Graphene-assisted construction of electrocatalysts for carbon dioxide reduction
•Review of graphene-assisted construction strategies of both metal and non-metal based electrocatalysts.•Discussion of CO2RR electrocatalytic performances of various graphene − metal composites.•Overview of enhancement approaches of the graphene-based non-metal CO2RR catalytic activities.•Challenges...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 425; p. 130587 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Review of graphene-assisted construction strategies of both metal and non-metal based electrocatalysts.•Discussion of CO2RR electrocatalytic performances of various graphene − metal composites.•Overview of enhancement approaches of the graphene-based non-metal CO2RR catalytic activities.•Challenges and perspectives for the future development of graphene-based CO2RR electrocatalysts.
The electrochemical conversion of the greenhouse gas, carbon dioxide (CO2), to energy fuels and value-added chemicals presents one of the most valuable approaches to harvest pollutants and produce renewable energy. However, the stable molecular structure of CO2 and the sluggish reaction kinetics make CO2 reduction reaction (CO2RR) formidably challenging to achieve reaction rate and selectivity practical in industry. Graphene and its derivatives have been considered a group of intriguing materials to develop advanced CO2RR electrocatalysts due to their large specific surface area, remarkable electron transfer ability, superior stability, and easy tunability of the structure and surface properties. Herein, we comprehensively discuss the state-of-the-art electrocatalysts constructed with graphene and derivatives for active and selective CO2RR within the recent five years, mainly including the electrocatalysts with both metal-based (e.g., noble, non-noble, or combined thereof) and non-metal (e.g., doped, modified, defected, or composited) catalytic sites. To present the versatile, high-performance metal-based CO2RR electrocatalysts constructed with graphene, we further subdivide them according to the sizes, oxidation states, metal species synergies, dimensionalities, and versatility. Finally, we provide the challenges and perspectives in this emerging area of utilising CO2 to produce various carbon-based fuels and chemicals via graphene chemistry. |
---|---|
AbstractList | •Review of graphene-assisted construction strategies of both metal and non-metal based electrocatalysts.•Discussion of CO2RR electrocatalytic performances of various graphene − metal composites.•Overview of enhancement approaches of the graphene-based non-metal CO2RR catalytic activities.•Challenges and perspectives for the future development of graphene-based CO2RR electrocatalysts.
The electrochemical conversion of the greenhouse gas, carbon dioxide (CO2), to energy fuels and value-added chemicals presents one of the most valuable approaches to harvest pollutants and produce renewable energy. However, the stable molecular structure of CO2 and the sluggish reaction kinetics make CO2 reduction reaction (CO2RR) formidably challenging to achieve reaction rate and selectivity practical in industry. Graphene and its derivatives have been considered a group of intriguing materials to develop advanced CO2RR electrocatalysts due to their large specific surface area, remarkable electron transfer ability, superior stability, and easy tunability of the structure and surface properties. Herein, we comprehensively discuss the state-of-the-art electrocatalysts constructed with graphene and derivatives for active and selective CO2RR within the recent five years, mainly including the electrocatalysts with both metal-based (e.g., noble, non-noble, or combined thereof) and non-metal (e.g., doped, modified, defected, or composited) catalytic sites. To present the versatile, high-performance metal-based CO2RR electrocatalysts constructed with graphene, we further subdivide them according to the sizes, oxidation states, metal species synergies, dimensionalities, and versatility. Finally, we provide the challenges and perspectives in this emerging area of utilising CO2 to produce various carbon-based fuels and chemicals via graphene chemistry. |
ArticleNumber | 130587 |
Author | Huang, Yugang Lin, Yinlei Xu, Xuejun Hu, Huawen He, Minghui Zhang, Yuyuan Deng, Lifang Chen, Dongchu Ou, Jian Zhen Zhao, Hong |
Author_xml | – sequence: 1 givenname: Huawen surname: Hu fullname: Hu, Huawen email: huawenhu@126.com organization: School of Materials Science and Hydrogen Energy, Foshan University, Foshan, Guangdong 528000, China – sequence: 2 givenname: Jian Zhen surname: Ou fullname: Ou, Jian Zhen email: Jianzhen.ou@rmit.edu.au organization: School of Materials Science and Hydrogen Energy, Foshan University, Foshan, Guangdong 528000, China – sequence: 3 givenname: Xuejun surname: Xu fullname: Xu, Xuejun organization: School of Materials Science and Hydrogen Energy, Foshan University, Foshan, Guangdong 528000, China – sequence: 4 givenname: Yinlei surname: Lin fullname: Lin, Yinlei organization: School of Materials Science and Hydrogen Energy, Foshan University, Foshan, Guangdong 528000, China – sequence: 5 givenname: Yuyuan surname: Zhang fullname: Zhang, Yuyuan organization: School of Materials Science and Hydrogen Energy, Foshan University, Foshan, Guangdong 528000, China – sequence: 6 givenname: Hong surname: Zhao fullname: Zhao, Hong organization: School of Materials Science and Hydrogen Energy, Foshan University, Foshan, Guangdong 528000, China – sequence: 7 givenname: Dongchu surname: Chen fullname: Chen, Dongchu organization: School of Materials Science and Hydrogen Energy, Foshan University, Foshan, Guangdong 528000, China – sequence: 8 givenname: Minghui surname: He fullname: He, Minghui organization: State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China – sequence: 9 givenname: Yugang surname: Huang fullname: Huang, Yugang organization: Key Laboratory of Molecular Target and Clinical Pharmacology & School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China – sequence: 10 givenname: Lifang surname: Deng fullname: Deng, Lifang organization: CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Guangzhou, Guangdong 510640, China |
BookMark | eNp9kM9Kw0AQhxepYFt9AG95gcT9k2QTPEnRKhR60fOymZ3ghpgtu6vYt3dLPPXQy8zA8A2_-VZkMbkJCblntGCU1Q9DATgUnHJWMEGrRl6RJWukyAVnfJFm0VR505byhqxCGCildcvaJdlvvT584oS5DsGGiCYDN4XovyFaN2Wuz3BEiN6Bjno8hhiy3vkMtO_S2lj3aw1mHs0M3JLrXo8B7_77mny8PL9vXvPdfvu2edrlIGoR8w5N3XdGdrpirZZtSlp1Epqyp5wLqHjbQt0ZWmMPQleGypKVUPIGUsFOijWR813wLgSPvQIb9SlB9NqOilF18qIGlbyokxc1e0kkOyMP3n5pf7zIPM4Mppd-LHoVwOIEaKxPcpRx9gL9BwlUfwo |
CitedBy_id | crossref_primary_10_1016_j_nanoso_2024_101338 crossref_primary_10_1007_s12034_022_02826_x crossref_primary_10_1002_ange_202422775 crossref_primary_10_1016_j_cej_2024_148776 crossref_primary_10_3390_molecules28062829 crossref_primary_10_1016_j_inoche_2025_114398 crossref_primary_10_1039_D2EN00248E crossref_primary_10_1016_j_mcat_2022_112876 crossref_primary_10_1016_j_jece_2023_110435 crossref_primary_10_1016_S1872_5805_24_60839_5 crossref_primary_10_1021_acs_energyfuels_5c00352 crossref_primary_10_1016_j_apmt_2021_101352 crossref_primary_10_1021_acs_energyfuels_2c01708 crossref_primary_10_1016_j_resconrec_2022_106821 crossref_primary_10_1016_j_seppur_2022_122508 crossref_primary_10_1016_j_surfin_2024_105462 crossref_primary_10_1039_D2QM00604A crossref_primary_10_3390_molecules28155798 crossref_primary_10_1016_j_mcat_2024_114161 crossref_primary_10_1016_j_desal_2025_118630 crossref_primary_10_1002_adma_202409531 crossref_primary_10_1149_1945_7111_acaacc crossref_primary_10_1016_j_apsusc_2022_155510 crossref_primary_10_1016_j_mcat_2024_114225 crossref_primary_10_1002_anie_202422775 crossref_primary_10_1016_j_jallcom_2023_172858 crossref_primary_10_1039_D3PY01148H crossref_primary_10_1039_D3EN00988B crossref_primary_10_1016_j_seppur_2022_122090 crossref_primary_10_1016_j_cej_2022_136666 crossref_primary_10_1016_j_jece_2023_109358 crossref_primary_10_1016_j_cej_2022_136129 crossref_primary_10_1002_ente_202101127 crossref_primary_10_1016_j_cis_2025_103429 crossref_primary_10_1080_17518253_2024_2426503 crossref_primary_10_1039_D4TA00320A crossref_primary_10_3390_molecules27248644 crossref_primary_10_1007_s10853_022_07050_w crossref_primary_10_1039_D4QM00381K crossref_primary_10_1016_j_resconrec_2021_105980 crossref_primary_10_1021_acsaem_2c03687 crossref_primary_10_3390_nano12193339 |
Cites_doi | 10.1021/acsnano.9b09658 10.1021/acsenergylett.8b00273 10.1002/adma.202001300 10.1039/C8EE03403F 10.1021/ja400243r 10.1039/C9CY01709G 10.1002/adma.201902868 10.1021/jacs.9b05006 10.1016/j.ensm.2020.01.021 10.1007/s11426-016-5584-1 10.1016/j.jelechem.2016.12.029 10.1002/anie.202008422 10.1002/anie.201807643 10.1002/cphc.202000476 10.1002/smll.201602158 10.1021/acscatal.9b00016 10.1002/cssc.201800925 10.1002/anie.201906475 10.1002/adma.201800696 10.1016/j.jelechem.2016.11.047 10.1016/j.apcatb.2020.118747 10.1039/C9CP03370J 10.1039/C8GC01466C 10.1039/C8NR04961K 10.1021/acscatal.5b01165 10.1002/anie.201308657 10.1002/ange.202004226 10.1002/advs.201800177 10.1021/acsami.9b18091 10.1016/j.apcatb.2018.08.044 10.1021/acs.jpcc.8b07887 10.1002/celc.201901381 10.1002/anie.201906079 10.1039/C5CC05826K 10.1039/C7GC01095H 10.1007/s10800-020-01450-z 10.1039/D0GC02509G 10.1038/nature19060 10.1002/smll.201804224 10.1002/adfm.201910118 10.1021/acs.jpcc.5b05518 10.1039/C5CP07458D 10.1016/j.apsusc.2021.149790 10.1038/srep43279 10.1021/acssuschemeng.0c01194 10.3390/catal9070604 10.1039/C5SC03695J 10.1038/ncomms13869 10.1002/aenm.201801400 10.1021/acs.chemrev.0c00083 10.1021/acscatal.9b05096 10.1016/j.jpowsour.2018.07.049 10.1021/acscatal.7b03612 10.1039/C4TA01620C 10.1021/acs.jpcc.8b09134 10.1016/j.cclet.2020.04.056 10.1021/nl500682j 10.1021/acscatal.7b02166 10.1021/acs.jpclett.0c00642 10.1021/acsami.0c08964 10.1021/acssuschemeng.8b05729 10.1039/C4TA05087H 10.1126/science.1168049 10.1021/acscatal.9b01318 10.1016/j.nanoen.2016.03.024 10.1016/j.jcou.2019.05.026 10.1039/C7CP00915A 10.1016/j.apsusc.2019.144835 10.1016/j.ijhydene.2018.10.188 10.1080/00268976.2018.1544673 10.1002/adma.201706617 10.1021/acsami.9b13440 10.1016/j.bios.2019.111573 10.1039/C7CP04299J 10.20964/2019.04.35 10.1016/j.jcou.2019.02.001 10.1021/acsaem.8b02174 10.1002/adsu.202000134 10.1021/acssuschemeng.0c01923 10.1039/D0CC04779A 10.1002/adma.201602912 10.1021/ja1101807 10.1039/C7EE03245E 10.1021/jacs.7b00489 10.1016/j.nanoen.2016.06.056 10.1016/j.jcou.2018.01.021 10.1002/aenm.201803151 10.1002/ange.201406695 10.1002/slct.201900690 10.1002/chem.201806309 10.1039/C5TA00753D 10.1039/C6RA03160A 10.1016/j.electacta.2018.06.107 10.1016/j.xcrp.2021.100328 10.1016/j.nantod.2019.02.006 10.1016/j.apcatb.2019.118044 10.1002/cey2.13 10.1016/j.electacta.2019.06.074 10.1103/PhysRevB.97.155428 10.1039/C5QI00236B 10.1039/C5CC06051F 10.1016/j.jelechem.2018.08.020 10.1021/acsanm.9b01935 10.1021/acs.chemrev.0c00818 10.1039/C5EE02474A 10.1039/C7TA10802H 10.1016/j.apcatb.2018.10.046 10.1038/s41467-019-12510-0 10.1016/j.jcis.2018.09.036 10.1002/aenm.201703487 10.1016/j.cclet.2020.04.031 10.1039/C6SC03911A 10.1021/acsenergylett.8b02355 10.1038/ncomms12697 10.1166/jnn.2014.8952 10.1016/j.jece.2021.105515 10.1021/jacs.9b12111 10.1038/s41563-020-00899-9 10.1016/j.nanoen.2019.05.003 10.1021/acscatal.0c02499 10.1002/adma.202001848 10.1002/adma.201601406 10.1039/D0TA05620K 10.1021/acsami.8b14822 10.1016/j.apsusc.2020.145717 10.1039/C5CC09173J 10.1021/acs.nanolett.5b04123 10.1021/acsaem.9b00368 10.1016/j.carbon.2020.06.036 10.1002/cssc.202001378 10.1016/j.jcou.2019.07.014 10.1021/acscatal.7b01839 10.1007/s12274-016-1362-9 10.1016/j.elecom.2017.07.006 10.1007/s11051-018-4146-1 10.1021/acsaem.9b01279 10.1002/slct.201601169 10.1016/j.carbon.2018.11.053 10.1021/acssuschemeng.7b03031 10.1002/elan.201700525 10.1002/aenm.201801280 10.1016/j.ijhydene.2019.09.237 10.1021/acssuschemeng.9b05042 10.1016/j.jallcom.2019.01.142 10.1039/C7CS00690J 10.1021/jacs.6b12217 10.1016/j.jcou.2020.101178 10.1021/acs.chemmater.9b04117 10.1021/acs.nanolett.0c04703 10.1021/acsami.0c10125 10.1016/j.jcou.2020.02.007 10.1021/acssuschemeng.7b02380 10.1021/acsami.5b11958 10.1021/acs.nanolett.9b01393 10.1016/j.jcou.2020.101382 10.1002/adfm.201502751 10.1039/C5EE02879E 10.1007/s12274-020-2720-1 10.1016/j.apcata.2014.11.041 10.1039/C9CS00422J |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2021.130587 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
ExternalDocumentID | 10_1016_j_cej_2021_130587 S1385894721021732 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- RIG SEW SSH ZY4 |
ID | FETCH-LOGICAL-c363t-bed6fbd7ba519a798735b7c84f0223c5299c6bd06efc3a5d07414c428cc42eb73 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Thu Apr 24 22:59:33 EDT 2025 Tue Jul 01 04:27:35 EDT 2025 Fri Feb 23 02:44:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Metal-based Non-metal Active sites CO2 reduction Graphene Electrocatalysts |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-bed6fbd7ba519a798735b7c84f0223c5299c6bd06efc3a5d07414c428cc42eb73 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cej_2021_130587 crossref_primary_10_1016_j_cej_2021_130587 elsevier_sciencedirect_doi_10_1016_j_cej_2021_130587 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 2021-12-00 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ellis, Sorescu, Hwang, Burkert, White, Kim, Star (b0635) 2019; 11 Wang, Liu, Dai (b0695) 2021; 5 Zhang, Yang, Wu, Liu, Yazdi, Ren, Sha, Zhong, Nie, Jalilov, Li, Li, Yakobson, Wu, Ringe, Xu, Ajayan, Tour (b0235) 2018; 8 Zhao, Wang, Liu, MacFarlane, Wallace (b0285) 2018; 8 Li, Su, Chan, Sun (b0590) 2015; 5 Han, Yu, Yuan, Kuang, Wang, Al-Enizi, Zheng (b0490) 2019; 534 Zhi, Jiao, Zheng, Qiao (b0495) 2019; 15 Tang, Wang, Chen, Li, Hou, Zhang, Zhang, Titirici, Wei (b0720) 2016; 28 Pan, Li, Sarnello, Fei, Gang, Xiang, Du, Zhang, Wang, Nguyen, Li, Hu, Zhou, Li (b0015) 2020; 14 Zhao, Zou, Yan, Brown, Chen, Zhu, Yao (b0730) 2016; 3 Zhang, Li, Chen, Wang, Liu, Zhang (b0410) 2020; 3 Nakata, Ozaki, Terashima, Fujishima, Einaga (b0690) 2014; 53 Li, Zhao, Chen, Khan, MacFarlane, Zhang (b0145) 2016; 9 Xu, Vasileff, Jin, Wang, Xu, Zheng, Qiao (b0400) 2020; 56 Alinajafi, Ensafi, Rezaei (b0270) 2018; 43 Zeng, Shi, Luo, Chen (b0250) 2018; 398 Dong, Zhang, Tian, Li, Yan, Wang, Jiang, Su, Oloman, Gyenge, Ge, Lu, Ji, Chen (b0710) 2020; 32 Yuan, Yang, Zhi, Wang, Wang, Lu (b0370) 2019; 33 Castleton, Lee, Kullgren (b0630) 2019; 123 Li, Zhang, Tong, Liu, Xu, Cao, Cao (b0815) 2016; 27 Li, Liu, Huang, Wu, Li, Zhen, Feng (b0415) 2020; 8 Dongare, Singh, Bhunia (b0470) 2021; 44 He, Tang, Wang, Bian (b0265) 2018; 30 Lu, Guo, Chen, Zhu, Ma, Wu, Yang, Yang, Sun, Han (b0465) 2020; 22 Wu, Chen, Wang, Fu, Luo (b0455) 2020; 37 Zhuo, Zhang, Liang, Yu, Xiao, Li (b0575) 2020; 120 Siahrostami, Jiang, Karamad, Chan, Wang, Nørskov (b0650) 2017; 5 Liu, Pang, Zhang, De Luna, Voznyy, Xu, Zheng, Dinh, Fan, Cao, de Arquer, Safaei, Mepham, Klinkova, Kumacheva, Filleter, Sinton, Kelley, Sargent (b0010) 2016; 537 Pan, Li, Xiang, Wang, Li (b0485) 2019; 9 Li, Wang, Luo, Sherrell, Chen, Yang (b0005) 2020; 32 . Choi, Wagner, Gambhir, Jalili, MacFarlane, Wallace, Officer (b0315) 2019; 4 Jiang, Kharel, Peng, Gangishetty, Lin, Stavitski, Attenkofer, Wang (b0620) 2017; 5 Choi, Park, Kim, Lee (b0685) 2011; 133 Saravanan, Balamurugan, Shalini Devi, Nam, Senthil Kumar (b0430) 2020; 13 Chai, Guo (b0670) 2016; 7 Huang, Cheng, Zhang, Zuo, Xiao, Xie (b0355) 2019; 61 Saquib, Halder (b0255) 2018; 20 Hu, Wang, Miao, Wang, Lai, Guo, Wang, Xin, Hu (b0045) 2015; 51 Geioushy, Khaled, Hakeem, Alhooshani, Basheer (b0220) 2017; 785 Ensafi, Alinajafi, Rezaei (b0210) 2016; 783 Shen, Zou, Wang, Dryfe, Huang, Dou, Dai, Wang (b0740) 2014; 126 Lv, Fan, Zhu, Yuan, Wang, Zhu, Zhang (b0230) 2018; 6 Ma, Tsounis, Kumar, Han, Wong, Toe, Zhou, Bedford, Thomsen, Ng, Amal (b0460) 2020; 30 Yang, Ha, Sim, An, Lee, Jin, Kim, Park, Hong, Lee, Lee, Jeong, Kim, Nam (b0820) 2016; 26 Fiorentin, Gaspari, Quaglio, Massaglia, Saracco (b0645) 2018; 97 Tao, Wang, Dou, Ma, Huo, Wang, Dai (b0715) 2016; 52 Yuan, Zhi, Liu, Yang, Wang, Lu (b0300) 2018; 282 Fu, Wang, Zheng, Lei, Yang, Chen, Li, Lei, Yuan, Hou (b0440) 2020; 12 Yang, Wang, Ma, Zhu, Bian (b0640) 2019; 14 Li, Zhu, Fu, Zhang, Wu, Sun (b0180) 2016; 24 He, Morrissey, Curtiss, Zapol (b0600) 2018; 122 Chen, Mou, Yao, Liu (b0295) 2018; 11 Zhang, Li, Xi, Du, Hai, Wang, Xu, Wu, Zhang, Lu, Wang (b0160) 2019; 58 Legrand, Boudreault, Meunier (b0330) 2019; 318 Phan, Banjac, Cometto, Dattila, García-Muelas, Raaijman, Ye, Koper, López, Lingenfelder (b0100) 2021; 21 Ning, Mao, Wang, Yang, Wang, Zhao, Song, Wu (b0335) 2019; 785 Sun, Li, Searles, Chen, Lu, Du (b0680) 2013; 135 Cheng, Zhao, Li, He, Veder, Johannessen, Xiao, Lu, Pan, Chisholm, Yang, Liu, Chen, Jiang (b0320) 2019; 243 Wang, Zhao, Cai (b0545) 2017; 19 Chen, Yuan, Morozov, Ge, Li, Xu, Goddard (b0595) 2020; 11 Varela, Kroschel, Leonard, Ju, Steinberg, Bagger, Rossmeisl, Strasser (b0240) 2018; 3 Choi, Wagner, Jalili, Kim, MacFarlane, Wallace, Officer (b0290) 2018; 8 Pan, Li, Sarnello, Fei, Feng, Gang, Xiang, Fang, Li, Hu, Wang, Li (b0555) 2020; 10 Ren, Zheng, Lei, Zhang, Wang, Yakobson, Yao, Tour (b0425) 2020; 12 Su, Iwase, Nakanishi, Hashimoto, Kamiya (b0200) 2016; 12 Hu, Dai, Dai (b0765) 2021; 2 Yuan, Yang, Hu, Li, Wang, Lu (b0245) 2018; 24 Song, Peng, Hensley, Bonnesen, Liang, Wu, Meyer, Chi, Ma, Sumpter, Rondinone (b0190) 2016; 1 Zhang, Guo, Zuo, Pan, Zhang (b0275) 2018; 239 Wang, Huang, Xi, Lee, Wang, Du, Wang (b0340) 2019; 58 Cui, An, Liu, Wang, Men, Wang (b0550) 2018; 10 Sun, Zheng, Lyu, He, Yang, Li, Lei, Hou (b0420) 2020; 31 Bi, Li, You, Chen, Yuan, Huang, Wu, Chu, Wu, Xie (b0155) 2018; 30 Majidi, Hemmat, Warburton, Kumar, Ahmadiparidari, Hong, Guo, Zapol, Klie, Cabana, Greeley, Curtiss, Salehi-Khojin (b0800) 2020; 32 Li, Chai, Xu, Liu, Zhong, Cao, Tao, You, Kang (b0395) 2020; 167 Ahmed, Kim (b0745) 2017; 7 Bie, Zhu, Xu, Zhang, Yu (b0090) 2019; 31 Yan, Jia, Yao (b0725) 2018; 47 Liu, Cheng, Wang, Li, Wang, Wu (b0510) 2019; 117 Rashid, Bhat, Das, Ingole (b0390) 2020; 39 Chen, Mou, Wang, Liu (b0020) 2018; 57 Huang, Liu, An, Wang, Feng, Men (b0025) 2019; 7 Wang, Yang, Chen, He, Li, Lei, Lu, Leung, Yang, Hou (b0405) 2020; 31 Liu, Ma, Huang, Liu, Zhang (b0110) 2019; 31 Han, Song, Liu, Yao, Liang, Cheng, Ren, Liu, Lin, Qi, Liu, Wu, Luo, Xin (b0785) 2020; 142 B.Y. Zhang, K. Xu, Q. Yao, A. Jannat, G. Ren, M.R. Field, X. Wen, C. Zhou, A. Zavabeti, J.Z. Ou, Hexagonal metal oxide monolayers derived from the metal–gas interface, Nat. Mater. (2021) Wang, Tang, Zhang (b0130) 2019; 25 Zhu, Ma, Kang, Sun, Hu, Yang, Han (b0185) 2016; 59 Fei, Dong, Chen, Hu, Duan, Shakir, Huang, Duan (b0105) 2019; 48 Higgins, Zamani, Yu, Chen (b0125) 2016; 9 Zhang, Wang, Zhao, Zhao, Cheng, Li, Wang, Wang, Wang (b0225) 2018; 20 Wu, Zhu, Huang (b0750) 2019; 143 Ananthaneni, Smith, Rankin (b0530) 2019; 9 Shen, Sun (b0535) 2020; 21 Qian, Sun, Hung, Qiu, Makaremi, Hari Kumar, Wan, Ghoussoub, Wood, Xia, Tountas, Li, Wang, Dong, Gourevich, Singh, Ozin (b0675) 2019; 2 Li, Chen, Cao, Pan, He, Zhou (b0450) 2020; 268 Ma, Fan, Li, Qiu, Wu, Sun (b0120) 2019; 30 He, He, Robertson, Kirkland, Kim, Ihm, Yoon, Lee, Warner (b0585) 2014; 14 Liu, Cheng, Li, Yin, Tang, Wang, Wu (b0625) 2019; 7 Cheng, Kwon, Head-Gordon, Bell (b0565) 2015; 119 Sekar, Calvillo, Tubaro, Baron, Pokle, Carraro, Martucci, Agnoli (b0150) 2017; 7 Xiong, Yang, Shuai, Hou, Qiu, Li, Leung (b0350) 2019; 6 Chang, Zhang, Chen, Lu, Cheng (b0665) 2019; 9 Huang, Guo, Wei, Hu, Yu, Wang (b0345) 2019; 33 Zhu, Cao, Chen, Sun, Ye, Xu, Han (b0375) 2019; 2 Chen, Sun, Yan, Wu, Liu, Zhu, Bediako, Han (b0705) 2020; 132 Lu, Wang, Bian, Liu (b0605) 2014; 14 Liu, Zhu, Wang, He, Bian (b0205) 2016; 6 Wang, Zhang, Ding, Xu, Bernards, He, Shi (b0435) 2020; 8 He, Jagvaral (b0560) 2017; 19 Hossain, Wen, Konda, Govindhan, Chen (b0215) 2017; 82 Zhou, Micheroni, Lin, Poon, Li, Lin (b0195) 2016; 8 Wu, Liu, Sharma, Yadav, Ma, Yang, Zou, Zhou, Vajtai, Yakobson, Lou, Ajayan (b0075) 2016; 16 Hu, Zavabeti, Quan, Zhu, Wei, Chen, Ou (b0805) 2019; 142 Qiao, Wu, Zhao, Li, Zhang, Hao, Liu, Yang, Liu (b0170) 2020; 27 Zarandi, Rezaei, Ghaziaskar, Ensafi (b0365) 2019; 44 Nguyen, Lee, Na, Kim, Tu, Lee, Sa, Won, Oh, Kim, Min, Han, Lee, Hwang (b0380) 2020; 10 Zhang, Wang, Yang (b0540) 2020; 8 Hu, Zhang, Qiao, Chen (b0760) 2020; 508 Hu, Xin, Hu, Wang, Kong (b0060) 2015; 492 Dongare, Singh, Bhunia (b0475) 2021; 556 Wang, Gan, Zhang, Reddu, Peng, Liu, Xia, Wang, Wang (b0360) 2019; 9 Gao, Dai, Du, Yan, Dai (b0770) 2019; 141 Zhu, Lin, Kang, Quan, Zhang, Chang, Wang, Zhang, Zhang, Li, Wei, Fan, Chen, Hu (b0755) 2020; 512 Alves, Silva, Voiry, Asefa, Chhowalla (b0175) 2015; 4 Oztuna, Yagci, Unal (b0500) 2019; 25 Yang, Shang, Zhang, Shi, Waterhouse, Gu, Zhang (b0775) 2019; 10 Q. Quan, S.-J. Xie, Y. Wang, Y.-J. Xu, Photoelectrochemical Reduction of CO2 over Graphene-Based Composites: Basic Principle, Recent Progress, and Future Perspective, Acta Physico-Chimica Sinica 33 (2017) 2404-2423. Fu, Liang, Li, Chen, Wang, Zheng, Zhang, Chen, Wang, Peng, Gu, Li (b0570) 2020; 13 Wu, Ma, Sun, Gold, Tiwary, Kim, Zhu, Chopra, Odeh, Vajtai, Yu, Luo, Lou, Ding, Kenis, Ajayan (b0065) 2016; 7 Zhang, Ahmad, Zhao, Yan, Zhang, Huang, Ma, Zeng (b0310) 2019; 19 Gao, Zhou, Cai, Wang, Wang, Bao (b0610) 2018; 8 Sonkar, Ganesan, Gupta, Yadav, Yadav (b0260) 2018; 826 Xu, Yang, Chen, Wang, Chen, Kuang, Su (b0095) 2017; 139 Jia, Ching, Kumar, Zhao, Kumar, Chen, Das (b0385) 2020; 12 Lei, Liu, Sun, Xu, Liu, Liang, Yao, Pan, Wei, Xie (b0085) 2016; 7 Gong, Du, Xia, Durstock, Dai (b0790) 2009; 323 Sun, Fang, Hu (b0035) 2020; 120 Song, Zhang, Yang, Zhang, Zuo, Cao, Sun, Lin, Li, Jiang (b0520) 2018; 5 Tamilarasan, Ramaprabhu (b0140) 2015; 3 Sreekanth, Nazrulla, Vineesh, Sailaja, Phani (b0135) 2015; 51 Zhao, Miao, Wang, Liang, Liu, Wu, Diao, Mu, Cheng, Zhou (b0480) 2021; 9 Liu, Zhong, Yang, Bao, Meng, Yan, Zhang (b0525) 2017; 19 Choi, Kim, Wagner, Gambhir, Jalili, Byun, Sayyar, Lee, MacFarlane, Wallace, Officer (b0165) 2019; 12 Jia, Zhang, Du, Gao, Chen, Yan, Brown, Yao (b0735) 2016; 28 Rogers, Perkins, Veber, Williams, Cloke, Fischer (b0080) 2017; 139 Hu, Xin, Hu, Wang, Miao, Liu (b0040) 2015; 3 Hu, Wang, Lee, Ma, Hu, Xin (b0055) 2016; 6 Wu, Chen (b0615) 2019; 2 Back, Lim, Kim, Kim, Jung (b0580) 2017; 8 Jiang, Siahrostami, Zheng, Hu, Hwang, Stavitski, Peng, Dynes, Gangisetty, Su, Attenkofer, Wang (b0030) 2018; 11 Liu, Zhao, Cai (b0660) 2016; 18 Hu, Xin, Hu (b0050) 2014; 2 Sheelam, Muneeb, Talukdar, Ravindranath, Huang, Kuo, Sankar (b0445) 2020; 50 Huang, Guo, Yue, Hu, Wang (b0280) 2018; 10 Bochlin, Korin, Bettelheim (b0305) 2019; 2 Zhang, Jiang, Niu, Zhang, Sun, Hu (b0515) 2019; 4 Zou, Liu, Wu, Ajayan, Li, Liu, Yakobson (b0655) 2017; 7 Zhu, Li, Zhu, Su, Chan, Sun (b0070) 2017; 10 Ni, Li, Zang, Xu, Huo, Liu, Yang, Yan (b0325) 2019; 259 Zhao, Tian, Wang, Yan, Su (b0505) 2019; 21 Mao, Kour, Zhang, He, Wang, Yan, Zhu, Du (b0700) 2019; 9 Choi, Kim, Suh, Jang (b0115) 2019; 1 Jin, Ni, Hao, Zhang, Lu, Yan, Wei, Lu, Chan, Chen (b0780) 2020; 59 Rogers (10.1016/j.cej.2021.130587_b0080) 2017; 139 Alves (10.1016/j.cej.2021.130587_b0175) 2015; 4 Wang (10.1016/j.cej.2021.130587_b0695) 2021; 5 Lv (10.1016/j.cej.2021.130587_b0230) 2018; 6 Zhang (10.1016/j.cej.2021.130587_b0540) 2020; 8 Phan (10.1016/j.cej.2021.130587_b0100) 2021; 21 Huang (10.1016/j.cej.2021.130587_b0025) 2019; 7 Liu (10.1016/j.cej.2021.130587_b0525) 2017; 19 Majidi (10.1016/j.cej.2021.130587_b0800) 2020; 32 Sheelam (10.1016/j.cej.2021.130587_b0445) 2020; 50 Li (10.1016/j.cej.2021.130587_b0180) 2016; 24 Cheng (10.1016/j.cej.2021.130587_b0565) 2015; 119 Jia (10.1016/j.cej.2021.130587_b0735) 2016; 28 Choi (10.1016/j.cej.2021.130587_b0315) 2019; 4 Xu (10.1016/j.cej.2021.130587_b0400) 2020; 56 Zhang (10.1016/j.cej.2021.130587_b0275) 2018; 239 Ren (10.1016/j.cej.2021.130587_b0425) 2020; 12 Ellis (10.1016/j.cej.2021.130587_b0635) 2019; 11 Hu (10.1016/j.cej.2021.130587_b0040) 2015; 3 Gao (10.1016/j.cej.2021.130587_b0610) 2018; 8 Chen (10.1016/j.cej.2021.130587_b0295) 2018; 11 Huang (10.1016/j.cej.2021.130587_b0280) 2018; 10 Cui (10.1016/j.cej.2021.130587_b0550) 2018; 10 Lu (10.1016/j.cej.2021.130587_b0605) 2014; 14 Liu (10.1016/j.cej.2021.130587_b0205) 2016; 6 Gong (10.1016/j.cej.2021.130587_b0790) 2009; 323 Zhang (10.1016/j.cej.2021.130587_b0160) 2019; 58 Jiang (10.1016/j.cej.2021.130587_b0620) 2017; 5 Fiorentin (10.1016/j.cej.2021.130587_b0645) 2018; 97 Tao (10.1016/j.cej.2021.130587_b0715) 2016; 52 Li (10.1016/j.cej.2021.130587_b0145) 2016; 9 Zeng (10.1016/j.cej.2021.130587_b0250) 2018; 398 Li (10.1016/j.cej.2021.130587_b0415) 2020; 8 Wu (10.1016/j.cej.2021.130587_b0065) 2016; 7 Zhang (10.1016/j.cej.2021.130587_b0225) 2018; 20 Song (10.1016/j.cej.2021.130587_b0520) 2018; 5 Tang (10.1016/j.cej.2021.130587_b0720) 2016; 28 Back (10.1016/j.cej.2021.130587_b0580) 2017; 8 Fei (10.1016/j.cej.2021.130587_b0105) 2019; 48 Chen (10.1016/j.cej.2021.130587_b0595) 2020; 11 Chai (10.1016/j.cej.2021.130587_b0670) 2016; 7 Wang (10.1016/j.cej.2021.130587_b0360) 2019; 9 Sonkar (10.1016/j.cej.2021.130587_b0260) 2018; 826 Ning (10.1016/j.cej.2021.130587_b0335) 2019; 785 Oztuna (10.1016/j.cej.2021.130587_b0500) 2019; 25 Dongare (10.1016/j.cej.2021.130587_b0475) 2021; 556 Gao (10.1016/j.cej.2021.130587_b0770) 2019; 141 Zou (10.1016/j.cej.2021.130587_b0655) 2017; 7 Liu (10.1016/j.cej.2021.130587_b0510) 2019; 117 Wu (10.1016/j.cej.2021.130587_b0750) 2019; 143 Ma (10.1016/j.cej.2021.130587_b0460) 2020; 30 Hu (10.1016/j.cej.2021.130587_b0045) 2015; 51 Zhang (10.1016/j.cej.2021.130587_b0235) 2018; 8 Tamilarasan (10.1016/j.cej.2021.130587_b0140) 2015; 3 Yuan (10.1016/j.cej.2021.130587_b0245) 2018; 24 Chen (10.1016/j.cej.2021.130587_b0020) 2018; 57 Dongare (10.1016/j.cej.2021.130587_b0470) 2021; 44 Ananthaneni (10.1016/j.cej.2021.130587_b0530) 2019; 9 Sekar (10.1016/j.cej.2021.130587_b0150) 2017; 7 Choi (10.1016/j.cej.2021.130587_b0290) 2018; 8 Cheng (10.1016/j.cej.2021.130587_b0320) 2019; 243 Pan (10.1016/j.cej.2021.130587_b0485) 2019; 9 Sreekanth (10.1016/j.cej.2021.130587_b0135) 2015; 51 Yang (10.1016/j.cej.2021.130587_b0640) 2019; 14 Castleton (10.1016/j.cej.2021.130587_b0630) 2019; 123 Zhu (10.1016/j.cej.2021.130587_b0185) 2016; 59 Sun (10.1016/j.cej.2021.130587_b0420) 2020; 31 Legrand (10.1016/j.cej.2021.130587_b0330) 2019; 318 Zhao (10.1016/j.cej.2021.130587_b0505) 2019; 21 Zhuo (10.1016/j.cej.2021.130587_b0575) 2020; 120 Su (10.1016/j.cej.2021.130587_b0200) 2016; 12 Lei (10.1016/j.cej.2021.130587_b0085) 2016; 7 Li (10.1016/j.cej.2021.130587_b0005) 2020; 32 Sun (10.1016/j.cej.2021.130587_b0680) 2013; 135 10.1016/j.cej.2021.130587_b0810 Qiao (10.1016/j.cej.2021.130587_b0170) 2020; 27 Pan (10.1016/j.cej.2021.130587_b0015) 2020; 14 Liu (10.1016/j.cej.2021.130587_b0625) 2019; 7 Huang (10.1016/j.cej.2021.130587_b0355) 2019; 61 Wu (10.1016/j.cej.2021.130587_b0615) 2019; 2 Li (10.1016/j.cej.2021.130587_b0815) 2016; 27 Liu (10.1016/j.cej.2021.130587_b0660) 2016; 18 Wang (10.1016/j.cej.2021.130587_b0405) 2020; 31 Wang (10.1016/j.cej.2021.130587_b0340) 2019; 58 Jiang (10.1016/j.cej.2021.130587_b0030) 2018; 11 Ni (10.1016/j.cej.2021.130587_b0325) 2019; 259 Hu (10.1016/j.cej.2021.130587_b0060) 2015; 492 Zhu (10.1016/j.cej.2021.130587_b0375) 2019; 2 Zhao (10.1016/j.cej.2021.130587_b0730) 2016; 3 Hu (10.1016/j.cej.2021.130587_b0055) 2016; 6 Hossain (10.1016/j.cej.2021.130587_b0215) 2017; 82 Yuan (10.1016/j.cej.2021.130587_b0370) 2019; 33 Zhi (10.1016/j.cej.2021.130587_b0495) 2019; 15 Zhu (10.1016/j.cej.2021.130587_b0755) 2020; 512 Mao (10.1016/j.cej.2021.130587_b0700) 2019; 9 Jin (10.1016/j.cej.2021.130587_b0780) 2020; 59 Wu (10.1016/j.cej.2021.130587_b0075) 2016; 16 Song (10.1016/j.cej.2021.130587_b0190) 2016; 1 Siahrostami (10.1016/j.cej.2021.130587_b0650) 2017; 5 Wu (10.1016/j.cej.2021.130587_b0455) 2020; 37 Rashid (10.1016/j.cej.2021.130587_b0390) 2020; 39 Shen (10.1016/j.cej.2021.130587_b0740) 2014; 126 Hu (10.1016/j.cej.2021.130587_b0050) 2014; 2 Bi (10.1016/j.cej.2021.130587_b0155) 2018; 30 Zhang (10.1016/j.cej.2021.130587_b0515) 2019; 4 Huang (10.1016/j.cej.2021.130587_b0345) 2019; 33 Li (10.1016/j.cej.2021.130587_b0450) 2020; 268 10.1016/j.cej.2021.130587_b0795 Chen (10.1016/j.cej.2021.130587_b0705) 2020; 132 Chang (10.1016/j.cej.2021.130587_b0665) 2019; 9 Han (10.1016/j.cej.2021.130587_b0785) 2020; 142 Higgins (10.1016/j.cej.2021.130587_b0125) 2016; 9 Nakata (10.1016/j.cej.2021.130587_b0690) 2014; 53 He (10.1016/j.cej.2021.130587_b0560) 2017; 19 Saquib (10.1016/j.cej.2021.130587_b0255) 2018; 20 Ma (10.1016/j.cej.2021.130587_b0120) 2019; 30 Ensafi (10.1016/j.cej.2021.130587_b0210) 2016; 783 Shen (10.1016/j.cej.2021.130587_b0535) 2020; 21 Fu (10.1016/j.cej.2021.130587_b0570) 2020; 13 Lu (10.1016/j.cej.2021.130587_b0465) 2020; 22 Alinajafi (10.1016/j.cej.2021.130587_b0270) 2018; 43 He (10.1016/j.cej.2021.130587_b0265) 2018; 30 Choi (10.1016/j.cej.2021.130587_b0115) 2019; 1 Li (10.1016/j.cej.2021.130587_b0590) 2015; 5 Qian (10.1016/j.cej.2021.130587_b0675) 2019; 2 Jia (10.1016/j.cej.2021.130587_b0385) 2020; 12 Choi (10.1016/j.cej.2021.130587_b0685) 2011; 133 Liu (10.1016/j.cej.2021.130587_b0010) 2016; 537 Dong (10.1016/j.cej.2021.130587_b0710) 2020; 32 Xiong (10.1016/j.cej.2021.130587_b0350) 2019; 6 Ahmed (10.1016/j.cej.2021.130587_b0745) 2017; 7 Zhang (10.1016/j.cej.2021.130587_b0410) 2020; 3 Wang (10.1016/j.cej.2021.130587_b0545) 2017; 19 Han (10.1016/j.cej.2021.130587_b0490) 2019; 534 Nguyen (10.1016/j.cej.2021.130587_b0380) 2020; 10 Sun (10.1016/j.cej.2021.130587_b0035) 2020; 120 Bochlin (10.1016/j.cej.2021.130587_b0305) 2019; 2 Hu (10.1016/j.cej.2021.130587_b0805) 2019; 142 Zhang (10.1016/j.cej.2021.130587_b0310) 2019; 19 Zhu (10.1016/j.cej.2021.130587_b0070) 2017; 10 Pan (10.1016/j.cej.2021.130587_b0555) 2020; 10 Hu (10.1016/j.cej.2021.130587_b0760) 2020; 508 Yang (10.1016/j.cej.2021.130587_b0820) 2016; 26 Yan (10.1016/j.cej.2021.130587_b0725) 2018; 47 Xu (10.1016/j.cej.2021.130587_b0095) 2017; 139 Wang (10.1016/j.cej.2021.130587_b0435) 2020; 8 Liu (10.1016/j.cej.2021.130587_b0110) 2019; 31 He (10.1016/j.cej.2021.130587_b0600) 2018; 122 Zhao (10.1016/j.cej.2021.130587_b0285) 2018; 8 Varela (10.1016/j.cej.2021.130587_b0240) 2018; 3 Choi (10.1016/j.cej.2021.130587_b0165) 2019; 12 Bie (10.1016/j.cej.2021.130587_b0090) 2019; 31 Zarandi (10.1016/j.cej.2021.130587_b0365) 2019; 44 Yang (10.1016/j.cej.2021.130587_b0775) 2019; 10 Wang (10.1016/j.cej.2021.130587_b0130) 2019; 25 Hu (10.1016/j.cej.2021.130587_b0765) 2021; 2 Saravanan (10.1016/j.cej.2021.130587_b0430) 2020; 13 Yuan (10.1016/j.cej.2021.130587_b0300) 2018; 282 Zhao (10.1016/j.cej.2021.130587_b0480) 2021; 9 Li (10.1016/j.cej.2021.130587_b0395) 2020; 167 Fu (10.1016/j.cej.2021.130587_b0440) 2020; 12 Zhou (10.1016/j.cej.2021.130587_b0195) 2016; 8 Geioushy (10.1016/j.cej.2021.130587_b0220) 2017; 785 He (10.1016/j.cej.2021.130587_b0585) 2014; 14 |
References_xml | – volume: 2 start-page: 2435 year: 2019 end-page: 2440 ident: b0375 article-title: Electronic Tuning of Cobalt Porphyrins Immobilized on Nitrogen-Doped Graphene for CO2 Reduction publication-title: ACS Appl. Energ. Mater. – volume: 167 start-page: 658 year: 2020 end-page: 667 ident: b0395 article-title: Electrocatalytic reduction of CO2 to CO over iron phthalocyanine-modified graphene nanocomposites publication-title: Carbon – volume: 21 start-page: 23638 year: 2019 end-page: 23644 ident: b0505 article-title: Mechanistic insight into electroreduction of carbon dioxide on FeNx (x=0-4) embedded graphene publication-title: Phys. Chem. Chem. Phys. – volume: 33 start-page: 452 year: 2019 end-page: 460 ident: b0370 article-title: Efficient electrochemical reduction of CO2 to ethanol on Cu nanoparticles decorated on N-doped graphene oxide catalysts publication-title: J. CO2 Util. – volume: 4 start-page: 4398 year: 2019 end-page: 4406 ident: b0515 article-title: Synthesize and Characterization of 2-Aminothiazole Monomer and Polymer-based Bifunctional Fe/N/C Catalysts for Oxygen and Carbon Dioxide Reduction Reactions publication-title: ChemistrySelect – volume: 8 start-page: 18302 year: 2020 end-page: 18309 ident: b0415 article-title: Selective CO2-to-formate electrochemical conversion with core-shell structured Cu2O/Cu@C composites immobilized on nitrogen-doped graphene sheets publication-title: J. Mater. Chem. A – volume: 139 start-page: 5660 year: 2017 end-page: 5663 ident: b0095 article-title: A CsPbBr 3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 4983 year: 2020 end-page: 4994 ident: b0435 article-title: Three-Dimensional Nitrogen-Doped Graphene Aerogel-Supported MnO Nanoparticles as Efficient Electrocatalysts for CO2 Reduction to CO publication-title: ACS Sustainable Chem. Eng. – volume: 9 year: 2019 ident: b0530 article-title: Graphene Supported Tungsten Carbide as Catalyst for Electrochemical Reduction of CO2 publication-title: Catalysts – volume: 9 start-page: 1803151 year: 2019 ident: b0360 article-title: A Water-Soluble Cu Complex as Molecular Catalyst for Electrocatalytic CO2 Reduction on Graphene-Based Electrodes publication-title: Adv. Energ. Mater. – volume: 11 start-page: 2944 year: 2018 end-page: 2952 ident: b0295 article-title: Zinc-Coordinated Nitrogen-Codoped Graphene as an Efficient Catalyst for Selective Electrochemical Reduction of CO2 to CO publication-title: ChemSusChem – volume: 508 start-page: 144835 year: 2020 ident: b0760 article-title: Catalytic reduction reactions over the silver ions embedded in polyacrylamide/graphene composite hydrogels: Kinetics and performance publication-title: Appl. Surf. Sci. – volume: 3 start-page: 417 year: 2016 end-page: 421 ident: b0730 article-title: Defect-driven oxygen reduction reaction (ORR) of carbon without any element doping publication-title: Inorg. Chem. Front. – volume: 10 start-page: 15262 year: 2018 end-page: 15272 ident: b0550 article-title: C2N-graphene supported single-atom catalysts for CO2 electrochemical reduction reaction: mechanistic insight and catalyst screening publication-title: Nanoscale – volume: 126 start-page: 10980 year: 2014 end-page: 10984 ident: b0740 article-title: Oxygen Reduction Reaction in a Droplet on Graphite: Direct Evidence that the Edge Is More Active than the Basal Plane publication-title: Angew. Chem. – volume: 7 start-page: 6245 year: 2017 end-page: 6250 ident: b0655 article-title: How Nitrogen-Doped Graphene Quantum Dots Catalyze Electroreduction of CO2 to Hydrocarbons and Oxygenates publication-title: ACS Catal. – volume: 58 start-page: 13532 year: 2019 end-page: 13539 ident: b0340 article-title: Linkage Effect in the Heterogenization of Cobalt Complexes by Doped Graphene for Electrocatalytic CO2 Reduction publication-title: Angew. Chem. Int. Ed. – volume: 268 start-page: 118747 year: 2020 ident: b0450 article-title: Dual-atom Ag-2/graphene catalyst for efficient electroreduction of CO2 to CO publication-title: Applied Catalysis B-Environmental – volume: 7 year: 2017 ident: b0745 article-title: 3D graphene preparation via covalent amide functionalization for efficient metal-free electrocatalysis in oxygen reduction publication-title: Sci. Rep. – volume: 13 start-page: 5620 year: 2020 end-page: 5624 ident: b0430 article-title: Vitamin B12-Immobilized Graphene Oxide for Efficient Electrocatalytic Carbon Dioxide Reduction Reaction publication-title: ChemSusChem – volume: 12 start-page: 6083 year: 2016 end-page: 6089 ident: b0200 article-title: Nickel-Nitrogen-Modified Graphene: An Efficient Electrocatalyst for the Reduction of Carbon Dioxide to Carbon Monoxide publication-title: Small – volume: 11 start-page: 41588 year: 2019 end-page: 41594 ident: b0635 article-title: Modification of Carbon Nitride/Reduced Graphene Oxide van der Waals Heterostructure with Copper Nanoparticles To Improve CO2 Sensitivity publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 3766 year: 2014 end-page: 3772 ident: b0585 article-title: Atomic Structure and Dynamics of Metal Dopant Pairs in Graphene publication-title: Nano Lett. – volume: 2 year: 2021 ident: b0765 article-title: Multifunctional carbon-based metal-free catalysts for advanced energy conversion and storage publication-title: Cell Reports Physical Science – volume: 14 start-page: 5506 year: 2020 end-page: 5516 ident: b0015 article-title: Atomically dispersed iron-nitrogen sites on hierarchically mesoporous carbon nanotube and graphene nanoribbon networks for CO2 reduction publication-title: ACS Nano – volume: 1 start-page: 6055 year: 2016 end-page: 6061 ident: b0190 article-title: High-selectivity electrochemical conversion of CO2 to ethanol using a copper nanoparticle/n-doped graphene electrode publication-title: ChemistrySelect – volume: 21 start-page: 1768 year: 2020 end-page: 1774 ident: b0535 article-title: Cu Atomic Chain Supported on Graphene Nanoribbon for Effective Conversion of CO(2)to Ethanol publication-title: ChemPhysChem – volume: 2 start-page: 11319 year: 2014 end-page: 11333 ident: b0050 article-title: PAM/graphene/Ag ternary hydrogel: synthesis, characterization and catalytic application publication-title: J. Mater. Chem. A – volume: 4 start-page: 666 year: 2019 end-page: 672 ident: b0315 article-title: Steric Modification of a Cobalt Phthalocyanine/Graphene Catalyst To Give Enhanced and Stable Electrochemical CO2 Reduction to CO publication-title: ACS Energy Lett. – volume: 2 start-page: 8434 year: 2019 end-page: 8440 ident: b0305 article-title: Different Pathways for CO2 Electrocatalytic Reduction by Confined CoTMPyP in Electrodeposited Reduced Graphene Oxide publication-title: ACS Appl. Energ. Mater. – volume: 5 start-page: 11080 year: 2017 end-page: 11085 ident: b0650 article-title: Theoretical Investigations into Defected Graphene for Electrochemical Reduction of CO2 publication-title: ACS Sustainable Chem. Eng. – volume: 9 start-page: 6800 year: 2019 end-page: 6807 ident: b0700 article-title: Silicon-doped graphene edges: an efficient metal-free catalyst for the reduction of CO2 into methanol and ethanol publication-title: Catal. Sci. Technol. – volume: 28 start-page: 9532 year: 2016 end-page: 9538 ident: b0735 article-title: Defect Graphene as a Trifunctional Catalyst for Electrochemical Reactions publication-title: Adv. Mater. – volume: 24 start-page: 334 year: 2018 end-page: 340 ident: b0245 article-title: Cu/TiO2 nanoparticles modified nitrogen-doped graphene as a highly efficient catalyst for the selective electroreduction of CO2 to different alcohols publication-title: J. CO2 Util. – volume: 282 start-page: 694 year: 2018 end-page: 701 ident: b0300 article-title: Electrochemical reduction of CO2 at metal-free N-functionalized graphene oxide electrodes publication-title: Electrochim. Acta – volume: 50 start-page: 979 year: 2020 end-page: 991 ident: b0445 article-title: Flexible and free-standing polyvinyl alcohol-reduced graphene oxide-Cu2O/CuO thin films for electrochemical reduction of carbon dioxide publication-title: J. Appl. Electrochem. – volume: 11 start-page: 893 year: 2018 end-page: 903 ident: b0030 article-title: Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction publication-title: Energ. Environ. Sci. – volume: 7 start-page: 19113 year: 2019 end-page: 19121 ident: b0025 article-title: Synergy of a Metallic NiCo Dimer Anchored on a C2N-Graphene Matrix Promotes the Electrochemical CO2 Reduction Reaction publication-title: ACS Sustainable Chem. Eng. – volume: 142 year: 2019 ident: b0805 article-title: Recent advances in two-dimensional transition metal dichalcogenides for biological sensing publication-title: Biosens. Bioelectron. – volume: 22 start-page: 6804 year: 2020 end-page: 6808 ident: b0465 article-title: Synthesis of Sn4P3/reduced graphene oxide nanocomposites as highly efficient electrocatalysts for CO2 reduction publication-title: Green Chem. – volume: 122 start-page: 28629 year: 2018 end-page: 28636 ident: b0600 article-title: Graphene-Supported Monometallic and Bimetallic Dimers for Electrochemical CO2 Reduction publication-title: J. Phys. Chem. C – volume: 534 start-page: 332 year: 2019 end-page: 337 ident: b0490 article-title: Defective graphene for electrocatalytic CO2 reduction publication-title: J. Colloid Interface Sci. – volume: 143 start-page: 610 year: 2019 end-page: 640 ident: b0750 article-title: A review of three-dimensional graphene-based materials: Synthesis and applications to energy conversion/storage and environment publication-title: Carbon – volume: 10 start-page: 1641 year: 2017 end-page: 1650 ident: b0070 article-title: Enhanced CO2 electroreduction on armchair graphene nanoribbons edge-decorated with copper publication-title: Nano Res. – volume: 30 start-page: 1706617 year: 2018 ident: b0155 article-title: Surface immobilization of transition metal ions on nitrogen-doped graphene realizing high-efficient and selective CO2 reduction publication-title: Adv. Mater. – volume: 11 start-page: 2541 year: 2020 end-page: 2549 ident: b0595 article-title: Design of a Graphene Nitrene Two-Dimensional Catalyst Heterostructure Providing a Well-Defined Site Accommodating One to Three Metals, with Application to CO2 Reduction Electrocatalysis for the Two-Metal Case publication-title: J. Phys. Chem. Lett. – volume: 14 start-page: 7097 year: 2014 end-page: 7103 ident: b0605 article-title: Electrocatalytic Reduction of CO<SUB>2</SUB> to Formic Acid on Palladium-Graphene Nanocomposites Gas-Diffusion Electrode publication-title: J. Nanosci. Nanotechnol. – volume: 30 start-page: 1910118 year: 2020 ident: b0460 article-title: Enhanced Electrochemical CO2 Reduction of Cu@CuxO Nanoparticles Decorated on 3D Vertical Graphene with Intrinsic sp3-type Defect publication-title: Adv. Funct. Mater. – volume: 2 start-page: 1544 year: 2019 end-page: 1552 ident: b0615 article-title: CO2 Electrochemical Reduction Catalyzed by Graphene Supported Palladium Cluster: A Computational Guideline publication-title: ACS Appl. Energ. Mater. – volume: 9 start-page: 357 year: 2016 end-page: 390 ident: b0125 article-title: The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress publication-title: Energ. Environ. Sci. – volume: 120 start-page: 12315 year: 2020 end-page: 12341 ident: b0575 article-title: Theoretical Understandings of Graphene-based Metal Single-Atom Catalysts: Stability and Catalytic Performance publication-title: Chem. Rev. – volume: 243 start-page: 294 year: 2019 end-page: 303 ident: b0320 article-title: Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2 publication-title: Applied Catalysis B-Environmental – volume: 9 start-page: 2124 year: 2019 end-page: 2133 ident: b0485 article-title: Efficient CO2 Electroreduction by Highly Dense and Active Pyridinic Nitrogen on Holey Carbon Layers with Fluorine Engineering publication-title: ACS Catal. – volume: 8 start-page: 1801280 year: 2018 ident: b0290 article-title: A Porphyrin/Graphene Framework: A Highly Efficient and Robust Electrocatalyst for Carbon Dioxide Reduction publication-title: Adv. Energ. Mater. – volume: 19 start-page: 4029 year: 2019 end-page: 4034 ident: b0310 article-title: Enhanced Electrocatalytic Reduction of CO2 via Chemical Coupling between Indium Oxide and Reduced Graphene Oxide publication-title: Nano Lett. – volume: 56 start-page: 11275 year: 2020 end-page: 11278 ident: b0400 article-title: Graphene-encapsulated nickel-copper bimetallic nanoparticle catalysts for electrochemical reduction of CO(2)to CO publication-title: Chem. Commun. – volume: 18 start-page: 5491 year: 2016 end-page: 5498 ident: b0660 article-title: Pyrrolic-nitrogen doped graphene: a metal-free electrocatalyst with high efficiency and selectivity for the reduction of carbon dioxide to formic acid: a computational study publication-title: Phys. Chem. Chem. Phys. – volume: 139 start-page: 4052 year: 2017 end-page: 4061 ident: b0080 article-title: Synergistic enhancement of electrocatalytic CO2 reduction with gold nanoparticles embedded in functional graphene nanoribbon composite electrodes publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 3805 year: 2019 end-page: 3823 ident: b0640 article-title: Electrocatalytic Reduction of CO2 on Mono-Metal/Graphene/Polyurethane Sponge Electrodes publication-title: Int. J. Electrochem. Sci. – volume: 32 start-page: 2764 year: 2020 end-page: 2773 ident: b0800 article-title: Highly Active Rhenium-, Ruthenium-, and Iridium-Based Dichalcogenide Electrocatalysts for Oxygen Reduction and Oxygen Evolution Reactions in Aprotic Media publication-title: Chem. Mater. – volume: 9 start-page: 105515 year: 2021 ident: b0480 article-title: N-doped carbon-encapsulated nickel on reduced graphene oxide materials for efficient CO2 electroreduction to syngas with potential-independent H2/CO ratios publication-title: J. Environ Chem. Eng. – volume: 132 start-page: 11216 year: 2020 end-page: 11222 ident: b0705 article-title: Boosting CO2 Electroreduction on N, P-Co-doped Carbon Aerogels publication-title: Angew. Chem. – volume: 19 start-page: 11436 year: 2017 end-page: 11446 ident: b0560 article-title: Electrochemical reduction of CO2 on graphene supported transition metals - towards single atom catalysts publication-title: Phys. Chem. Chem. Phys. – volume: 31 start-page: 1800696 year: 2019 ident: b0110 article-title: Recent progress in graphene-based noble-metal nanocomposites for electrocatalytic applications publication-title: Adv. Mater. – volume: 785 start-page: 138 year: 2017 end-page: 143 ident: b0220 article-title: High efficiency graphene/Cu2O electrode for the electrochemical reduction of carbon dioxide to ethanol publication-title: J. Electroanal. Chem. – volume: 61 start-page: 428 year: 2019 end-page: 434 ident: b0355 article-title: Single Mo atom realized enhanced CO2 electro-reduction into formate on N-doped graphene publication-title: Nano Energy – volume: 12 start-page: 41288 year: 2020 end-page: 41293 ident: b0385 article-title: Vitamin B-12 on Graphene for Highly Efficient CO2 Electroreduction publication-title: ACS Appl. Mater. Interfaces – volume: 30 start-page: 168 year: 2019 end-page: 182 ident: b0120 article-title: Graphene-based materials for electrochemical CO2 reduction publication-title: J. CO2 Util. – volume: 26 start-page: 233 year: 2016 end-page: 242 ident: b0820 article-title: Graphene Quantum Sheet Catalyzed Silicon Photocathode for Selective CO2 Conversion to CO publication-title: Adv. Funct. Mater. – volume: 8 start-page: 1703487 year: 2018 ident: b0235 article-title: Electrochemical CO2 Reduction with Atomic Iron-Dispersed on Nitrogen-Doped Graphene publication-title: Adv. Energ. Mater. – volume: 59 start-page: 21885 year: 2020 end-page: 21889 ident: b0780 article-title: A Universal Graphene Quantum Dot Tethering Design Strategy to Synthesize Single-Atom Catalysts publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 1801400 year: 2018 ident: b0285 article-title: Engineering surface amine modifiers of ultrasmall gold nanoparticles supported on reduced graphene oxide for improved electrochemical CO2 reduction publication-title: Adv. Energ. Mater. – volume: 133 start-page: 2084 year: 2011 end-page: 2087 ident: b0685 article-title: Ambient Carbon Dioxide Capture by Boron-Rich Boron Nitride Nanotube publication-title: J. Am. Chem. Soc. – volume: 239 start-page: 441 year: 2018 end-page: 449 ident: b0275 article-title: The ensemble effect of nitrogen doping and ultrasmall SnO2 nanocrystals on graphene sheets for efficient electroreduction of carbon dioxide publication-title: Applied Catalysis B-Environmental – volume: 5 start-page: 1800177 year: 2018 ident: b0520 article-title: Bifunctional Nitrogen and Cobalt Codoped Hollow Carbon for Electrochemical Syngas Production publication-title: Adv. Sci. – volume: 512 year: 2020 ident: b0755 article-title: An aerogel adsorbent with bio-inspired interfacial adhesion between graphene and MoS2 sheets for water treatment publication-title: Appl. Surf. Sci. – volume: 142 start-page: 12563 year: 2020 end-page: 12567 ident: b0785 article-title: Stable and Efficient Single-Atom Zn Catalyst for CO2 Reduction to CH4 publication-title: J. Am. Chem. Soc. – volume: 31 start-page: 1902868 year: 2019 ident: b0090 article-title: In Situ Grown Monolayer N-Doped Graphene on CdS Hollow Spheres with Seamless Contact for Photocatalytic CO2 Reduction publication-title: Adv. Mater. – volume: 492 start-page: 1 year: 2015 end-page: 9 ident: b0060 article-title: Metal-free graphene-based catalyst—Insight into the catalytic activity: A short review publication-title: Appl. Catal. A: Gen. – volume: 13 start-page: 947 year: 2020 end-page: 951 ident: b0570 article-title: Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis publication-title: Nano Res. – volume: 21 start-page: 2059 year: 2021 end-page: 2065 ident: b0100 article-title: Emergence of Potential-controlled Cu-nanocuboids and graphene-covered Cu-nanocuboids under operando CO2 electroreduction publication-title: Nano Lett. – volume: 20 year: 2018 ident: b0255 article-title: Reduced graphene oxide supported gold nanoparticles for electrocatalytic reduction of carbon dioxide publication-title: J. Nanopart. Res. – reference: B.Y. Zhang, K. Xu, Q. Yao, A. Jannat, G. Ren, M.R. Field, X. Wen, C. Zhou, A. Zavabeti, J.Z. Ou, Hexagonal metal oxide monolayers derived from the metal–gas interface, Nat. Mater. (2021), – volume: 6 start-page: 38380 year: 2016 end-page: 38387 ident: b0205 article-title: Catalysis performance comparison for electrochemical reduction of CO2 on Pd-Cu/graphene catalyst publication-title: RSC Adv. – volume: 27 start-page: 133 year: 2020 end-page: 139 ident: b0170 article-title: Synergistic effect of bifunctional catalytic sites and defect engineering for high-performance Li–CO2 batteries publication-title: Energy Storage Mater. – volume: 323 start-page: 760 year: 2009 end-page: 764 ident: b0790 article-title: Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction publication-title: Science – volume: 120 start-page: 10336 year: 2020 end-page: 10453 ident: b0035 article-title: 3D graphene materials: From understanding to design and synthesis control publication-title: Chem. Rev. – volume: 19 start-page: 4284 year: 2017 end-page: 4288 ident: b0525 article-title: Composition-tunable synthesis of “clean” syngas via a one-step synthesis of metal-free pyridinic-N-enriched self-supported CNTs: the synergy of electrocatalyst pyrolysis temperature and potential publication-title: Green Chem. – volume: 3 start-page: 257 year: 2020 end-page: 263 ident: b0410 article-title: Cu/Cu2O Nanoparticles Supported on Vertically ZIF-L-Coated Nitrogen-Doped Graphene Nanosheets for Electroreduction of CO2 to Ethanol publication-title: ACS Appl. Nano Mater. – volume: 27 start-page: 320 year: 2016 end-page: 329 ident: b0815 article-title: Photocatalytic CO2 conversion to methanol by Cu2O/graphene/TNA heterostructure catalyst in a visible-light-driven dual-chamber reactor publication-title: Nano Energy – volume: 1 start-page: 85 year: 2019 end-page: 108 ident: b0115 article-title: Reduced graphene oxide-based materials for electrochemical energy conversion reactions publication-title: Carbon Energy – volume: 57 start-page: 12790 year: 2018 end-page: 12794 ident: b0020 article-title: Nitrogen-doped graphene quantum dots enhance the activity of Bi2O3 nanosheets for electrochemical reduction of CO2 in a wide negative potential region publication-title: Angew. Chem. Int. Ed. – volume: 6 year: 2016 ident: b0055 article-title: Graphene oxide-enhanced sol-gel transition sensitivity and drug release performance of an amphiphilic copolymer-based nanocomposite publication-title: Sci. Rep. – reference: Q. Quan, S.-J. Xie, Y. Wang, Y.-J. Xu, Photoelectrochemical Reduction of CO2 over Graphene-Based Composites: Basic Principle, Recent Progress, and Future Perspective, Acta Physico-Chimica Sinica 33 (2017) 2404-2423. – volume: 25 start-page: 27 year: 2019 end-page: 37 ident: b0130 article-title: A review of graphene-based 3D van der Waals hybrids and their energy applications publication-title: Nano Today – volume: 44 start-page: 30820 year: 2019 end-page: 30831 ident: b0365 article-title: Electrochemical conversion of CO2 to methanol using a glassy carbon electrode, modified by Pe@histamine-reduced graphene oxide publication-title: Int. J. Hydrogen Energy – volume: 59 start-page: 551 year: 2016 end-page: 556 ident: b0185 article-title: Electrochemical reduction of CO2 to CO using graphene oxide/carbon nanotube electrode in ionic liquid/acetonitrile system publication-title: Science China-Chemistry – volume: 259 start-page: 118044 year: 2019 ident: b0325 article-title: Efficient electrocatalytic reduction of CO2 on CuxO decorated graphene oxides: an insight into the role of multivalent Cu in selectivity and durability publication-title: Applied Catalysis B-Environmental – volume: 51 start-page: 16061 year: 2015 end-page: 16064 ident: b0135 article-title: Metal-free boron-doped graphene for selective electroreduction of carbon dioxide to formic acid/formate publication-title: Chem. Commun. – volume: 51 start-page: 16699 year: 2015 end-page: 16702 ident: b0045 article-title: A pH-mediated enhancement of the graphene carbocatalyst activity for the reduction of 4-nitrophenol publication-title: Chem. Commun. – volume: 12 start-page: 747 year: 2019 end-page: 755 ident: b0165 article-title: Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel publication-title: Energ. Environ. Sci. – volume: 785 start-page: 7 year: 2019 end-page: 12 ident: b0335 article-title: N-doped reduced graphene oxide supported Cu2O nanocubes as high active catalyst for CO2 electroreduction to C2H4 publication-title: J. Alloys Compd. – volume: 2 start-page: 46 year: 2019 end-page: 54 ident: b0675 article-title: Catalytic CO2 reduction by palladium-decorated silicon–hydride nanosheets, Nature publication-title: Catalysis – volume: 31 start-page: 1415 year: 2020 end-page: 1421 ident: b0420 article-title: Bi/Bi2O3 nanoparticles supported on N-doped reduced graphene oxide for highly efficient CO2 electroreduction to formate publication-title: Chin. Chem. Lett. – volume: 37 start-page: 353 year: 2020 end-page: 359 ident: b0455 article-title: Metal-support interaction enhanced electrochemical reduction of CO2 to formate between graphene and Bi nanoparticles publication-title: J. CO2 Util. – volume: 12 start-page: 16178 year: 2020 end-page: 16185 ident: b0440 article-title: Nanoconfined Tin Oxide within N-Doped Nanocarbon Supported on Electrochemically Exfoliated Graphene for Efficient Electroreduction of CO2 to Formate and C1 Products publication-title: ACS Appl. Mater. Interfaces – volume: 119 start-page: 21345 year: 2015 end-page: 21352 ident: b0565 article-title: Tailoring Metal-Porphyrin-Like Active Sites on Graphene to Improve the Efficiency and Selectivity of Electrochemical CO2 Reduction publication-title: J. Phys. Chem. C – volume: 5 start-page: 8529 year: 2017 end-page: 8534 ident: b0620 article-title: Silver Nanoparticles with Surface-Bonded Oxygen for Highly Selective CO2 Reduction publication-title: ACS Sustainable Chem. Eng. – volume: 16 start-page: 466 year: 2016 end-page: 470 ident: b0075 article-title: Incorporation of Nitrogen Defects for Efficient Reduction of CO2 via Two-Electron Pathway on Three-Dimensional Graphene Foam publication-title: Nano Lett. – volume: 47 start-page: 7628 year: 2018 end-page: 7658 ident: b0725 article-title: Defects on carbons for electrocatalytic oxygen reduction publication-title: Chem. Soc. Rev. – volume: 7 year: 2016 ident: b0085 article-title: Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction publication-title: Nat. Commun. – volume: 123 start-page: 5164 year: 2019 end-page: 5175 ident: b0630 article-title: Benchmarking Density Functional Theory Functionals for Polarons in Oxides: Properties of CeO2 publication-title: J. Phys. Chem. C – volume: 8 start-page: 1090 year: 2017 end-page: 1096 ident: b0580 article-title: Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements publication-title: Chem. Sci. – volume: 117 start-page: 1805 year: 2019 end-page: 1812 ident: b0510 article-title: Fe-porphyrin carbon matrix as a bifunctional catalyst for oxygen reduction and CO2 reduction from theoretical perspective publication-title: Mol. Phys. – volume: 135 start-page: 8246 year: 2013 end-page: 8253 ident: b0680 article-title: Charge-Controlled Switchable CO2 Capture on Boron Nitride Nanomaterials publication-title: J. Am. Chem. Soc. – volume: 10 year: 2019 ident: b0775 article-title: A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts publication-title: Nat. Commun. – volume: 10 start-page: 3222 year: 2020 end-page: 3231 ident: b0380 article-title: Mass Transport Control by Surface Graphene Oxide for Selective CO Production from Electrochemical CO2 Reduction publication-title: ACS Catal. – volume: 25 start-page: 3131 year: 2019 end-page: 3140 ident: b0500 article-title: First-Row Transition-Metal Cations (Co2+, Ni2+, Mn2+, Fe2+) and Graphene (Oxide) Composites: From Structural Properties to Electrochemical Applications publication-title: Chemistry-a European Journal – volume: 3 start-page: 812 year: 2018 end-page: 817 ident: b0240 article-title: pH Effects on the Selectivity of the Electrocatalytic CO2 Reduction on Graphene-Embedded Fe-N-C Motifs: Bridging Concepts between Molecular Homogeneous and Solid-State Heterogeneous Catalysis publication-title: ACS Energy Lett. – volume: 398 start-page: 83 year: 2018 end-page: 90 ident: b0250 article-title: Silver sulfide anchored on reduced graphene oxide as a high -performance catalyst for CO2 electroreduction publication-title: J. Power Sources – volume: 82 start-page: 16 year: 2017 end-page: 20 ident: b0215 article-title: Electrochemical and FTIR spectroscopic study of CO2 reduction at a nanostructured Cu/reduced graphene oxide thin film publication-title: Electrochem. Commun. – volume: 12 start-page: 41223 year: 2020 end-page: 41229 ident: b0425 article-title: CO2 to Formic Acid Using Cu-Sn on Laser-Induced Graphene publication-title: ACS Appl. Mater. Interfaces – volume: 826 start-page: 1 year: 2018 end-page: 9 ident: b0260 article-title: Nickel phthalocyanine integrated graphene architecture as bifunctional electrocatalyst for CO2 and O-2 reductions publication-title: J. Electroanal. Chem. – volume: 39 start-page: 101178 year: 2020 ident: b0390 article-title: Unprecedented lower over-potential for CO2 electro-reduction on copper oxide anchored to graphene oxide microstructures publication-title: J. CO2 Util. – volume: 31 start-page: 1438 year: 2020 end-page: 1442 ident: b0405 article-title: Nitrogen-doped carbon nanotube-encapsulated nickel nanoparticles assembled on graphene for efficient CO2 electroreduction publication-title: Chin. Chem. Lett. – volume: 5 start-page: 2000134 year: 2021 ident: b0695 article-title: Non-N-Doped Carbons as Metal-Free Electrocatalysts publication-title: Advanced Sustainable Systems – volume: 318 start-page: 142 year: 2019 end-page: 150 ident: b0330 article-title: Decoration of N-functionalized graphene nanoflakes with copper-based nanoparticles for high selectivity CO2 electroreduction towards formate publication-title: Electrochim. Acta – volume: 53 start-page: 871 year: 2014 end-page: 874 ident: b0690 article-title: High-Yield Electrochemical Production of Formaldehyde from CO2and Seawater publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 6134 year: 2020 end-page: 6141 ident: b0540 article-title: CO2 Reduction on Metal- and Nitrogen-Codoped Graphene: Balancing Activity and Selectivity via Coordination Engineering publication-title: ACS Sustainable Chem. Eng. – volume: 58 start-page: 14871 year: 2019 end-page: 14876 ident: b0160 article-title: A graphene-supported single-atom fen5 catalytic site for efficient electrochemical CO2 reduction publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 10803 year: 2020 end-page: 10811 ident: b0555 article-title: Pore-Edge Tailoring of Single-Atom Iron-Nitrogen Sites on Graphene for Enhanced CO2 Reduction publication-title: ACS Catal. – volume: 7 start-page: 8136 year: 2019 end-page: 8144 ident: b0625 article-title: RuN4 Doped Graphene Oxide, a Highly Efficient Bifunctional Catalyst for Oxygen Reduction and CO2 Reduction from Computational Study publication-title: ACS Sustainable Chem. Eng. – volume: 9 start-page: 8197 year: 2019 end-page: 8207 ident: b0665 article-title: Constant Electrode Potential Quantum Mechanical Study of CO2 Electrochemical Reduction Catalyzed by N-Doped Graphene publication-title: ACS Catal. – volume: 43 start-page: 23262 year: 2018 end-page: 23274 ident: b0270 article-title: Reduction of carbon dioxide to methanol on the surface of adenine functionalized reduced graphene oxide at a low potential publication-title: Int. J. Hydrogen Energy – volume: 44 year: 2021 ident: b0470 article-title: Nitrogen-doped graphene supported copper nanoparticles for electrochemical reduction of CO2 publication-title: J. CO2 Util. – volume: 32 start-page: 2001300 year: 2020 ident: b0710 article-title: Ammonia Thermal Treatment toward Topological Defects in Porous Carbon for Enhanced Carbon Dioxide Electroreduction publication-title: Adv. Mater. – volume: 32 start-page: 2001848 year: 2020 ident: b0005 article-title: Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction publication-title: Adv. Mater. – volume: 97 year: 2018 ident: b0645 article-title: Nitrogen doping and CO2 adsorption on graphene: A thermodynamical study publication-title: Phys. Rev. B – volume: 20 start-page: 3521 year: 2018 end-page: 3529 ident: b0225 article-title: The synthesis of atomic Fe embedded in bamboo-CNTs grown on graphene as a superior CO2 electrocatalyst publication-title: Green Chem. – volume: 33 start-page: 166 year: 2019 end-page: 170 ident: b0345 article-title: A renewable, flexible and robust single layer nitrogen-doped graphene coating Sn foil for boosting formate production from electrocatalytic CO2 reduction publication-title: Journal of CO2 Utilization – volume: 5 start-page: 6658 year: 2015 end-page: 6664 ident: b0590 article-title: CO2 Electroreduction Performance of Transition Metal Dimers Supported on Graphene: A Theoretical Study publication-title: ACS Catal. – volume: 141 start-page: 11658 year: 2019 end-page: 11666 ident: b0770 article-title: C60-Adsorbed Single-Walled Carbon Nanotubes as Metal-Free, pH-Universal, and Multifunctional Catalysts for Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 44403 year: 2018 end-page: 44414 ident: b0280 article-title: Boosting CH3OH Production in Electrocatalytic CO2 Reduction over Partially Oxidized 5 nm Cobalt Nanoparticles Dispersed on Single-Layer Nitrogen-Doped Graphene publication-title: ACS Appl. Mater. Interfaces – volume: 537 start-page: 382 year: 2016 end-page: 386 ident: b0010 article-title: Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration publication-title: Nature – volume: 9 start-page: 216 year: 2016 end-page: 223 ident: b0145 article-title: Polyethylenimine promoted electrocatalytic reduction of CO2 to CO in aqueous medium by graphene-supported amorphous molybdenum sulphide publication-title: Energ. Environ. Sci. – volume: 556 year: 2021 ident: b0475 article-title: Oxide-derived Cu-Zn nanoparticles supported on N-doped graphene for electrochemical reduction of CO2 to ethanol publication-title: Appl. Surf. Sci. – volume: 7 start-page: 1268 year: 2016 end-page: 1275 ident: b0670 article-title: Highly effective sites and selectivity of nitrogen-doped graphene/CNT catalysts for CO2 electrochemical reduction publication-title: Chem. Sci. – volume: 8 start-page: 4192 year: 2016 end-page: 4198 ident: b0195 article-title: Graphene-Immobilized fac-Re(bipy)(CO)(3)Cl for Syngas Generation from Carbon Dioxide publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 7695 year: 2017 end-page: 7703 ident: b0150 article-title: Cobalt spinel nanocubes on N-doped graphene: A synergistic hybrid electrocatalyst for the highly selective reduction of carbon dioxide to formic acid publication-title: ACS Catal. – volume: 4 year: 2015 ident: b0175 article-title: Copper nanoparticles stabilized by reduced graphene oxide for CO2 reduction reaction publication-title: Mater. Renewable Sustainable Energy – reference: . – volume: 3 start-page: 11157 year: 2015 end-page: 11182 ident: b0040 article-title: Synthesis and stabilization of metal nanocatalysts for reduction reactions – a review publication-title: J. Mater. Chem. A – volume: 24 start-page: 1 year: 2016 end-page: 9 ident: b0180 article-title: Controlled assembly of Cu nanoparticles on pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene publication-title: Nano Energy – volume: 783 start-page: 82 year: 2016 end-page: 89 ident: b0210 article-title: Pt-modified nitrogen doped reduced graphene oxide: A powerful electrocatalyst for direct CO2 reduction to methanol publication-title: J. Electroanal. Chem. – volume: 6 start-page: 5951 year: 2019 end-page: 5957 ident: b0350 article-title: CuSn Alloy Nanoparticles on Nitrogen-Doped Graphene for Electrocatalytic CO2 Reduction publication-title: ChemElectroChem – volume: 15 start-page: 1804224 year: 2019 ident: b0495 article-title: Impact of Interfacial Electron Transfer on Electrochemical CO2 Reduction on Graphitic Carbon Nitride/Doped Graphene publication-title: Small – volume: 8 start-page: 1510 year: 2018 end-page: 1519 ident: b0610 article-title: Pd-Containing Nanostructures for Electrochemical CO2 Reduction Reaction publication-title: ACS Catal. – volume: 28 start-page: 6845 year: 2016 end-page: 6851 ident: b0720 article-title: Topological Defects in Metal-Free Nanocarbon for Oxygen Electrocatalysis publication-title: Adv. Mater. – volume: 30 start-page: 84 year: 2018 end-page: 93 ident: b0265 article-title: Highly Selective and Active Pd-In/three-dimensional Graphene with Special Structure for Electroreduction CO2 to Formate publication-title: Electroanalysis – volume: 19 start-page: 23113 year: 2017 end-page: 23121 ident: b0545 article-title: CO2 electroreduction performance of a single transition metal atom supported on porphyrin-like graphene: a computational study publication-title: Phys. Chem. Chem. Phys. – volume: 52 start-page: 2764 year: 2016 end-page: 2767 ident: b0715 article-title: Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction publication-title: Chem. Commun. – volume: 48 start-page: 5207 year: 2019 end-page: 5241 ident: b0105 article-title: Single atom electrocatalysts supported on graphene or graphene-like carbons publication-title: Chem. Soc. Rev. – volume: 7 year: 2016 ident: b0065 article-title: A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates publication-title: Nat. Commun. – volume: 3 start-page: 797 year: 2015 end-page: 804 ident: b0140 article-title: Task-specific functionalization of graphene for use as a cathode catalyst support for carbon dioxide conversion publication-title: J. Mater. Chem. A – volume: 6 start-page: 5025 year: 2018 end-page: 5031 ident: b0230 article-title: Elastic Ag-anchored N-doped graphene/carbon foam for the selective electrochemical reduction of carbon dioxide to ethanol publication-title: J. Mater. Chem. A – volume: 14 start-page: 5506 issue: 5 year: 2020 ident: 10.1016/j.cej.2021.130587_b0015 article-title: Atomically dispersed iron-nitrogen sites on hierarchically mesoporous carbon nanotube and graphene nanoribbon networks for CO2 reduction publication-title: ACS Nano doi: 10.1021/acsnano.9b09658 – volume: 3 start-page: 812 year: 2018 ident: 10.1016/j.cej.2021.130587_b0240 article-title: pH Effects on the Selectivity of the Electrocatalytic CO2 Reduction on Graphene-Embedded Fe-N-C Motifs: Bridging Concepts between Molecular Homogeneous and Solid-State Heterogeneous Catalysis publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00273 – volume: 32 start-page: 2001300 year: 2020 ident: 10.1016/j.cej.2021.130587_b0710 article-title: Ammonia Thermal Treatment toward Topological Defects in Porous Carbon for Enhanced Carbon Dioxide Electroreduction publication-title: Adv. Mater. doi: 10.1002/adma.202001300 – volume: 12 start-page: 747 issue: 2 year: 2019 ident: 10.1016/j.cej.2021.130587_b0165 article-title: Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel publication-title: Energ. Environ. Sci. doi: 10.1039/C8EE03403F – volume: 135 start-page: 8246 issue: 22 year: 2013 ident: 10.1016/j.cej.2021.130587_b0680 article-title: Charge-Controlled Switchable CO2 Capture on Boron Nitride Nanomaterials publication-title: J. Am. Chem. Soc. doi: 10.1021/ja400243r – volume: 9 start-page: 6800 year: 2019 ident: 10.1016/j.cej.2021.130587_b0700 article-title: Silicon-doped graphene edges: an efficient metal-free catalyst for the reduction of CO2 into methanol and ethanol publication-title: Catal. Sci. Technol. doi: 10.1039/C9CY01709G – volume: 31 start-page: 1902868 year: 2019 ident: 10.1016/j.cej.2021.130587_b0090 article-title: In Situ Grown Monolayer N-Doped Graphene on CdS Hollow Spheres with Seamless Contact for Photocatalytic CO2 Reduction publication-title: Adv. Mater. doi: 10.1002/adma.201902868 – volume: 141 start-page: 11658 issue: 29 year: 2019 ident: 10.1016/j.cej.2021.130587_b0770 article-title: C60-Adsorbed Single-Walled Carbon Nanotubes as Metal-Free, pH-Universal, and Multifunctional Catalysts for Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05006 – volume: 27 start-page: 133 year: 2020 ident: 10.1016/j.cej.2021.130587_b0170 article-title: Synergistic effect of bifunctional catalytic sites and defect engineering for high-performance Li–CO2 batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.01.021 – volume: 59 start-page: 551 issue: 5 year: 2016 ident: 10.1016/j.cej.2021.130587_b0185 article-title: Electrochemical reduction of CO2 to CO using graphene oxide/carbon nanotube electrode in ionic liquid/acetonitrile system publication-title: Science China-Chemistry doi: 10.1007/s11426-016-5584-1 – volume: 785 start-page: 138 year: 2017 ident: 10.1016/j.cej.2021.130587_b0220 article-title: High efficiency graphene/Cu2O electrode for the electrochemical reduction of carbon dioxide to ethanol publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2016.12.029 – volume: 59 start-page: 21885 issue: 49 year: 2020 ident: 10.1016/j.cej.2021.130587_b0780 article-title: A Universal Graphene Quantum Dot Tethering Design Strategy to Synthesize Single-Atom Catalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202008422 – volume: 57 start-page: 12790 issue: 39 year: 2018 ident: 10.1016/j.cej.2021.130587_b0020 article-title: Nitrogen-doped graphene quantum dots enhance the activity of Bi2O3 nanosheets for electrochemical reduction of CO2 in a wide negative potential region publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201807643 – volume: 21 start-page: 1768 issue: 16 year: 2020 ident: 10.1016/j.cej.2021.130587_b0535 article-title: Cu Atomic Chain Supported on Graphene Nanoribbon for Effective Conversion of CO(2)to Ethanol publication-title: ChemPhysChem doi: 10.1002/cphc.202000476 – volume: 12 start-page: 6083 year: 2016 ident: 10.1016/j.cej.2021.130587_b0200 article-title: Nickel-Nitrogen-Modified Graphene: An Efficient Electrocatalyst for the Reduction of Carbon Dioxide to Carbon Monoxide publication-title: Small doi: 10.1002/smll.201602158 – volume: 9 start-page: 2124 issue: 3 year: 2019 ident: 10.1016/j.cej.2021.130587_b0485 article-title: Efficient CO2 Electroreduction by Highly Dense and Active Pyridinic Nitrogen on Holey Carbon Layers with Fluorine Engineering publication-title: ACS Catal. doi: 10.1021/acscatal.9b00016 – volume: 11 start-page: 2944 issue: 17 year: 2018 ident: 10.1016/j.cej.2021.130587_b0295 article-title: Zinc-Coordinated Nitrogen-Codoped Graphene as an Efficient Catalyst for Selective Electrochemical Reduction of CO2 to CO publication-title: ChemSusChem doi: 10.1002/cssc.201800925 – volume: 58 start-page: 13532 issue: 38 year: 2019 ident: 10.1016/j.cej.2021.130587_b0340 article-title: Linkage Effect in the Heterogenization of Cobalt Complexes by Doped Graphene for Electrocatalytic CO2 Reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201906475 – volume: 31 start-page: 1800696 year: 2019 ident: 10.1016/j.cej.2021.130587_b0110 article-title: Recent progress in graphene-based noble-metal nanocomposites for electrocatalytic applications publication-title: Adv. Mater. doi: 10.1002/adma.201800696 – volume: 783 start-page: 82 year: 2016 ident: 10.1016/j.cej.2021.130587_b0210 article-title: Pt-modified nitrogen doped reduced graphene oxide: A powerful electrocatalyst for direct CO2 reduction to methanol publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2016.11.047 – volume: 268 start-page: 118747 year: 2020 ident: 10.1016/j.cej.2021.130587_b0450 article-title: Dual-atom Ag-2/graphene catalyst for efficient electroreduction of CO2 to CO publication-title: Applied Catalysis B-Environmental doi: 10.1016/j.apcatb.2020.118747 – volume: 21 start-page: 23638 issue: 42 year: 2019 ident: 10.1016/j.cej.2021.130587_b0505 article-title: Mechanistic insight into electroreduction of carbon dioxide on FeNx (x=0-4) embedded graphene publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP03370J – volume: 20 start-page: 3521 issue: 15 year: 2018 ident: 10.1016/j.cej.2021.130587_b0225 article-title: The synthesis of atomic Fe embedded in bamboo-CNTs grown on graphene as a superior CO2 electrocatalyst publication-title: Green Chem. doi: 10.1039/C8GC01466C – volume: 10 start-page: 15262 year: 2018 ident: 10.1016/j.cej.2021.130587_b0550 article-title: C2N-graphene supported single-atom catalysts for CO2 electrochemical reduction reaction: mechanistic insight and catalyst screening publication-title: Nanoscale doi: 10.1039/C8NR04961K – volume: 5 start-page: 6658 issue: 11 year: 2015 ident: 10.1016/j.cej.2021.130587_b0590 article-title: CO2 Electroreduction Performance of Transition Metal Dimers Supported on Graphene: A Theoretical Study publication-title: ACS Catal. doi: 10.1021/acscatal.5b01165 – volume: 53 start-page: 871 issue: 3 year: 2014 ident: 10.1016/j.cej.2021.130587_b0690 article-title: High-Yield Electrochemical Production of Formaldehyde from CO2and Seawater publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201308657 – volume: 132 start-page: 11216 issue: 27 year: 2020 ident: 10.1016/j.cej.2021.130587_b0705 article-title: Boosting CO2 Electroreduction on N, P-Co-doped Carbon Aerogels publication-title: Angew. Chem. doi: 10.1002/ange.202004226 – volume: 5 start-page: 1800177 year: 2018 ident: 10.1016/j.cej.2021.130587_b0520 article-title: Bifunctional Nitrogen and Cobalt Codoped Hollow Carbon for Electrochemical Syngas Production publication-title: Adv. Sci. doi: 10.1002/advs.201800177 – volume: 12 start-page: 16178 issue: 14 year: 2020 ident: 10.1016/j.cej.2021.130587_b0440 article-title: Nanoconfined Tin Oxide within N-Doped Nanocarbon Supported on Electrochemically Exfoliated Graphene for Efficient Electroreduction of CO2 to Formate and C1 Products publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b18091 – volume: 239 start-page: 441 year: 2018 ident: 10.1016/j.cej.2021.130587_b0275 article-title: The ensemble effect of nitrogen doping and ultrasmall SnO2 nanocrystals on graphene sheets for efficient electroreduction of carbon dioxide publication-title: Applied Catalysis B-Environmental doi: 10.1016/j.apcatb.2018.08.044 – volume: 122 start-page: 28629 issue: 50 year: 2018 ident: 10.1016/j.cej.2021.130587_b0600 article-title: Graphene-Supported Monometallic and Bimetallic Dimers for Electrochemical CO2 Reduction publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b07887 – volume: 6 start-page: 5951 issue: 24 year: 2019 ident: 10.1016/j.cej.2021.130587_b0350 article-title: CuSn Alloy Nanoparticles on Nitrogen-Doped Graphene for Electrocatalytic CO2 Reduction publication-title: ChemElectroChem doi: 10.1002/celc.201901381 – volume: 58 start-page: 14871 issue: 42 year: 2019 ident: 10.1016/j.cej.2021.130587_b0160 article-title: A graphene-supported single-atom fen5 catalytic site for efficient electrochemical CO2 reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201906079 – volume: 51 start-page: 16699 issue: 93 year: 2015 ident: 10.1016/j.cej.2021.130587_b0045 article-title: A pH-mediated enhancement of the graphene carbocatalyst activity for the reduction of 4-nitrophenol publication-title: Chem. Commun. doi: 10.1039/C5CC05826K – volume: 19 start-page: 4284 year: 2017 ident: 10.1016/j.cej.2021.130587_b0525 article-title: Composition-tunable synthesis of “clean” syngas via a one-step synthesis of metal-free pyridinic-N-enriched self-supported CNTs: the synergy of electrocatalyst pyrolysis temperature and potential publication-title: Green Chem. doi: 10.1039/C7GC01095H – volume: 50 start-page: 979 issue: 9 year: 2020 ident: 10.1016/j.cej.2021.130587_b0445 article-title: Flexible and free-standing polyvinyl alcohol-reduced graphene oxide-Cu2O/CuO thin films for electrochemical reduction of carbon dioxide publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-020-01450-z – volume: 22 start-page: 6804 issue: 20 year: 2020 ident: 10.1016/j.cej.2021.130587_b0465 article-title: Synthesis of Sn4P3/reduced graphene oxide nanocomposites as highly efficient electrocatalysts for CO2 reduction publication-title: Green Chem. doi: 10.1039/D0GC02509G – volume: 537 start-page: 382 issue: 7620 year: 2016 ident: 10.1016/j.cej.2021.130587_b0010 article-title: Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration publication-title: Nature doi: 10.1038/nature19060 – volume: 6 issue: 1 year: 2016 ident: 10.1016/j.cej.2021.130587_b0055 article-title: Graphene oxide-enhanced sol-gel transition sensitivity and drug release performance of an amphiphilic copolymer-based nanocomposite publication-title: Sci. Rep. – volume: 15 start-page: 1804224 issue: 10 year: 2019 ident: 10.1016/j.cej.2021.130587_b0495 article-title: Impact of Interfacial Electron Transfer on Electrochemical CO2 Reduction on Graphitic Carbon Nitride/Doped Graphene publication-title: Small doi: 10.1002/smll.201804224 – volume: 30 start-page: 1910118 year: 2020 ident: 10.1016/j.cej.2021.130587_b0460 article-title: Enhanced Electrochemical CO2 Reduction of Cu@CuxO Nanoparticles Decorated on 3D Vertical Graphene with Intrinsic sp3-type Defect publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201910118 – volume: 119 start-page: 21345 issue: 37 year: 2015 ident: 10.1016/j.cej.2021.130587_b0565 article-title: Tailoring Metal-Porphyrin-Like Active Sites on Graphene to Improve the Efficiency and Selectivity of Electrochemical CO2 Reduction publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b05518 – volume: 18 start-page: 5491 year: 2016 ident: 10.1016/j.cej.2021.130587_b0660 article-title: Pyrrolic-nitrogen doped graphene: a metal-free electrocatalyst with high efficiency and selectivity for the reduction of carbon dioxide to formic acid: a computational study publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP07458D – volume: 556 year: 2021 ident: 10.1016/j.cej.2021.130587_b0475 article-title: Oxide-derived Cu-Zn nanoparticles supported on N-doped graphene for electrochemical reduction of CO2 to ethanol publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.149790 – volume: 7 issue: 1 year: 2017 ident: 10.1016/j.cej.2021.130587_b0745 article-title: 3D graphene preparation via covalent amide functionalization for efficient metal-free electrocatalysis in oxygen reduction publication-title: Sci. Rep. doi: 10.1038/srep43279 – volume: 8 start-page: 4983 issue: 12 year: 2020 ident: 10.1016/j.cej.2021.130587_b0435 article-title: Three-Dimensional Nitrogen-Doped Graphene Aerogel-Supported MnO Nanoparticles as Efficient Electrocatalysts for CO2 Reduction to CO publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c01194 – volume: 9 year: 2019 ident: 10.1016/j.cej.2021.130587_b0530 article-title: Graphene Supported Tungsten Carbide as Catalyst for Electrochemical Reduction of CO2 publication-title: Catalysts doi: 10.3390/catal9070604 – volume: 7 start-page: 1268 issue: 2 year: 2016 ident: 10.1016/j.cej.2021.130587_b0670 article-title: Highly effective sites and selectivity of nitrogen-doped graphene/CNT catalysts for CO2 electrochemical reduction publication-title: Chem. Sci. doi: 10.1039/C5SC03695J – volume: 7 issue: 1 year: 2016 ident: 10.1016/j.cej.2021.130587_b0065 article-title: A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates publication-title: Nat. Commun. doi: 10.1038/ncomms13869 – volume: 8 start-page: 1801400 issue: 25 year: 2018 ident: 10.1016/j.cej.2021.130587_b0285 article-title: Engineering surface amine modifiers of ultrasmall gold nanoparticles supported on reduced graphene oxide for improved electrochemical CO2 reduction publication-title: Adv. Energ. Mater. doi: 10.1002/aenm.201801400 – volume: 120 start-page: 10336 year: 2020 ident: 10.1016/j.cej.2021.130587_b0035 article-title: 3D graphene materials: From understanding to design and synthesis control publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00083 – volume: 10 start-page: 3222 issue: 5 year: 2020 ident: 10.1016/j.cej.2021.130587_b0380 article-title: Mass Transport Control by Surface Graphene Oxide for Selective CO Production from Electrochemical CO2 Reduction publication-title: ACS Catal. doi: 10.1021/acscatal.9b05096 – volume: 398 start-page: 83 year: 2018 ident: 10.1016/j.cej.2021.130587_b0250 article-title: Silver sulfide anchored on reduced graphene oxide as a high -performance catalyst for CO2 electroreduction publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.07.049 – volume: 8 start-page: 1510 issue: 2 year: 2018 ident: 10.1016/j.cej.2021.130587_b0610 article-title: Pd-Containing Nanostructures for Electrochemical CO2 Reduction Reaction publication-title: ACS Catal. doi: 10.1021/acscatal.7b03612 – volume: 2 start-page: 11319 year: 2014 ident: 10.1016/j.cej.2021.130587_b0050 article-title: PAM/graphene/Ag ternary hydrogel: synthesis, characterization and catalytic application publication-title: J. Mater. Chem. A doi: 10.1039/C4TA01620C – volume: 123 start-page: 5164 issue: 9 year: 2019 ident: 10.1016/j.cej.2021.130587_b0630 article-title: Benchmarking Density Functional Theory Functionals for Polarons in Oxides: Properties of CeO2 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b09134 – volume: 31 start-page: 1438 issue: 6 year: 2020 ident: 10.1016/j.cej.2021.130587_b0405 article-title: Nitrogen-doped carbon nanotube-encapsulated nickel nanoparticles assembled on graphene for efficient CO2 electroreduction publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2020.04.056 – volume: 14 start-page: 3766 issue: 7 year: 2014 ident: 10.1016/j.cej.2021.130587_b0585 article-title: Atomic Structure and Dynamics of Metal Dopant Pairs in Graphene publication-title: Nano Lett. doi: 10.1021/nl500682j – volume: 7 start-page: 7695 year: 2017 ident: 10.1016/j.cej.2021.130587_b0150 article-title: Cobalt spinel nanocubes on N-doped graphene: A synergistic hybrid electrocatalyst for the highly selective reduction of carbon dioxide to formic acid publication-title: ACS Catal. doi: 10.1021/acscatal.7b02166 – volume: 11 start-page: 2541 issue: 7 year: 2020 ident: 10.1016/j.cej.2021.130587_b0595 article-title: Design of a Graphene Nitrene Two-Dimensional Catalyst Heterostructure Providing a Well-Defined Site Accommodating One to Three Metals, with Application to CO2 Reduction Electrocatalysis for the Two-Metal Case publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c00642 – volume: 12 start-page: 41223 issue: 37 year: 2020 ident: 10.1016/j.cej.2021.130587_b0425 article-title: CO2 to Formic Acid Using Cu-Sn on Laser-Induced Graphene publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c08964 – volume: 7 start-page: 8136 issue: 9 year: 2019 ident: 10.1016/j.cej.2021.130587_b0625 article-title: RuN4 Doped Graphene Oxide, a Highly Efficient Bifunctional Catalyst for Oxygen Reduction and CO2 Reduction from Computational Study publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b05729 – volume: 3 start-page: 797 issue: 2 year: 2015 ident: 10.1016/j.cej.2021.130587_b0140 article-title: Task-specific functionalization of graphene for use as a cathode catalyst support for carbon dioxide conversion publication-title: J. Mater. Chem. A doi: 10.1039/C4TA05087H – volume: 323 start-page: 760 issue: 5915 year: 2009 ident: 10.1016/j.cej.2021.130587_b0790 article-title: Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction publication-title: Science doi: 10.1126/science.1168049 – volume: 9 start-page: 8197 issue: 9 year: 2019 ident: 10.1016/j.cej.2021.130587_b0665 article-title: Constant Electrode Potential Quantum Mechanical Study of CO2 Electrochemical Reduction Catalyzed by N-Doped Graphene publication-title: ACS Catal. doi: 10.1021/acscatal.9b01318 – volume: 24 start-page: 1 year: 2016 ident: 10.1016/j.cej.2021.130587_b0180 article-title: Controlled assembly of Cu nanoparticles on pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.03.024 – volume: 33 start-page: 166 year: 2019 ident: 10.1016/j.cej.2021.130587_b0345 article-title: A renewable, flexible and robust single layer nitrogen-doped graphene coating Sn foil for boosting formate production from electrocatalytic CO2 reduction publication-title: Journal of CO2 Utilization doi: 10.1016/j.jcou.2019.05.026 – volume: 19 start-page: 11436 issue: 18 year: 2017 ident: 10.1016/j.cej.2021.130587_b0560 article-title: Electrochemical reduction of CO2 on graphene supported transition metals - towards single atom catalysts publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP00915A – volume: 508 start-page: 144835 year: 2020 ident: 10.1016/j.cej.2021.130587_b0760 article-title: Catalytic reduction reactions over the silver ions embedded in polyacrylamide/graphene composite hydrogels: Kinetics and performance publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.144835 – volume: 43 start-page: 23262 issue: 52 year: 2018 ident: 10.1016/j.cej.2021.130587_b0270 article-title: Reduction of carbon dioxide to methanol on the surface of adenine functionalized reduced graphene oxide at a low potential publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.10.188 – volume: 117 start-page: 1805 issue: 14 year: 2019 ident: 10.1016/j.cej.2021.130587_b0510 article-title: Fe-porphyrin carbon matrix as a bifunctional catalyst for oxygen reduction and CO2 reduction from theoretical perspective publication-title: Mol. Phys. doi: 10.1080/00268976.2018.1544673 – volume: 30 start-page: 1706617 issue: 18 year: 2018 ident: 10.1016/j.cej.2021.130587_b0155 article-title: Surface immobilization of transition metal ions on nitrogen-doped graphene realizing high-efficient and selective CO2 reduction publication-title: Adv. Mater. doi: 10.1002/adma.201706617 – ident: 10.1016/j.cej.2021.130587_b0810 – volume: 11 start-page: 41588 issue: 44 year: 2019 ident: 10.1016/j.cej.2021.130587_b0635 article-title: Modification of Carbon Nitride/Reduced Graphene Oxide van der Waals Heterostructure with Copper Nanoparticles To Improve CO2 Sensitivity publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b13440 – volume: 142 year: 2019 ident: 10.1016/j.cej.2021.130587_b0805 article-title: Recent advances in two-dimensional transition metal dichalcogenides for biological sensing publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.111573 – volume: 19 start-page: 23113 issue: 34 year: 2017 ident: 10.1016/j.cej.2021.130587_b0545 article-title: CO2 electroreduction performance of a single transition metal atom supported on porphyrin-like graphene: a computational study publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP04299J – volume: 14 start-page: 3805 year: 2019 ident: 10.1016/j.cej.2021.130587_b0640 article-title: Electrocatalytic Reduction of CO2 on Mono-Metal/Graphene/Polyurethane Sponge Electrodes publication-title: Int. J. Electrochem. Sci. doi: 10.20964/2019.04.35 – volume: 30 start-page: 168 year: 2019 ident: 10.1016/j.cej.2021.130587_b0120 article-title: Graphene-based materials for electrochemical CO2 reduction publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2019.02.001 – volume: 2 start-page: 1544 issue: 2 year: 2019 ident: 10.1016/j.cej.2021.130587_b0615 article-title: CO2 Electrochemical Reduction Catalyzed by Graphene Supported Palladium Cluster: A Computational Guideline publication-title: ACS Appl. Energ. Mater. doi: 10.1021/acsaem.8b02174 – volume: 5 start-page: 2000134 issue: 1 year: 2021 ident: 10.1016/j.cej.2021.130587_b0695 article-title: Non-N-Doped Carbons as Metal-Free Electrocatalysts publication-title: Advanced Sustainable Systems doi: 10.1002/adsu.202000134 – volume: 8 start-page: 6134 issue: 15 year: 2020 ident: 10.1016/j.cej.2021.130587_b0540 article-title: CO2 Reduction on Metal- and Nitrogen-Codoped Graphene: Balancing Activity and Selectivity via Coordination Engineering publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c01923 – volume: 56 start-page: 11275 issue: 76 year: 2020 ident: 10.1016/j.cej.2021.130587_b0400 article-title: Graphene-encapsulated nickel-copper bimetallic nanoparticle catalysts for electrochemical reduction of CO(2)to CO publication-title: Chem. Commun. doi: 10.1039/D0CC04779A – volume: 28 start-page: 9532 issue: 43 year: 2016 ident: 10.1016/j.cej.2021.130587_b0735 article-title: Defect Graphene as a Trifunctional Catalyst for Electrochemical Reactions publication-title: Adv. Mater. doi: 10.1002/adma.201602912 – volume: 133 start-page: 2084 issue: 7 year: 2011 ident: 10.1016/j.cej.2021.130587_b0685 article-title: Ambient Carbon Dioxide Capture by Boron-Rich Boron Nitride Nanotube publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1101807 – volume: 11 start-page: 893 issue: 4 year: 2018 ident: 10.1016/j.cej.2021.130587_b0030 article-title: Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction publication-title: Energ. Environ. Sci. doi: 10.1039/C7EE03245E – volume: 139 start-page: 5660 issue: 16 year: 2017 ident: 10.1016/j.cej.2021.130587_b0095 article-title: A CsPbBr 3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00489 – volume: 27 start-page: 320 year: 2016 ident: 10.1016/j.cej.2021.130587_b0815 article-title: Photocatalytic CO2 conversion to methanol by Cu2O/graphene/TNA heterostructure catalyst in a visible-light-driven dual-chamber reactor publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.06.056 – volume: 24 start-page: 334 year: 2018 ident: 10.1016/j.cej.2021.130587_b0245 article-title: Cu/TiO2 nanoparticles modified nitrogen-doped graphene as a highly efficient catalyst for the selective electroreduction of CO2 to different alcohols publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2018.01.021 – volume: 9 start-page: 1803151 issue: 3 year: 2019 ident: 10.1016/j.cej.2021.130587_b0360 article-title: A Water-Soluble Cu Complex as Molecular Catalyst for Electrocatalytic CO2 Reduction on Graphene-Based Electrodes publication-title: Adv. Energ. Mater. doi: 10.1002/aenm.201803151 – volume: 126 start-page: 10980 year: 2014 ident: 10.1016/j.cej.2021.130587_b0740 article-title: Oxygen Reduction Reaction in a Droplet on Graphite: Direct Evidence that the Edge Is More Active than the Basal Plane publication-title: Angew. Chem. doi: 10.1002/ange.201406695 – volume: 4 start-page: 4398 issue: 14 year: 2019 ident: 10.1016/j.cej.2021.130587_b0515 article-title: Synthesize and Characterization of 2-Aminothiazole Monomer and Polymer-based Bifunctional Fe/N/C Catalysts for Oxygen and Carbon Dioxide Reduction Reactions publication-title: ChemistrySelect doi: 10.1002/slct.201900690 – volume: 4 issue: 1 year: 2015 ident: 10.1016/j.cej.2021.130587_b0175 article-title: Copper nanoparticles stabilized by reduced graphene oxide for CO2 reduction reaction publication-title: Mater. Renewable Sustainable Energy – volume: 25 start-page: 3131 year: 2019 ident: 10.1016/j.cej.2021.130587_b0500 article-title: First-Row Transition-Metal Cations (Co2+, Ni2+, Mn2+, Fe2+) and Graphene (Oxide) Composites: From Structural Properties to Electrochemical Applications publication-title: Chemistry-a European Journal doi: 10.1002/chem.201806309 – volume: 3 start-page: 11157 issue: 21 year: 2015 ident: 10.1016/j.cej.2021.130587_b0040 article-title: Synthesis and stabilization of metal nanocatalysts for reduction reactions – a review publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00753D – volume: 6 start-page: 38380 issue: 44 year: 2016 ident: 10.1016/j.cej.2021.130587_b0205 article-title: Catalysis performance comparison for electrochemical reduction of CO2 on Pd-Cu/graphene catalyst publication-title: RSC Adv. doi: 10.1039/C6RA03160A – volume: 282 start-page: 694 year: 2018 ident: 10.1016/j.cej.2021.130587_b0300 article-title: Electrochemical reduction of CO2 at metal-free N-functionalized graphene oxide electrodes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.06.107 – volume: 2 year: 2021 ident: 10.1016/j.cej.2021.130587_b0765 article-title: Multifunctional carbon-based metal-free catalysts for advanced energy conversion and storage publication-title: Cell Reports Physical Science doi: 10.1016/j.xcrp.2021.100328 – volume: 25 start-page: 27 year: 2019 ident: 10.1016/j.cej.2021.130587_b0130 article-title: A review of graphene-based 3D van der Waals hybrids and their energy applications publication-title: Nano Today doi: 10.1016/j.nantod.2019.02.006 – volume: 259 start-page: 118044 year: 2019 ident: 10.1016/j.cej.2021.130587_b0325 article-title: Efficient electrocatalytic reduction of CO2 on CuxO decorated graphene oxides: an insight into the role of multivalent Cu in selectivity and durability publication-title: Applied Catalysis B-Environmental doi: 10.1016/j.apcatb.2019.118044 – volume: 1 start-page: 85 issue: 1 year: 2019 ident: 10.1016/j.cej.2021.130587_b0115 article-title: Reduced graphene oxide-based materials for electrochemical energy conversion reactions publication-title: Carbon Energy doi: 10.1002/cey2.13 – volume: 318 start-page: 142 year: 2019 ident: 10.1016/j.cej.2021.130587_b0330 article-title: Decoration of N-functionalized graphene nanoflakes with copper-based nanoparticles for high selectivity CO2 electroreduction towards formate publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.06.074 – volume: 97 year: 2018 ident: 10.1016/j.cej.2021.130587_b0645 article-title: Nitrogen doping and CO2 adsorption on graphene: A thermodynamical study publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.155428 – volume: 3 start-page: 417 issue: 3 year: 2016 ident: 10.1016/j.cej.2021.130587_b0730 article-title: Defect-driven oxygen reduction reaction (ORR) of carbon without any element doping publication-title: Inorg. Chem. Front. doi: 10.1039/C5QI00236B – volume: 51 start-page: 16061 issue: 89 year: 2015 ident: 10.1016/j.cej.2021.130587_b0135 article-title: Metal-free boron-doped graphene for selective electroreduction of carbon dioxide to formic acid/formate publication-title: Chem. Commun. doi: 10.1039/C5CC06051F – volume: 826 start-page: 1 year: 2018 ident: 10.1016/j.cej.2021.130587_b0260 article-title: Nickel phthalocyanine integrated graphene architecture as bifunctional electrocatalyst for CO2 and O-2 reductions publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2018.08.020 – volume: 3 start-page: 257 issue: 1 year: 2020 ident: 10.1016/j.cej.2021.130587_b0410 article-title: Cu/Cu2O Nanoparticles Supported on Vertically ZIF-L-Coated Nitrogen-Doped Graphene Nanosheets for Electroreduction of CO2 to Ethanol publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b01935 – volume: 120 start-page: 12315 year: 2020 ident: 10.1016/j.cej.2021.130587_b0575 article-title: Theoretical Understandings of Graphene-based Metal Single-Atom Catalysts: Stability and Catalytic Performance publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00818 – volume: 9 start-page: 357 year: 2016 ident: 10.1016/j.cej.2021.130587_b0125 article-title: The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress publication-title: Energ. Environ. Sci. doi: 10.1039/C5EE02474A – volume: 6 start-page: 5025 issue: 12 year: 2018 ident: 10.1016/j.cej.2021.130587_b0230 article-title: Elastic Ag-anchored N-doped graphene/carbon foam for the selective electrochemical reduction of carbon dioxide to ethanol publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10802H – volume: 243 start-page: 294 year: 2019 ident: 10.1016/j.cej.2021.130587_b0320 article-title: Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2 publication-title: Applied Catalysis B-Environmental doi: 10.1016/j.apcatb.2018.10.046 – volume: 10 issue: 1 year: 2019 ident: 10.1016/j.cej.2021.130587_b0775 article-title: A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts publication-title: Nat. Commun. doi: 10.1038/s41467-019-12510-0 – volume: 534 start-page: 332 year: 2019 ident: 10.1016/j.cej.2021.130587_b0490 article-title: Defective graphene for electrocatalytic CO2 reduction publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.09.036 – volume: 8 start-page: 1703487 issue: 19 year: 2018 ident: 10.1016/j.cej.2021.130587_b0235 article-title: Electrochemical CO2 Reduction with Atomic Iron-Dispersed on Nitrogen-Doped Graphene publication-title: Adv. Energ. Mater. doi: 10.1002/aenm.201703487 – volume: 31 start-page: 1415 issue: 6 year: 2020 ident: 10.1016/j.cej.2021.130587_b0420 article-title: Bi/Bi2O3 nanoparticles supported on N-doped reduced graphene oxide for highly efficient CO2 electroreduction to formate publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2020.04.031 – volume: 8 start-page: 1090 issue: 2 year: 2017 ident: 10.1016/j.cej.2021.130587_b0580 article-title: Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements publication-title: Chem. Sci. doi: 10.1039/C6SC03911A – volume: 4 start-page: 666 issue: 3 year: 2019 ident: 10.1016/j.cej.2021.130587_b0315 article-title: Steric Modification of a Cobalt Phthalocyanine/Graphene Catalyst To Give Enhanced and Stable Electrochemical CO2 Reduction to CO publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b02355 – volume: 7 issue: 1 year: 2016 ident: 10.1016/j.cej.2021.130587_b0085 article-title: Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction publication-title: Nat. Commun. doi: 10.1038/ncomms12697 – volume: 14 start-page: 7097 year: 2014 ident: 10.1016/j.cej.2021.130587_b0605 article-title: Electrocatalytic Reduction of CO2 to Formic Acid on Palladium-Graphene Nanocomposites Gas-Diffusion Electrode publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2014.8952 – volume: 9 start-page: 105515 issue: 4 year: 2021 ident: 10.1016/j.cej.2021.130587_b0480 article-title: N-doped carbon-encapsulated nickel on reduced graphene oxide materials for efficient CO2 electroreduction to syngas with potential-independent H2/CO ratios publication-title: J. Environ Chem. Eng. doi: 10.1016/j.jece.2021.105515 – volume: 142 start-page: 12563 issue: 29 year: 2020 ident: 10.1016/j.cej.2021.130587_b0785 article-title: Stable and Efficient Single-Atom Zn Catalyst for CO2 Reduction to CH4 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b12111 – ident: 10.1016/j.cej.2021.130587_b0795 doi: 10.1038/s41563-020-00899-9 – volume: 61 start-page: 428 year: 2019 ident: 10.1016/j.cej.2021.130587_b0355 article-title: Single Mo atom realized enhanced CO2 electro-reduction into formate on N-doped graphene publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.003 – volume: 10 start-page: 10803 issue: 19 year: 2020 ident: 10.1016/j.cej.2021.130587_b0555 article-title: Pore-Edge Tailoring of Single-Atom Iron-Nitrogen Sites on Graphene for Enhanced CO2 Reduction publication-title: ACS Catal. doi: 10.1021/acscatal.0c02499 – volume: 32 start-page: 2001848 year: 2020 ident: 10.1016/j.cej.2021.130587_b0005 article-title: Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction publication-title: Adv. Mater. doi: 10.1002/adma.202001848 – volume: 28 start-page: 6845 issue: 32 year: 2016 ident: 10.1016/j.cej.2021.130587_b0720 article-title: Topological Defects in Metal-Free Nanocarbon for Oxygen Electrocatalysis publication-title: Adv. Mater. doi: 10.1002/adma.201601406 – volume: 8 start-page: 18302 issue: 35 year: 2020 ident: 10.1016/j.cej.2021.130587_b0415 article-title: Selective CO2-to-formate electrochemical conversion with core-shell structured Cu2O/Cu@C composites immobilized on nitrogen-doped graphene sheets publication-title: J. Mater. Chem. A doi: 10.1039/D0TA05620K – volume: 10 start-page: 44403 issue: 51 year: 2018 ident: 10.1016/j.cej.2021.130587_b0280 article-title: Boosting CH3OH Production in Electrocatalytic CO2 Reduction over Partially Oxidized 5 nm Cobalt Nanoparticles Dispersed on Single-Layer Nitrogen-Doped Graphene publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b14822 – volume: 512 year: 2020 ident: 10.1016/j.cej.2021.130587_b0755 article-title: An aerogel adsorbent with bio-inspired interfacial adhesion between graphene and MoS2 sheets for water treatment publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.145717 – volume: 52 start-page: 2764 issue: 13 year: 2016 ident: 10.1016/j.cej.2021.130587_b0715 article-title: Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction publication-title: Chem. Commun. doi: 10.1039/C5CC09173J – volume: 16 start-page: 466 issue: 1 year: 2016 ident: 10.1016/j.cej.2021.130587_b0075 article-title: Incorporation of Nitrogen Defects for Efficient Reduction of CO2 via Two-Electron Pathway on Three-Dimensional Graphene Foam publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04123 – volume: 2 start-page: 2435 issue: 4 year: 2019 ident: 10.1016/j.cej.2021.130587_b0375 article-title: Electronic Tuning of Cobalt Porphyrins Immobilized on Nitrogen-Doped Graphene for CO2 Reduction publication-title: ACS Appl. Energ. Mater. doi: 10.1021/acsaem.9b00368 – volume: 167 start-page: 658 year: 2020 ident: 10.1016/j.cej.2021.130587_b0395 article-title: Electrocatalytic reduction of CO2 to CO over iron phthalocyanine-modified graphene nanocomposites publication-title: Carbon doi: 10.1016/j.carbon.2020.06.036 – volume: 13 start-page: 5620 issue: 21 year: 2020 ident: 10.1016/j.cej.2021.130587_b0430 article-title: Vitamin B12-Immobilized Graphene Oxide for Efficient Electrocatalytic Carbon Dioxide Reduction Reaction publication-title: ChemSusChem doi: 10.1002/cssc.202001378 – volume: 33 start-page: 452 year: 2019 ident: 10.1016/j.cej.2021.130587_b0370 article-title: Efficient electrochemical reduction of CO2 to ethanol on Cu nanoparticles decorated on N-doped graphene oxide catalysts publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2019.07.014 – volume: 7 start-page: 6245 issue: 9 year: 2017 ident: 10.1016/j.cej.2021.130587_b0655 article-title: How Nitrogen-Doped Graphene Quantum Dots Catalyze Electroreduction of CO2 to Hydrocarbons and Oxygenates publication-title: ACS Catal. doi: 10.1021/acscatal.7b01839 – volume: 10 start-page: 1641 issue: 5 year: 2017 ident: 10.1016/j.cej.2021.130587_b0070 article-title: Enhanced CO2 electroreduction on armchair graphene nanoribbons edge-decorated with copper publication-title: Nano Res. doi: 10.1007/s12274-016-1362-9 – volume: 82 start-page: 16 year: 2017 ident: 10.1016/j.cej.2021.130587_b0215 article-title: Electrochemical and FTIR spectroscopic study of CO2 reduction at a nanostructured Cu/reduced graphene oxide thin film publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2017.07.006 – volume: 20 issue: 2 year: 2018 ident: 10.1016/j.cej.2021.130587_b0255 article-title: Reduced graphene oxide supported gold nanoparticles for electrocatalytic reduction of carbon dioxide publication-title: J. Nanopart. Res. doi: 10.1007/s11051-018-4146-1 – volume: 2 start-page: 8434 issue: 12 year: 2019 ident: 10.1016/j.cej.2021.130587_b0305 article-title: Different Pathways for CO2 Electrocatalytic Reduction by Confined CoTMPyP in Electrodeposited Reduced Graphene Oxide publication-title: ACS Appl. Energ. Mater. doi: 10.1021/acsaem.9b01279 – volume: 1 start-page: 6055 issue: 19 year: 2016 ident: 10.1016/j.cej.2021.130587_b0190 article-title: High-selectivity electrochemical conversion of CO2 to ethanol using a copper nanoparticle/n-doped graphene electrode publication-title: ChemistrySelect doi: 10.1002/slct.201601169 – volume: 143 start-page: 610 year: 2019 ident: 10.1016/j.cej.2021.130587_b0750 article-title: A review of three-dimensional graphene-based materials: Synthesis and applications to energy conversion/storage and environment publication-title: Carbon doi: 10.1016/j.carbon.2018.11.053 – volume: 5 start-page: 11080 issue: 11 year: 2017 ident: 10.1016/j.cej.2021.130587_b0650 article-title: Theoretical Investigations into Defected Graphene for Electrochemical Reduction of CO2 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b03031 – volume: 30 start-page: 84 issue: 1 year: 2018 ident: 10.1016/j.cej.2021.130587_b0265 article-title: Highly Selective and Active Pd-In/three-dimensional Graphene with Special Structure for Electroreduction CO2 to Formate publication-title: Electroanalysis doi: 10.1002/elan.201700525 – volume: 8 start-page: 1801280 issue: 26 year: 2018 ident: 10.1016/j.cej.2021.130587_b0290 article-title: A Porphyrin/Graphene Framework: A Highly Efficient and Robust Electrocatalyst for Carbon Dioxide Reduction publication-title: Adv. Energ. Mater. doi: 10.1002/aenm.201801280 – volume: 2 start-page: 46 issue: 1 year: 2019 ident: 10.1016/j.cej.2021.130587_b0675 article-title: Catalytic CO2 reduction by palladium-decorated silicon–hydride nanosheets, Nature publication-title: Catalysis – volume: 44 start-page: 30820 year: 2019 ident: 10.1016/j.cej.2021.130587_b0365 article-title: Electrochemical conversion of CO2 to methanol using a glassy carbon electrode, modified by Pe@histamine-reduced graphene oxide publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.09.237 – volume: 7 start-page: 19113 issue: 23 year: 2019 ident: 10.1016/j.cej.2021.130587_b0025 article-title: Synergy of a Metallic NiCo Dimer Anchored on a C2N-Graphene Matrix Promotes the Electrochemical CO2 Reduction Reaction publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b05042 – volume: 785 start-page: 7 year: 2019 ident: 10.1016/j.cej.2021.130587_b0335 article-title: N-doped reduced graphene oxide supported Cu2O nanocubes as high active catalyst for CO2 electroreduction to C2H4 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.01.142 – volume: 47 start-page: 7628 issue: 20 year: 2018 ident: 10.1016/j.cej.2021.130587_b0725 article-title: Defects on carbons for electrocatalytic oxygen reduction publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00690J – volume: 139 start-page: 4052 issue: 11 year: 2017 ident: 10.1016/j.cej.2021.130587_b0080 article-title: Synergistic enhancement of electrocatalytic CO2 reduction with gold nanoparticles embedded in functional graphene nanoribbon composite electrodes publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12217 – volume: 39 start-page: 101178 year: 2020 ident: 10.1016/j.cej.2021.130587_b0390 article-title: Unprecedented lower over-potential for CO2 electro-reduction on copper oxide anchored to graphene oxide microstructures publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2020.101178 – volume: 32 start-page: 2764 issue: 7 year: 2020 ident: 10.1016/j.cej.2021.130587_b0800 article-title: Highly Active Rhenium-, Ruthenium-, and Iridium-Based Dichalcogenide Electrocatalysts for Oxygen Reduction and Oxygen Evolution Reactions in Aprotic Media publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b04117 – volume: 21 start-page: 2059 issue: 5 year: 2021 ident: 10.1016/j.cej.2021.130587_b0100 article-title: Emergence of Potential-controlled Cu-nanocuboids and graphene-covered Cu-nanocuboids under operando CO2 electroreduction publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c04703 – volume: 12 start-page: 41288 issue: 37 year: 2020 ident: 10.1016/j.cej.2021.130587_b0385 article-title: Vitamin B-12 on Graphene for Highly Efficient CO2 Electroreduction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c10125 – volume: 37 start-page: 353 year: 2020 ident: 10.1016/j.cej.2021.130587_b0455 article-title: Metal-support interaction enhanced electrochemical reduction of CO2 to formate between graphene and Bi nanoparticles publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2020.02.007 – volume: 5 start-page: 8529 issue: 10 year: 2017 ident: 10.1016/j.cej.2021.130587_b0620 article-title: Silver Nanoparticles with Surface-Bonded Oxygen for Highly Selective CO2 Reduction publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b02380 – volume: 8 start-page: 4192 issue: 6 year: 2016 ident: 10.1016/j.cej.2021.130587_b0195 article-title: Graphene-Immobilized fac-Re(bipy)(CO)(3)Cl for Syngas Generation from Carbon Dioxide publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b11958 – volume: 19 start-page: 4029 issue: 6 year: 2019 ident: 10.1016/j.cej.2021.130587_b0310 article-title: Enhanced Electrocatalytic Reduction of CO2 via Chemical Coupling between Indium Oxide and Reduced Graphene Oxide publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b01393 – volume: 44 year: 2021 ident: 10.1016/j.cej.2021.130587_b0470 article-title: Nitrogen-doped graphene supported copper nanoparticles for electrochemical reduction of CO2 publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2020.101382 – volume: 26 start-page: 233 issue: 2 year: 2016 ident: 10.1016/j.cej.2021.130587_b0820 article-title: Graphene Quantum Sheet Catalyzed Silicon Photocathode for Selective CO2 Conversion to CO publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201502751 – volume: 9 start-page: 216 issue: 1 year: 2016 ident: 10.1016/j.cej.2021.130587_b0145 article-title: Polyethylenimine promoted electrocatalytic reduction of CO2 to CO in aqueous medium by graphene-supported amorphous molybdenum sulphide publication-title: Energ. Environ. Sci. doi: 10.1039/C5EE02879E – volume: 13 start-page: 947 issue: 4 year: 2020 ident: 10.1016/j.cej.2021.130587_b0570 article-title: Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis publication-title: Nano Res. doi: 10.1007/s12274-020-2720-1 – volume: 492 start-page: 1 year: 2015 ident: 10.1016/j.cej.2021.130587_b0060 article-title: Metal-free graphene-based catalyst—Insight into the catalytic activity: A short review publication-title: Appl. Catal. A: Gen. doi: 10.1016/j.apcata.2014.11.041 – volume: 48 start-page: 5207 issue: 20 year: 2019 ident: 10.1016/j.cej.2021.130587_b0105 article-title: Single atom electrocatalysts supported on graphene or graphene-like carbons publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00422J |
SSID | ssj0006919 |
Score | 2.5376973 |
SecondaryResourceType | review_article |
Snippet | •Review of graphene-assisted construction strategies of both metal and non-metal based electrocatalysts.•Discussion of CO2RR electrocatalytic performances of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 130587 |
SubjectTerms | Active sites CO2 reduction Electrocatalysts Graphene Metal-based Non-metal |
Title | Graphene-assisted construction of electrocatalysts for carbon dioxide reduction |
URI | https://dx.doi.org/10.1016/j.cej.2021.130587 |
Volume | 425 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14EmKT7qs5lmKtFiuoxd5CdrMLKdKUtge9-NudyUMrqAcvCUl2IMxsZr7Jzn5DyLlvFIAh3N3OmPG4aGtPty18eMiKLBxOGtw7fDeSgzG_nYhJjfSqvTBYVln6_sKn5966vNMqtdmap2nrMcA1rZArTFoCxdAPc65wll--f5V5yDBv7oGDPRxdrWzmNV7GTiFFbAfYE1lgVd1PsWkt3vR3yHYJFGm3eJddUrOzPbK1Rh-4T-6vkW0anJUHCBjNlVCTfTHC0szRsstN_pPmbblaUsCo1MQLDY-TNHtNE0sXyN6KAgdk3L966g28skGCZ5hkK0_bRDqdKB0DDotV2FFMaGU63EFkZkZAqDFSJ760zrBYJAgfuIGEw8DBasUOSX2WzewRoYEDy4RC-4wrjmujInRSMK4BcDkmTYP4lWoiU7KHYxOLl6gqE5tGoM0ItRkV2myQi0-ReUGd8ddgXuk7-mb_CFz772LH_xM7IZt4VZSlnJI6GMaeAbhY6WY-e5pko3szHIzwPHx4Hn4AqpLOoQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gHtSD8RnxuQe9mFRod7eVgwejIsjDg5Bwq-x2m0AMECBRLv4p_6AzfQgm6sGESw_dTtPOTme-6X47A3Ba0B6CIdrdzrm2hHSUpRyDHx5VRZYhGQ3tHa433HJLPLRlOwMf6V4YolUmvj_26ZG3Ts7kE23mh91u_smmNa2i8ChpsT3uJMzKqpm-Yt42vqrc4iSfOU7prnlTtpLWApbmLp9YygRuqAJPdRDBdDxMvLlUnr4UIcY0riU6ae2qoOCaUPOODCjwCo1QXePBKI_jfZdgWaC7oLYJF-8zXolbjLqJ0NNZ9HjpUmpEKtOmhzmpY1MTZkk0vp-C4VyAK23AeoJM2XX88puQMf0tWJurV7gNj_dU3hq9o4WQm-wjYHowK0HLBiFL2upEf4Wm48mYIShmujNSOBx0B2_dwLARlYslgR1oLURtu5DtD_pmD5gdoikUpSpw4QlajJXF0JVcKER4IXd1DgqpanydlCunrhkvfspL6_moTZ-06cfazMH5l8gwrtXx18Ui1bf_zeB8jCW_i-3_T-wEVsrNes2vVRrVA1ilkZgTcwhZnCRzhMhmoo4jS2LwvGjT_QRsAgk9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene-assisted+construction+of+electrocatalysts+for+carbon+dioxide+reduction&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Hu%2C+Huawen&rft.au=Ou%2C+Jian+Zhen&rft.au=Xu%2C+Xuejun&rft.au=Lin%2C+Yinlei&rft.date=2021-12-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=425&rft_id=info:doi/10.1016%2Fj.cej.2021.130587&rft.externalDocID=S1385894721021732 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |