Xiong, Shi, Shan, Yang (b0255) 2016; 120
Ye, Lee, Jeong, Kim, Lee, Baik, Kim (b0075) 2019; 328
Gao, Shi, Fan, Gao, Niu (b0095) 2018; 8
Jin, Liu, Wang, Cen, Wu, Wang, Weng (b0110) 2014; 148
Kaczmarczyk, Zasada, Janas, Indyka, Piskorz, Kotarba, Sojka (b0190) 2016; 6
McFarland, Metiu (b0140) 2013; 113
Liu, Guo, Li, Sun, Liu, Pan, Liu, Sun (b0070) 2018; 223
Kanungo (b0215) 1979; 58
Yu, Huang, Dong, Chen, Yang, Fan, Yang, Liu, Wang (b0080) 2017; 316
Li, Wan, Li, Zhan, Guan, Tian (b0260) 2016; 8
Lai, Wachs (b0160) 2018; 8
Fang, Xie, Hu, Yang, He, Fu (b0250) 2015; 271
Tanaka, Utaka, Kikuchi, Takeguchi, Sasaki, Eguchi (b0205) 2003; 215
Zhang, Cui, Guo, Ma, Luo (b0065) 2014; 390
Veprek, Cocke, Kehl, Oswald (b0155) 1986; 100
Tanaka, Takeguchi, Kikuchi, Eguchi (b0150) 2005; 279
Yang, Guo, Chang, Ma, Peng, Qu, Yan, Wang, Li (b0170) 2013; 136–137
Papavasiliou, Avgouropoulos, Ioannides (b0145) 2007; 251
Xu, Zhang, Zhao, Huang, Qu, Yan (b0135) 2016; 299
Grzybek, Stelmachowski, Gudyka, Indyka, Sojka, Guillén-Hurtado, Rico-Pérez, Bueno-López, Kotarba (b0125) 2016; 180
Liu, He, Yu, Yan, Yang, Shan (b0010) 2019; 369
Shen, Zhang, Wang, Wang, Wang (b0085) 2018; 358
Jiang, Liu, Wu (b0200) 2009; 162
Jiang, Deng, Zhang, Wu, Tang, Yao, Lu (b0120) 2014; 118
Qi, Yang, Chang (b0045) 2004; 51
Kuang, Li, Chen, Zhang, Zhang, Zhang (b0240) 2015; 26
Cheng, Shen, Peng, Pan, Tao, Chen (b0130) 2011; 3
Chen, Falsig, Janssens, Grönbeck (b0020) 2018; 358
Askarinejad, Morsali (b0180) 2009; 16
France, Yang, Li, Chen, Guang, Guo, Wang, Li (b0090) 2017; 206
Dorris, Mason (b0195) 1988; 71
Zhou, Huang, Xie, Luo, Yao, Li, Zuo (b0100) 2017; 326
Zhou, Cococcioni, Marianetti, Morgan, Ceder (b0185) 2004; 70
Casapu, Kröcher, Elsener (b0220) 2009; 88
Gao, Tang, Yi, Li, Zhao, Wang, Chu, Li (b0035) 2017; 317
Tian, Mountapmbeme Kouotou, Bahlawane, Tchoua Ngamou (b0175) 2013; 117
Xu, Qu, Zong, Huang, Quan, Yan (b0245) 2015; 49
Chang, Chen, Li, Ma, Wang, Liu, Schwank, Hao (b0115) 2013; 47
Cheng (10.1016/j.cej.2020.124090_b0130) 2011; 3
Dorris (10.1016/j.cej.2020.124090_b0195) 1988; 71
Gao (10.1016/j.cej.2020.124090_b0035) 2017; 317
France (10.1016/j.cej.2020.124090_b0090) 2017; 206
Zhang (10.1016/j.cej.2020.124090_b0065) 2014; 390
Grzybek (10.1016/j.cej.2020.124090_b0125) 2016; 180
Fang (10.1016/j.cej.2020.124090_b0250) 2015; 271
Tanaka (10.1016/j.cej.2020.124090_b0150) 2005; 279
Papavasiliou (10.1016/j.cej.2020.124090_b0145) 2007; 251
Xie (10.1016/j.cej.2020.124090_b0225) 2012; 28
Xiao (10.1016/j.cej.2020.124090_b0255) 2016; 120
Yu (10.1016/j.cej.2020.124090_b0080) 2017; 316
Nuguid (10.1016/j.cej.2020.124090_b0015) 2019; 9
Yang (10.1016/j.cej.2020.124090_b0170) 2013; 136–137
Liu (10.1016/j.cej.2020.124090_b0030) 2016; 522
Yang (10.1016/j.cej.2020.124090_b0270) 2013; 52
Li (10.1016/j.cej.2020.124090_b0260) 2016; 8
Kanungo (10.1016/j.cej.2020.124090_b0215) 1979; 58
Wan (10.1016/j.cej.2020.124090_b0055) 2014; 148
Qi (10.1016/j.cej.2020.124090_b0265) 2004; 108
Tang (10.1016/j.cej.2020.124090_b0210) 2008; 22
Zhou (10.1016/j.cej.2020.124090_b0100) 2017; 326
Tang (10.1016/j.cej.2020.124090_b0040) 2010; 99
Casapu (10.1016/j.cej.2020.124090_b0220) 2009; 88
Fan (10.1016/j.cej.2020.124090_b0060) 2018; 348
Liu (10.1016/j.cej.2020.124090_b0070) 2018; 223
Lai (10.1016/j.cej.2020.124090_b0160) 2018; 8
Liu (10.1016/j.cej.2020.124090_b0010) 2019; 369
Meng (10.1016/j.cej.2020.124090_b0050) 2018; 221
Ye (10.1016/j.cej.2020.124090_b0075) 2019; 328
Xu (10.1016/j.cej.2020.124090_b0135) 2016; 299
Veprek (10.1016/j.cej.2020.124090_b0155) 1986; 100
Tian (10.1016/j.cej.2020.124090_b0175) 2013; 117
Shen (10.1016/j.cej.2020.124090_b0085) 2018; 358
Zhang (10.1016/j.cej.2020.124090_b0005) 2018; 349
Chang (10.1016/j.cej.2020.124090_b0115) 2013; 47
McFarland (10.1016/j.cej.2020.124090_b0140) 2013; 113
Tanaka (10.1016/j.cej.2020.124090_b0205) 2003; 215
Chen (10.1016/j.cej.2020.124090_b0020) 2018; 358
Jiang (10.1016/j.cej.2020.124090_b0200) 2009; 162
Askarinejad (10.1016/j.cej.2020.124090_b0180) 2009; 16
Qi (10.1016/j.cej.2020.124090_b0045) 2004; 51
Xu (10.1016/j.cej.2020.124090_b0245) 2015; 49
Jin (10.1016/j.cej.2020.124090_b0110) 2014; 148
Jiang (10.1016/j.cej.2020.124090_b0120) 2014; 118
Zhou (10.1016/j.cej.2020.124090_b0185) 2004; 70
Kuang (10.1016/j.cej.2020.124090_b0240) 2015; 26
Moon (10.1016/j.cej.2020.124090_b0230) 2011; 14
Gao (10.1016/j.cej.2020.124090_b0095) 2018; 8
Sikorska-Iwan (10.1016/j.cej.2020.124090_b0235) 2004; 78
Kaczmarczyk (10.1016/j.cej.2020.124090_b0190) 2016; 6
Yang (10.1016/j.cej.2020.124090_b0280) 2016; 181
Xiong (10.1016/j.cej.2020.124090_b0275) 2016; 120
Wu (10.1016/j.cej.2020.124090_b0105) 2009; 10
Wang (10.1016/j.cej.2020.124090_b0025) 2017; 9
References_xml – volume: 120
  start-page: 15299
  year: 2016
  end-page: 15309
  ident: b0275
  article-title: Alkali metal deactivation on the low temperature selective catalytic reduction of NO
  publication-title: J. Phys. Chem. C
– volume: 316
  start-page: 1059
  year: 2017
  end-page: 1068
  ident: b0080
  article-title: Effect of Pr/Ce addition on the catalytic performance and SO
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 5224
  year: 2016
  end-page: 5233
  ident: b0260
  article-title: Low-temperature selective catalytic reduction of NO with NH
  publication-title: ACS Appl. Mater. Inter.
– volume: 28
  start-page: 77
  year: 2012
  end-page: 81
  ident: b0225
  article-title: Performance and mechanism about MnO
  publication-title: Catal. Commun.
– volume: 16
  start-page: 124
  year: 2009
  end-page: 131
  ident: b0180
  article-title: Direct ultrasonic-assisted synthesis of sphere-like nanocrystals of spinel Co3O4 and Mn3O4
  publication-title: Ultrason. Sonochem.
– volume: 215
  start-page: 271
  year: 2003
  end-page: 278
  ident: b0205
  article-title: Water gas shift reaction for the reformed fuels over Cu/MnO catalysts prepared via spinel-type oxide
  publication-title: J. Catal.
– volume: 328
  start-page: 300
  year: 2019
  end-page: 306
  ident: b0075
  article-title: Partially reduced graphene oxide as a support of Mn-Ce/TiO
  publication-title: Catal. Today.
– volume: 22
  start-page: 2877
  year: 2008
  end-page: 2884
  ident: b0210
  article-title: Characterization of Cu−Mn/Zeolite-Y catalyst for one-step synthesis of dimethyl ether from CO−H
  publication-title: Energ. Fuel.
– volume: 136–137
  start-page: 19
  year: 2013
  end-page: 28
  ident: b0170
  article-title: Novel effect of SO
  publication-title: Appl. Catal. B
– volume: 100
  start-page: 250
  year: 1986
  end-page: 263
  ident: b0155
  article-title: Mechanism of the deactivation of hopcalite catalysts studied by XPS, ISS, and other techniques
  publication-title: J. Catal.
– volume: 14
  start-page: 4594
  year: 2011
  end-page: 4601
  ident: b0230
  article-title: Synthesis of nanocrystalline manganese oxide powders: Influence of hydrogen peroxide on particle characteristics
  publication-title: J Mater. Res.
– volume: 113
  start-page: 4391
  year: 2013
  end-page: 4427
  ident: b0140
  article-title: Catalysis by doped oxides
  publication-title: Chem. Rev.
– volume: 221
  start-page: 652
  year: 2018
  end-page: 663
  ident: b0050
  article-title: Spinel structured Co
  publication-title: Appl. Catal. B
– volume: 70
  year: 2004
  ident: b0185
  article-title: First-principles prediction of redox potentials in transition-metal compounds with LDA+U
  publication-title: Phys. Rev. B
– volume: 3
  start-page: 79
  year: 2011
  end-page: 84
  ident: b0130
  article-title: Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts
  publication-title: Nat. Chem.
– volume: 522
  start-page: 54
  year: 2016
  end-page: 69
  ident: b0030
  article-title: Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: A review
  publication-title: Appl. Catal. A
– volume: 71
  start-page: 379
  year: 1988
  end-page: 385
  ident: b0195
  article-title: Electrical properties and cation valencies in Mn
  publication-title: J. Am. Ceram. Soc.
– volume: 390
  start-page: 14
  year: 2014
  end-page: 21
  ident: b0065
  article-title: The influence of K
  publication-title: J. Mol. Catal. A
– volume: 349
  start-page: 184
  year: 2018
  end-page: 191
  ident: b0005
  article-title: Different exposed facets VO
  publication-title: Chem. Eng. J.
– volume: 6
  start-page: 1235
  year: 2016
  end-page: 1246
  ident: b0190
  article-title: Thermodynamic stability, redox properties, and reactivity of Mn
  publication-title: ACS Catal.
– volume: 99
  start-page: 156
  year: 2010
  end-page: 162
  ident: b0040
  article-title: Origination of N
  publication-title: Appl. Catal. B
– volume: 52
  start-page: 5601
  year: 2013
  end-page: 5610
  ident: b0270
  article-title: Improvement of the activity of γ-Fe
  publication-title: Ind. Eng. Chem. Res.
– volume: 317
  start-page: 20
  year: 2017
  end-page: 31
  ident: b0035
  article-title: Promotional mechanisms of activity and SO
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 11
  year: 2018
  ident: b0095
  article-title: Sulfur and water resistance of Mn-based catalysts for low-temperature selective catalytic reduction of NO
  publication-title: Catalysts
– volume: 348
  start-page: 820
  year: 2018
  end-page: 830
  ident: b0060
  article-title: Gd-modified MnO
  publication-title: Chem. Eng. J.
– volume: 206
  start-page: 203
  year: 2017
  end-page: 215
  ident: b0090
  article-title: Ceria modified FeMnO
  publication-title: Appl. Catal. B
– volume: 120
  start-page: 1066
  year: 2016
  end-page: 1076
  ident: b0255
  article-title: Effect of H
  publication-title: J. Phys. Chem. C
– volume: 369
  start-page: 372
  year: 2019
  end-page: 381
  ident: b0010
  article-title: Quantitative study of the NH
  publication-title: J. Catal.
– volume: 326
  start-page: 1074
  year: 2017
  end-page: 1085
  ident: b0100
  article-title: V
  publication-title: Chem. Eng. J.
– volume: 162
  start-page: 1249
  year: 2009
  end-page: 1254
  ident: b0200
  article-title: Low-temperature selective catalytic reduction of NO on MnO
  publication-title: J. Hazard. Mater.
– volume: 180
  start-page: 622
  year: 2016
  end-page: 629
  ident: b0125
  article-title: Strong dispersion effect of cobalt spinel active phase spread over ceria for catalytic N
  publication-title: Appl. Catal. B
– volume: 9
  start-page: 7017
  year: 2017
  end-page: 7028
  ident: b0025
  article-title: Mechanistic investigation into the effect of sulfuration on the FeW catalysts for the selective catalytic reduction of NO
  publication-title: ACS Appl. Mater. Inter.
– volume: 358
  start-page: 179
  year: 2018
  end-page: 186
  ident: b0020
  article-title: Activation of oxygen on (NH
  publication-title: J. Catal.
– volume: 78
  start-page: 487
  year: 2004
  end-page: 500
  ident: b0235
  article-title: Application of coupled TG-FTIR system in studies of thermal stability of manganese(II) complexes with amino acids
  publication-title: J. Therm. Anal. Calorim.
– volume: 47
  start-page: 5294
  year: 2013
  end-page: 5301
  ident: b0115
  article-title: Improvement of activity and SO
  publication-title: Environ. Sci. Technol.
– volume: 148
  start-page: 582
  year: 2014
  end-page: 588
  ident: b0110
  article-title: The role of cerium in the improved SO
  publication-title: Appl. Catal. B
– volume: 8
  start-page: 6537
  year: 2018
  end-page: 6551
  ident: b0160
  article-title: A perspective on the selective catalytic reduction (SCR) of NO with NH
  publication-title: ACS Catal.
– volume: 108
  start-page: 15738
  year: 2004
  end-page: 15747
  ident: b0265
  article-title: Characterization and FTIR studies of MnO
  publication-title: J. Phys. Chem. B
– volume: 358
  start-page: 277
  year: 2018
  end-page: 286
  ident: b0085
  article-title: Nature of SO
  publication-title: J. Catal.
– volume: 251
  start-page: 7
  year: 2007
  end-page: 20
  ident: b0145
  article-title: Combined steam reforming of methanol over Cu–Mn spinel oxide catalysts
  publication-title: J. Catal.
– volume: 9
  start-page: 6814
  year: 2019
  end-page: 6820
  ident: b0015
  article-title: Modulated excitation Raman spectroscopy of V
  publication-title: ACS Catal.
– volume: 88
  start-page: 413
  year: 2009
  end-page: 419
  ident: b0220
  article-title: Screening of doped MnO
  publication-title: Appl. Catal. B
– volume: 271
  start-page: 23
  year: 2015
  end-page: 30
  ident: b0250
  article-title: Identification of MnO
  publication-title: Chem. Eng. J.
– volume: 223
  start-page: 385
  year: 2018
  end-page: 393
  ident: b0070
  article-title: Enhancement of the SO
  publication-title: Fuel
– volume: 49
  start-page: 6823
  year: 2015
  end-page: 6830
  ident: b0245
  article-title: MnO
  publication-title: Environ. Sci. Technol.
– volume: 51
  start-page: 93
  year: 2004
  end-page: 106
  ident: b0045
  article-title: MnO
  publication-title: Appl. Catal. B
– volume: 10
  start-page: 935
  year: 2009
  end-page: 939
  ident: b0105
  article-title: Effect of ceria doping on SO
  publication-title: Catal. Commun.
– volume: 279
  start-page: 59
  year: 2005
  end-page: 66
  ident: b0150
  article-title: Influence of preparation method and additive for Cu–Mn spinel oxide catalyst on water gas shift reaction of reformed fuels
  publication-title: Appl. Catal. A
– volume: 181
  start-page: 570
  year: 2016
  end-page: 580
  ident: b0280
  article-title: MnO
  publication-title: Appl. Catal. B
– volume: 148
  start-page: 114
  year: 2014
  end-page: 122
  ident: b0055
  article-title: Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH
  publication-title: Appl. Catal. B
– volume: 58
  start-page: 419
  year: 1979
  end-page: 435
  ident: b0215
  article-title: Physicochemical properties of MnO
  publication-title: J. Catal.
– volume: 299
  start-page: 142
  year: 2016
  end-page: 149
  ident: b0135
  article-title: Elemental mercury (Hg
  publication-title: Chem. Eng. J.
– volume: 117
  start-page: 6218
  year: 2013
  end-page: 6224
  ident: b0175
  article-title: Synthesis of the catalytically active Mn
  publication-title: J. Phys. Chem. C
– volume: 118
  start-page: 14866
  year: 2014
  end-page: 14875
  ident: b0120
  article-title: Effect of Zr addition on the low-temperature SCR activity and SO
  publication-title: J. Phys. Chem. C
– volume: 26
  year: 2015
  ident: b0240
  article-title: Hierarchical Cu
  publication-title: Nanotechnology
– volume: 316
  start-page: 1059
  year: 2017
  ident: 10.1016/j.cej.2020.124090_b0080
  article-title: Effect of Pr/Ce addition on the catalytic performance and SO2 resistance of highly dispersed MnOx/SAPO-34 catalyst for NH3-SCR at low temperature
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.02.024
– volume: 390
  start-page: 14
  year: 2014
  ident: 10.1016/j.cej.2020.124090_b0065
  article-title: The influence of K+ cation on the MnOx-CeO2/TiO2 catalysts for selective catalytic reduction of NOx with NH3 at low temperature
  publication-title: J. Mol. Catal. A
  doi: 10.1016/j.molcata.2014.02.021
– volume: 317
  start-page: 20
  year: 2017
  ident: 10.1016/j.cej.2020.124090_b0035
  article-title: Promotional mechanisms of activity and SO2 tolerance of Co or Ni doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.02.042
– volume: 223
  start-page: 385
  year: 2018
  ident: 10.1016/j.cej.2020.124090_b0070
  article-title: Enhancement of the SO2 resistance of Mn/TiO2 SCR catalyst by Eu modification: A mechanism study
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.03.062
– volume: 358
  start-page: 277
  year: 2018
  ident: 10.1016/j.cej.2020.124090_b0085
  article-title: Nature of SO3 poisoning on Cu/SAPO-34 SCR catalysts
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2017.12.008
– volume: 49
  start-page: 6823
  year: 2015
  ident: 10.1016/j.cej.2020.124090_b0245
  article-title: MnOx/Graphene for the catalytic oxidation and adsorption of elemental mercury
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es505978n
– volume: 162
  start-page: 1249
  year: 2009
  ident: 10.1016/j.cej.2020.124090_b0200
  article-title: Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.06.013
– volume: 47
  start-page: 5294
  year: 2013
  ident: 10.1016/j.cej.2020.124090_b0115
  article-title: Improvement of activity and SO2 tolerance of Sn-modified MnOx-CeO2 catalysts for NH3-SCR at low temperatures
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es304732h
– volume: 78
  start-page: 487
  year: 2004
  ident: 10.1016/j.cej.2020.124090_b0235
  article-title: Application of coupled TG-FTIR system in studies of thermal stability of manganese(II) complexes with amino acids
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1023/B:JTAN.0000046113.50448.63
– volume: 6
  start-page: 1235
  year: 2016
  ident: 10.1016/j.cej.2020.124090_b0190
  article-title: Thermodynamic stability, redox properties, and reactivity of Mn3O4, Fe3O4, and Co3O4 model catalysts for N2O decomposition: Resolving the origins of steady turnover
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b02642
– volume: 52
  start-page: 5601
  year: 2013
  ident: 10.1016/j.cej.2020.124090_b0270
  article-title: Improvement of the activity of γ-Fe2O3 for the selective catalytic reduction of NO with NH3 at high temperatures: NO reduction versus NH3 oxidization
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie303272u
– volume: 10
  start-page: 935
  year: 2009
  ident: 10.1016/j.cej.2020.124090_b0105
  article-title: Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2008.12.032
– volume: 16
  start-page: 124
  year: 2009
  ident: 10.1016/j.cej.2020.124090_b0180
  article-title: Direct ultrasonic-assisted synthesis of sphere-like nanocrystals of spinel Co3O4 and Mn3O4
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2008.05.015
– volume: 148
  start-page: 582
  year: 2014
  ident: 10.1016/j.cej.2020.124090_b0110
  article-title: The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2013.09.016
– volume: 215
  start-page: 271
  year: 2003
  ident: 10.1016/j.cej.2020.124090_b0205
  article-title: Water gas shift reaction for the reformed fuels over Cu/MnO catalysts prepared via spinel-type oxide
  publication-title: J. Catal.
  doi: 10.1016/S0021-9517(03)00024-1
– volume: 88
  start-page: 413
  year: 2009
  ident: 10.1016/j.cej.2020.124090_b0220
  article-title: Screening of doped MnOx–CeO2 catalysts for low-temperature NO-SCR
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2008.10.014
– volume: 326
  start-page: 1074
  year: 2017
  ident: 10.1016/j.cej.2020.124090_b0100
  article-title: V2O5-decorated Mn-Fe/attapulgite catalyst with high SO2 tolerance for SCR of NOx with NH3 at low temperature
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.06.015
– volume: 8
  start-page: 6537
  year: 2018
  ident: 10.1016/j.cej.2020.124090_b0160
  article-title: A perspective on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5–WO3/TiO2 catalysts
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01357
– volume: 181
  start-page: 570
  year: 2016
  ident: 10.1016/j.cej.2020.124090_b0280
  article-title: MnOx supported on Fe–Ti spinel: A novel Mn based low temperature SCR catalyst with a high N2 selectivity
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2015.08.023
– volume: 206
  start-page: 203
  year: 2017
  ident: 10.1016/j.cej.2020.124090_b0090
  article-title: Ceria modified FeMnOx—Enhanced performance and sulphur resistance for low-temperature SCR of NOx
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.01.019
– volume: 369
  start-page: 372
  year: 2019
  ident: 10.1016/j.cej.2020.124090_b0010
  article-title: Quantitative study of the NH3-SCR pathway and the active site distribution over CeWOx at low temperatures
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2018.11.030
– volume: 348
  start-page: 820
  year: 2018
  ident: 10.1016/j.cej.2020.124090_b0060
  article-title: Gd-modified MnOx for the selective catalytic reduction of NO by NH3: The promoting effect of Gd on the catalytic performance and sulfur resistance
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.05.038
– volume: 14
  start-page: 4594
  year: 2011
  ident: 10.1016/j.cej.2020.124090_b0230
  article-title: Synthesis of nanocrystalline manganese oxide powders: Influence of hydrogen peroxide on particle characteristics
  publication-title: J Mater. Res.
  doi: 10.1557/JMR.1999.0622
– volume: 328
  start-page: 300
  year: 2019
  ident: 10.1016/j.cej.2020.124090_b0075
  article-title: Partially reduced graphene oxide as a support of Mn-Ce/TiO2 catalyst for selective catalytic reduction of NOx with NH3
  publication-title: Catal. Today.
  doi: 10.1016/j.cattod.2018.12.007
– volume: 8
  start-page: 11
  year: 2018
  ident: 10.1016/j.cej.2020.124090_b0095
  article-title: Sulfur and water resistance of Mn-based catalysts for low-temperature selective catalytic reduction of NOx: A review
  publication-title: Catalysts
  doi: 10.3390/catal8010011
– volume: 26
  year: 2015
  ident: 10.1016/j.cej.2020.124090_b0240
  article-title: Hierarchical Cu2O/CuO/Co3O4 core-shell nanowires: synthesis and electrochemical properties
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/26/30/304002
– volume: 522
  start-page: 54
  year: 2016
  ident: 10.1016/j.cej.2020.124090_b0030
  article-title: Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: A review
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2016.04.023
– volume: 28
  start-page: 77
  year: 2012
  ident: 10.1016/j.cej.2020.124090_b0225
  article-title: Performance and mechanism about MnOx species included in MnOx/TiO2 catalysts for SCR at low temperature
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2012.08.022
– volume: 136–137
  start-page: 19
  year: 2013
  ident: 10.1016/j.cej.2020.124090_b0170
  article-title: Novel effect of SO2 on the SCR reaction over CeO2: Mechanism and significance
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2013.01.028
– volume: 8
  start-page: 5224
  year: 2016
  ident: 10.1016/j.cej.2020.124090_b0260
  article-title: Low-temperature selective catalytic reduction of NO with NH3 over Mn2O3-doped Fe2O3 hexagonal microsheets
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.5b10264
– volume: 120
  start-page: 1066
  year: 2016
  ident: 10.1016/j.cej.2020.124090_b0255
  article-title: Effect of H2O and SO2 on the selective catalytic reduction of NO with NH3 over Ce/TiO2 catalyst: Mechanism and kinetic study
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b10577
– volume: 358
  start-page: 179
  year: 2018
  ident: 10.1016/j.cej.2020.124090_b0020
  article-title: Activation of oxygen on (NH3-Cu-NH3)+ in NH3-SCR over Cu-CHA
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2017.12.009
– volume: 58
  start-page: 419
  year: 1979
  ident: 10.1016/j.cej.2020.124090_b0215
  article-title: Physicochemical properties of MnO2 and MnO2-CuO and their relationship with the catalytic activity for H2O2 decomposition and CO oxidation
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(79)90280-X
– volume: 71
  start-page: 379
  year: 1988
  ident: 10.1016/j.cej.2020.124090_b0195
  article-title: Electrical properties and cation valencies in Mn3O4
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1988.tb05057.x
– volume: 180
  start-page: 622
  year: 2016
  ident: 10.1016/j.cej.2020.124090_b0125
  article-title: Strong dispersion effect of cobalt spinel active phase spread over ceria for catalytic N2O decomposition: The role of the interface periphery
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2015.07.027
– volume: 70
  year: 2004
  ident: 10.1016/j.cej.2020.124090_b0185
  article-title: First-principles prediction of redox potentials in transition-metal compounds with LDA+U
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.235121
– volume: 9
  start-page: 6814
  year: 2019
  ident: 10.1016/j.cej.2020.124090_b0015
  article-title: Modulated excitation Raman spectroscopy of V2O5/TiO2: Mechanistic insights into the selective catalytic reduction of NO with NH3
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b01514
– volume: 113
  start-page: 4391
  year: 2013
  ident: 10.1016/j.cej.2020.124090_b0140
  article-title: Catalysis by doped oxides
  publication-title: Chem. Rev.
  doi: 10.1021/cr300418s
– volume: 251
  start-page: 7
  year: 2007
  ident: 10.1016/j.cej.2020.124090_b0145
  article-title: Combined steam reforming of methanol over Cu–Mn spinel oxide catalysts
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2007.07.025
– volume: 9
  start-page: 7017
  year: 2017
  ident: 10.1016/j.cej.2020.124090_b0025
  article-title: Mechanistic investigation into the effect of sulfuration on the FeW catalysts for the selective catalytic reduction of NOx with NH3
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.6b14031
– volume: 108
  start-page: 15738
  year: 2004
  ident: 10.1016/j.cej.2020.124090_b0265
  article-title: Characterization and FTIR studies of MnOx-CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp048431h
– volume: 148
  start-page: 114
  year: 2014
  ident: 10.1016/j.cej.2020.124090_b0055
  article-title: Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2013.10.049
– volume: 51
  start-page: 93
  year: 2004
  ident: 10.1016/j.cej.2020.124090_b0045
  article-title: MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2004.01.023
– volume: 99
  start-page: 156
  year: 2010
  ident: 10.1016/j.cej.2020.124090_b0040
  article-title: Origination of N2O from NO reduction by NH3 over β-MnO2 and α-Mn2O3
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2010.06.012
– volume: 118
  start-page: 14866
  year: 2014
  ident: 10.1016/j.cej.2020.124090_b0120
  article-title: Effect of Zr addition on the low-temperature SCR activity and SO2 tolerance of Fe–Mn/Ti catalysts
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp412828p
– volume: 221
  start-page: 652
  year: 2018
  ident: 10.1016/j.cej.2020.124090_b0050
  article-title: Spinel structured CoaMnbOx mixed oxide catalyst for the selective catalytic reduction of NOx with NH3
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.09.034
– volume: 3
  start-page: 79
  year: 2011
  ident: 10.1016/j.cej.2020.124090_b0130
  article-title: Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.931
– volume: 299
  start-page: 142
  year: 2016
  ident: 10.1016/j.cej.2020.124090_b0135
  article-title: Elemental mercury (Hg0) removal over spinel LiMn2O4 from coal-fired flue gas
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.04.094
– volume: 271
  start-page: 23
  year: 2015
  ident: 10.1016/j.cej.2020.124090_b0250
  article-title: Identification of MnOx species and Mn valence states in MnOx/TiO2 catalysts for low temperature SCR
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.02.072
– volume: 22
  start-page: 2877
  year: 2008
  ident: 10.1016/j.cej.2020.124090_b0210
  article-title: Characterization of Cu−Mn/Zeolite-Y catalyst for one-step synthesis of dimethyl ether from CO−H2
  publication-title: Energ. Fuel.
  doi: 10.1021/ef800259e
– volume: 100
  start-page: 250
  year: 1986
  ident: 10.1016/j.cej.2020.124090_b0155
  article-title: Mechanism of the deactivation of hopcalite catalysts studied by XPS, ISS, and other techniques
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(86)90090-4
– volume: 279
  start-page: 59
  year: 2005
  ident: 10.1016/j.cej.2020.124090_b0150
  article-title: Influence of preparation method and additive for Cu–Mn spinel oxide catalyst on water gas shift reaction of reformed fuels
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2004.10.013
– volume: 120
  start-page: 15299
  year: 2016
  ident: 10.1016/j.cej.2020.124090_b0275
  article-title: Alkali metal deactivation on the low temperature selective catalytic reduction of NOx with NH3 over MnOx-CeO2: A mechanism study
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b05175
– volume: 349
  start-page: 184
  year: 2018
  ident: 10.1016/j.cej.2020.124090_b0005
  article-title: Different exposed facets VOx/CeO2 catalysts for the selective catalytic reduction of NO with NH3
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.05.049
– volume: 117
  start-page: 6218
  year: 2013
  ident: 10.1016/j.cej.2020.124090_b0175
  article-title: Synthesis of the catalytically active Mn3O4 spinel and its thermal properties
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp312444s
SSID ssj0006919
Score 2.6294694
Snippet [Display omitted] •Cu modified Mn3O4 spinel showed excellent SCR performance and SO2 resistance.•The Eley-Rideal mechanism predominated in the low temperature...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 124090
SubjectTerms Cu doping
low temperature SCR
Poisoning of SO2
SO2 tolerance
Spinel
Title The role of the Cu dopant on a Mn3O4 spinel SCR catalyst: Improvement of low-temperature activity and sulfur resistance
URI https://dx.doi.org/10.1016/j.cej.2020.124090
Volume 387
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lDl4EmKTJtkm3kqwVEsrtBZ7C9vNBlpCUtqE4sXf7kwePkA9eElIsrOE2WEeuzPfMHatbKEkN4QWOK6tkYRownSl5oQdJduBqzin4uThiPen1uPMntWYV9XCUFplqfsLnZ5r6_JNq-Rma7VYtCYGnWm5Fp0jkmEjTFBCr0OZvn37TPPgbt7cgwZrNLo62cxzvKRaYojYJowFjHP0n23TF3vTO2D7paMI3eJfDllNxUds7wt84DHb4hoDpQdCEgI6cuBlEGAQHKeQxCBgGJtPFmxWSBHBxBtDvlfzuknvoNhLyLcGiThKthqBVJUIy0DVDtRUAkQcwCaLwmwNGJeTr4kMOmHT3v2z19fKRgqaNLmZ4rUtuOTOXNrScgLbVo7Dw45hh6GrDCnQBRQOIROGunIJ0U9YhpT4Wc5VYKLBP2X1OInVGQPC60IXTxmGMi2aUp9L6dpK6p2AkOkbTK9Y6MsSZZyaXUR-lU629JHrPnHdL7jeYDcfJKsCYuOvwVa1Lv43OfHRBPxOdv4_sgu2S09FguMlq6frTF2hE5LOm7mUNdlO92HQH9F9MH4ZvAOc3tyi
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEB6sHtoeSp_UPufQUyGYmM2a9CZS0fooVAVvYd1sQJEoGpH---7kIRbaHnrJIbsTwuwwj52ZbwCelCOU5JYwAtdzDJIQQ9ieNNywpmQ18BTn1Jzc6_PWiL2NnXEBGnkvDJVVZro_1emJts7eVDJuVpbTaWVgUU7LY5RHJMPGDqBE6FSsCKV6u9Pq7xQy95L5HrTfIII8uZmUeUk101FilWAWdKhj_mye9kxO8xROMl8R6-nvnEFBRedwvIcgeAFbfcxIFYK4CFH7ctjYYKDj4CjGRYQCe5H9znC91BRzHDQ-MLmu-VzHL5heJyS3g0Q8X2wNwqnKQJaRGh5orgSKKMD1Zh5uVqhDc3I3NY8uYdR8HTZaRjZLwZA2t2P9rAouuTuRjmRu4DjKdXlYs5ww9JQlhfYChUvghKGpPAL1E8ySUi_LiQpsbfOvoBgtInUNSJBd2stTlqVsRp80J1J6jpJmLSBw-jKYOQt9mQGN07yLuZ9XlM18zXWfuO6nXC_D845kmaJs_LWZ5efifxMVX1uB38lu_kf2CIetYa_rd9v9zi0c0Upa73gHxXi1UffaJ4knD5nMfQFPwN2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+the+Cu+dopant+on+a+Mn3O4+spinel+SCR+catalyst%3A+Improvement+of+low-temperature+activity+and+sulfur+resistance&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Xiong%2C+Shangchao&rft.au=Peng%2C+Yue&rft.au=Wang%2C+Dong&rft.au=Huang%2C+Nan&rft.date=2020-05-01&rft.issn=1385-8947&rft.volume=387&rft.spage=124090&rft_id=info:doi/10.1016%2Fj.cej.2020.124090&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2020_124090
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon