The role of the Cu dopant on a Mn3O4 spinel SCR catalyst: Improvement of low-temperature activity and sulfur resistance
[Display omitted] •Cu modified Mn3O4 spinel showed excellent SCR performance and SO2 resistance.•The Eley-Rideal mechanism predominated in the low temperature SCR reaction.•The formation of MnSO4 was mainly responsible for the deactivation of Mn3O4.•Cu doping restrained MnSO4 generation by reducing...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 387; p. 124090 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1385-8947 1873-3212 |
DOI | 10.1016/j.cej.2020.124090 |
Cover
Loading…
Abstract | [Display omitted]
•Cu modified Mn3O4 spinel showed excellent SCR performance and SO2 resistance.•The Eley-Rideal mechanism predominated in the low temperature SCR reaction.•The formation of MnSO4 was mainly responsible for the deactivation of Mn3O4.•Cu doping restrained MnSO4 generation by reducing the amounts of adjacent Mn.
Mn-based oxides are regarded as one of the most promising catalysts for selective catalytic reduction (SCR) of NOx by NH3 at low temperatures, but their applications are extremely restricted by the irreversible poisoning of SO2. Improving the SO2 tolerance of Mn-based catalyst has longtime received the most attentions from both academia and industry. In this work, a series of Cu-modified Mn3O4 spinels were synthesized, and the roles of the Cu dopant were investigated. The (Cu1.0Mn2.0)1–δO4 spinel showed both excellent SCR performance and SO2 resistance at low temperature. Cu doping improved the BET surface area, the quantities of active Mn4+ and the acid sites of Mn3O4 spinels, all of which contributed to the increase in low-temperature SCR activity. The formation of MnSO4 was mainly responsible for the irreversible deactivation of the Mn3O4 spinel upon exposure to SO2. DFT calculations suggested that SO2 was more likely to be adsorbed as “–Mn–O–S–O–Mn–” on Mn3O4 and (Cu1.0Mn2.0)1–δO4 spinels. Therefore, the formation of MnSO4 on the (Cu1.0Mn2.0)1–δO4 spinel was significantly mitigated by Cu doping, mainly due to reduced amounts of adjacent Mn. Moreover, resulting from the electronic transfer between copper and manganese cations within the spinel lattice (Cu2+ + Mn3+ ⇄ Mn4++ Cu+), the (Cu1.0Mn2.0)1–δO4 spinel retained a high surface ratio of Mn4+/Mntotal, which maintained an excellent low-temperature SCR activity under the SO2-containing condition. This work shows that doping with the low–valence dopant of Cu can significantly improve the low-temperature SCR activity and SO2 tolerance of the Mn3O4 spinel, which could be a strategy for the further design of Mn-based SCR catalysts. |
---|---|
AbstractList | [Display omitted]
•Cu modified Mn3O4 spinel showed excellent SCR performance and SO2 resistance.•The Eley-Rideal mechanism predominated in the low temperature SCR reaction.•The formation of MnSO4 was mainly responsible for the deactivation of Mn3O4.•Cu doping restrained MnSO4 generation by reducing the amounts of adjacent Mn.
Mn-based oxides are regarded as one of the most promising catalysts for selective catalytic reduction (SCR) of NOx by NH3 at low temperatures, but their applications are extremely restricted by the irreversible poisoning of SO2. Improving the SO2 tolerance of Mn-based catalyst has longtime received the most attentions from both academia and industry. In this work, a series of Cu-modified Mn3O4 spinels were synthesized, and the roles of the Cu dopant were investigated. The (Cu1.0Mn2.0)1–δO4 spinel showed both excellent SCR performance and SO2 resistance at low temperature. Cu doping improved the BET surface area, the quantities of active Mn4+ and the acid sites of Mn3O4 spinels, all of which contributed to the increase in low-temperature SCR activity. The formation of MnSO4 was mainly responsible for the irreversible deactivation of the Mn3O4 spinel upon exposure to SO2. DFT calculations suggested that SO2 was more likely to be adsorbed as “–Mn–O–S–O–Mn–” on Mn3O4 and (Cu1.0Mn2.0)1–δO4 spinels. Therefore, the formation of MnSO4 on the (Cu1.0Mn2.0)1–δO4 spinel was significantly mitigated by Cu doping, mainly due to reduced amounts of adjacent Mn. Moreover, resulting from the electronic transfer between copper and manganese cations within the spinel lattice (Cu2+ + Mn3+ ⇄ Mn4++ Cu+), the (Cu1.0Mn2.0)1–δO4 spinel retained a high surface ratio of Mn4+/Mntotal, which maintained an excellent low-temperature SCR activity under the SO2-containing condition. This work shows that doping with the low–valence dopant of Cu can significantly improve the low-temperature SCR activity and SO2 tolerance of the Mn3O4 spinel, which could be a strategy for the further design of Mn-based SCR catalysts. |
ArticleNumber | 124090 |
Author | Peng, Yue Wang, Dong Huang, Nan Yang, Shijian Li, Junhua Chen, Jianjun Zhang, Qinfang Xiong, Shangchao |
Author_xml | – sequence: 1 givenname: Shangchao surname: Xiong fullname: Xiong, Shangchao organization: State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, PR China – sequence: 2 givenname: Yue orcidid: 0000-0001-5772-3443 surname: Peng fullname: Peng, Yue organization: State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, PR China – sequence: 3 givenname: Dong surname: Wang fullname: Wang, Dong organization: State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, PR China – sequence: 4 givenname: Nan surname: Huang fullname: Huang, Nan organization: State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, PR China – sequence: 5 givenname: Qinfang orcidid: 0000-0003-3233-3400 surname: Zhang fullname: Zhang, Qinfang email: qfangzhang@ycit.edu.cn organization: School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China – sequence: 6 givenname: Shijian orcidid: 0000-0002-8275-5225 surname: Yang fullname: Yang, Shijian organization: School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China – sequence: 7 givenname: Jianjun orcidid: 0000-0003-4730-7803 surname: Chen fullname: Chen, Jianjun email: chenjianjun@tsinghua.edu.cn organization: State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, PR China – sequence: 8 givenname: Junhua orcidid: 0000-0003-3630-8712 surname: Li fullname: Li, Junhua organization: State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, PR China |
BookMark | eNp9kN1KAzEQhYNUsK0-gHd5ga3JZn-yeiXFn0KloPU6pNkJpmyTJcm29O1NqVde9GbmDDPfwDkTNLLOAkL3lMwoodXDdqZgO8tJnua8IA25QmPKa5axnOajpBkvM94U9Q2ahLAlhFQNbcbosP4B7F0H2Gkck54PuHW9tBE7iyX-sGxV4NAbCx3-mn9iJaPsjiE-4sWu924POzjdaty5QxZh14OXcfCApYpmb-IRS9viMHR68NhDMCFKq-AWXWvZBbj761P0_fqynr9ny9XbYv68zBSrWEw1l5Wq-EaVquBtWQLnla5pqXUDVMm6LiTPC1ZrAk3Z8FwWVKm0VhtoWUXZFNXnv8q7EDxooUyU0TgbvTSdoESc8hNbkfITp_zEOb9E0n9k781O-uNF5unMQLK0N-BFUAaS3dZ4UFG0zlygfwGY3ItV |
CitedBy_id | crossref_primary_10_1016_j_fuel_2024_133862 crossref_primary_10_3389_fchem_2022_957051 crossref_primary_10_1016_j_cej_2023_141466 crossref_primary_10_1016_j_fuel_2021_121239 crossref_primary_10_1016_j_gce_2021_03_002 crossref_primary_10_2139_ssrn_4162917 crossref_primary_10_1016_j_fuel_2023_128038 crossref_primary_10_1016_j_fuel_2022_126772 crossref_primary_10_3390_catal15030241 crossref_primary_10_1016_j_seppur_2024_127054 crossref_primary_10_1039_D3TA05478K crossref_primary_10_1016_j_apcatb_2023_123353 crossref_primary_10_3389_fchem_2024_1413489 crossref_primary_10_1002_cctc_202200909 crossref_primary_10_1021_acs_inorgchem_3c00444 crossref_primary_10_1021_acsomega_3c02132 crossref_primary_10_1039_D2RA04862K crossref_primary_10_3390_catal12101248 crossref_primary_10_1007_s11144_024_02600_6 crossref_primary_10_1016_j_jclepro_2024_141528 crossref_primary_10_1016_j_jece_2023_110440 crossref_primary_10_1002_smll_202106680 crossref_primary_10_1002_cjce_24959 crossref_primary_10_1016_j_chemosphere_2022_134740 crossref_primary_10_1016_j_apcatb_2023_123086 crossref_primary_10_1016_j_apcatb_2025_125028 crossref_primary_10_1016_j_inoche_2024_113559 crossref_primary_10_1016_j_seppur_2024_129901 crossref_primary_10_1080_00102202_2023_2300262 crossref_primary_10_1007_s11705_022_2258_8 crossref_primary_10_1021_acs_est_2c00113 crossref_primary_10_1007_s12239_020_0150_4 crossref_primary_10_1007_s10562_021_03759_6 crossref_primary_10_1016_j_surfin_2024_104877 crossref_primary_10_1039_D3RE00498H crossref_primary_10_1016_j_fuel_2022_126590 crossref_primary_10_1039_D1CY01210J crossref_primary_10_1039_D2TA06199F crossref_primary_10_1080_10643389_2024_2303949 crossref_primary_10_1021_acsami_2c20545 crossref_primary_10_1016_j_seppur_2023_123272 crossref_primary_10_1016_j_apcata_2022_118890 crossref_primary_10_1016_j_apcatb_2023_122528 crossref_primary_10_1016_j_jece_2022_108694 crossref_primary_10_1021_acscatal_4c07193 crossref_primary_10_1021_acs_est_1c01314 crossref_primary_10_4491_eer_2020_642 crossref_primary_10_2139_ssrn_4111913 crossref_primary_10_1016_j_jhazmat_2021_125361 crossref_primary_10_3390_catal11050618 crossref_primary_10_1016_j_fuel_2024_131341 crossref_primary_10_1021_acsanm_5c00035 crossref_primary_10_1007_s11356_023_25912_x crossref_primary_10_1016_j_jece_2024_114400 crossref_primary_10_1016_j_seppur_2025_132063 crossref_primary_10_1016_j_fuel_2022_125390 crossref_primary_10_1021_acs_energyfuels_3c00689 crossref_primary_10_3390_catal14110819 crossref_primary_10_1007_s10562_022_04023_1 crossref_primary_10_1016_j_jhazmat_2021_125637 crossref_primary_10_1016_j_fuel_2022_124185 crossref_primary_10_1016_j_apsusc_2024_160401 crossref_primary_10_1016_j_jcis_2021_12_102 crossref_primary_10_1021_acs_energyfuels_1c03594 crossref_primary_10_1007_s11771_022_5083_9 crossref_primary_10_1016_j_inoche_2023_111093 crossref_primary_10_1039_D2EN00144F crossref_primary_10_1016_j_seppur_2025_131934 crossref_primary_10_3390_catal12030341 crossref_primary_10_1016_j_apcatb_2023_122416 crossref_primary_10_1016_j_mcat_2020_111225 crossref_primary_10_1016_j_fuel_2024_131878 crossref_primary_10_1016_j_jre_2022_08_004 crossref_primary_10_1002_adfm_202205569 crossref_primary_10_1016_j_cej_2020_128014 crossref_primary_10_1016_j_apsusc_2023_156657 crossref_primary_10_1016_j_mcat_2022_112693 crossref_primary_10_1016_j_fuproc_2023_107956 crossref_primary_10_1016_j_cej_2023_142113 crossref_primary_10_1016_j_jcat_2023_05_004 crossref_primary_10_1021_acsomega_3c05614 crossref_primary_10_1021_acs_langmuir_4c01289 crossref_primary_10_1016_j_jes_2022_07_015 crossref_primary_10_1016_j_materresbull_2022_111928 crossref_primary_10_1021_acs_est_4c01840 crossref_primary_10_1016_j_ces_2024_120336 crossref_primary_10_1039_D4RA05140H crossref_primary_10_1016_j_apcatb_2023_122742 crossref_primary_10_1016_j_jece_2022_108799 crossref_primary_10_1016_j_apsusc_2021_149148 crossref_primary_10_1016_j_fuel_2022_125885 crossref_primary_10_1016_j_chemosphere_2023_140006 crossref_primary_10_1016_j_psep_2024_09_093 crossref_primary_10_1021_acs_est_3c09875 crossref_primary_10_1002_jctb_6612 crossref_primary_10_1021_acs_iecr_1c01012 crossref_primary_10_1016_j_jhazmat_2022_129665 crossref_primary_10_1016_j_fuel_2024_131126 crossref_primary_10_1016_j_cej_2020_125572 crossref_primary_10_1039_D1RA06325A crossref_primary_10_1021_acs_est_3c04916 crossref_primary_10_1016_j_apcatb_2025_125065 crossref_primary_10_1016_j_fuel_2023_127491 crossref_primary_10_1021_acsanm_3c06196 crossref_primary_10_1039_D1NJ05290J crossref_primary_10_1142_S1793604721510097 crossref_primary_10_1016_j_jhazmat_2024_136473 crossref_primary_10_1016_j_apcatb_2021_120054 crossref_primary_10_1016_j_fuel_2022_126986 crossref_primary_10_1021_acs_est_1c01628 crossref_primary_10_3390_catal12050471 crossref_primary_10_1007_s11270_023_06828_1 crossref_primary_10_1016_j_apcatb_2023_123441 crossref_primary_10_1016_j_chemosphere_2021_133156 crossref_primary_10_1021_acs_est_0c08214 crossref_primary_10_1016_j_cej_2023_144751 crossref_primary_10_1021_acssuschemeng_0c05862 crossref_primary_10_1016_j_apsusc_2022_155364 crossref_primary_10_1016_j_mcat_2023_113767 crossref_primary_10_1016_j_apsusc_2023_158194 crossref_primary_10_1039_D2RA04085A crossref_primary_10_1016_j_mcat_2021_111704 crossref_primary_10_1016_j_jes_2023_10_019 crossref_primary_10_1016_j_jece_2023_109625 crossref_primary_10_1039_D3TA06614B crossref_primary_10_1080_09593330_2020_1858182 crossref_primary_10_1016_j_seppur_2024_131051 crossref_primary_10_1016_j_compositesb_2021_109609 crossref_primary_10_1016_j_fuel_2024_132594 crossref_primary_10_1007_s13198_021_01332_3 crossref_primary_10_1016_j_apcata_2022_118749 crossref_primary_10_1016_j_cattod_2020_07_084 crossref_primary_10_3390_catal15030234 crossref_primary_10_1016_j_apsusc_2022_154146 crossref_primary_10_1016_j_apsusc_2023_158124 crossref_primary_10_1016_j_jece_2024_112780 crossref_primary_10_1016_j_optmat_2022_112274 crossref_primary_10_1016_j_fuel_2022_126040 crossref_primary_10_1016_j_cej_2025_159622 crossref_primary_10_1021_acs_energyfuels_4c03747 crossref_primary_10_1016_j_jece_2023_111559 crossref_primary_10_1016_j_ceramint_2021_07_078 crossref_primary_10_1016_j_jece_2022_109218 crossref_primary_10_1016_j_jiec_2020_07_005 crossref_primary_10_1016_j_apcatb_2024_124535 crossref_primary_10_1007_s11164_022_04729_2 crossref_primary_10_1088_1361_6463_ac4133 crossref_primary_10_1039_D2CY00434H crossref_primary_10_1016_j_apcatb_2022_121104 crossref_primary_10_1016_j_fuproc_2022_107213 crossref_primary_10_1016_j_cej_2023_147452 |
Cites_doi | 10.1016/j.cej.2017.02.024 10.1016/j.molcata.2014.02.021 10.1016/j.cej.2017.02.042 10.1016/j.fuel.2018.03.062 10.1016/j.jcat.2017.12.008 10.1021/es505978n 10.1016/j.jhazmat.2008.06.013 10.1021/es304732h 10.1023/B:JTAN.0000046113.50448.63 10.1021/acscatal.5b02642 10.1021/ie303272u 10.1016/j.catcom.2008.12.032 10.1016/j.ultsonch.2008.05.015 10.1016/j.apcatb.2013.09.016 10.1016/S0021-9517(03)00024-1 10.1016/j.apcatb.2008.10.014 10.1016/j.cej.2017.06.015 10.1021/acscatal.8b01357 10.1016/j.apcatb.2015.08.023 10.1016/j.apcatb.2017.01.019 10.1016/j.jcat.2018.11.030 10.1016/j.cej.2018.05.038 10.1557/JMR.1999.0622 10.1016/j.cattod.2018.12.007 10.3390/catal8010011 10.1088/0957-4484/26/30/304002 10.1016/j.apcata.2016.04.023 10.1016/j.catcom.2012.08.022 10.1016/j.apcatb.2013.01.028 10.1021/acsami.5b10264 10.1021/acs.jpcc.5b10577 10.1016/j.jcat.2017.12.009 10.1016/0021-9517(79)90280-X 10.1111/j.1151-2916.1988.tb05057.x 10.1016/j.apcatb.2015.07.027 10.1103/PhysRevB.70.235121 10.1021/acscatal.9b01514 10.1021/cr300418s 10.1016/j.jcat.2007.07.025 10.1021/acsami.6b14031 10.1021/jp048431h 10.1016/j.apcatb.2013.10.049 10.1016/j.apcatb.2004.01.023 10.1016/j.apcatb.2010.06.012 10.1021/jp412828p 10.1016/j.apcatb.2017.09.034 10.1038/nchem.931 10.1016/j.cej.2016.04.094 10.1016/j.cej.2015.02.072 10.1021/ef800259e 10.1016/0021-9517(86)90090-4 10.1016/j.apcata.2004.10.013 10.1021/acs.jpcc.6b05175 10.1016/j.cej.2018.05.049 10.1021/jp312444s |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2020.124090 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
ExternalDocumentID | 10_1016_j_cej_2020_124090 S1385894720300814 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- RIG SEW SSH ZY4 |
ID | FETCH-LOGICAL-c363t-c32a6c68bc5c48d55e886f715ff9e1ca774a82437f0e95982a41cc15fcbed3613 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Tue Jul 01 03:52:35 EDT 2025 Thu Apr 24 23:11:05 EDT 2025 Fri Feb 23 02:49:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | low temperature SCR SO2 tolerance Cu doping Spinel Poisoning of SO2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-c32a6c68bc5c48d55e886f715ff9e1ca774a82437f0e95982a41cc15fcbed3613 |
ORCID | 0000-0001-5772-3443 0000-0002-8275-5225 0000-0003-4730-7803 0000-0003-3233-3400 0000-0003-3630-8712 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cej_2020_124090 crossref_primary_10_1016_j_cej_2020_124090 elsevier_sciencedirect_doi_10_1016_j_cej_2020_124090 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 2020-05-00 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Nuguid, Ferri, Marberger, Nachtegaal, Kröcher (b0015) 2019; 9 Qi, Yang (b0265) 2004; 108 Sikorska-Iwan, Mrozek-Łyszczek (b0235) 2004; 78 Yang, Qi, Xiong, Dang, Liao, Wong, Li (b0280) 2016; 181 Fan, Shi, Gao, Gao, Wang, Wang, He, Niu (b0060) 2018; 348 Xie, Fang, He, Chen, Fu, Chen (b0225) 2012; 28 Xiong, Weng, Liao, Li, Zou, Geng, Xiao, Huang, Yang (b0275) 2016; 120 Liu, Shi, Gao, Niu (b0030) 2016; 522 Wu, Jin, Wang, Liu (b0105) 2009; 10 Tang, Li, Sun, Hao (b0040) 2010; 99 Wan, Zhao, Tang, Li, Wang, Cui, Gu, Li, Shi (b0055) 2014; 148 Yang, Liu, Chang, Ma, Qu, Yan, Wang, Li (b0270) 2013; 52 Wang, Qu, Dong, Tang (b0025) 2017; 9 Tang, Fei, Hou, Zheng, Lou (b0210) 2008; 22 Moon, Awano, Takagi, Fujishiro (b0230) 2011; 14 Meng, Xu, Jiao, Guo, Guo, Wang, Lu, Zhan (b0050) 2018; 221 Zhang, Chang, Li, Peng, Li, Li (b0005) 2018; 349 Xiao, Xiong, Shi, Shan, Yang (b0255) 2016; 120 Ye, Lee, Jeong, Kim, Lee, Baik, Kim (b0075) 2019; 328 Gao, Shi, Fan, Gao, Niu (b0095) 2018; 8 Jin, Liu, Wang, Cen, Wu, Wang, Weng (b0110) 2014; 148 Kaczmarczyk, Zasada, Janas, Indyka, Piskorz, Kotarba, Sojka (b0190) 2016; 6 McFarland, Metiu (b0140) 2013; 113 Liu, Guo, Li, Sun, Liu, Pan, Liu, Sun (b0070) 2018; 223 Kanungo (b0215) 1979; 58 Yu, Huang, Dong, Chen, Yang, Fan, Yang, Liu, Wang (b0080) 2017; 316 Li, Wan, Li, Zhan, Guan, Tian (b0260) 2016; 8 Lai, Wachs (b0160) 2018; 8 Fang, Xie, Hu, Yang, He, Fu (b0250) 2015; 271 Tanaka, Utaka, Kikuchi, Takeguchi, Sasaki, Eguchi (b0205) 2003; 215 Zhang, Cui, Guo, Ma, Luo (b0065) 2014; 390 Veprek, Cocke, Kehl, Oswald (b0155) 1986; 100 Tanaka, Takeguchi, Kikuchi, Eguchi (b0150) 2005; 279 Yang, Guo, Chang, Ma, Peng, Qu, Yan, Wang, Li (b0170) 2013; 136–137 Papavasiliou, Avgouropoulos, Ioannides (b0145) 2007; 251 Xu, Zhang, Zhao, Huang, Qu, Yan (b0135) 2016; 299 Grzybek, Stelmachowski, Gudyka, Indyka, Sojka, Guillén-Hurtado, Rico-Pérez, Bueno-López, Kotarba (b0125) 2016; 180 Liu, He, Yu, Yan, Yang, Shan (b0010) 2019; 369 Shen, Zhang, Wang, Wang, Wang (b0085) 2018; 358 Jiang, Liu, Wu (b0200) 2009; 162 Jiang, Deng, Zhang, Wu, Tang, Yao, Lu (b0120) 2014; 118 Qi, Yang, Chang (b0045) 2004; 51 Kuang, Li, Chen, Zhang, Zhang, Zhang (b0240) 2015; 26 Cheng, Shen, Peng, Pan, Tao, Chen (b0130) 2011; 3 Chen, Falsig, Janssens, Grönbeck (b0020) 2018; 358 Askarinejad, Morsali (b0180) 2009; 16 France, Yang, Li, Chen, Guang, Guo, Wang, Li (b0090) 2017; 206 Dorris, Mason (b0195) 1988; 71 Zhou, Huang, Xie, Luo, Yao, Li, Zuo (b0100) 2017; 326 Zhou, Cococcioni, Marianetti, Morgan, Ceder (b0185) 2004; 70 Casapu, Kröcher, Elsener (b0220) 2009; 88 Gao, Tang, Yi, Li, Zhao, Wang, Chu, Li (b0035) 2017; 317 Tian, Mountapmbeme Kouotou, Bahlawane, Tchoua Ngamou (b0175) 2013; 117 Xu, Qu, Zong, Huang, Quan, Yan (b0245) 2015; 49 Chang, Chen, Li, Ma, Wang, Liu, Schwank, Hao (b0115) 2013; 47 Cheng (10.1016/j.cej.2020.124090_b0130) 2011; 3 Dorris (10.1016/j.cej.2020.124090_b0195) 1988; 71 Gao (10.1016/j.cej.2020.124090_b0035) 2017; 317 France (10.1016/j.cej.2020.124090_b0090) 2017; 206 Zhang (10.1016/j.cej.2020.124090_b0065) 2014; 390 Grzybek (10.1016/j.cej.2020.124090_b0125) 2016; 180 Fang (10.1016/j.cej.2020.124090_b0250) 2015; 271 Tanaka (10.1016/j.cej.2020.124090_b0150) 2005; 279 Papavasiliou (10.1016/j.cej.2020.124090_b0145) 2007; 251 Xie (10.1016/j.cej.2020.124090_b0225) 2012; 28 Xiao (10.1016/j.cej.2020.124090_b0255) 2016; 120 Yu (10.1016/j.cej.2020.124090_b0080) 2017; 316 Nuguid (10.1016/j.cej.2020.124090_b0015) 2019; 9 Yang (10.1016/j.cej.2020.124090_b0170) 2013; 136–137 Liu (10.1016/j.cej.2020.124090_b0030) 2016; 522 Yang (10.1016/j.cej.2020.124090_b0270) 2013; 52 Li (10.1016/j.cej.2020.124090_b0260) 2016; 8 Kanungo (10.1016/j.cej.2020.124090_b0215) 1979; 58 Wan (10.1016/j.cej.2020.124090_b0055) 2014; 148 Qi (10.1016/j.cej.2020.124090_b0265) 2004; 108 Tang (10.1016/j.cej.2020.124090_b0210) 2008; 22 Zhou (10.1016/j.cej.2020.124090_b0100) 2017; 326 Tang (10.1016/j.cej.2020.124090_b0040) 2010; 99 Casapu (10.1016/j.cej.2020.124090_b0220) 2009; 88 Fan (10.1016/j.cej.2020.124090_b0060) 2018; 348 Liu (10.1016/j.cej.2020.124090_b0070) 2018; 223 Lai (10.1016/j.cej.2020.124090_b0160) 2018; 8 Liu (10.1016/j.cej.2020.124090_b0010) 2019; 369 Meng (10.1016/j.cej.2020.124090_b0050) 2018; 221 Ye (10.1016/j.cej.2020.124090_b0075) 2019; 328 Xu (10.1016/j.cej.2020.124090_b0135) 2016; 299 Veprek (10.1016/j.cej.2020.124090_b0155) 1986; 100 Tian (10.1016/j.cej.2020.124090_b0175) 2013; 117 Shen (10.1016/j.cej.2020.124090_b0085) 2018; 358 Zhang (10.1016/j.cej.2020.124090_b0005) 2018; 349 Chang (10.1016/j.cej.2020.124090_b0115) 2013; 47 McFarland (10.1016/j.cej.2020.124090_b0140) 2013; 113 Tanaka (10.1016/j.cej.2020.124090_b0205) 2003; 215 Chen (10.1016/j.cej.2020.124090_b0020) 2018; 358 Jiang (10.1016/j.cej.2020.124090_b0200) 2009; 162 Askarinejad (10.1016/j.cej.2020.124090_b0180) 2009; 16 Qi (10.1016/j.cej.2020.124090_b0045) 2004; 51 Xu (10.1016/j.cej.2020.124090_b0245) 2015; 49 Jin (10.1016/j.cej.2020.124090_b0110) 2014; 148 Jiang (10.1016/j.cej.2020.124090_b0120) 2014; 118 Zhou (10.1016/j.cej.2020.124090_b0185) 2004; 70 Kuang (10.1016/j.cej.2020.124090_b0240) 2015; 26 Moon (10.1016/j.cej.2020.124090_b0230) 2011; 14 Gao (10.1016/j.cej.2020.124090_b0095) 2018; 8 Sikorska-Iwan (10.1016/j.cej.2020.124090_b0235) 2004; 78 Kaczmarczyk (10.1016/j.cej.2020.124090_b0190) 2016; 6 Yang (10.1016/j.cej.2020.124090_b0280) 2016; 181 Xiong (10.1016/j.cej.2020.124090_b0275) 2016; 120 Wu (10.1016/j.cej.2020.124090_b0105) 2009; 10 Wang (10.1016/j.cej.2020.124090_b0025) 2017; 9 |
References_xml | – volume: 120 start-page: 15299 year: 2016 end-page: 15309 ident: b0275 article-title: Alkali metal deactivation on the low temperature selective catalytic reduction of NO publication-title: J. Phys. Chem. C – volume: 316 start-page: 1059 year: 2017 end-page: 1068 ident: b0080 article-title: Effect of Pr/Ce addition on the catalytic performance and SO publication-title: Chem. Eng. J. – volume: 8 start-page: 5224 year: 2016 end-page: 5233 ident: b0260 article-title: Low-temperature selective catalytic reduction of NO with NH publication-title: ACS Appl. Mater. Inter. – volume: 28 start-page: 77 year: 2012 end-page: 81 ident: b0225 article-title: Performance and mechanism about MnO publication-title: Catal. Commun. – volume: 16 start-page: 124 year: 2009 end-page: 131 ident: b0180 article-title: Direct ultrasonic-assisted synthesis of sphere-like nanocrystals of spinel Co3O4 and Mn3O4 publication-title: Ultrason. Sonochem. – volume: 215 start-page: 271 year: 2003 end-page: 278 ident: b0205 article-title: Water gas shift reaction for the reformed fuels over Cu/MnO catalysts prepared via spinel-type oxide publication-title: J. Catal. – volume: 328 start-page: 300 year: 2019 end-page: 306 ident: b0075 article-title: Partially reduced graphene oxide as a support of Mn-Ce/TiO publication-title: Catal. Today. – volume: 22 start-page: 2877 year: 2008 end-page: 2884 ident: b0210 article-title: Characterization of Cu−Mn/Zeolite-Y catalyst for one-step synthesis of dimethyl ether from CO−H publication-title: Energ. Fuel. – volume: 136–137 start-page: 19 year: 2013 end-page: 28 ident: b0170 article-title: Novel effect of SO publication-title: Appl. Catal. B – volume: 100 start-page: 250 year: 1986 end-page: 263 ident: b0155 article-title: Mechanism of the deactivation of hopcalite catalysts studied by XPS, ISS, and other techniques publication-title: J. Catal. – volume: 14 start-page: 4594 year: 2011 end-page: 4601 ident: b0230 article-title: Synthesis of nanocrystalline manganese oxide powders: Influence of hydrogen peroxide on particle characteristics publication-title: J Mater. Res. – volume: 113 start-page: 4391 year: 2013 end-page: 4427 ident: b0140 article-title: Catalysis by doped oxides publication-title: Chem. Rev. – volume: 221 start-page: 652 year: 2018 end-page: 663 ident: b0050 article-title: Spinel structured Co publication-title: Appl. Catal. B – volume: 70 year: 2004 ident: b0185 article-title: First-principles prediction of redox potentials in transition-metal compounds with LDA+U publication-title: Phys. Rev. B – volume: 3 start-page: 79 year: 2011 end-page: 84 ident: b0130 article-title: Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts publication-title: Nat. Chem. – volume: 522 start-page: 54 year: 2016 end-page: 69 ident: b0030 article-title: Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: A review publication-title: Appl. Catal. A – volume: 71 start-page: 379 year: 1988 end-page: 385 ident: b0195 article-title: Electrical properties and cation valencies in Mn publication-title: J. Am. Ceram. Soc. – volume: 390 start-page: 14 year: 2014 end-page: 21 ident: b0065 article-title: The influence of K publication-title: J. Mol. Catal. A – volume: 349 start-page: 184 year: 2018 end-page: 191 ident: b0005 article-title: Different exposed facets VO publication-title: Chem. Eng. J. – volume: 6 start-page: 1235 year: 2016 end-page: 1246 ident: b0190 article-title: Thermodynamic stability, redox properties, and reactivity of Mn publication-title: ACS Catal. – volume: 99 start-page: 156 year: 2010 end-page: 162 ident: b0040 article-title: Origination of N publication-title: Appl. Catal. B – volume: 52 start-page: 5601 year: 2013 end-page: 5610 ident: b0270 article-title: Improvement of the activity of γ-Fe publication-title: Ind. Eng. Chem. Res. – volume: 317 start-page: 20 year: 2017 end-page: 31 ident: b0035 article-title: Promotional mechanisms of activity and SO publication-title: Chem. Eng. J. – volume: 8 start-page: 11 year: 2018 ident: b0095 article-title: Sulfur and water resistance of Mn-based catalysts for low-temperature selective catalytic reduction of NO publication-title: Catalysts – volume: 348 start-page: 820 year: 2018 end-page: 830 ident: b0060 article-title: Gd-modified MnO publication-title: Chem. Eng. J. – volume: 206 start-page: 203 year: 2017 end-page: 215 ident: b0090 article-title: Ceria modified FeMnO publication-title: Appl. Catal. B – volume: 120 start-page: 1066 year: 2016 end-page: 1076 ident: b0255 article-title: Effect of H publication-title: J. Phys. Chem. C – volume: 369 start-page: 372 year: 2019 end-page: 381 ident: b0010 article-title: Quantitative study of the NH publication-title: J. Catal. – volume: 326 start-page: 1074 year: 2017 end-page: 1085 ident: b0100 article-title: V publication-title: Chem. Eng. J. – volume: 162 start-page: 1249 year: 2009 end-page: 1254 ident: b0200 article-title: Low-temperature selective catalytic reduction of NO on MnO publication-title: J. Hazard. Mater. – volume: 180 start-page: 622 year: 2016 end-page: 629 ident: b0125 article-title: Strong dispersion effect of cobalt spinel active phase spread over ceria for catalytic N publication-title: Appl. Catal. B – volume: 9 start-page: 7017 year: 2017 end-page: 7028 ident: b0025 article-title: Mechanistic investigation into the effect of sulfuration on the FeW catalysts for the selective catalytic reduction of NO publication-title: ACS Appl. Mater. Inter. – volume: 358 start-page: 179 year: 2018 end-page: 186 ident: b0020 article-title: Activation of oxygen on (NH publication-title: J. Catal. – volume: 78 start-page: 487 year: 2004 end-page: 500 ident: b0235 article-title: Application of coupled TG-FTIR system in studies of thermal stability of manganese(II) complexes with amino acids publication-title: J. Therm. Anal. Calorim. – volume: 47 start-page: 5294 year: 2013 end-page: 5301 ident: b0115 article-title: Improvement of activity and SO publication-title: Environ. Sci. Technol. – volume: 148 start-page: 582 year: 2014 end-page: 588 ident: b0110 article-title: The role of cerium in the improved SO publication-title: Appl. Catal. B – volume: 8 start-page: 6537 year: 2018 end-page: 6551 ident: b0160 article-title: A perspective on the selective catalytic reduction (SCR) of NO with NH publication-title: ACS Catal. – volume: 108 start-page: 15738 year: 2004 end-page: 15747 ident: b0265 article-title: Characterization and FTIR studies of MnO publication-title: J. Phys. Chem. B – volume: 358 start-page: 277 year: 2018 end-page: 286 ident: b0085 article-title: Nature of SO publication-title: J. Catal. – volume: 251 start-page: 7 year: 2007 end-page: 20 ident: b0145 article-title: Combined steam reforming of methanol over Cu–Mn spinel oxide catalysts publication-title: J. Catal. – volume: 9 start-page: 6814 year: 2019 end-page: 6820 ident: b0015 article-title: Modulated excitation Raman spectroscopy of V publication-title: ACS Catal. – volume: 88 start-page: 413 year: 2009 end-page: 419 ident: b0220 article-title: Screening of doped MnO publication-title: Appl. Catal. B – volume: 271 start-page: 23 year: 2015 end-page: 30 ident: b0250 article-title: Identification of MnO publication-title: Chem. Eng. J. – volume: 223 start-page: 385 year: 2018 end-page: 393 ident: b0070 article-title: Enhancement of the SO publication-title: Fuel – volume: 49 start-page: 6823 year: 2015 end-page: 6830 ident: b0245 article-title: MnO publication-title: Environ. Sci. Technol. – volume: 51 start-page: 93 year: 2004 end-page: 106 ident: b0045 article-title: MnO publication-title: Appl. Catal. B – volume: 10 start-page: 935 year: 2009 end-page: 939 ident: b0105 article-title: Effect of ceria doping on SO publication-title: Catal. Commun. – volume: 279 start-page: 59 year: 2005 end-page: 66 ident: b0150 article-title: Influence of preparation method and additive for Cu–Mn spinel oxide catalyst on water gas shift reaction of reformed fuels publication-title: Appl. Catal. A – volume: 181 start-page: 570 year: 2016 end-page: 580 ident: b0280 article-title: MnO publication-title: Appl. Catal. B – volume: 148 start-page: 114 year: 2014 end-page: 122 ident: b0055 article-title: Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH publication-title: Appl. Catal. B – volume: 58 start-page: 419 year: 1979 end-page: 435 ident: b0215 article-title: Physicochemical properties of MnO publication-title: J. Catal. – volume: 299 start-page: 142 year: 2016 end-page: 149 ident: b0135 article-title: Elemental mercury (Hg publication-title: Chem. Eng. J. – volume: 117 start-page: 6218 year: 2013 end-page: 6224 ident: b0175 article-title: Synthesis of the catalytically active Mn publication-title: J. Phys. Chem. C – volume: 118 start-page: 14866 year: 2014 end-page: 14875 ident: b0120 article-title: Effect of Zr addition on the low-temperature SCR activity and SO publication-title: J. Phys. Chem. C – volume: 26 year: 2015 ident: b0240 article-title: Hierarchical Cu publication-title: Nanotechnology – volume: 316 start-page: 1059 year: 2017 ident: 10.1016/j.cej.2020.124090_b0080 article-title: Effect of Pr/Ce addition on the catalytic performance and SO2 resistance of highly dispersed MnOx/SAPO-34 catalyst for NH3-SCR at low temperature publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.02.024 – volume: 390 start-page: 14 year: 2014 ident: 10.1016/j.cej.2020.124090_b0065 article-title: The influence of K+ cation on the MnOx-CeO2/TiO2 catalysts for selective catalytic reduction of NOx with NH3 at low temperature publication-title: J. Mol. Catal. A doi: 10.1016/j.molcata.2014.02.021 – volume: 317 start-page: 20 year: 2017 ident: 10.1016/j.cej.2020.124090_b0035 article-title: Promotional mechanisms of activity and SO2 tolerance of Co or Ni doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.02.042 – volume: 223 start-page: 385 year: 2018 ident: 10.1016/j.cej.2020.124090_b0070 article-title: Enhancement of the SO2 resistance of Mn/TiO2 SCR catalyst by Eu modification: A mechanism study publication-title: Fuel doi: 10.1016/j.fuel.2018.03.062 – volume: 358 start-page: 277 year: 2018 ident: 10.1016/j.cej.2020.124090_b0085 article-title: Nature of SO3 poisoning on Cu/SAPO-34 SCR catalysts publication-title: J. Catal. doi: 10.1016/j.jcat.2017.12.008 – volume: 49 start-page: 6823 year: 2015 ident: 10.1016/j.cej.2020.124090_b0245 article-title: MnOx/Graphene for the catalytic oxidation and adsorption of elemental mercury publication-title: Environ. Sci. Technol. doi: 10.1021/es505978n – volume: 162 start-page: 1249 year: 2009 ident: 10.1016/j.cej.2020.124090_b0200 article-title: Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.06.013 – volume: 47 start-page: 5294 year: 2013 ident: 10.1016/j.cej.2020.124090_b0115 article-title: Improvement of activity and SO2 tolerance of Sn-modified MnOx-CeO2 catalysts for NH3-SCR at low temperatures publication-title: Environ. Sci. Technol. doi: 10.1021/es304732h – volume: 78 start-page: 487 year: 2004 ident: 10.1016/j.cej.2020.124090_b0235 article-title: Application of coupled TG-FTIR system in studies of thermal stability of manganese(II) complexes with amino acids publication-title: J. Therm. Anal. Calorim. doi: 10.1023/B:JTAN.0000046113.50448.63 – volume: 6 start-page: 1235 year: 2016 ident: 10.1016/j.cej.2020.124090_b0190 article-title: Thermodynamic stability, redox properties, and reactivity of Mn3O4, Fe3O4, and Co3O4 model catalysts for N2O decomposition: Resolving the origins of steady turnover publication-title: ACS Catal. doi: 10.1021/acscatal.5b02642 – volume: 52 start-page: 5601 year: 2013 ident: 10.1016/j.cej.2020.124090_b0270 article-title: Improvement of the activity of γ-Fe2O3 for the selective catalytic reduction of NO with NH3 at high temperatures: NO reduction versus NH3 oxidization publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie303272u – volume: 10 start-page: 935 year: 2009 ident: 10.1016/j.cej.2020.124090_b0105 article-title: Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature publication-title: Catal. Commun. doi: 10.1016/j.catcom.2008.12.032 – volume: 16 start-page: 124 year: 2009 ident: 10.1016/j.cej.2020.124090_b0180 article-title: Direct ultrasonic-assisted synthesis of sphere-like nanocrystals of spinel Co3O4 and Mn3O4 publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2008.05.015 – volume: 148 start-page: 582 year: 2014 ident: 10.1016/j.cej.2020.124090_b0110 article-title: The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2013.09.016 – volume: 215 start-page: 271 year: 2003 ident: 10.1016/j.cej.2020.124090_b0205 article-title: Water gas shift reaction for the reformed fuels over Cu/MnO catalysts prepared via spinel-type oxide publication-title: J. Catal. doi: 10.1016/S0021-9517(03)00024-1 – volume: 88 start-page: 413 year: 2009 ident: 10.1016/j.cej.2020.124090_b0220 article-title: Screening of doped MnOx–CeO2 catalysts for low-temperature NO-SCR publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2008.10.014 – volume: 326 start-page: 1074 year: 2017 ident: 10.1016/j.cej.2020.124090_b0100 article-title: V2O5-decorated Mn-Fe/attapulgite catalyst with high SO2 tolerance for SCR of NOx with NH3 at low temperature publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.06.015 – volume: 8 start-page: 6537 year: 2018 ident: 10.1016/j.cej.2020.124090_b0160 article-title: A perspective on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5–WO3/TiO2 catalysts publication-title: ACS Catal. doi: 10.1021/acscatal.8b01357 – volume: 181 start-page: 570 year: 2016 ident: 10.1016/j.cej.2020.124090_b0280 article-title: MnOx supported on Fe–Ti spinel: A novel Mn based low temperature SCR catalyst with a high N2 selectivity publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2015.08.023 – volume: 206 start-page: 203 year: 2017 ident: 10.1016/j.cej.2020.124090_b0090 article-title: Ceria modified FeMnOx—Enhanced performance and sulphur resistance for low-temperature SCR of NOx publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.01.019 – volume: 369 start-page: 372 year: 2019 ident: 10.1016/j.cej.2020.124090_b0010 article-title: Quantitative study of the NH3-SCR pathway and the active site distribution over CeWOx at low temperatures publication-title: J. Catal. doi: 10.1016/j.jcat.2018.11.030 – volume: 348 start-page: 820 year: 2018 ident: 10.1016/j.cej.2020.124090_b0060 article-title: Gd-modified MnOx for the selective catalytic reduction of NO by NH3: The promoting effect of Gd on the catalytic performance and sulfur resistance publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.05.038 – volume: 14 start-page: 4594 year: 2011 ident: 10.1016/j.cej.2020.124090_b0230 article-title: Synthesis of nanocrystalline manganese oxide powders: Influence of hydrogen peroxide on particle characteristics publication-title: J Mater. Res. doi: 10.1557/JMR.1999.0622 – volume: 328 start-page: 300 year: 2019 ident: 10.1016/j.cej.2020.124090_b0075 article-title: Partially reduced graphene oxide as a support of Mn-Ce/TiO2 catalyst for selective catalytic reduction of NOx with NH3 publication-title: Catal. Today. doi: 10.1016/j.cattod.2018.12.007 – volume: 8 start-page: 11 year: 2018 ident: 10.1016/j.cej.2020.124090_b0095 article-title: Sulfur and water resistance of Mn-based catalysts for low-temperature selective catalytic reduction of NOx: A review publication-title: Catalysts doi: 10.3390/catal8010011 – volume: 26 year: 2015 ident: 10.1016/j.cej.2020.124090_b0240 article-title: Hierarchical Cu2O/CuO/Co3O4 core-shell nanowires: synthesis and electrochemical properties publication-title: Nanotechnology doi: 10.1088/0957-4484/26/30/304002 – volume: 522 start-page: 54 year: 2016 ident: 10.1016/j.cej.2020.124090_b0030 article-title: Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: A review publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2016.04.023 – volume: 28 start-page: 77 year: 2012 ident: 10.1016/j.cej.2020.124090_b0225 article-title: Performance and mechanism about MnOx species included in MnOx/TiO2 catalysts for SCR at low temperature publication-title: Catal. Commun. doi: 10.1016/j.catcom.2012.08.022 – volume: 136–137 start-page: 19 year: 2013 ident: 10.1016/j.cej.2020.124090_b0170 article-title: Novel effect of SO2 on the SCR reaction over CeO2: Mechanism and significance publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2013.01.028 – volume: 8 start-page: 5224 year: 2016 ident: 10.1016/j.cej.2020.124090_b0260 article-title: Low-temperature selective catalytic reduction of NO with NH3 over Mn2O3-doped Fe2O3 hexagonal microsheets publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.5b10264 – volume: 120 start-page: 1066 year: 2016 ident: 10.1016/j.cej.2020.124090_b0255 article-title: Effect of H2O and SO2 on the selective catalytic reduction of NO with NH3 over Ce/TiO2 catalyst: Mechanism and kinetic study publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b10577 – volume: 358 start-page: 179 year: 2018 ident: 10.1016/j.cej.2020.124090_b0020 article-title: Activation of oxygen on (NH3-Cu-NH3)+ in NH3-SCR over Cu-CHA publication-title: J. Catal. doi: 10.1016/j.jcat.2017.12.009 – volume: 58 start-page: 419 year: 1979 ident: 10.1016/j.cej.2020.124090_b0215 article-title: Physicochemical properties of MnO2 and MnO2-CuO and their relationship with the catalytic activity for H2O2 decomposition and CO oxidation publication-title: J. Catal. doi: 10.1016/0021-9517(79)90280-X – volume: 71 start-page: 379 year: 1988 ident: 10.1016/j.cej.2020.124090_b0195 article-title: Electrical properties and cation valencies in Mn3O4 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1988.tb05057.x – volume: 180 start-page: 622 year: 2016 ident: 10.1016/j.cej.2020.124090_b0125 article-title: Strong dispersion effect of cobalt spinel active phase spread over ceria for catalytic N2O decomposition: The role of the interface periphery publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2015.07.027 – volume: 70 year: 2004 ident: 10.1016/j.cej.2020.124090_b0185 article-title: First-principles prediction of redox potentials in transition-metal compounds with LDA+U publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.70.235121 – volume: 9 start-page: 6814 year: 2019 ident: 10.1016/j.cej.2020.124090_b0015 article-title: Modulated excitation Raman spectroscopy of V2O5/TiO2: Mechanistic insights into the selective catalytic reduction of NO with NH3 publication-title: ACS Catal. doi: 10.1021/acscatal.9b01514 – volume: 113 start-page: 4391 year: 2013 ident: 10.1016/j.cej.2020.124090_b0140 article-title: Catalysis by doped oxides publication-title: Chem. Rev. doi: 10.1021/cr300418s – volume: 251 start-page: 7 year: 2007 ident: 10.1016/j.cej.2020.124090_b0145 article-title: Combined steam reforming of methanol over Cu–Mn spinel oxide catalysts publication-title: J. Catal. doi: 10.1016/j.jcat.2007.07.025 – volume: 9 start-page: 7017 year: 2017 ident: 10.1016/j.cej.2020.124090_b0025 article-title: Mechanistic investigation into the effect of sulfuration on the FeW catalysts for the selective catalytic reduction of NOx with NH3 publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.6b14031 – volume: 108 start-page: 15738 year: 2004 ident: 10.1016/j.cej.2020.124090_b0265 article-title: Characterization and FTIR studies of MnOx-CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3 publication-title: J. Phys. Chem. B doi: 10.1021/jp048431h – volume: 148 start-page: 114 year: 2014 ident: 10.1016/j.cej.2020.124090_b0055 article-title: Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2013.10.049 – volume: 51 start-page: 93 year: 2004 ident: 10.1016/j.cej.2020.124090_b0045 article-title: MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2004.01.023 – volume: 99 start-page: 156 year: 2010 ident: 10.1016/j.cej.2020.124090_b0040 article-title: Origination of N2O from NO reduction by NH3 over β-MnO2 and α-Mn2O3 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2010.06.012 – volume: 118 start-page: 14866 year: 2014 ident: 10.1016/j.cej.2020.124090_b0120 article-title: Effect of Zr addition on the low-temperature SCR activity and SO2 tolerance of Fe–Mn/Ti catalysts publication-title: J. Phys. Chem. C doi: 10.1021/jp412828p – volume: 221 start-page: 652 year: 2018 ident: 10.1016/j.cej.2020.124090_b0050 article-title: Spinel structured CoaMnbOx mixed oxide catalyst for the selective catalytic reduction of NOx with NH3 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.09.034 – volume: 3 start-page: 79 year: 2011 ident: 10.1016/j.cej.2020.124090_b0130 article-title: Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts publication-title: Nat. Chem. doi: 10.1038/nchem.931 – volume: 299 start-page: 142 year: 2016 ident: 10.1016/j.cej.2020.124090_b0135 article-title: Elemental mercury (Hg0) removal over spinel LiMn2O4 from coal-fired flue gas publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.04.094 – volume: 271 start-page: 23 year: 2015 ident: 10.1016/j.cej.2020.124090_b0250 article-title: Identification of MnOx species and Mn valence states in MnOx/TiO2 catalysts for low temperature SCR publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.02.072 – volume: 22 start-page: 2877 year: 2008 ident: 10.1016/j.cej.2020.124090_b0210 article-title: Characterization of Cu−Mn/Zeolite-Y catalyst for one-step synthesis of dimethyl ether from CO−H2 publication-title: Energ. Fuel. doi: 10.1021/ef800259e – volume: 100 start-page: 250 year: 1986 ident: 10.1016/j.cej.2020.124090_b0155 article-title: Mechanism of the deactivation of hopcalite catalysts studied by XPS, ISS, and other techniques publication-title: J. Catal. doi: 10.1016/0021-9517(86)90090-4 – volume: 279 start-page: 59 year: 2005 ident: 10.1016/j.cej.2020.124090_b0150 article-title: Influence of preparation method and additive for Cu–Mn spinel oxide catalyst on water gas shift reaction of reformed fuels publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2004.10.013 – volume: 120 start-page: 15299 year: 2016 ident: 10.1016/j.cej.2020.124090_b0275 article-title: Alkali metal deactivation on the low temperature selective catalytic reduction of NOx with NH3 over MnOx-CeO2: A mechanism study publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b05175 – volume: 349 start-page: 184 year: 2018 ident: 10.1016/j.cej.2020.124090_b0005 article-title: Different exposed facets VOx/CeO2 catalysts for the selective catalytic reduction of NO with NH3 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.05.049 – volume: 117 start-page: 6218 year: 2013 ident: 10.1016/j.cej.2020.124090_b0175 article-title: Synthesis of the catalytically active Mn3O4 spinel and its thermal properties publication-title: J. Phys. Chem. C doi: 10.1021/jp312444s |
SSID | ssj0006919 |
Score | 2.6294694 |
Snippet | [Display omitted]
•Cu modified Mn3O4 spinel showed excellent SCR performance and SO2 resistance.•The Eley-Rideal mechanism predominated in the low temperature... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 124090 |
SubjectTerms | Cu doping low temperature SCR Poisoning of SO2 SO2 tolerance Spinel |
Title | The role of the Cu dopant on a Mn3O4 spinel SCR catalyst: Improvement of low-temperature activity and sulfur resistance |
URI | https://dx.doi.org/10.1016/j.cej.2020.124090 |
Volume | 387 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lDl4EmKTJtkm3kqwVEsrtBZ7C9vNBlpCUtqE4sXf7kwePkA9eElIsrOE2WEeuzPfMHatbKEkN4QWOK6tkYRownSl5oQdJduBqzin4uThiPen1uPMntWYV9XCUFplqfsLnZ5r6_JNq-Rma7VYtCYGnWm5Fp0jkmEjTFBCr0OZvn37TPPgbt7cgwZrNLo62cxzvKRaYojYJowFjHP0n23TF3vTO2D7paMI3eJfDllNxUds7wt84DHb4hoDpQdCEgI6cuBlEGAQHKeQxCBgGJtPFmxWSBHBxBtDvlfzuknvoNhLyLcGiThKthqBVJUIy0DVDtRUAkQcwCaLwmwNGJeTr4kMOmHT3v2z19fKRgqaNLmZ4rUtuOTOXNrScgLbVo7Dw45hh6GrDCnQBRQOIROGunIJ0U9YhpT4Wc5VYKLBP2X1OInVGQPC60IXTxmGMi2aUp9L6dpK6p2AkOkbTK9Y6MsSZZyaXUR-lU629JHrPnHdL7jeYDcfJKsCYuOvwVa1Lv43OfHRBPxOdv4_sgu2S09FguMlq6frTF2hE5LOm7mUNdlO92HQH9F9MH4ZvAOc3tyi |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEB6sHtoeSp_UPufQUyGYmM2a9CZS0fooVAVvYd1sQJEoGpH---7kIRbaHnrJIbsTwuwwj52ZbwCelCOU5JYwAtdzDJIQQ9ieNNywpmQ18BTn1Jzc6_PWiL2NnXEBGnkvDJVVZro_1emJts7eVDJuVpbTaWVgUU7LY5RHJMPGDqBE6FSsCKV6u9Pq7xQy95L5HrTfIII8uZmUeUk101FilWAWdKhj_mye9kxO8xROMl8R6-nvnEFBRedwvIcgeAFbfcxIFYK4CFH7ctjYYKDj4CjGRYQCe5H9znC91BRzHDQ-MLmu-VzHL5heJyS3g0Q8X2wNwqnKQJaRGh5orgSKKMD1Zh5uVqhDc3I3NY8uYdR8HTZaRjZLwZA2t2P9rAouuTuRjmRu4DjKdXlYs5ww9JQlhfYChUvghKGpPAL1E8ySUi_LiQpsbfOvoBgtInUNSJBd2stTlqVsRp80J1J6jpJmLSBw-jKYOQt9mQGN07yLuZ9XlM18zXWfuO6nXC_D845kmaJs_LWZ5efifxMVX1uB38lu_kf2CIetYa_rd9v9zi0c0Upa73gHxXi1UffaJ4knD5nMfQFPwN2w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+the+Cu+dopant+on+a+Mn3O4+spinel+SCR+catalyst%3A+Improvement+of+low-temperature+activity+and+sulfur+resistance&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Xiong%2C+Shangchao&rft.au=Peng%2C+Yue&rft.au=Wang%2C+Dong&rft.au=Huang%2C+Nan&rft.date=2020-05-01&rft.issn=1385-8947&rft.volume=387&rft.spage=124090&rft_id=info:doi/10.1016%2Fj.cej.2020.124090&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2020_124090 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |