Graphene-assisted construction of electrocatalysts for carbon dioxide reduction

•Review of graphene-assisted construction strategies of both metal and non-metal based electrocatalysts.•Discussion of CO2RR electrocatalytic performances of various graphene − metal composites.•Overview of enhancement approaches of the graphene-based non-metal CO2RR catalytic activities.•Challenges...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 425; p. 130587
Main Authors Hu, Huawen, Ou, Jian Zhen, Xu, Xuejun, Lin, Yinlei, Zhang, Yuyuan, Zhao, Hong, Chen, Dongchu, He, Minghui, Huang, Yugang, Deng, Lifang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Review of graphene-assisted construction strategies of both metal and non-metal based electrocatalysts.•Discussion of CO2RR electrocatalytic performances of various graphene − metal composites.•Overview of enhancement approaches of the graphene-based non-metal CO2RR catalytic activities.•Challenges and perspectives for the future development of graphene-based CO2RR electrocatalysts. The electrochemical conversion of the greenhouse gas, carbon dioxide (CO2), to energy fuels and value-added chemicals presents one of the most valuable approaches to harvest pollutants and produce renewable energy. However, the stable molecular structure of CO2 and the sluggish reaction kinetics make CO2 reduction reaction (CO2RR) formidably challenging to achieve reaction rate and selectivity practical in industry. Graphene and its derivatives have been considered a group of intriguing materials to develop advanced CO2RR electrocatalysts due to their large specific surface area, remarkable electron transfer ability, superior stability, and easy tunability of the structure and surface properties. Herein, we comprehensively discuss the state-of-the-art electrocatalysts constructed with graphene and derivatives for active and selective CO2RR within the recent five years, mainly including the electrocatalysts with both metal-based (e.g., noble, non-noble, or combined thereof) and non-metal (e.g., doped, modified, defected, or composited) catalytic sites. To present the versatile, high-performance metal-based CO2RR electrocatalysts constructed with graphene, we further subdivide them according to the sizes, oxidation states, metal species synergies, dimensionalities, and versatility. Finally, we provide the challenges and perspectives in this emerging area of utilising CO2 to produce various carbon-based fuels and chemicals via graphene chemistry.
AbstractList •Review of graphene-assisted construction strategies of both metal and non-metal based electrocatalysts.•Discussion of CO2RR electrocatalytic performances of various graphene − metal composites.•Overview of enhancement approaches of the graphene-based non-metal CO2RR catalytic activities.•Challenges and perspectives for the future development of graphene-based CO2RR electrocatalysts. The electrochemical conversion of the greenhouse gas, carbon dioxide (CO2), to energy fuels and value-added chemicals presents one of the most valuable approaches to harvest pollutants and produce renewable energy. However, the stable molecular structure of CO2 and the sluggish reaction kinetics make CO2 reduction reaction (CO2RR) formidably challenging to achieve reaction rate and selectivity practical in industry. Graphene and its derivatives have been considered a group of intriguing materials to develop advanced CO2RR electrocatalysts due to their large specific surface area, remarkable electron transfer ability, superior stability, and easy tunability of the structure and surface properties. Herein, we comprehensively discuss the state-of-the-art electrocatalysts constructed with graphene and derivatives for active and selective CO2RR within the recent five years, mainly including the electrocatalysts with both metal-based (e.g., noble, non-noble, or combined thereof) and non-metal (e.g., doped, modified, defected, or composited) catalytic sites. To present the versatile, high-performance metal-based CO2RR electrocatalysts constructed with graphene, we further subdivide them according to the sizes, oxidation states, metal species synergies, dimensionalities, and versatility. Finally, we provide the challenges and perspectives in this emerging area of utilising CO2 to produce various carbon-based fuels and chemicals via graphene chemistry.
ArticleNumber 130587
Author Huang, Yugang
Lin, Yinlei
Xu, Xuejun
Hu, Huawen
He, Minghui
Zhang, Yuyuan
Deng, Lifang
Chen, Dongchu
Ou, Jian Zhen
Zhao, Hong
Author_xml – sequence: 1
  givenname: Huawen
  surname: Hu
  fullname: Hu, Huawen
  email: huawenhu@126.com
  organization: School of Materials Science and Hydrogen Energy, Foshan University, Foshan, Guangdong 528000, China
– sequence: 2
  givenname: Jian Zhen
  surname: Ou
  fullname: Ou, Jian Zhen
  email: Jianzhen.ou@rmit.edu.au
  organization: School of Materials Science and Hydrogen Energy, Foshan University, Foshan, Guangdong 528000, China
– sequence: 3
  givenname: Xuejun
  surname: Xu
  fullname: Xu, Xuejun
  organization: School of Materials Science and Hydrogen Energy, Foshan University, Foshan, Guangdong 528000, China
– sequence: 4
  givenname: Yinlei
  surname: Lin
  fullname: Lin, Yinlei
  organization: School of Materials Science and Hydrogen Energy, Foshan University, Foshan, Guangdong 528000, China
– sequence: 5
  givenname: Yuyuan
  surname: Zhang
  fullname: Zhang, Yuyuan
  organization: School of Materials Science and Hydrogen Energy, Foshan University, Foshan, Guangdong 528000, China
– sequence: 6
  givenname: Hong
  surname: Zhao
  fullname: Zhao, Hong
  organization: School of Materials Science and Hydrogen Energy, Foshan University, Foshan, Guangdong 528000, China
– sequence: 7
  givenname: Dongchu
  surname: Chen
  fullname: Chen, Dongchu
  organization: School of Materials Science and Hydrogen Energy, Foshan University, Foshan, Guangdong 528000, China
– sequence: 8
  givenname: Minghui
  surname: He
  fullname: He, Minghui
  organization: State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
– sequence: 9
  givenname: Yugang
  surname: Huang
  fullname: Huang, Yugang
  organization: Key Laboratory of Molecular Target and Clinical Pharmacology & School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
– sequence: 10
  givenname: Lifang
  surname: Deng
  fullname: Deng, Lifang
  organization: CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Guangzhou, Guangdong 510640, China
BookMark eNp9kM9Kw0AQhxepYFt9AG95gcT9k2QTPEnRKhR60fOymZ3ghpgtu6vYt3dLPPXQy8zA8A2_-VZkMbkJCblntGCU1Q9DATgUnHJWMEGrRl6RJWukyAVnfJFm0VR505byhqxCGCildcvaJdlvvT584oS5DsGGiCYDN4XovyFaN2Wuz3BEiN6Bjno8hhiy3vkMtO_S2lj3aw1mHs0M3JLrXo8B7_77mny8PL9vXvPdfvu2edrlIGoR8w5N3XdGdrpirZZtSlp1Epqyp5wLqHjbQt0ZWmMPQleGypKVUPIGUsFOijWR813wLgSPvQIb9SlB9NqOilF18qIGlbyokxc1e0kkOyMP3n5pf7zIPM4Mppd-LHoVwOIEaKxPcpRx9gL9BwlUfwo
CitedBy_id crossref_primary_10_1016_j_nanoso_2024_101338
crossref_primary_10_1007_s12034_022_02826_x
crossref_primary_10_1002_ange_202422775
crossref_primary_10_1016_j_cej_2024_148776
crossref_primary_10_3390_molecules28062829
crossref_primary_10_1016_j_inoche_2025_114398
crossref_primary_10_1039_D2EN00248E
crossref_primary_10_1016_j_mcat_2022_112876
crossref_primary_10_1016_j_jece_2023_110435
crossref_primary_10_1016_S1872_5805_24_60839_5
crossref_primary_10_1021_acs_energyfuels_5c00352
crossref_primary_10_1016_j_apmt_2021_101352
crossref_primary_10_1021_acs_energyfuels_2c01708
crossref_primary_10_1016_j_resconrec_2022_106821
crossref_primary_10_1016_j_seppur_2022_122508
crossref_primary_10_1016_j_surfin_2024_105462
crossref_primary_10_1039_D2QM00604A
crossref_primary_10_3390_molecules28155798
crossref_primary_10_1016_j_mcat_2024_114161
crossref_primary_10_1016_j_desal_2025_118630
crossref_primary_10_1002_adma_202409531
crossref_primary_10_1149_1945_7111_acaacc
crossref_primary_10_1016_j_apsusc_2022_155510
crossref_primary_10_1016_j_mcat_2024_114225
crossref_primary_10_1002_anie_202422775
crossref_primary_10_1016_j_jallcom_2023_172858
crossref_primary_10_1039_D3PY01148H
crossref_primary_10_1039_D3EN00988B
crossref_primary_10_1016_j_seppur_2022_122090
crossref_primary_10_1016_j_cej_2022_136666
crossref_primary_10_1016_j_jece_2023_109358
crossref_primary_10_1016_j_cej_2022_136129
crossref_primary_10_1002_ente_202101127
crossref_primary_10_1016_j_cis_2025_103429
crossref_primary_10_1080_17518253_2024_2426503
crossref_primary_10_1039_D4TA00320A
crossref_primary_10_3390_molecules27248644
crossref_primary_10_1007_s10853_022_07050_w
crossref_primary_10_1039_D4QM00381K
crossref_primary_10_1016_j_resconrec_2021_105980
crossref_primary_10_1021_acsaem_2c03687
crossref_primary_10_3390_nano12193339
Cites_doi 10.1021/acsnano.9b09658
10.1021/acsenergylett.8b00273
10.1002/adma.202001300
10.1039/C8EE03403F
10.1021/ja400243r
10.1039/C9CY01709G
10.1002/adma.201902868
10.1021/jacs.9b05006
10.1016/j.ensm.2020.01.021
10.1007/s11426-016-5584-1
10.1016/j.jelechem.2016.12.029
10.1002/anie.202008422
10.1002/anie.201807643
10.1002/cphc.202000476
10.1002/smll.201602158
10.1021/acscatal.9b00016
10.1002/cssc.201800925
10.1002/anie.201906475
10.1002/adma.201800696
10.1016/j.jelechem.2016.11.047
10.1016/j.apcatb.2020.118747
10.1039/C9CP03370J
10.1039/C8GC01466C
10.1039/C8NR04961K
10.1021/acscatal.5b01165
10.1002/anie.201308657
10.1002/ange.202004226
10.1002/advs.201800177
10.1021/acsami.9b18091
10.1016/j.apcatb.2018.08.044
10.1021/acs.jpcc.8b07887
10.1002/celc.201901381
10.1002/anie.201906079
10.1039/C5CC05826K
10.1039/C7GC01095H
10.1007/s10800-020-01450-z
10.1039/D0GC02509G
10.1038/nature19060
10.1002/smll.201804224
10.1002/adfm.201910118
10.1021/acs.jpcc.5b05518
10.1039/C5CP07458D
10.1016/j.apsusc.2021.149790
10.1038/srep43279
10.1021/acssuschemeng.0c01194
10.3390/catal9070604
10.1039/C5SC03695J
10.1038/ncomms13869
10.1002/aenm.201801400
10.1021/acs.chemrev.0c00083
10.1021/acscatal.9b05096
10.1016/j.jpowsour.2018.07.049
10.1021/acscatal.7b03612
10.1039/C4TA01620C
10.1021/acs.jpcc.8b09134
10.1016/j.cclet.2020.04.056
10.1021/nl500682j
10.1021/acscatal.7b02166
10.1021/acs.jpclett.0c00642
10.1021/acsami.0c08964
10.1021/acssuschemeng.8b05729
10.1039/C4TA05087H
10.1126/science.1168049
10.1021/acscatal.9b01318
10.1016/j.nanoen.2016.03.024
10.1016/j.jcou.2019.05.026
10.1039/C7CP00915A
10.1016/j.apsusc.2019.144835
10.1016/j.ijhydene.2018.10.188
10.1080/00268976.2018.1544673
10.1002/adma.201706617
10.1021/acsami.9b13440
10.1016/j.bios.2019.111573
10.1039/C7CP04299J
10.20964/2019.04.35
10.1016/j.jcou.2019.02.001
10.1021/acsaem.8b02174
10.1002/adsu.202000134
10.1021/acssuschemeng.0c01923
10.1039/D0CC04779A
10.1002/adma.201602912
10.1021/ja1101807
10.1039/C7EE03245E
10.1021/jacs.7b00489
10.1016/j.nanoen.2016.06.056
10.1016/j.jcou.2018.01.021
10.1002/aenm.201803151
10.1002/ange.201406695
10.1002/slct.201900690
10.1002/chem.201806309
10.1039/C5TA00753D
10.1039/C6RA03160A
10.1016/j.electacta.2018.06.107
10.1016/j.xcrp.2021.100328
10.1016/j.nantod.2019.02.006
10.1016/j.apcatb.2019.118044
10.1002/cey2.13
10.1016/j.electacta.2019.06.074
10.1103/PhysRevB.97.155428
10.1039/C5QI00236B
10.1039/C5CC06051F
10.1016/j.jelechem.2018.08.020
10.1021/acsanm.9b01935
10.1021/acs.chemrev.0c00818
10.1039/C5EE02474A
10.1039/C7TA10802H
10.1016/j.apcatb.2018.10.046
10.1038/s41467-019-12510-0
10.1016/j.jcis.2018.09.036
10.1002/aenm.201703487
10.1016/j.cclet.2020.04.031
10.1039/C6SC03911A
10.1021/acsenergylett.8b02355
10.1038/ncomms12697
10.1166/jnn.2014.8952
10.1016/j.jece.2021.105515
10.1021/jacs.9b12111
10.1038/s41563-020-00899-9
10.1016/j.nanoen.2019.05.003
10.1021/acscatal.0c02499
10.1002/adma.202001848
10.1002/adma.201601406
10.1039/D0TA05620K
10.1021/acsami.8b14822
10.1016/j.apsusc.2020.145717
10.1039/C5CC09173J
10.1021/acs.nanolett.5b04123
10.1021/acsaem.9b00368
10.1016/j.carbon.2020.06.036
10.1002/cssc.202001378
10.1016/j.jcou.2019.07.014
10.1021/acscatal.7b01839
10.1007/s12274-016-1362-9
10.1016/j.elecom.2017.07.006
10.1007/s11051-018-4146-1
10.1021/acsaem.9b01279
10.1002/slct.201601169
10.1016/j.carbon.2018.11.053
10.1021/acssuschemeng.7b03031
10.1002/elan.201700525
10.1002/aenm.201801280
10.1016/j.ijhydene.2019.09.237
10.1021/acssuschemeng.9b05042
10.1016/j.jallcom.2019.01.142
10.1039/C7CS00690J
10.1021/jacs.6b12217
10.1016/j.jcou.2020.101178
10.1021/acs.chemmater.9b04117
10.1021/acs.nanolett.0c04703
10.1021/acsami.0c10125
10.1016/j.jcou.2020.02.007
10.1021/acssuschemeng.7b02380
10.1021/acsami.5b11958
10.1021/acs.nanolett.9b01393
10.1016/j.jcou.2020.101382
10.1002/adfm.201502751
10.1039/C5EE02879E
10.1007/s12274-020-2720-1
10.1016/j.apcata.2014.11.041
10.1039/C9CS00422J
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2021.130587
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2021_130587
S1385894721021732
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
RIG
SEW
SSH
ZY4
ID FETCH-LOGICAL-c363t-bed6fbd7ba519a798735b7c84f0223c5299c6bd06efc3a5d07414c428cc42eb73
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Thu Apr 24 22:59:33 EDT 2025
Tue Jul 01 04:27:35 EDT 2025
Fri Feb 23 02:44:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Metal-based
Non-metal
Active sites
CO2 reduction
Graphene
Electrocatalysts
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-bed6fbd7ba519a798735b7c84f0223c5299c6bd06efc3a5d07414c428cc42eb73
ParticipantIDs crossref_citationtrail_10_1016_j_cej_2021_130587
crossref_primary_10_1016_j_cej_2021_130587
elsevier_sciencedirect_doi_10_1016_j_cej_2021_130587
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
2021-12-00
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ellis, Sorescu, Hwang, Burkert, White, Kim, Star (b0635) 2019; 11
Wang, Liu, Dai (b0695) 2021; 5
Zhang, Yang, Wu, Liu, Yazdi, Ren, Sha, Zhong, Nie, Jalilov, Li, Li, Yakobson, Wu, Ringe, Xu, Ajayan, Tour (b0235) 2018; 8
Zhao, Wang, Liu, MacFarlane, Wallace (b0285) 2018; 8
Li, Su, Chan, Sun (b0590) 2015; 5
Han, Yu, Yuan, Kuang, Wang, Al-Enizi, Zheng (b0490) 2019; 534
Zhi, Jiao, Zheng, Qiao (b0495) 2019; 15
Tang, Wang, Chen, Li, Hou, Zhang, Zhang, Titirici, Wei (b0720) 2016; 28
Pan, Li, Sarnello, Fei, Gang, Xiang, Du, Zhang, Wang, Nguyen, Li, Hu, Zhou, Li (b0015) 2020; 14
Zhao, Zou, Yan, Brown, Chen, Zhu, Yao (b0730) 2016; 3
Zhang, Li, Chen, Wang, Liu, Zhang (b0410) 2020; 3
Nakata, Ozaki, Terashima, Fujishima, Einaga (b0690) 2014; 53
Li, Zhao, Chen, Khan, MacFarlane, Zhang (b0145) 2016; 9
Xu, Vasileff, Jin, Wang, Xu, Zheng, Qiao (b0400) 2020; 56
Alinajafi, Ensafi, Rezaei (b0270) 2018; 43
Zeng, Shi, Luo, Chen (b0250) 2018; 398
Dong, Zhang, Tian, Li, Yan, Wang, Jiang, Su, Oloman, Gyenge, Ge, Lu, Ji, Chen (b0710) 2020; 32
Yuan, Yang, Zhi, Wang, Wang, Lu (b0370) 2019; 33
Castleton, Lee, Kullgren (b0630) 2019; 123
Li, Zhang, Tong, Liu, Xu, Cao, Cao (b0815) 2016; 27
Li, Liu, Huang, Wu, Li, Zhen, Feng (b0415) 2020; 8
Dongare, Singh, Bhunia (b0470) 2021; 44
He, Tang, Wang, Bian (b0265) 2018; 30
Lu, Guo, Chen, Zhu, Ma, Wu, Yang, Yang, Sun, Han (b0465) 2020; 22
Wu, Chen, Wang, Fu, Luo (b0455) 2020; 37
Zhuo, Zhang, Liang, Yu, Xiao, Li (b0575) 2020; 120
Siahrostami, Jiang, Karamad, Chan, Wang, Nørskov (b0650) 2017; 5
Liu, Pang, Zhang, De Luna, Voznyy, Xu, Zheng, Dinh, Fan, Cao, de Arquer, Safaei, Mepham, Klinkova, Kumacheva, Filleter, Sinton, Kelley, Sargent (b0010) 2016; 537
Pan, Li, Xiang, Wang, Li (b0485) 2019; 9
Li, Wang, Luo, Sherrell, Chen, Yang (b0005) 2020; 32
.
Choi, Wagner, Gambhir, Jalili, MacFarlane, Wallace, Officer (b0315) 2019; 4
Jiang, Kharel, Peng, Gangishetty, Lin, Stavitski, Attenkofer, Wang (b0620) 2017; 5
Choi, Park, Kim, Lee (b0685) 2011; 133
Saravanan, Balamurugan, Shalini Devi, Nam, Senthil Kumar (b0430) 2020; 13
Chai, Guo (b0670) 2016; 7
Huang, Cheng, Zhang, Zuo, Xiao, Xie (b0355) 2019; 61
Saquib, Halder (b0255) 2018; 20
Hu, Wang, Miao, Wang, Lai, Guo, Wang, Xin, Hu (b0045) 2015; 51
Geioushy, Khaled, Hakeem, Alhooshani, Basheer (b0220) 2017; 785
Ensafi, Alinajafi, Rezaei (b0210) 2016; 783
Shen, Zou, Wang, Dryfe, Huang, Dou, Dai, Wang (b0740) 2014; 126
Lv, Fan, Zhu, Yuan, Wang, Zhu, Zhang (b0230) 2018; 6
Ma, Tsounis, Kumar, Han, Wong, Toe, Zhou, Bedford, Thomsen, Ng, Amal (b0460) 2020; 30
Yang, Ha, Sim, An, Lee, Jin, Kim, Park, Hong, Lee, Lee, Jeong, Kim, Nam (b0820) 2016; 26
Fiorentin, Gaspari, Quaglio, Massaglia, Saracco (b0645) 2018; 97
Tao, Wang, Dou, Ma, Huo, Wang, Dai (b0715) 2016; 52
Yuan, Zhi, Liu, Yang, Wang, Lu (b0300) 2018; 282
Fu, Wang, Zheng, Lei, Yang, Chen, Li, Lei, Yuan, Hou (b0440) 2020; 12
Yang, Wang, Ma, Zhu, Bian (b0640) 2019; 14
Li, Zhu, Fu, Zhang, Wu, Sun (b0180) 2016; 24
He, Morrissey, Curtiss, Zapol (b0600) 2018; 122
Chen, Mou, Yao, Liu (b0295) 2018; 11
Zhang, Li, Xi, Du, Hai, Wang, Xu, Wu, Zhang, Lu, Wang (b0160) 2019; 58
Legrand, Boudreault, Meunier (b0330) 2019; 318
Phan, Banjac, Cometto, Dattila, García-Muelas, Raaijman, Ye, Koper, López, Lingenfelder (b0100) 2021; 21
Ning, Mao, Wang, Yang, Wang, Zhao, Song, Wu (b0335) 2019; 785
Sun, Li, Searles, Chen, Lu, Du (b0680) 2013; 135
Cheng, Zhao, Li, He, Veder, Johannessen, Xiao, Lu, Pan, Chisholm, Yang, Liu, Chen, Jiang (b0320) 2019; 243
Wang, Zhao, Cai (b0545) 2017; 19
Chen, Yuan, Morozov, Ge, Li, Xu, Goddard (b0595) 2020; 11
Varela, Kroschel, Leonard, Ju, Steinberg, Bagger, Rossmeisl, Strasser (b0240) 2018; 3
Choi, Wagner, Jalili, Kim, MacFarlane, Wallace, Officer (b0290) 2018; 8
Pan, Li, Sarnello, Fei, Feng, Gang, Xiang, Fang, Li, Hu, Wang, Li (b0555) 2020; 10
Ren, Zheng, Lei, Zhang, Wang, Yakobson, Yao, Tour (b0425) 2020; 12
Su, Iwase, Nakanishi, Hashimoto, Kamiya (b0200) 2016; 12
Hu, Dai, Dai (b0765) 2021; 2
Yuan, Yang, Hu, Li, Wang, Lu (b0245) 2018; 24
Song, Peng, Hensley, Bonnesen, Liang, Wu, Meyer, Chi, Ma, Sumpter, Rondinone (b0190) 2016; 1
Zhang, Guo, Zuo, Pan, Zhang (b0275) 2018; 239
Wang, Huang, Xi, Lee, Wang, Du, Wang (b0340) 2019; 58
Cui, An, Liu, Wang, Men, Wang (b0550) 2018; 10
Sun, Zheng, Lyu, He, Yang, Li, Lei, Hou (b0420) 2020; 31
Bi, Li, You, Chen, Yuan, Huang, Wu, Chu, Wu, Xie (b0155) 2018; 30
Majidi, Hemmat, Warburton, Kumar, Ahmadiparidari, Hong, Guo, Zapol, Klie, Cabana, Greeley, Curtiss, Salehi-Khojin (b0800) 2020; 32
Li, Chai, Xu, Liu, Zhong, Cao, Tao, You, Kang (b0395) 2020; 167
Ahmed, Kim (b0745) 2017; 7
Bie, Zhu, Xu, Zhang, Yu (b0090) 2019; 31
Yan, Jia, Yao (b0725) 2018; 47
Liu, Cheng, Wang, Li, Wang, Wu (b0510) 2019; 117
Rashid, Bhat, Das, Ingole (b0390) 2020; 39
Chen, Mou, Wang, Liu (b0020) 2018; 57
Huang, Liu, An, Wang, Feng, Men (b0025) 2019; 7
Wang, Yang, Chen, He, Li, Lei, Lu, Leung, Yang, Hou (b0405) 2020; 31
Liu, Ma, Huang, Liu, Zhang (b0110) 2019; 31
Han, Song, Liu, Yao, Liang, Cheng, Ren, Liu, Lin, Qi, Liu, Wu, Luo, Xin (b0785) 2020; 142
B.Y. Zhang, K. Xu, Q. Yao, A. Jannat, G. Ren, M.R. Field, X. Wen, C. Zhou, A. Zavabeti, J.Z. Ou, Hexagonal metal oxide monolayers derived from the metal–gas interface, Nat. Mater. (2021)
Wang, Tang, Zhang (b0130) 2019; 25
Zhu, Ma, Kang, Sun, Hu, Yang, Han (b0185) 2016; 59
Fei, Dong, Chen, Hu, Duan, Shakir, Huang, Duan (b0105) 2019; 48
Higgins, Zamani, Yu, Chen (b0125) 2016; 9
Zhang, Wang, Zhao, Zhao, Cheng, Li, Wang, Wang, Wang (b0225) 2018; 20
Wu, Zhu, Huang (b0750) 2019; 143
Ananthaneni, Smith, Rankin (b0530) 2019; 9
Shen, Sun (b0535) 2020; 21
Qian, Sun, Hung, Qiu, Makaremi, Hari Kumar, Wan, Ghoussoub, Wood, Xia, Tountas, Li, Wang, Dong, Gourevich, Singh, Ozin (b0675) 2019; 2
Li, Chen, Cao, Pan, He, Zhou (b0450) 2020; 268
Ma, Fan, Li, Qiu, Wu, Sun (b0120) 2019; 30
He, He, Robertson, Kirkland, Kim, Ihm, Yoon, Lee, Warner (b0585) 2014; 14
Liu, Cheng, Li, Yin, Tang, Wang, Wu (b0625) 2019; 7
Cheng, Kwon, Head-Gordon, Bell (b0565) 2015; 119
Sekar, Calvillo, Tubaro, Baron, Pokle, Carraro, Martucci, Agnoli (b0150) 2017; 7
Xiong, Yang, Shuai, Hou, Qiu, Li, Leung (b0350) 2019; 6
Chang, Zhang, Chen, Lu, Cheng (b0665) 2019; 9
Huang, Guo, Wei, Hu, Yu, Wang (b0345) 2019; 33
Zhu, Cao, Chen, Sun, Ye, Xu, Han (b0375) 2019; 2
Chen, Sun, Yan, Wu, Liu, Zhu, Bediako, Han (b0705) 2020; 132
Lu, Wang, Bian, Liu (b0605) 2014; 14
Liu, Zhu, Wang, He, Bian (b0205) 2016; 6
Wang, Zhang, Ding, Xu, Bernards, He, Shi (b0435) 2020; 8
He, Jagvaral (b0560) 2017; 19
Hossain, Wen, Konda, Govindhan, Chen (b0215) 2017; 82
Zhou, Micheroni, Lin, Poon, Li, Lin (b0195) 2016; 8
Wu, Liu, Sharma, Yadav, Ma, Yang, Zou, Zhou, Vajtai, Yakobson, Lou, Ajayan (b0075) 2016; 16
Hu, Zavabeti, Quan, Zhu, Wei, Chen, Ou (b0805) 2019; 142
Qiao, Wu, Zhao, Li, Zhang, Hao, Liu, Yang, Liu (b0170) 2020; 27
Zarandi, Rezaei, Ghaziaskar, Ensafi (b0365) 2019; 44
Nguyen, Lee, Na, Kim, Tu, Lee, Sa, Won, Oh, Kim, Min, Han, Lee, Hwang (b0380) 2020; 10
Zhang, Wang, Yang (b0540) 2020; 8
Hu, Zhang, Qiao, Chen (b0760) 2020; 508
Hu, Xin, Hu, Wang, Kong (b0060) 2015; 492
Dongare, Singh, Bhunia (b0475) 2021; 556
Wang, Gan, Zhang, Reddu, Peng, Liu, Xia, Wang, Wang (b0360) 2019; 9
Gao, Dai, Du, Yan, Dai (b0770) 2019; 141
Zhu, Lin, Kang, Quan, Zhang, Chang, Wang, Zhang, Zhang, Li, Wei, Fan, Chen, Hu (b0755) 2020; 512
Alves, Silva, Voiry, Asefa, Chhowalla (b0175) 2015; 4
Oztuna, Yagci, Unal (b0500) 2019; 25
Yang, Shang, Zhang, Shi, Waterhouse, Gu, Zhang (b0775) 2019; 10
Q. Quan, S.-J. Xie, Y. Wang, Y.-J. Xu, Photoelectrochemical Reduction of CO2 over Graphene-Based Composites: Basic Principle, Recent Progress, and Future Perspective, Acta Physico-Chimica Sinica 33 (2017) 2404-2423.
Fu, Liang, Li, Chen, Wang, Zheng, Zhang, Chen, Wang, Peng, Gu, Li (b0570) 2020; 13
Wu, Ma, Sun, Gold, Tiwary, Kim, Zhu, Chopra, Odeh, Vajtai, Yu, Luo, Lou, Ding, Kenis, Ajayan (b0065) 2016; 7
Zhang, Ahmad, Zhao, Yan, Zhang, Huang, Ma, Zeng (b0310) 2019; 19
Gao, Zhou, Cai, Wang, Wang, Bao (b0610) 2018; 8
Sonkar, Ganesan, Gupta, Yadav, Yadav (b0260) 2018; 826
Xu, Yang, Chen, Wang, Chen, Kuang, Su (b0095) 2017; 139
Jia, Ching, Kumar, Zhao, Kumar, Chen, Das (b0385) 2020; 12
Lei, Liu, Sun, Xu, Liu, Liang, Yao, Pan, Wei, Xie (b0085) 2016; 7
Gong, Du, Xia, Durstock, Dai (b0790) 2009; 323
Sun, Fang, Hu (b0035) 2020; 120
Song, Zhang, Yang, Zhang, Zuo, Cao, Sun, Lin, Li, Jiang (b0520) 2018; 5
Tamilarasan, Ramaprabhu (b0140) 2015; 3
Sreekanth, Nazrulla, Vineesh, Sailaja, Phani (b0135) 2015; 51
Zhao, Miao, Wang, Liang, Liu, Wu, Diao, Mu, Cheng, Zhou (b0480) 2021; 9
Liu, Zhong, Yang, Bao, Meng, Yan, Zhang (b0525) 2017; 19
Choi, Kim, Wagner, Gambhir, Jalili, Byun, Sayyar, Lee, MacFarlane, Wallace, Officer (b0165) 2019; 12
Jia, Zhang, Du, Gao, Chen, Yan, Brown, Yao (b0735) 2016; 28
Rogers, Perkins, Veber, Williams, Cloke, Fischer (b0080) 2017; 139
Hu, Xin, Hu, Wang, Miao, Liu (b0040) 2015; 3
Hu, Wang, Lee, Ma, Hu, Xin (b0055) 2016; 6
Wu, Chen (b0615) 2019; 2
Back, Lim, Kim, Kim, Jung (b0580) 2017; 8
Jiang, Siahrostami, Zheng, Hu, Hwang, Stavitski, Peng, Dynes, Gangisetty, Su, Attenkofer, Wang (b0030) 2018; 11
Liu, Zhao, Cai (b0660) 2016; 18
Hu, Xin, Hu (b0050) 2014; 2
Sheelam, Muneeb, Talukdar, Ravindranath, Huang, Kuo, Sankar (b0445) 2020; 50
Huang, Guo, Yue, Hu, Wang (b0280) 2018; 10
Bochlin, Korin, Bettelheim (b0305) 2019; 2
Zhang, Jiang, Niu, Zhang, Sun, Hu (b0515) 2019; 4
Zou, Liu, Wu, Ajayan, Li, Liu, Yakobson (b0655) 2017; 7
Zhu, Li, Zhu, Su, Chan, Sun (b0070) 2017; 10
Ni, Li, Zang, Xu, Huo, Liu, Yang, Yan (b0325) 2019; 259
Zhao, Tian, Wang, Yan, Su (b0505) 2019; 21
Mao, Kour, Zhang, He, Wang, Yan, Zhu, Du (b0700) 2019; 9
Choi, Kim, Suh, Jang (b0115) 2019; 1
Jin, Ni, Hao, Zhang, Lu, Yan, Wei, Lu, Chan, Chen (b0780) 2020; 59
Rogers (10.1016/j.cej.2021.130587_b0080) 2017; 139
Alves (10.1016/j.cej.2021.130587_b0175) 2015; 4
Wang (10.1016/j.cej.2021.130587_b0695) 2021; 5
Lv (10.1016/j.cej.2021.130587_b0230) 2018; 6
Zhang (10.1016/j.cej.2021.130587_b0540) 2020; 8
Phan (10.1016/j.cej.2021.130587_b0100) 2021; 21
Huang (10.1016/j.cej.2021.130587_b0025) 2019; 7
Liu (10.1016/j.cej.2021.130587_b0525) 2017; 19
Majidi (10.1016/j.cej.2021.130587_b0800) 2020; 32
Sheelam (10.1016/j.cej.2021.130587_b0445) 2020; 50
Li (10.1016/j.cej.2021.130587_b0180) 2016; 24
Cheng (10.1016/j.cej.2021.130587_b0565) 2015; 119
Jia (10.1016/j.cej.2021.130587_b0735) 2016; 28
Choi (10.1016/j.cej.2021.130587_b0315) 2019; 4
Xu (10.1016/j.cej.2021.130587_b0400) 2020; 56
Zhang (10.1016/j.cej.2021.130587_b0275) 2018; 239
Ren (10.1016/j.cej.2021.130587_b0425) 2020; 12
Ellis (10.1016/j.cej.2021.130587_b0635) 2019; 11
Hu (10.1016/j.cej.2021.130587_b0040) 2015; 3
Gao (10.1016/j.cej.2021.130587_b0610) 2018; 8
Chen (10.1016/j.cej.2021.130587_b0295) 2018; 11
Huang (10.1016/j.cej.2021.130587_b0280) 2018; 10
Cui (10.1016/j.cej.2021.130587_b0550) 2018; 10
Lu (10.1016/j.cej.2021.130587_b0605) 2014; 14
Liu (10.1016/j.cej.2021.130587_b0205) 2016; 6
Gong (10.1016/j.cej.2021.130587_b0790) 2009; 323
Zhang (10.1016/j.cej.2021.130587_b0160) 2019; 58
Jiang (10.1016/j.cej.2021.130587_b0620) 2017; 5
Fiorentin (10.1016/j.cej.2021.130587_b0645) 2018; 97
Tao (10.1016/j.cej.2021.130587_b0715) 2016; 52
Li (10.1016/j.cej.2021.130587_b0145) 2016; 9
Zeng (10.1016/j.cej.2021.130587_b0250) 2018; 398
Li (10.1016/j.cej.2021.130587_b0415) 2020; 8
Wu (10.1016/j.cej.2021.130587_b0065) 2016; 7
Zhang (10.1016/j.cej.2021.130587_b0225) 2018; 20
Song (10.1016/j.cej.2021.130587_b0520) 2018; 5
Tang (10.1016/j.cej.2021.130587_b0720) 2016; 28
Back (10.1016/j.cej.2021.130587_b0580) 2017; 8
Fei (10.1016/j.cej.2021.130587_b0105) 2019; 48
Chen (10.1016/j.cej.2021.130587_b0595) 2020; 11
Chai (10.1016/j.cej.2021.130587_b0670) 2016; 7
Wang (10.1016/j.cej.2021.130587_b0360) 2019; 9
Sonkar (10.1016/j.cej.2021.130587_b0260) 2018; 826
Ning (10.1016/j.cej.2021.130587_b0335) 2019; 785
Oztuna (10.1016/j.cej.2021.130587_b0500) 2019; 25
Dongare (10.1016/j.cej.2021.130587_b0475) 2021; 556
Gao (10.1016/j.cej.2021.130587_b0770) 2019; 141
Zou (10.1016/j.cej.2021.130587_b0655) 2017; 7
Liu (10.1016/j.cej.2021.130587_b0510) 2019; 117
Wu (10.1016/j.cej.2021.130587_b0750) 2019; 143
Ma (10.1016/j.cej.2021.130587_b0460) 2020; 30
Hu (10.1016/j.cej.2021.130587_b0045) 2015; 51
Zhang (10.1016/j.cej.2021.130587_b0235) 2018; 8
Tamilarasan (10.1016/j.cej.2021.130587_b0140) 2015; 3
Yuan (10.1016/j.cej.2021.130587_b0245) 2018; 24
Chen (10.1016/j.cej.2021.130587_b0020) 2018; 57
Dongare (10.1016/j.cej.2021.130587_b0470) 2021; 44
Ananthaneni (10.1016/j.cej.2021.130587_b0530) 2019; 9
Sekar (10.1016/j.cej.2021.130587_b0150) 2017; 7
Choi (10.1016/j.cej.2021.130587_b0290) 2018; 8
Cheng (10.1016/j.cej.2021.130587_b0320) 2019; 243
Pan (10.1016/j.cej.2021.130587_b0485) 2019; 9
Sreekanth (10.1016/j.cej.2021.130587_b0135) 2015; 51
Yang (10.1016/j.cej.2021.130587_b0640) 2019; 14
Castleton (10.1016/j.cej.2021.130587_b0630) 2019; 123
Zhu (10.1016/j.cej.2021.130587_b0185) 2016; 59
Sun (10.1016/j.cej.2021.130587_b0420) 2020; 31
Legrand (10.1016/j.cej.2021.130587_b0330) 2019; 318
Zhao (10.1016/j.cej.2021.130587_b0505) 2019; 21
Zhuo (10.1016/j.cej.2021.130587_b0575) 2020; 120
Su (10.1016/j.cej.2021.130587_b0200) 2016; 12
Lei (10.1016/j.cej.2021.130587_b0085) 2016; 7
Li (10.1016/j.cej.2021.130587_b0005) 2020; 32
Sun (10.1016/j.cej.2021.130587_b0680) 2013; 135
10.1016/j.cej.2021.130587_b0810
Qiao (10.1016/j.cej.2021.130587_b0170) 2020; 27
Pan (10.1016/j.cej.2021.130587_b0015) 2020; 14
Liu (10.1016/j.cej.2021.130587_b0625) 2019; 7
Huang (10.1016/j.cej.2021.130587_b0355) 2019; 61
Wu (10.1016/j.cej.2021.130587_b0615) 2019; 2
Li (10.1016/j.cej.2021.130587_b0815) 2016; 27
Liu (10.1016/j.cej.2021.130587_b0660) 2016; 18
Wang (10.1016/j.cej.2021.130587_b0405) 2020; 31
Wang (10.1016/j.cej.2021.130587_b0340) 2019; 58
Jiang (10.1016/j.cej.2021.130587_b0030) 2018; 11
Ni (10.1016/j.cej.2021.130587_b0325) 2019; 259
Hu (10.1016/j.cej.2021.130587_b0060) 2015; 492
Zhu (10.1016/j.cej.2021.130587_b0375) 2019; 2
Zhao (10.1016/j.cej.2021.130587_b0730) 2016; 3
Hu (10.1016/j.cej.2021.130587_b0055) 2016; 6
Hossain (10.1016/j.cej.2021.130587_b0215) 2017; 82
Yuan (10.1016/j.cej.2021.130587_b0370) 2019; 33
Zhi (10.1016/j.cej.2021.130587_b0495) 2019; 15
Zhu (10.1016/j.cej.2021.130587_b0755) 2020; 512
Mao (10.1016/j.cej.2021.130587_b0700) 2019; 9
Jin (10.1016/j.cej.2021.130587_b0780) 2020; 59
Wu (10.1016/j.cej.2021.130587_b0075) 2016; 16
Song (10.1016/j.cej.2021.130587_b0190) 2016; 1
Siahrostami (10.1016/j.cej.2021.130587_b0650) 2017; 5
Wu (10.1016/j.cej.2021.130587_b0455) 2020; 37
Rashid (10.1016/j.cej.2021.130587_b0390) 2020; 39
Shen (10.1016/j.cej.2021.130587_b0740) 2014; 126
Hu (10.1016/j.cej.2021.130587_b0050) 2014; 2
Bi (10.1016/j.cej.2021.130587_b0155) 2018; 30
Zhang (10.1016/j.cej.2021.130587_b0515) 2019; 4
Huang (10.1016/j.cej.2021.130587_b0345) 2019; 33
Li (10.1016/j.cej.2021.130587_b0450) 2020; 268
10.1016/j.cej.2021.130587_b0795
Chen (10.1016/j.cej.2021.130587_b0705) 2020; 132
Chang (10.1016/j.cej.2021.130587_b0665) 2019; 9
Han (10.1016/j.cej.2021.130587_b0785) 2020; 142
Higgins (10.1016/j.cej.2021.130587_b0125) 2016; 9
Nakata (10.1016/j.cej.2021.130587_b0690) 2014; 53
He (10.1016/j.cej.2021.130587_b0560) 2017; 19
Saquib (10.1016/j.cej.2021.130587_b0255) 2018; 20
Ma (10.1016/j.cej.2021.130587_b0120) 2019; 30
Ensafi (10.1016/j.cej.2021.130587_b0210) 2016; 783
Shen (10.1016/j.cej.2021.130587_b0535) 2020; 21
Fu (10.1016/j.cej.2021.130587_b0570) 2020; 13
Lu (10.1016/j.cej.2021.130587_b0465) 2020; 22
Alinajafi (10.1016/j.cej.2021.130587_b0270) 2018; 43
He (10.1016/j.cej.2021.130587_b0265) 2018; 30
Choi (10.1016/j.cej.2021.130587_b0115) 2019; 1
Li (10.1016/j.cej.2021.130587_b0590) 2015; 5
Qian (10.1016/j.cej.2021.130587_b0675) 2019; 2
Jia (10.1016/j.cej.2021.130587_b0385) 2020; 12
Choi (10.1016/j.cej.2021.130587_b0685) 2011; 133
Liu (10.1016/j.cej.2021.130587_b0010) 2016; 537
Dong (10.1016/j.cej.2021.130587_b0710) 2020; 32
Xiong (10.1016/j.cej.2021.130587_b0350) 2019; 6
Ahmed (10.1016/j.cej.2021.130587_b0745) 2017; 7
Zhang (10.1016/j.cej.2021.130587_b0410) 2020; 3
Wang (10.1016/j.cej.2021.130587_b0545) 2017; 19
Han (10.1016/j.cej.2021.130587_b0490) 2019; 534
Nguyen (10.1016/j.cej.2021.130587_b0380) 2020; 10
Sun (10.1016/j.cej.2021.130587_b0035) 2020; 120
Bochlin (10.1016/j.cej.2021.130587_b0305) 2019; 2
Hu (10.1016/j.cej.2021.130587_b0805) 2019; 142
Zhang (10.1016/j.cej.2021.130587_b0310) 2019; 19
Zhu (10.1016/j.cej.2021.130587_b0070) 2017; 10
Pan (10.1016/j.cej.2021.130587_b0555) 2020; 10
Hu (10.1016/j.cej.2021.130587_b0760) 2020; 508
Yang (10.1016/j.cej.2021.130587_b0820) 2016; 26
Yan (10.1016/j.cej.2021.130587_b0725) 2018; 47
Xu (10.1016/j.cej.2021.130587_b0095) 2017; 139
Wang (10.1016/j.cej.2021.130587_b0435) 2020; 8
Liu (10.1016/j.cej.2021.130587_b0110) 2019; 31
He (10.1016/j.cej.2021.130587_b0600) 2018; 122
Zhao (10.1016/j.cej.2021.130587_b0285) 2018; 8
Varela (10.1016/j.cej.2021.130587_b0240) 2018; 3
Choi (10.1016/j.cej.2021.130587_b0165) 2019; 12
Bie (10.1016/j.cej.2021.130587_b0090) 2019; 31
Zarandi (10.1016/j.cej.2021.130587_b0365) 2019; 44
Yang (10.1016/j.cej.2021.130587_b0775) 2019; 10
Wang (10.1016/j.cej.2021.130587_b0130) 2019; 25
Hu (10.1016/j.cej.2021.130587_b0765) 2021; 2
Saravanan (10.1016/j.cej.2021.130587_b0430) 2020; 13
Yuan (10.1016/j.cej.2021.130587_b0300) 2018; 282
Zhao (10.1016/j.cej.2021.130587_b0480) 2021; 9
Li (10.1016/j.cej.2021.130587_b0395) 2020; 167
Fu (10.1016/j.cej.2021.130587_b0440) 2020; 12
Zhou (10.1016/j.cej.2021.130587_b0195) 2016; 8
Geioushy (10.1016/j.cej.2021.130587_b0220) 2017; 785
He (10.1016/j.cej.2021.130587_b0585) 2014; 14
References_xml – volume: 2
  start-page: 2435
  year: 2019
  end-page: 2440
  ident: b0375
  article-title: Electronic Tuning of Cobalt Porphyrins Immobilized on Nitrogen-Doped Graphene for CO2 Reduction
  publication-title: ACS Appl. Energ. Mater.
– volume: 167
  start-page: 658
  year: 2020
  end-page: 667
  ident: b0395
  article-title: Electrocatalytic reduction of CO2 to CO over iron phthalocyanine-modified graphene nanocomposites
  publication-title: Carbon
– volume: 21
  start-page: 23638
  year: 2019
  end-page: 23644
  ident: b0505
  article-title: Mechanistic insight into electroreduction of carbon dioxide on FeNx (x=0-4) embedded graphene
  publication-title: Phys. Chem. Chem. Phys.
– volume: 33
  start-page: 452
  year: 2019
  end-page: 460
  ident: b0370
  article-title: Efficient electrochemical reduction of CO2 to ethanol on Cu nanoparticles decorated on N-doped graphene oxide catalysts
  publication-title: J. CO2 Util.
– volume: 4
  start-page: 4398
  year: 2019
  end-page: 4406
  ident: b0515
  article-title: Synthesize and Characterization of 2-Aminothiazole Monomer and Polymer-based Bifunctional Fe/N/C Catalysts for Oxygen and Carbon Dioxide Reduction Reactions
  publication-title: ChemistrySelect
– volume: 8
  start-page: 18302
  year: 2020
  end-page: 18309
  ident: b0415
  article-title: Selective CO2-to-formate electrochemical conversion with core-shell structured Cu2O/Cu@C composites immobilized on nitrogen-doped graphene sheets
  publication-title: J. Mater. Chem. A
– volume: 139
  start-page: 5660
  year: 2017
  end-page: 5663
  ident: b0095
  article-title: A CsPbBr 3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 4983
  year: 2020
  end-page: 4994
  ident: b0435
  article-title: Three-Dimensional Nitrogen-Doped Graphene Aerogel-Supported MnO Nanoparticles as Efficient Electrocatalysts for CO2 Reduction to CO
  publication-title: ACS Sustainable Chem. Eng.
– volume: 9
  year: 2019
  ident: b0530
  article-title: Graphene Supported Tungsten Carbide as Catalyst for Electrochemical Reduction of CO2
  publication-title: Catalysts
– volume: 9
  start-page: 1803151
  year: 2019
  ident: b0360
  article-title: A Water-Soluble Cu Complex as Molecular Catalyst for Electrocatalytic CO2 Reduction on Graphene-Based Electrodes
  publication-title: Adv. Energ. Mater.
– volume: 11
  start-page: 2944
  year: 2018
  end-page: 2952
  ident: b0295
  article-title: Zinc-Coordinated Nitrogen-Codoped Graphene as an Efficient Catalyst for Selective Electrochemical Reduction of CO2 to CO
  publication-title: ChemSusChem
– volume: 508
  start-page: 144835
  year: 2020
  ident: b0760
  article-title: Catalytic reduction reactions over the silver ions embedded in polyacrylamide/graphene composite hydrogels: Kinetics and performance
  publication-title: Appl. Surf. Sci.
– volume: 3
  start-page: 417
  year: 2016
  end-page: 421
  ident: b0730
  article-title: Defect-driven oxygen reduction reaction (ORR) of carbon without any element doping
  publication-title: Inorg. Chem. Front.
– volume: 10
  start-page: 15262
  year: 2018
  end-page: 15272
  ident: b0550
  article-title: C2N-graphene supported single-atom catalysts for CO2 electrochemical reduction reaction: mechanistic insight and catalyst screening
  publication-title: Nanoscale
– volume: 126
  start-page: 10980
  year: 2014
  end-page: 10984
  ident: b0740
  article-title: Oxygen Reduction Reaction in a Droplet on Graphite: Direct Evidence that the Edge Is More Active than the Basal Plane
  publication-title: Angew. Chem.
– volume: 7
  start-page: 6245
  year: 2017
  end-page: 6250
  ident: b0655
  article-title: How Nitrogen-Doped Graphene Quantum Dots Catalyze Electroreduction of CO2 to Hydrocarbons and Oxygenates
  publication-title: ACS Catal.
– volume: 58
  start-page: 13532
  year: 2019
  end-page: 13539
  ident: b0340
  article-title: Linkage Effect in the Heterogenization of Cobalt Complexes by Doped Graphene for Electrocatalytic CO2 Reduction
  publication-title: Angew. Chem. Int. Ed.
– volume: 268
  start-page: 118747
  year: 2020
  ident: b0450
  article-title: Dual-atom Ag-2/graphene catalyst for efficient electroreduction of CO2 to CO
  publication-title: Applied Catalysis B-Environmental
– volume: 7
  year: 2017
  ident: b0745
  article-title: 3D graphene preparation via covalent amide functionalization for efficient metal-free electrocatalysis in oxygen reduction
  publication-title: Sci. Rep.
– volume: 13
  start-page: 5620
  year: 2020
  end-page: 5624
  ident: b0430
  article-title: Vitamin B12-Immobilized Graphene Oxide for Efficient Electrocatalytic Carbon Dioxide Reduction Reaction
  publication-title: ChemSusChem
– volume: 12
  start-page: 6083
  year: 2016
  end-page: 6089
  ident: b0200
  article-title: Nickel-Nitrogen-Modified Graphene: An Efficient Electrocatalyst for the Reduction of Carbon Dioxide to Carbon Monoxide
  publication-title: Small
– volume: 11
  start-page: 41588
  year: 2019
  end-page: 41594
  ident: b0635
  article-title: Modification of Carbon Nitride/Reduced Graphene Oxide van der Waals Heterostructure with Copper Nanoparticles To Improve CO2 Sensitivity
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 3766
  year: 2014
  end-page: 3772
  ident: b0585
  article-title: Atomic Structure and Dynamics of Metal Dopant Pairs in Graphene
  publication-title: Nano Lett.
– volume: 2
  year: 2021
  ident: b0765
  article-title: Multifunctional carbon-based metal-free catalysts for advanced energy conversion and storage
  publication-title: Cell Reports Physical Science
– volume: 14
  start-page: 5506
  year: 2020
  end-page: 5516
  ident: b0015
  article-title: Atomically dispersed iron-nitrogen sites on hierarchically mesoporous carbon nanotube and graphene nanoribbon networks for CO2 reduction
  publication-title: ACS Nano
– volume: 1
  start-page: 6055
  year: 2016
  end-page: 6061
  ident: b0190
  article-title: High-selectivity electrochemical conversion of CO2 to ethanol using a copper nanoparticle/n-doped graphene electrode
  publication-title: ChemistrySelect
– volume: 21
  start-page: 1768
  year: 2020
  end-page: 1774
  ident: b0535
  article-title: Cu Atomic Chain Supported on Graphene Nanoribbon for Effective Conversion of CO(2)to Ethanol
  publication-title: ChemPhysChem
– volume: 2
  start-page: 11319
  year: 2014
  end-page: 11333
  ident: b0050
  article-title: PAM/graphene/Ag ternary hydrogel: synthesis, characterization and catalytic application
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 666
  year: 2019
  end-page: 672
  ident: b0315
  article-title: Steric Modification of a Cobalt Phthalocyanine/Graphene Catalyst To Give Enhanced and Stable Electrochemical CO2 Reduction to CO
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 8434
  year: 2019
  end-page: 8440
  ident: b0305
  article-title: Different Pathways for CO2 Electrocatalytic Reduction by Confined CoTMPyP in Electrodeposited Reduced Graphene Oxide
  publication-title: ACS Appl. Energ. Mater.
– volume: 5
  start-page: 11080
  year: 2017
  end-page: 11085
  ident: b0650
  article-title: Theoretical Investigations into Defected Graphene for Electrochemical Reduction of CO2
  publication-title: ACS Sustainable Chem. Eng.
– volume: 9
  start-page: 6800
  year: 2019
  end-page: 6807
  ident: b0700
  article-title: Silicon-doped graphene edges: an efficient metal-free catalyst for the reduction of CO2 into methanol and ethanol
  publication-title: Catal. Sci. Technol.
– volume: 28
  start-page: 9532
  year: 2016
  end-page: 9538
  ident: b0735
  article-title: Defect Graphene as a Trifunctional Catalyst for Electrochemical Reactions
  publication-title: Adv. Mater.
– volume: 24
  start-page: 334
  year: 2018
  end-page: 340
  ident: b0245
  article-title: Cu/TiO2 nanoparticles modified nitrogen-doped graphene as a highly efficient catalyst for the selective electroreduction of CO2 to different alcohols
  publication-title: J. CO2 Util.
– volume: 282
  start-page: 694
  year: 2018
  end-page: 701
  ident: b0300
  article-title: Electrochemical reduction of CO2 at metal-free N-functionalized graphene oxide electrodes
  publication-title: Electrochim. Acta
– volume: 50
  start-page: 979
  year: 2020
  end-page: 991
  ident: b0445
  article-title: Flexible and free-standing polyvinyl alcohol-reduced graphene oxide-Cu2O/CuO thin films for electrochemical reduction of carbon dioxide
  publication-title: J. Appl. Electrochem.
– volume: 11
  start-page: 893
  year: 2018
  end-page: 903
  ident: b0030
  article-title: Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction
  publication-title: Energ. Environ. Sci.
– volume: 7
  start-page: 19113
  year: 2019
  end-page: 19121
  ident: b0025
  article-title: Synergy of a Metallic NiCo Dimer Anchored on a C2N-Graphene Matrix Promotes the Electrochemical CO2 Reduction Reaction
  publication-title: ACS Sustainable Chem. Eng.
– volume: 142
  year: 2019
  ident: b0805
  article-title: Recent advances in two-dimensional transition metal dichalcogenides for biological sensing
  publication-title: Biosens. Bioelectron.
– volume: 22
  start-page: 6804
  year: 2020
  end-page: 6808
  ident: b0465
  article-title: Synthesis of Sn4P3/reduced graphene oxide nanocomposites as highly efficient electrocatalysts for CO2 reduction
  publication-title: Green Chem.
– volume: 122
  start-page: 28629
  year: 2018
  end-page: 28636
  ident: b0600
  article-title: Graphene-Supported Monometallic and Bimetallic Dimers for Electrochemical CO2 Reduction
  publication-title: J. Phys. Chem. C
– volume: 534
  start-page: 332
  year: 2019
  end-page: 337
  ident: b0490
  article-title: Defective graphene for electrocatalytic CO2 reduction
  publication-title: J. Colloid Interface Sci.
– volume: 143
  start-page: 610
  year: 2019
  end-page: 640
  ident: b0750
  article-title: A review of three-dimensional graphene-based materials: Synthesis and applications to energy conversion/storage and environment
  publication-title: Carbon
– volume: 10
  start-page: 1641
  year: 2017
  end-page: 1650
  ident: b0070
  article-title: Enhanced CO2 electroreduction on armchair graphene nanoribbons edge-decorated with copper
  publication-title: Nano Res.
– volume: 30
  start-page: 1706617
  year: 2018
  ident: b0155
  article-title: Surface immobilization of transition metal ions on nitrogen-doped graphene realizing high-efficient and selective CO2 reduction
  publication-title: Adv. Mater.
– volume: 11
  start-page: 2541
  year: 2020
  end-page: 2549
  ident: b0595
  article-title: Design of a Graphene Nitrene Two-Dimensional Catalyst Heterostructure Providing a Well-Defined Site Accommodating One to Three Metals, with Application to CO2 Reduction Electrocatalysis for the Two-Metal Case
  publication-title: J. Phys. Chem. Lett.
– volume: 14
  start-page: 7097
  year: 2014
  end-page: 7103
  ident: b0605
  article-title: Electrocatalytic Reduction of CO<SUB>2</SUB> to Formic Acid on Palladium-Graphene Nanocomposites Gas-Diffusion Electrode
  publication-title: J. Nanosci. Nanotechnol.
– volume: 30
  start-page: 1910118
  year: 2020
  ident: b0460
  article-title: Enhanced Electrochemical CO2 Reduction of Cu@CuxO Nanoparticles Decorated on 3D Vertical Graphene with Intrinsic sp3-type Defect
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 1544
  year: 2019
  end-page: 1552
  ident: b0615
  article-title: CO2 Electrochemical Reduction Catalyzed by Graphene Supported Palladium Cluster: A Computational Guideline
  publication-title: ACS Appl. Energ. Mater.
– volume: 9
  start-page: 357
  year: 2016
  end-page: 390
  ident: b0125
  article-title: The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress
  publication-title: Energ. Environ. Sci.
– volume: 120
  start-page: 12315
  year: 2020
  end-page: 12341
  ident: b0575
  article-title: Theoretical Understandings of Graphene-based Metal Single-Atom Catalysts: Stability and Catalytic Performance
  publication-title: Chem. Rev.
– volume: 243
  start-page: 294
  year: 2019
  end-page: 303
  ident: b0320
  article-title: Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2
  publication-title: Applied Catalysis B-Environmental
– volume: 9
  start-page: 2124
  year: 2019
  end-page: 2133
  ident: b0485
  article-title: Efficient CO2 Electroreduction by Highly Dense and Active Pyridinic Nitrogen on Holey Carbon Layers with Fluorine Engineering
  publication-title: ACS Catal.
– volume: 8
  start-page: 1801280
  year: 2018
  ident: b0290
  article-title: A Porphyrin/Graphene Framework: A Highly Efficient and Robust Electrocatalyst for Carbon Dioxide Reduction
  publication-title: Adv. Energ. Mater.
– volume: 19
  start-page: 4029
  year: 2019
  end-page: 4034
  ident: b0310
  article-title: Enhanced Electrocatalytic Reduction of CO2 via Chemical Coupling between Indium Oxide and Reduced Graphene Oxide
  publication-title: Nano Lett.
– volume: 56
  start-page: 11275
  year: 2020
  end-page: 11278
  ident: b0400
  article-title: Graphene-encapsulated nickel-copper bimetallic nanoparticle catalysts for electrochemical reduction of CO(2)to CO
  publication-title: Chem. Commun.
– volume: 18
  start-page: 5491
  year: 2016
  end-page: 5498
  ident: b0660
  article-title: Pyrrolic-nitrogen doped graphene: a metal-free electrocatalyst with high efficiency and selectivity for the reduction of carbon dioxide to formic acid: a computational study
  publication-title: Phys. Chem. Chem. Phys.
– volume: 139
  start-page: 4052
  year: 2017
  end-page: 4061
  ident: b0080
  article-title: Synergistic enhancement of electrocatalytic CO2 reduction with gold nanoparticles embedded in functional graphene nanoribbon composite electrodes
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 3805
  year: 2019
  end-page: 3823
  ident: b0640
  article-title: Electrocatalytic Reduction of CO2 on Mono-Metal/Graphene/Polyurethane Sponge Electrodes
  publication-title: Int. J. Electrochem. Sci.
– volume: 32
  start-page: 2764
  year: 2020
  end-page: 2773
  ident: b0800
  article-title: Highly Active Rhenium-, Ruthenium-, and Iridium-Based Dichalcogenide Electrocatalysts for Oxygen Reduction and Oxygen Evolution Reactions in Aprotic Media
  publication-title: Chem. Mater.
– volume: 9
  start-page: 105515
  year: 2021
  ident: b0480
  article-title: N-doped carbon-encapsulated nickel on reduced graphene oxide materials for efficient CO2 electroreduction to syngas with potential-independent H2/CO ratios
  publication-title: J. Environ Chem. Eng.
– volume: 132
  start-page: 11216
  year: 2020
  end-page: 11222
  ident: b0705
  article-title: Boosting CO2 Electroreduction on N, P-Co-doped Carbon Aerogels
  publication-title: Angew. Chem.
– volume: 19
  start-page: 11436
  year: 2017
  end-page: 11446
  ident: b0560
  article-title: Electrochemical reduction of CO2 on graphene supported transition metals - towards single atom catalysts
  publication-title: Phys. Chem. Chem. Phys.
– volume: 31
  start-page: 1800696
  year: 2019
  ident: b0110
  article-title: Recent progress in graphene-based noble-metal nanocomposites for electrocatalytic applications
  publication-title: Adv. Mater.
– volume: 785
  start-page: 138
  year: 2017
  end-page: 143
  ident: b0220
  article-title: High efficiency graphene/Cu2O electrode for the electrochemical reduction of carbon dioxide to ethanol
  publication-title: J. Electroanal. Chem.
– volume: 61
  start-page: 428
  year: 2019
  end-page: 434
  ident: b0355
  article-title: Single Mo atom realized enhanced CO2 electro-reduction into formate on N-doped graphene
  publication-title: Nano Energy
– volume: 12
  start-page: 41288
  year: 2020
  end-page: 41293
  ident: b0385
  article-title: Vitamin B-12 on Graphene for Highly Efficient CO2 Electroreduction
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  start-page: 168
  year: 2019
  end-page: 182
  ident: b0120
  article-title: Graphene-based materials for electrochemical CO2 reduction
  publication-title: J. CO2 Util.
– volume: 26
  start-page: 233
  year: 2016
  end-page: 242
  ident: b0820
  article-title: Graphene Quantum Sheet Catalyzed Silicon Photocathode for Selective CO2 Conversion to CO
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 1703487
  year: 2018
  ident: b0235
  article-title: Electrochemical CO2 Reduction with Atomic Iron-Dispersed on Nitrogen-Doped Graphene
  publication-title: Adv. Energ. Mater.
– volume: 59
  start-page: 21885
  year: 2020
  end-page: 21889
  ident: b0780
  article-title: A Universal Graphene Quantum Dot Tethering Design Strategy to Synthesize Single-Atom Catalysts
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 1801400
  year: 2018
  ident: b0285
  article-title: Engineering surface amine modifiers of ultrasmall gold nanoparticles supported on reduced graphene oxide for improved electrochemical CO2 reduction
  publication-title: Adv. Energ. Mater.
– volume: 133
  start-page: 2084
  year: 2011
  end-page: 2087
  ident: b0685
  article-title: Ambient Carbon Dioxide Capture by Boron-Rich Boron Nitride Nanotube
  publication-title: J. Am. Chem. Soc.
– volume: 239
  start-page: 441
  year: 2018
  end-page: 449
  ident: b0275
  article-title: The ensemble effect of nitrogen doping and ultrasmall SnO2 nanocrystals on graphene sheets for efficient electroreduction of carbon dioxide
  publication-title: Applied Catalysis B-Environmental
– volume: 5
  start-page: 1800177
  year: 2018
  ident: b0520
  article-title: Bifunctional Nitrogen and Cobalt Codoped Hollow Carbon for Electrochemical Syngas Production
  publication-title: Adv. Sci.
– volume: 512
  year: 2020
  ident: b0755
  article-title: An aerogel adsorbent with bio-inspired interfacial adhesion between graphene and MoS2 sheets for water treatment
  publication-title: Appl. Surf. Sci.
– volume: 142
  start-page: 12563
  year: 2020
  end-page: 12567
  ident: b0785
  article-title: Stable and Efficient Single-Atom Zn Catalyst for CO2 Reduction to CH4
  publication-title: J. Am. Chem. Soc.
– volume: 31
  start-page: 1902868
  year: 2019
  ident: b0090
  article-title: In Situ Grown Monolayer N-Doped Graphene on CdS Hollow Spheres with Seamless Contact for Photocatalytic CO2 Reduction
  publication-title: Adv. Mater.
– volume: 492
  start-page: 1
  year: 2015
  end-page: 9
  ident: b0060
  article-title: Metal-free graphene-based catalyst—Insight into the catalytic activity: A short review
  publication-title: Appl. Catal. A: Gen.
– volume: 13
  start-page: 947
  year: 2020
  end-page: 951
  ident: b0570
  article-title: Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis
  publication-title: Nano Res.
– volume: 21
  start-page: 2059
  year: 2021
  end-page: 2065
  ident: b0100
  article-title: Emergence of Potential-controlled Cu-nanocuboids and graphene-covered Cu-nanocuboids under operando CO2 electroreduction
  publication-title: Nano Lett.
– volume: 20
  year: 2018
  ident: b0255
  article-title: Reduced graphene oxide supported gold nanoparticles for electrocatalytic reduction of carbon dioxide
  publication-title: J. Nanopart. Res.
– reference: B.Y. Zhang, K. Xu, Q. Yao, A. Jannat, G. Ren, M.R. Field, X. Wen, C. Zhou, A. Zavabeti, J.Z. Ou, Hexagonal metal oxide monolayers derived from the metal–gas interface, Nat. Mater. (2021),
– volume: 6
  start-page: 38380
  year: 2016
  end-page: 38387
  ident: b0205
  article-title: Catalysis performance comparison for electrochemical reduction of CO2 on Pd-Cu/graphene catalyst
  publication-title: RSC Adv.
– volume: 27
  start-page: 133
  year: 2020
  end-page: 139
  ident: b0170
  article-title: Synergistic effect of bifunctional catalytic sites and defect engineering for high-performance Li–CO2 batteries
  publication-title: Energy Storage Mater.
– volume: 323
  start-page: 760
  year: 2009
  end-page: 764
  ident: b0790
  article-title: Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction
  publication-title: Science
– volume: 120
  start-page: 10336
  year: 2020
  end-page: 10453
  ident: b0035
  article-title: 3D graphene materials: From understanding to design and synthesis control
  publication-title: Chem. Rev.
– volume: 19
  start-page: 4284
  year: 2017
  end-page: 4288
  ident: b0525
  article-title: Composition-tunable synthesis of “clean” syngas via a one-step synthesis of metal-free pyridinic-N-enriched self-supported CNTs: the synergy of electrocatalyst pyrolysis temperature and potential
  publication-title: Green Chem.
– volume: 3
  start-page: 257
  year: 2020
  end-page: 263
  ident: b0410
  article-title: Cu/Cu2O Nanoparticles Supported on Vertically ZIF-L-Coated Nitrogen-Doped Graphene Nanosheets for Electroreduction of CO2 to Ethanol
  publication-title: ACS Appl. Nano Mater.
– volume: 27
  start-page: 320
  year: 2016
  end-page: 329
  ident: b0815
  article-title: Photocatalytic CO2 conversion to methanol by Cu2O/graphene/TNA heterostructure catalyst in a visible-light-driven dual-chamber reactor
  publication-title: Nano Energy
– volume: 1
  start-page: 85
  year: 2019
  end-page: 108
  ident: b0115
  article-title: Reduced graphene oxide-based materials for electrochemical energy conversion reactions
  publication-title: Carbon Energy
– volume: 57
  start-page: 12790
  year: 2018
  end-page: 12794
  ident: b0020
  article-title: Nitrogen-doped graphene quantum dots enhance the activity of Bi2O3 nanosheets for electrochemical reduction of CO2 in a wide negative potential region
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  year: 2016
  ident: b0055
  article-title: Graphene oxide-enhanced sol-gel transition sensitivity and drug release performance of an amphiphilic copolymer-based nanocomposite
  publication-title: Sci. Rep.
– reference: Q. Quan, S.-J. Xie, Y. Wang, Y.-J. Xu, Photoelectrochemical Reduction of CO2 over Graphene-Based Composites: Basic Principle, Recent Progress, and Future Perspective, Acta Physico-Chimica Sinica 33 (2017) 2404-2423.
– volume: 25
  start-page: 27
  year: 2019
  end-page: 37
  ident: b0130
  article-title: A review of graphene-based 3D van der Waals hybrids and their energy applications
  publication-title: Nano Today
– volume: 44
  start-page: 30820
  year: 2019
  end-page: 30831
  ident: b0365
  article-title: Electrochemical conversion of CO2 to methanol using a glassy carbon electrode, modified by Pe@histamine-reduced graphene oxide
  publication-title: Int. J. Hydrogen Energy
– volume: 59
  start-page: 551
  year: 2016
  end-page: 556
  ident: b0185
  article-title: Electrochemical reduction of CO2 to CO using graphene oxide/carbon nanotube electrode in ionic liquid/acetonitrile system
  publication-title: Science China-Chemistry
– volume: 259
  start-page: 118044
  year: 2019
  ident: b0325
  article-title: Efficient electrocatalytic reduction of CO2 on CuxO decorated graphene oxides: an insight into the role of multivalent Cu in selectivity and durability
  publication-title: Applied Catalysis B-Environmental
– volume: 51
  start-page: 16061
  year: 2015
  end-page: 16064
  ident: b0135
  article-title: Metal-free boron-doped graphene for selective electroreduction of carbon dioxide to formic acid/formate
  publication-title: Chem. Commun.
– volume: 51
  start-page: 16699
  year: 2015
  end-page: 16702
  ident: b0045
  article-title: A pH-mediated enhancement of the graphene carbocatalyst activity for the reduction of 4-nitrophenol
  publication-title: Chem. Commun.
– volume: 12
  start-page: 747
  year: 2019
  end-page: 755
  ident: b0165
  article-title: Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel
  publication-title: Energ. Environ. Sci.
– volume: 785
  start-page: 7
  year: 2019
  end-page: 12
  ident: b0335
  article-title: N-doped reduced graphene oxide supported Cu2O nanocubes as high active catalyst for CO2 electroreduction to C2H4
  publication-title: J. Alloys Compd.
– volume: 2
  start-page: 46
  year: 2019
  end-page: 54
  ident: b0675
  article-title: Catalytic CO2 reduction by palladium-decorated silicon–hydride nanosheets, Nature
  publication-title: Catalysis
– volume: 31
  start-page: 1415
  year: 2020
  end-page: 1421
  ident: b0420
  article-title: Bi/Bi2O3 nanoparticles supported on N-doped reduced graphene oxide for highly efficient CO2 electroreduction to formate
  publication-title: Chin. Chem. Lett.
– volume: 37
  start-page: 353
  year: 2020
  end-page: 359
  ident: b0455
  article-title: Metal-support interaction enhanced electrochemical reduction of CO2 to formate between graphene and Bi nanoparticles
  publication-title: J. CO2 Util.
– volume: 12
  start-page: 16178
  year: 2020
  end-page: 16185
  ident: b0440
  article-title: Nanoconfined Tin Oxide within N-Doped Nanocarbon Supported on Electrochemically Exfoliated Graphene for Efficient Electroreduction of CO2 to Formate and C1 Products
  publication-title: ACS Appl. Mater. Interfaces
– volume: 119
  start-page: 21345
  year: 2015
  end-page: 21352
  ident: b0565
  article-title: Tailoring Metal-Porphyrin-Like Active Sites on Graphene to Improve the Efficiency and Selectivity of Electrochemical CO2 Reduction
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 8529
  year: 2017
  end-page: 8534
  ident: b0620
  article-title: Silver Nanoparticles with Surface-Bonded Oxygen for Highly Selective CO2 Reduction
  publication-title: ACS Sustainable Chem. Eng.
– volume: 16
  start-page: 466
  year: 2016
  end-page: 470
  ident: b0075
  article-title: Incorporation of Nitrogen Defects for Efficient Reduction of CO2 via Two-Electron Pathway on Three-Dimensional Graphene Foam
  publication-title: Nano Lett.
– volume: 47
  start-page: 7628
  year: 2018
  end-page: 7658
  ident: b0725
  article-title: Defects on carbons for electrocatalytic oxygen reduction
  publication-title: Chem. Soc. Rev.
– volume: 7
  year: 2016
  ident: b0085
  article-title: Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction
  publication-title: Nat. Commun.
– volume: 123
  start-page: 5164
  year: 2019
  end-page: 5175
  ident: b0630
  article-title: Benchmarking Density Functional Theory Functionals for Polarons in Oxides: Properties of CeO2
  publication-title: J. Phys. Chem. C
– volume: 8
  start-page: 1090
  year: 2017
  end-page: 1096
  ident: b0580
  article-title: Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements
  publication-title: Chem. Sci.
– volume: 117
  start-page: 1805
  year: 2019
  end-page: 1812
  ident: b0510
  article-title: Fe-porphyrin carbon matrix as a bifunctional catalyst for oxygen reduction and CO2 reduction from theoretical perspective
  publication-title: Mol. Phys.
– volume: 135
  start-page: 8246
  year: 2013
  end-page: 8253
  ident: b0680
  article-title: Charge-Controlled Switchable CO2 Capture on Boron Nitride Nanomaterials
  publication-title: J. Am. Chem. Soc.
– volume: 10
  year: 2019
  ident: b0775
  article-title: A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts
  publication-title: Nat. Commun.
– volume: 10
  start-page: 3222
  year: 2020
  end-page: 3231
  ident: b0380
  article-title: Mass Transport Control by Surface Graphene Oxide for Selective CO Production from Electrochemical CO2 Reduction
  publication-title: ACS Catal.
– volume: 25
  start-page: 3131
  year: 2019
  end-page: 3140
  ident: b0500
  article-title: First-Row Transition-Metal Cations (Co2+, Ni2+, Mn2+, Fe2+) and Graphene (Oxide) Composites: From Structural Properties to Electrochemical Applications
  publication-title: Chemistry-a European Journal
– volume: 3
  start-page: 812
  year: 2018
  end-page: 817
  ident: b0240
  article-title: pH Effects on the Selectivity of the Electrocatalytic CO2 Reduction on Graphene-Embedded Fe-N-C Motifs: Bridging Concepts between Molecular Homogeneous and Solid-State Heterogeneous Catalysis
  publication-title: ACS Energy Lett.
– volume: 398
  start-page: 83
  year: 2018
  end-page: 90
  ident: b0250
  article-title: Silver sulfide anchored on reduced graphene oxide as a high -performance catalyst for CO2 electroreduction
  publication-title: J. Power Sources
– volume: 82
  start-page: 16
  year: 2017
  end-page: 20
  ident: b0215
  article-title: Electrochemical and FTIR spectroscopic study of CO2 reduction at a nanostructured Cu/reduced graphene oxide thin film
  publication-title: Electrochem. Commun.
– volume: 12
  start-page: 41223
  year: 2020
  end-page: 41229
  ident: b0425
  article-title: CO2 to Formic Acid Using Cu-Sn on Laser-Induced Graphene
  publication-title: ACS Appl. Mater. Interfaces
– volume: 826
  start-page: 1
  year: 2018
  end-page: 9
  ident: b0260
  article-title: Nickel phthalocyanine integrated graphene architecture as bifunctional electrocatalyst for CO2 and O-2 reductions
  publication-title: J. Electroanal. Chem.
– volume: 39
  start-page: 101178
  year: 2020
  ident: b0390
  article-title: Unprecedented lower over-potential for CO2 electro-reduction on copper oxide anchored to graphene oxide microstructures
  publication-title: J. CO2 Util.
– volume: 31
  start-page: 1438
  year: 2020
  end-page: 1442
  ident: b0405
  article-title: Nitrogen-doped carbon nanotube-encapsulated nickel nanoparticles assembled on graphene for efficient CO2 electroreduction
  publication-title: Chin. Chem. Lett.
– volume: 5
  start-page: 2000134
  year: 2021
  ident: b0695
  article-title: Non-N-Doped Carbons as Metal-Free Electrocatalysts
  publication-title: Advanced Sustainable Systems
– volume: 318
  start-page: 142
  year: 2019
  end-page: 150
  ident: b0330
  article-title: Decoration of N-functionalized graphene nanoflakes with copper-based nanoparticles for high selectivity CO2 electroreduction towards formate
  publication-title: Electrochim. Acta
– volume: 53
  start-page: 871
  year: 2014
  end-page: 874
  ident: b0690
  article-title: High-Yield Electrochemical Production of Formaldehyde from CO2and Seawater
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 6134
  year: 2020
  end-page: 6141
  ident: b0540
  article-title: CO2 Reduction on Metal- and Nitrogen-Codoped Graphene: Balancing Activity and Selectivity via Coordination Engineering
  publication-title: ACS Sustainable Chem. Eng.
– volume: 58
  start-page: 14871
  year: 2019
  end-page: 14876
  ident: b0160
  article-title: A graphene-supported single-atom fen5 catalytic site for efficient electrochemical CO2 reduction
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 10803
  year: 2020
  end-page: 10811
  ident: b0555
  article-title: Pore-Edge Tailoring of Single-Atom Iron-Nitrogen Sites on Graphene for Enhanced CO2 Reduction
  publication-title: ACS Catal.
– volume: 7
  start-page: 8136
  year: 2019
  end-page: 8144
  ident: b0625
  article-title: RuN4 Doped Graphene Oxide, a Highly Efficient Bifunctional Catalyst for Oxygen Reduction and CO2 Reduction from Computational Study
  publication-title: ACS Sustainable Chem. Eng.
– volume: 9
  start-page: 8197
  year: 2019
  end-page: 8207
  ident: b0665
  article-title: Constant Electrode Potential Quantum Mechanical Study of CO2 Electrochemical Reduction Catalyzed by N-Doped Graphene
  publication-title: ACS Catal.
– volume: 43
  start-page: 23262
  year: 2018
  end-page: 23274
  ident: b0270
  article-title: Reduction of carbon dioxide to methanol on the surface of adenine functionalized reduced graphene oxide at a low potential
  publication-title: Int. J. Hydrogen Energy
– volume: 44
  year: 2021
  ident: b0470
  article-title: Nitrogen-doped graphene supported copper nanoparticles for electrochemical reduction of CO2
  publication-title: J. CO2 Util.
– volume: 32
  start-page: 2001300
  year: 2020
  ident: b0710
  article-title: Ammonia Thermal Treatment toward Topological Defects in Porous Carbon for Enhanced Carbon Dioxide Electroreduction
  publication-title: Adv. Mater.
– volume: 32
  start-page: 2001848
  year: 2020
  ident: b0005
  article-title: Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction
  publication-title: Adv. Mater.
– volume: 97
  year: 2018
  ident: b0645
  article-title: Nitrogen doping and CO2 adsorption on graphene: A thermodynamical study
  publication-title: Phys. Rev. B
– volume: 20
  start-page: 3521
  year: 2018
  end-page: 3529
  ident: b0225
  article-title: The synthesis of atomic Fe embedded in bamboo-CNTs grown on graphene as a superior CO2 electrocatalyst
  publication-title: Green Chem.
– volume: 33
  start-page: 166
  year: 2019
  end-page: 170
  ident: b0345
  article-title: A renewable, flexible and robust single layer nitrogen-doped graphene coating Sn foil for boosting formate production from electrocatalytic CO2 reduction
  publication-title: Journal of CO2 Utilization
– volume: 5
  start-page: 6658
  year: 2015
  end-page: 6664
  ident: b0590
  article-title: CO2 Electroreduction Performance of Transition Metal Dimers Supported on Graphene: A Theoretical Study
  publication-title: ACS Catal.
– volume: 141
  start-page: 11658
  year: 2019
  end-page: 11666
  ident: b0770
  article-title: C60-Adsorbed Single-Walled Carbon Nanotubes as Metal-Free, pH-Universal, and Multifunctional Catalysts for Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 44403
  year: 2018
  end-page: 44414
  ident: b0280
  article-title: Boosting CH3OH Production in Electrocatalytic CO2 Reduction over Partially Oxidized 5 nm Cobalt Nanoparticles Dispersed on Single-Layer Nitrogen-Doped Graphene
  publication-title: ACS Appl. Mater. Interfaces
– volume: 537
  start-page: 382
  year: 2016
  end-page: 386
  ident: b0010
  article-title: Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration
  publication-title: Nature
– volume: 9
  start-page: 216
  year: 2016
  end-page: 223
  ident: b0145
  article-title: Polyethylenimine promoted electrocatalytic reduction of CO2 to CO in aqueous medium by graphene-supported amorphous molybdenum sulphide
  publication-title: Energ. Environ. Sci.
– volume: 556
  year: 2021
  ident: b0475
  article-title: Oxide-derived Cu-Zn nanoparticles supported on N-doped graphene for electrochemical reduction of CO2 to ethanol
  publication-title: Appl. Surf. Sci.
– volume: 7
  start-page: 1268
  year: 2016
  end-page: 1275
  ident: b0670
  article-title: Highly effective sites and selectivity of nitrogen-doped graphene/CNT catalysts for CO2 electrochemical reduction
  publication-title: Chem. Sci.
– volume: 8
  start-page: 4192
  year: 2016
  end-page: 4198
  ident: b0195
  article-title: Graphene-Immobilized fac-Re(bipy)(CO)(3)Cl for Syngas Generation from Carbon Dioxide
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 7695
  year: 2017
  end-page: 7703
  ident: b0150
  article-title: Cobalt spinel nanocubes on N-doped graphene: A synergistic hybrid electrocatalyst for the highly selective reduction of carbon dioxide to formic acid
  publication-title: ACS Catal.
– volume: 4
  year: 2015
  ident: b0175
  article-title: Copper nanoparticles stabilized by reduced graphene oxide for CO2 reduction reaction
  publication-title: Mater. Renewable Sustainable Energy
– reference: .
– volume: 3
  start-page: 11157
  year: 2015
  end-page: 11182
  ident: b0040
  article-title: Synthesis and stabilization of metal nanocatalysts for reduction reactions – a review
  publication-title: J. Mater. Chem. A
– volume: 24
  start-page: 1
  year: 2016
  end-page: 9
  ident: b0180
  article-title: Controlled assembly of Cu nanoparticles on pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene
  publication-title: Nano Energy
– volume: 783
  start-page: 82
  year: 2016
  end-page: 89
  ident: b0210
  article-title: Pt-modified nitrogen doped reduced graphene oxide: A powerful electrocatalyst for direct CO2 reduction to methanol
  publication-title: J. Electroanal. Chem.
– volume: 6
  start-page: 5951
  year: 2019
  end-page: 5957
  ident: b0350
  article-title: CuSn Alloy Nanoparticles on Nitrogen-Doped Graphene for Electrocatalytic CO2 Reduction
  publication-title: ChemElectroChem
– volume: 15
  start-page: 1804224
  year: 2019
  ident: b0495
  article-title: Impact of Interfacial Electron Transfer on Electrochemical CO2 Reduction on Graphitic Carbon Nitride/Doped Graphene
  publication-title: Small
– volume: 8
  start-page: 1510
  year: 2018
  end-page: 1519
  ident: b0610
  article-title: Pd-Containing Nanostructures for Electrochemical CO2 Reduction Reaction
  publication-title: ACS Catal.
– volume: 28
  start-page: 6845
  year: 2016
  end-page: 6851
  ident: b0720
  article-title: Topological Defects in Metal-Free Nanocarbon for Oxygen Electrocatalysis
  publication-title: Adv. Mater.
– volume: 30
  start-page: 84
  year: 2018
  end-page: 93
  ident: b0265
  article-title: Highly Selective and Active Pd-In/three-dimensional Graphene with Special Structure for Electroreduction CO2 to Formate
  publication-title: Electroanalysis
– volume: 19
  start-page: 23113
  year: 2017
  end-page: 23121
  ident: b0545
  article-title: CO2 electroreduction performance of a single transition metal atom supported on porphyrin-like graphene: a computational study
  publication-title: Phys. Chem. Chem. Phys.
– volume: 52
  start-page: 2764
  year: 2016
  end-page: 2767
  ident: b0715
  article-title: Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction
  publication-title: Chem. Commun.
– volume: 48
  start-page: 5207
  year: 2019
  end-page: 5241
  ident: b0105
  article-title: Single atom electrocatalysts supported on graphene or graphene-like carbons
  publication-title: Chem. Soc. Rev.
– volume: 7
  year: 2016
  ident: b0065
  article-title: A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates
  publication-title: Nat. Commun.
– volume: 3
  start-page: 797
  year: 2015
  end-page: 804
  ident: b0140
  article-title: Task-specific functionalization of graphene for use as a cathode catalyst support for carbon dioxide conversion
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 5025
  year: 2018
  end-page: 5031
  ident: b0230
  article-title: Elastic Ag-anchored N-doped graphene/carbon foam for the selective electrochemical reduction of carbon dioxide to ethanol
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 5506
  issue: 5
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0015
  article-title: Atomically dispersed iron-nitrogen sites on hierarchically mesoporous carbon nanotube and graphene nanoribbon networks for CO2 reduction
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b09658
– volume: 3
  start-page: 812
  year: 2018
  ident: 10.1016/j.cej.2021.130587_b0240
  article-title: pH Effects on the Selectivity of the Electrocatalytic CO2 Reduction on Graphene-Embedded Fe-N-C Motifs: Bridging Concepts between Molecular Homogeneous and Solid-State Heterogeneous Catalysis
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00273
– volume: 32
  start-page: 2001300
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0710
  article-title: Ammonia Thermal Treatment toward Topological Defects in Porous Carbon for Enhanced Carbon Dioxide Electroreduction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001300
– volume: 12
  start-page: 747
  issue: 2
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0165
  article-title: Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C8EE03403F
– volume: 135
  start-page: 8246
  issue: 22
  year: 2013
  ident: 10.1016/j.cej.2021.130587_b0680
  article-title: Charge-Controlled Switchable CO2 Capture on Boron Nitride Nanomaterials
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja400243r
– volume: 9
  start-page: 6800
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0700
  article-title: Silicon-doped graphene edges: an efficient metal-free catalyst for the reduction of CO2 into methanol and ethanol
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C9CY01709G
– volume: 31
  start-page: 1902868
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0090
  article-title: In Situ Grown Monolayer N-Doped Graphene on CdS Hollow Spheres with Seamless Contact for Photocatalytic CO2 Reduction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902868
– volume: 141
  start-page: 11658
  issue: 29
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0770
  article-title: C60-Adsorbed Single-Walled Carbon Nanotubes as Metal-Free, pH-Universal, and Multifunctional Catalysts for Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b05006
– volume: 27
  start-page: 133
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0170
  article-title: Synergistic effect of bifunctional catalytic sites and defect engineering for high-performance Li–CO2 batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.01.021
– volume: 59
  start-page: 551
  issue: 5
  year: 2016
  ident: 10.1016/j.cej.2021.130587_b0185
  article-title: Electrochemical reduction of CO2 to CO using graphene oxide/carbon nanotube electrode in ionic liquid/acetonitrile system
  publication-title: Science China-Chemistry
  doi: 10.1007/s11426-016-5584-1
– volume: 785
  start-page: 138
  year: 2017
  ident: 10.1016/j.cej.2021.130587_b0220
  article-title: High efficiency graphene/Cu2O electrode for the electrochemical reduction of carbon dioxide to ethanol
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2016.12.029
– volume: 59
  start-page: 21885
  issue: 49
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0780
  article-title: A Universal Graphene Quantum Dot Tethering Design Strategy to Synthesize Single-Atom Catalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202008422
– volume: 57
  start-page: 12790
  issue: 39
  year: 2018
  ident: 10.1016/j.cej.2021.130587_b0020
  article-title: Nitrogen-doped graphene quantum dots enhance the activity of Bi2O3 nanosheets for electrochemical reduction of CO2 in a wide negative potential region
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201807643
– volume: 21
  start-page: 1768
  issue: 16
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0535
  article-title: Cu Atomic Chain Supported on Graphene Nanoribbon for Effective Conversion of CO(2)to Ethanol
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.202000476
– volume: 12
  start-page: 6083
  year: 2016
  ident: 10.1016/j.cej.2021.130587_b0200
  article-title: Nickel-Nitrogen-Modified Graphene: An Efficient Electrocatalyst for the Reduction of Carbon Dioxide to Carbon Monoxide
  publication-title: Small
  doi: 10.1002/smll.201602158
– volume: 9
  start-page: 2124
  issue: 3
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0485
  article-title: Efficient CO2 Electroreduction by Highly Dense and Active Pyridinic Nitrogen on Holey Carbon Layers with Fluorine Engineering
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00016
– volume: 11
  start-page: 2944
  issue: 17
  year: 2018
  ident: 10.1016/j.cej.2021.130587_b0295
  article-title: Zinc-Coordinated Nitrogen-Codoped Graphene as an Efficient Catalyst for Selective Electrochemical Reduction of CO2 to CO
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201800925
– volume: 58
  start-page: 13532
  issue: 38
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0340
  article-title: Linkage Effect in the Heterogenization of Cobalt Complexes by Doped Graphene for Electrocatalytic CO2 Reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201906475
– volume: 31
  start-page: 1800696
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0110
  article-title: Recent progress in graphene-based noble-metal nanocomposites for electrocatalytic applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800696
– volume: 783
  start-page: 82
  year: 2016
  ident: 10.1016/j.cej.2021.130587_b0210
  article-title: Pt-modified nitrogen doped reduced graphene oxide: A powerful electrocatalyst for direct CO2 reduction to methanol
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2016.11.047
– volume: 268
  start-page: 118747
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0450
  article-title: Dual-atom Ag-2/graphene catalyst for efficient electroreduction of CO2 to CO
  publication-title: Applied Catalysis B-Environmental
  doi: 10.1016/j.apcatb.2020.118747
– volume: 21
  start-page: 23638
  issue: 42
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0505
  article-title: Mechanistic insight into electroreduction of carbon dioxide on FeNx (x=0-4) embedded graphene
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP03370J
– volume: 20
  start-page: 3521
  issue: 15
  year: 2018
  ident: 10.1016/j.cej.2021.130587_b0225
  article-title: The synthesis of atomic Fe embedded in bamboo-CNTs grown on graphene as a superior CO2 electrocatalyst
  publication-title: Green Chem.
  doi: 10.1039/C8GC01466C
– volume: 10
  start-page: 15262
  year: 2018
  ident: 10.1016/j.cej.2021.130587_b0550
  article-title: C2N-graphene supported single-atom catalysts for CO2 electrochemical reduction reaction: mechanistic insight and catalyst screening
  publication-title: Nanoscale
  doi: 10.1039/C8NR04961K
– volume: 5
  start-page: 6658
  issue: 11
  year: 2015
  ident: 10.1016/j.cej.2021.130587_b0590
  article-title: CO2 Electroreduction Performance of Transition Metal Dimers Supported on Graphene: A Theoretical Study
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01165
– volume: 53
  start-page: 871
  issue: 3
  year: 2014
  ident: 10.1016/j.cej.2021.130587_b0690
  article-title: High-Yield Electrochemical Production of Formaldehyde from CO2and Seawater
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201308657
– volume: 132
  start-page: 11216
  issue: 27
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0705
  article-title: Boosting CO2 Electroreduction on N, P-Co-doped Carbon Aerogels
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202004226
– volume: 5
  start-page: 1800177
  year: 2018
  ident: 10.1016/j.cej.2021.130587_b0520
  article-title: Bifunctional Nitrogen and Cobalt Codoped Hollow Carbon for Electrochemical Syngas Production
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800177
– volume: 12
  start-page: 16178
  issue: 14
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0440
  article-title: Nanoconfined Tin Oxide within N-Doped Nanocarbon Supported on Electrochemically Exfoliated Graphene for Efficient Electroreduction of CO2 to Formate and C1 Products
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b18091
– volume: 239
  start-page: 441
  year: 2018
  ident: 10.1016/j.cej.2021.130587_b0275
  article-title: The ensemble effect of nitrogen doping and ultrasmall SnO2 nanocrystals on graphene sheets for efficient electroreduction of carbon dioxide
  publication-title: Applied Catalysis B-Environmental
  doi: 10.1016/j.apcatb.2018.08.044
– volume: 122
  start-page: 28629
  issue: 50
  year: 2018
  ident: 10.1016/j.cej.2021.130587_b0600
  article-title: Graphene-Supported Monometallic and Bimetallic Dimers for Electrochemical CO2 Reduction
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b07887
– volume: 6
  start-page: 5951
  issue: 24
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0350
  article-title: CuSn Alloy Nanoparticles on Nitrogen-Doped Graphene for Electrocatalytic CO2 Reduction
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201901381
– volume: 58
  start-page: 14871
  issue: 42
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0160
  article-title: A graphene-supported single-atom fen5 catalytic site for efficient electrochemical CO2 reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201906079
– volume: 51
  start-page: 16699
  issue: 93
  year: 2015
  ident: 10.1016/j.cej.2021.130587_b0045
  article-title: A pH-mediated enhancement of the graphene carbocatalyst activity for the reduction of 4-nitrophenol
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC05826K
– volume: 19
  start-page: 4284
  year: 2017
  ident: 10.1016/j.cej.2021.130587_b0525
  article-title: Composition-tunable synthesis of “clean” syngas via a one-step synthesis of metal-free pyridinic-N-enriched self-supported CNTs: the synergy of electrocatalyst pyrolysis temperature and potential
  publication-title: Green Chem.
  doi: 10.1039/C7GC01095H
– volume: 50
  start-page: 979
  issue: 9
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0445
  article-title: Flexible and free-standing polyvinyl alcohol-reduced graphene oxide-Cu2O/CuO thin films for electrochemical reduction of carbon dioxide
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-020-01450-z
– volume: 22
  start-page: 6804
  issue: 20
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0465
  article-title: Synthesis of Sn4P3/reduced graphene oxide nanocomposites as highly efficient electrocatalysts for CO2 reduction
  publication-title: Green Chem.
  doi: 10.1039/D0GC02509G
– volume: 537
  start-page: 382
  issue: 7620
  year: 2016
  ident: 10.1016/j.cej.2021.130587_b0010
  article-title: Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration
  publication-title: Nature
  doi: 10.1038/nature19060
– volume: 6
  issue: 1
  year: 2016
  ident: 10.1016/j.cej.2021.130587_b0055
  article-title: Graphene oxide-enhanced sol-gel transition sensitivity and drug release performance of an amphiphilic copolymer-based nanocomposite
  publication-title: Sci. Rep.
– volume: 15
  start-page: 1804224
  issue: 10
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0495
  article-title: Impact of Interfacial Electron Transfer on Electrochemical CO2 Reduction on Graphitic Carbon Nitride/Doped Graphene
  publication-title: Small
  doi: 10.1002/smll.201804224
– volume: 30
  start-page: 1910118
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0460
  article-title: Enhanced Electrochemical CO2 Reduction of Cu@CuxO Nanoparticles Decorated on 3D Vertical Graphene with Intrinsic sp3-type Defect
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201910118
– volume: 119
  start-page: 21345
  issue: 37
  year: 2015
  ident: 10.1016/j.cej.2021.130587_b0565
  article-title: Tailoring Metal-Porphyrin-Like Active Sites on Graphene to Improve the Efficiency and Selectivity of Electrochemical CO2 Reduction
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b05518
– volume: 18
  start-page: 5491
  year: 2016
  ident: 10.1016/j.cej.2021.130587_b0660
  article-title: Pyrrolic-nitrogen doped graphene: a metal-free electrocatalyst with high efficiency and selectivity for the reduction of carbon dioxide to formic acid: a computational study
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP07458D
– volume: 556
  year: 2021
  ident: 10.1016/j.cej.2021.130587_b0475
  article-title: Oxide-derived Cu-Zn nanoparticles supported on N-doped graphene for electrochemical reduction of CO2 to ethanol
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.149790
– volume: 7
  issue: 1
  year: 2017
  ident: 10.1016/j.cej.2021.130587_b0745
  article-title: 3D graphene preparation via covalent amide functionalization for efficient metal-free electrocatalysis in oxygen reduction
  publication-title: Sci. Rep.
  doi: 10.1038/srep43279
– volume: 8
  start-page: 4983
  issue: 12
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0435
  article-title: Three-Dimensional Nitrogen-Doped Graphene Aerogel-Supported MnO Nanoparticles as Efficient Electrocatalysts for CO2 Reduction to CO
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.0c01194
– volume: 9
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0530
  article-title: Graphene Supported Tungsten Carbide as Catalyst for Electrochemical Reduction of CO2
  publication-title: Catalysts
  doi: 10.3390/catal9070604
– volume: 7
  start-page: 1268
  issue: 2
  year: 2016
  ident: 10.1016/j.cej.2021.130587_b0670
  article-title: Highly effective sites and selectivity of nitrogen-doped graphene/CNT catalysts for CO2 electrochemical reduction
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC03695J
– volume: 7
  issue: 1
  year: 2016
  ident: 10.1016/j.cej.2021.130587_b0065
  article-title: A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13869
– volume: 8
  start-page: 1801400
  issue: 25
  year: 2018
  ident: 10.1016/j.cej.2021.130587_b0285
  article-title: Engineering surface amine modifiers of ultrasmall gold nanoparticles supported on reduced graphene oxide for improved electrochemical CO2 reduction
  publication-title: Adv. Energ. Mater.
  doi: 10.1002/aenm.201801400
– volume: 120
  start-page: 10336
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0035
  article-title: 3D graphene materials: From understanding to design and synthesis control
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00083
– volume: 10
  start-page: 3222
  issue: 5
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0380
  article-title: Mass Transport Control by Surface Graphene Oxide for Selective CO Production from Electrochemical CO2 Reduction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b05096
– volume: 398
  start-page: 83
  year: 2018
  ident: 10.1016/j.cej.2021.130587_b0250
  article-title: Silver sulfide anchored on reduced graphene oxide as a high -performance catalyst for CO2 electroreduction
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.07.049
– volume: 8
  start-page: 1510
  issue: 2
  year: 2018
  ident: 10.1016/j.cej.2021.130587_b0610
  article-title: Pd-Containing Nanostructures for Electrochemical CO2 Reduction Reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03612
– volume: 2
  start-page: 11319
  year: 2014
  ident: 10.1016/j.cej.2021.130587_b0050
  article-title: PAM/graphene/Ag ternary hydrogel: synthesis, characterization and catalytic application
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA01620C
– volume: 123
  start-page: 5164
  issue: 9
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0630
  article-title: Benchmarking Density Functional Theory Functionals for Polarons in Oxides: Properties of CeO2
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b09134
– volume: 31
  start-page: 1438
  issue: 6
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0405
  article-title: Nitrogen-doped carbon nanotube-encapsulated nickel nanoparticles assembled on graphene for efficient CO2 electroreduction
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2020.04.056
– volume: 14
  start-page: 3766
  issue: 7
  year: 2014
  ident: 10.1016/j.cej.2021.130587_b0585
  article-title: Atomic Structure and Dynamics of Metal Dopant Pairs in Graphene
  publication-title: Nano Lett.
  doi: 10.1021/nl500682j
– volume: 7
  start-page: 7695
  year: 2017
  ident: 10.1016/j.cej.2021.130587_b0150
  article-title: Cobalt spinel nanocubes on N-doped graphene: A synergistic hybrid electrocatalyst for the highly selective reduction of carbon dioxide to formic acid
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02166
– volume: 11
  start-page: 2541
  issue: 7
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0595
  article-title: Design of a Graphene Nitrene Two-Dimensional Catalyst Heterostructure Providing a Well-Defined Site Accommodating One to Three Metals, with Application to CO2 Reduction Electrocatalysis for the Two-Metal Case
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c00642
– volume: 12
  start-page: 41223
  issue: 37
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0425
  article-title: CO2 to Formic Acid Using Cu-Sn on Laser-Induced Graphene
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c08964
– volume: 7
  start-page: 8136
  issue: 9
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0625
  article-title: RuN4 Doped Graphene Oxide, a Highly Efficient Bifunctional Catalyst for Oxygen Reduction and CO2 Reduction from Computational Study
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b05729
– volume: 3
  start-page: 797
  issue: 2
  year: 2015
  ident: 10.1016/j.cej.2021.130587_b0140
  article-title: Task-specific functionalization of graphene for use as a cathode catalyst support for carbon dioxide conversion
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA05087H
– volume: 323
  start-page: 760
  issue: 5915
  year: 2009
  ident: 10.1016/j.cej.2021.130587_b0790
  article-title: Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction
  publication-title: Science
  doi: 10.1126/science.1168049
– volume: 9
  start-page: 8197
  issue: 9
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0665
  article-title: Constant Electrode Potential Quantum Mechanical Study of CO2 Electrochemical Reduction Catalyzed by N-Doped Graphene
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b01318
– volume: 24
  start-page: 1
  year: 2016
  ident: 10.1016/j.cej.2021.130587_b0180
  article-title: Controlled assembly of Cu nanoparticles on pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.03.024
– volume: 33
  start-page: 166
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0345
  article-title: A renewable, flexible and robust single layer nitrogen-doped graphene coating Sn foil for boosting formate production from electrocatalytic CO2 reduction
  publication-title: Journal of CO2 Utilization
  doi: 10.1016/j.jcou.2019.05.026
– volume: 19
  start-page: 11436
  issue: 18
  year: 2017
  ident: 10.1016/j.cej.2021.130587_b0560
  article-title: Electrochemical reduction of CO2 on graphene supported transition metals - towards single atom catalysts
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP00915A
– volume: 508
  start-page: 144835
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0760
  article-title: Catalytic reduction reactions over the silver ions embedded in polyacrylamide/graphene composite hydrogels: Kinetics and performance
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.144835
– volume: 43
  start-page: 23262
  issue: 52
  year: 2018
  ident: 10.1016/j.cej.2021.130587_b0270
  article-title: Reduction of carbon dioxide to methanol on the surface of adenine functionalized reduced graphene oxide at a low potential
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.10.188
– volume: 117
  start-page: 1805
  issue: 14
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0510
  article-title: Fe-porphyrin carbon matrix as a bifunctional catalyst for oxygen reduction and CO2 reduction from theoretical perspective
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2018.1544673
– volume: 30
  start-page: 1706617
  issue: 18
  year: 2018
  ident: 10.1016/j.cej.2021.130587_b0155
  article-title: Surface immobilization of transition metal ions on nitrogen-doped graphene realizing high-efficient and selective CO2 reduction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706617
– ident: 10.1016/j.cej.2021.130587_b0810
– volume: 11
  start-page: 41588
  issue: 44
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0635
  article-title: Modification of Carbon Nitride/Reduced Graphene Oxide van der Waals Heterostructure with Copper Nanoparticles To Improve CO2 Sensitivity
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b13440
– volume: 142
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0805
  article-title: Recent advances in two-dimensional transition metal dichalcogenides for biological sensing
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2019.111573
– volume: 19
  start-page: 23113
  issue: 34
  year: 2017
  ident: 10.1016/j.cej.2021.130587_b0545
  article-title: CO2 electroreduction performance of a single transition metal atom supported on porphyrin-like graphene: a computational study
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP04299J
– volume: 14
  start-page: 3805
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0640
  article-title: Electrocatalytic Reduction of CO2 on Mono-Metal/Graphene/Polyurethane Sponge Electrodes
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.20964/2019.04.35
– volume: 30
  start-page: 168
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0120
  article-title: Graphene-based materials for electrochemical CO2 reduction
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2019.02.001
– volume: 2
  start-page: 1544
  issue: 2
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0615
  article-title: CO2 Electrochemical Reduction Catalyzed by Graphene Supported Palladium Cluster: A Computational Guideline
  publication-title: ACS Appl. Energ. Mater.
  doi: 10.1021/acsaem.8b02174
– volume: 5
  start-page: 2000134
  issue: 1
  year: 2021
  ident: 10.1016/j.cej.2021.130587_b0695
  article-title: Non-N-Doped Carbons as Metal-Free Electrocatalysts
  publication-title: Advanced Sustainable Systems
  doi: 10.1002/adsu.202000134
– volume: 8
  start-page: 6134
  issue: 15
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0540
  article-title: CO2 Reduction on Metal- and Nitrogen-Codoped Graphene: Balancing Activity and Selectivity via Coordination Engineering
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.0c01923
– volume: 56
  start-page: 11275
  issue: 76
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0400
  article-title: Graphene-encapsulated nickel-copper bimetallic nanoparticle catalysts for electrochemical reduction of CO(2)to CO
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC04779A
– volume: 28
  start-page: 9532
  issue: 43
  year: 2016
  ident: 10.1016/j.cej.2021.130587_b0735
  article-title: Defect Graphene as a Trifunctional Catalyst for Electrochemical Reactions
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602912
– volume: 133
  start-page: 2084
  issue: 7
  year: 2011
  ident: 10.1016/j.cej.2021.130587_b0685
  article-title: Ambient Carbon Dioxide Capture by Boron-Rich Boron Nitride Nanotube
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1101807
– volume: 11
  start-page: 893
  issue: 4
  year: 2018
  ident: 10.1016/j.cej.2021.130587_b0030
  article-title: Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C7EE03245E
– volume: 139
  start-page: 5660
  issue: 16
  year: 2017
  ident: 10.1016/j.cej.2021.130587_b0095
  article-title: A CsPbBr 3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00489
– volume: 27
  start-page: 320
  year: 2016
  ident: 10.1016/j.cej.2021.130587_b0815
  article-title: Photocatalytic CO2 conversion to methanol by Cu2O/graphene/TNA heterostructure catalyst in a visible-light-driven dual-chamber reactor
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.06.056
– volume: 24
  start-page: 334
  year: 2018
  ident: 10.1016/j.cej.2021.130587_b0245
  article-title: Cu/TiO2 nanoparticles modified nitrogen-doped graphene as a highly efficient catalyst for the selective electroreduction of CO2 to different alcohols
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2018.01.021
– volume: 9
  start-page: 1803151
  issue: 3
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0360
  article-title: A Water-Soluble Cu Complex as Molecular Catalyst for Electrocatalytic CO2 Reduction on Graphene-Based Electrodes
  publication-title: Adv. Energ. Mater.
  doi: 10.1002/aenm.201803151
– volume: 126
  start-page: 10980
  year: 2014
  ident: 10.1016/j.cej.2021.130587_b0740
  article-title: Oxygen Reduction Reaction in a Droplet on Graphite: Direct Evidence that the Edge Is More Active than the Basal Plane
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201406695
– volume: 4
  start-page: 4398
  issue: 14
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0515
  article-title: Synthesize and Characterization of 2-Aminothiazole Monomer and Polymer-based Bifunctional Fe/N/C Catalysts for Oxygen and Carbon Dioxide Reduction Reactions
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201900690
– volume: 4
  issue: 1
  year: 2015
  ident: 10.1016/j.cej.2021.130587_b0175
  article-title: Copper nanoparticles stabilized by reduced graphene oxide for CO2 reduction reaction
  publication-title: Mater. Renewable Sustainable Energy
– volume: 25
  start-page: 3131
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0500
  article-title: First-Row Transition-Metal Cations (Co2+, Ni2+, Mn2+, Fe2+) and Graphene (Oxide) Composites: From Structural Properties to Electrochemical Applications
  publication-title: Chemistry-a European Journal
  doi: 10.1002/chem.201806309
– volume: 3
  start-page: 11157
  issue: 21
  year: 2015
  ident: 10.1016/j.cej.2021.130587_b0040
  article-title: Synthesis and stabilization of metal nanocatalysts for reduction reactions – a review
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00753D
– volume: 6
  start-page: 38380
  issue: 44
  year: 2016
  ident: 10.1016/j.cej.2021.130587_b0205
  article-title: Catalysis performance comparison for electrochemical reduction of CO2 on Pd-Cu/graphene catalyst
  publication-title: RSC Adv.
  doi: 10.1039/C6RA03160A
– volume: 282
  start-page: 694
  year: 2018
  ident: 10.1016/j.cej.2021.130587_b0300
  article-title: Electrochemical reduction of CO2 at metal-free N-functionalized graphene oxide electrodes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.06.107
– volume: 2
  year: 2021
  ident: 10.1016/j.cej.2021.130587_b0765
  article-title: Multifunctional carbon-based metal-free catalysts for advanced energy conversion and storage
  publication-title: Cell Reports Physical Science
  doi: 10.1016/j.xcrp.2021.100328
– volume: 25
  start-page: 27
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0130
  article-title: A review of graphene-based 3D van der Waals hybrids and their energy applications
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2019.02.006
– volume: 259
  start-page: 118044
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0325
  article-title: Efficient electrocatalytic reduction of CO2 on CuxO decorated graphene oxides: an insight into the role of multivalent Cu in selectivity and durability
  publication-title: Applied Catalysis B-Environmental
  doi: 10.1016/j.apcatb.2019.118044
– volume: 1
  start-page: 85
  issue: 1
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0115
  article-title: Reduced graphene oxide-based materials for electrochemical energy conversion reactions
  publication-title: Carbon Energy
  doi: 10.1002/cey2.13
– volume: 318
  start-page: 142
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0330
  article-title: Decoration of N-functionalized graphene nanoflakes with copper-based nanoparticles for high selectivity CO2 electroreduction towards formate
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.06.074
– volume: 97
  year: 2018
  ident: 10.1016/j.cej.2021.130587_b0645
  article-title: Nitrogen doping and CO2 adsorption on graphene: A thermodynamical study
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.155428
– volume: 3
  start-page: 417
  issue: 3
  year: 2016
  ident: 10.1016/j.cej.2021.130587_b0730
  article-title: Defect-driven oxygen reduction reaction (ORR) of carbon without any element doping
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C5QI00236B
– volume: 51
  start-page: 16061
  issue: 89
  year: 2015
  ident: 10.1016/j.cej.2021.130587_b0135
  article-title: Metal-free boron-doped graphene for selective electroreduction of carbon dioxide to formic acid/formate
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC06051F
– volume: 826
  start-page: 1
  year: 2018
  ident: 10.1016/j.cej.2021.130587_b0260
  article-title: Nickel phthalocyanine integrated graphene architecture as bifunctional electrocatalyst for CO2 and O-2 reductions
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2018.08.020
– volume: 3
  start-page: 257
  issue: 1
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0410
  article-title: Cu/Cu2O Nanoparticles Supported on Vertically ZIF-L-Coated Nitrogen-Doped Graphene Nanosheets for Electroreduction of CO2 to Ethanol
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b01935
– volume: 120
  start-page: 12315
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0575
  article-title: Theoretical Understandings of Graphene-based Metal Single-Atom Catalysts: Stability and Catalytic Performance
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00818
– volume: 9
  start-page: 357
  year: 2016
  ident: 10.1016/j.cej.2021.130587_b0125
  article-title: The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C5EE02474A
– volume: 6
  start-page: 5025
  issue: 12
  year: 2018
  ident: 10.1016/j.cej.2021.130587_b0230
  article-title: Elastic Ag-anchored N-doped graphene/carbon foam for the selective electrochemical reduction of carbon dioxide to ethanol
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10802H
– volume: 243
  start-page: 294
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0320
  article-title: Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2
  publication-title: Applied Catalysis B-Environmental
  doi: 10.1016/j.apcatb.2018.10.046
– volume: 10
  issue: 1
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0775
  article-title: A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12510-0
– volume: 534
  start-page: 332
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0490
  article-title: Defective graphene for electrocatalytic CO2 reduction
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.09.036
– volume: 8
  start-page: 1703487
  issue: 19
  year: 2018
  ident: 10.1016/j.cej.2021.130587_b0235
  article-title: Electrochemical CO2 Reduction with Atomic Iron-Dispersed on Nitrogen-Doped Graphene
  publication-title: Adv. Energ. Mater.
  doi: 10.1002/aenm.201703487
– volume: 31
  start-page: 1415
  issue: 6
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0420
  article-title: Bi/Bi2O3 nanoparticles supported on N-doped reduced graphene oxide for highly efficient CO2 electroreduction to formate
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2020.04.031
– volume: 8
  start-page: 1090
  issue: 2
  year: 2017
  ident: 10.1016/j.cej.2021.130587_b0580
  article-title: Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC03911A
– volume: 4
  start-page: 666
  issue: 3
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0315
  article-title: Steric Modification of a Cobalt Phthalocyanine/Graphene Catalyst To Give Enhanced and Stable Electrochemical CO2 Reduction to CO
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b02355
– volume: 7
  issue: 1
  year: 2016
  ident: 10.1016/j.cej.2021.130587_b0085
  article-title: Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12697
– volume: 14
  start-page: 7097
  year: 2014
  ident: 10.1016/j.cej.2021.130587_b0605
  article-title: Electrocatalytic Reduction of CO2 to Formic Acid on Palladium-Graphene Nanocomposites Gas-Diffusion Electrode
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2014.8952
– volume: 9
  start-page: 105515
  issue: 4
  year: 2021
  ident: 10.1016/j.cej.2021.130587_b0480
  article-title: N-doped carbon-encapsulated nickel on reduced graphene oxide materials for efficient CO2 electroreduction to syngas with potential-independent H2/CO ratios
  publication-title: J. Environ Chem. Eng.
  doi: 10.1016/j.jece.2021.105515
– volume: 142
  start-page: 12563
  issue: 29
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0785
  article-title: Stable and Efficient Single-Atom Zn Catalyst for CO2 Reduction to CH4
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b12111
– ident: 10.1016/j.cej.2021.130587_b0795
  doi: 10.1038/s41563-020-00899-9
– volume: 61
  start-page: 428
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0355
  article-title: Single Mo atom realized enhanced CO2 electro-reduction into formate on N-doped graphene
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.003
– volume: 10
  start-page: 10803
  issue: 19
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0555
  article-title: Pore-Edge Tailoring of Single-Atom Iron-Nitrogen Sites on Graphene for Enhanced CO2 Reduction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c02499
– volume: 32
  start-page: 2001848
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0005
  article-title: Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001848
– volume: 28
  start-page: 6845
  issue: 32
  year: 2016
  ident: 10.1016/j.cej.2021.130587_b0720
  article-title: Topological Defects in Metal-Free Nanocarbon for Oxygen Electrocatalysis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601406
– volume: 8
  start-page: 18302
  issue: 35
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0415
  article-title: Selective CO2-to-formate electrochemical conversion with core-shell structured Cu2O/Cu@C composites immobilized on nitrogen-doped graphene sheets
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA05620K
– volume: 10
  start-page: 44403
  issue: 51
  year: 2018
  ident: 10.1016/j.cej.2021.130587_b0280
  article-title: Boosting CH3OH Production in Electrocatalytic CO2 Reduction over Partially Oxidized 5 nm Cobalt Nanoparticles Dispersed on Single-Layer Nitrogen-Doped Graphene
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b14822
– volume: 512
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0755
  article-title: An aerogel adsorbent with bio-inspired interfacial adhesion between graphene and MoS2 sheets for water treatment
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.145717
– volume: 52
  start-page: 2764
  issue: 13
  year: 2016
  ident: 10.1016/j.cej.2021.130587_b0715
  article-title: Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC09173J
– volume: 16
  start-page: 466
  issue: 1
  year: 2016
  ident: 10.1016/j.cej.2021.130587_b0075
  article-title: Incorporation of Nitrogen Defects for Efficient Reduction of CO2 via Two-Electron Pathway on Three-Dimensional Graphene Foam
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04123
– volume: 2
  start-page: 2435
  issue: 4
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0375
  article-title: Electronic Tuning of Cobalt Porphyrins Immobilized on Nitrogen-Doped Graphene for CO2 Reduction
  publication-title: ACS Appl. Energ. Mater.
  doi: 10.1021/acsaem.9b00368
– volume: 167
  start-page: 658
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0395
  article-title: Electrocatalytic reduction of CO2 to CO over iron phthalocyanine-modified graphene nanocomposites
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.06.036
– volume: 13
  start-page: 5620
  issue: 21
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0430
  article-title: Vitamin B12-Immobilized Graphene Oxide for Efficient Electrocatalytic Carbon Dioxide Reduction Reaction
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202001378
– volume: 33
  start-page: 452
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0370
  article-title: Efficient electrochemical reduction of CO2 to ethanol on Cu nanoparticles decorated on N-doped graphene oxide catalysts
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2019.07.014
– volume: 7
  start-page: 6245
  issue: 9
  year: 2017
  ident: 10.1016/j.cej.2021.130587_b0655
  article-title: How Nitrogen-Doped Graphene Quantum Dots Catalyze Electroreduction of CO2 to Hydrocarbons and Oxygenates
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b01839
– volume: 10
  start-page: 1641
  issue: 5
  year: 2017
  ident: 10.1016/j.cej.2021.130587_b0070
  article-title: Enhanced CO2 electroreduction on armchair graphene nanoribbons edge-decorated with copper
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1362-9
– volume: 82
  start-page: 16
  year: 2017
  ident: 10.1016/j.cej.2021.130587_b0215
  article-title: Electrochemical and FTIR spectroscopic study of CO2 reduction at a nanostructured Cu/reduced graphene oxide thin film
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2017.07.006
– volume: 20
  issue: 2
  year: 2018
  ident: 10.1016/j.cej.2021.130587_b0255
  article-title: Reduced graphene oxide supported gold nanoparticles for electrocatalytic reduction of carbon dioxide
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-018-4146-1
– volume: 2
  start-page: 8434
  issue: 12
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0305
  article-title: Different Pathways for CO2 Electrocatalytic Reduction by Confined CoTMPyP in Electrodeposited Reduced Graphene Oxide
  publication-title: ACS Appl. Energ. Mater.
  doi: 10.1021/acsaem.9b01279
– volume: 1
  start-page: 6055
  issue: 19
  year: 2016
  ident: 10.1016/j.cej.2021.130587_b0190
  article-title: High-selectivity electrochemical conversion of CO2 to ethanol using a copper nanoparticle/n-doped graphene electrode
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201601169
– volume: 143
  start-page: 610
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0750
  article-title: A review of three-dimensional graphene-based materials: Synthesis and applications to energy conversion/storage and environment
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.11.053
– volume: 5
  start-page: 11080
  issue: 11
  year: 2017
  ident: 10.1016/j.cej.2021.130587_b0650
  article-title: Theoretical Investigations into Defected Graphene for Electrochemical Reduction of CO2
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b03031
– volume: 30
  start-page: 84
  issue: 1
  year: 2018
  ident: 10.1016/j.cej.2021.130587_b0265
  article-title: Highly Selective and Active Pd-In/three-dimensional Graphene with Special Structure for Electroreduction CO2 to Formate
  publication-title: Electroanalysis
  doi: 10.1002/elan.201700525
– volume: 8
  start-page: 1801280
  issue: 26
  year: 2018
  ident: 10.1016/j.cej.2021.130587_b0290
  article-title: A Porphyrin/Graphene Framework: A Highly Efficient and Robust Electrocatalyst for Carbon Dioxide Reduction
  publication-title: Adv. Energ. Mater.
  doi: 10.1002/aenm.201801280
– volume: 2
  start-page: 46
  issue: 1
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0675
  article-title: Catalytic CO2 reduction by palladium-decorated silicon–hydride nanosheets, Nature
  publication-title: Catalysis
– volume: 44
  start-page: 30820
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0365
  article-title: Electrochemical conversion of CO2 to methanol using a glassy carbon electrode, modified by Pe@histamine-reduced graphene oxide
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.09.237
– volume: 7
  start-page: 19113
  issue: 23
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0025
  article-title: Synergy of a Metallic NiCo Dimer Anchored on a C2N-Graphene Matrix Promotes the Electrochemical CO2 Reduction Reaction
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b05042
– volume: 785
  start-page: 7
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0335
  article-title: N-doped reduced graphene oxide supported Cu2O nanocubes as high active catalyst for CO2 electroreduction to C2H4
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.01.142
– volume: 47
  start-page: 7628
  issue: 20
  year: 2018
  ident: 10.1016/j.cej.2021.130587_b0725
  article-title: Defects on carbons for electrocatalytic oxygen reduction
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00690J
– volume: 139
  start-page: 4052
  issue: 11
  year: 2017
  ident: 10.1016/j.cej.2021.130587_b0080
  article-title: Synergistic enhancement of electrocatalytic CO2 reduction with gold nanoparticles embedded in functional graphene nanoribbon composite electrodes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12217
– volume: 39
  start-page: 101178
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0390
  article-title: Unprecedented lower over-potential for CO2 electro-reduction on copper oxide anchored to graphene oxide microstructures
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2020.101178
– volume: 32
  start-page: 2764
  issue: 7
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0800
  article-title: Highly Active Rhenium-, Ruthenium-, and Iridium-Based Dichalcogenide Electrocatalysts for Oxygen Reduction and Oxygen Evolution Reactions in Aprotic Media
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b04117
– volume: 21
  start-page: 2059
  issue: 5
  year: 2021
  ident: 10.1016/j.cej.2021.130587_b0100
  article-title: Emergence of Potential-controlled Cu-nanocuboids and graphene-covered Cu-nanocuboids under operando CO2 electroreduction
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c04703
– volume: 12
  start-page: 41288
  issue: 37
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0385
  article-title: Vitamin B-12 on Graphene for Highly Efficient CO2 Electroreduction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c10125
– volume: 37
  start-page: 353
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0455
  article-title: Metal-support interaction enhanced electrochemical reduction of CO2 to formate between graphene and Bi nanoparticles
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2020.02.007
– volume: 5
  start-page: 8529
  issue: 10
  year: 2017
  ident: 10.1016/j.cej.2021.130587_b0620
  article-title: Silver Nanoparticles with Surface-Bonded Oxygen for Highly Selective CO2 Reduction
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02380
– volume: 8
  start-page: 4192
  issue: 6
  year: 2016
  ident: 10.1016/j.cej.2021.130587_b0195
  article-title: Graphene-Immobilized fac-Re(bipy)(CO)(3)Cl for Syngas Generation from Carbon Dioxide
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b11958
– volume: 19
  start-page: 4029
  issue: 6
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0310
  article-title: Enhanced Electrocatalytic Reduction of CO2 via Chemical Coupling between Indium Oxide and Reduced Graphene Oxide
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b01393
– volume: 44
  year: 2021
  ident: 10.1016/j.cej.2021.130587_b0470
  article-title: Nitrogen-doped graphene supported copper nanoparticles for electrochemical reduction of CO2
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2020.101382
– volume: 26
  start-page: 233
  issue: 2
  year: 2016
  ident: 10.1016/j.cej.2021.130587_b0820
  article-title: Graphene Quantum Sheet Catalyzed Silicon Photocathode for Selective CO2 Conversion to CO
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201502751
– volume: 9
  start-page: 216
  issue: 1
  year: 2016
  ident: 10.1016/j.cej.2021.130587_b0145
  article-title: Polyethylenimine promoted electrocatalytic reduction of CO2 to CO in aqueous medium by graphene-supported amorphous molybdenum sulphide
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C5EE02879E
– volume: 13
  start-page: 947
  issue: 4
  year: 2020
  ident: 10.1016/j.cej.2021.130587_b0570
  article-title: Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-2720-1
– volume: 492
  start-page: 1
  year: 2015
  ident: 10.1016/j.cej.2021.130587_b0060
  article-title: Metal-free graphene-based catalyst—Insight into the catalytic activity: A short review
  publication-title: Appl. Catal. A: Gen.
  doi: 10.1016/j.apcata.2014.11.041
– volume: 48
  start-page: 5207
  issue: 20
  year: 2019
  ident: 10.1016/j.cej.2021.130587_b0105
  article-title: Single atom electrocatalysts supported on graphene or graphene-like carbons
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00422J
SSID ssj0006919
Score 2.5376973
SecondaryResourceType review_article
Snippet •Review of graphene-assisted construction strategies of both metal and non-metal based electrocatalysts.•Discussion of CO2RR electrocatalytic performances of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 130587
SubjectTerms Active sites
CO2 reduction
Electrocatalysts
Graphene
Metal-based
Non-metal
Title Graphene-assisted construction of electrocatalysts for carbon dioxide reduction
URI https://dx.doi.org/10.1016/j.cej.2021.130587
Volume 425
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14EmKT7qs5lmKtFiuoxd5CdrMLKdKUtge9-NudyUMrqAcvCUl2IMxsZr7Jzn5DyLlvFIAh3N3OmPG4aGtPty18eMiKLBxOGtw7fDeSgzG_nYhJjfSqvTBYVln6_sKn5966vNMqtdmap2nrMcA1rZArTFoCxdAPc65wll--f5V5yDBv7oGDPRxdrWzmNV7GTiFFbAfYE1lgVd1PsWkt3vR3yHYJFGm3eJddUrOzPbK1Rh-4T-6vkW0anJUHCBjNlVCTfTHC0szRsstN_pPmbblaUsCo1MQLDY-TNHtNE0sXyN6KAgdk3L966g28skGCZ5hkK0_bRDqdKB0DDotV2FFMaGU63EFkZkZAqDFSJ760zrBYJAgfuIGEw8DBasUOSX2WzewRoYEDy4RC-4wrjmujInRSMK4BcDkmTYP4lWoiU7KHYxOLl6gqE5tGoM0ItRkV2myQi0-ReUGd8ddgXuk7-mb_CFz772LH_xM7IZt4VZSlnJI6GMaeAbhY6WY-e5pko3szHIzwPHx4Hn4AqpLOoQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gHtSD8RnxuQe9mFRod7eVgwejIsjDg5Bwq-x2m0AMECBRLv4p_6AzfQgm6sGESw_dTtPOTme-6X47A3Ba0B6CIdrdzrm2hHSUpRyDHx5VRZYhGQ3tHa433HJLPLRlOwMf6V4YolUmvj_26ZG3Ts7kE23mh91u_smmNa2i8ChpsT3uJMzKqpm-Yt42vqrc4iSfOU7prnlTtpLWApbmLp9YygRuqAJPdRDBdDxMvLlUnr4UIcY0riU6ae2qoOCaUPOODCjwCo1QXePBKI_jfZdgWaC7oLYJF-8zXolbjLqJ0NNZ9HjpUmpEKtOmhzmpY1MTZkk0vp-C4VyAK23AeoJM2XX88puQMf0tWJurV7gNj_dU3hq9o4WQm-wjYHowK0HLBiFL2upEf4Wm48mYIShmujNSOBx0B2_dwLARlYslgR1oLURtu5DtD_pmD5gdoikUpSpw4QlajJXF0JVcKER4IXd1DgqpanydlCunrhkvfspL6_moTZ-06cfazMH5l8gwrtXx18Ui1bf_zeB8jCW_i-3_T-wEVsrNes2vVRrVA1ilkZgTcwhZnCRzhMhmoo4jS2LwvGjT_QRsAgk9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene-assisted+construction+of+electrocatalysts+for+carbon+dioxide+reduction&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Hu%2C+Huawen&rft.au=Ou%2C+Jian+Zhen&rft.au=Xu%2C+Xuejun&rft.au=Lin%2C+Yinlei&rft.date=2021-12-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=425&rft_id=info:doi/10.1016%2Fj.cej.2021.130587&rft.externalDocID=S1385894721021732
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon