quant: a minimalist interval method for time series classification

We show that it is possible to achieve the same accuracy, on average, as the most accurate existing interval methods for time series classification on a standard set of benchmark datasets using a single type of feature (quantiles), fixed intervals, and an ‘off the shelf’ classifier. This distillatio...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 38; no. 4; pp. 2377 - 2402
Main Authors Dempster, Angus, Schmidt, Daniel F., Webb, Geoffrey I.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1384-5810
1573-756X
DOI10.1007/s10618-024-01036-9

Cover

Loading…
Abstract We show that it is possible to achieve the same accuracy, on average, as the most accurate existing interval methods for time series classification on a standard set of benchmark datasets using a single type of feature (quantiles), fixed intervals, and an ‘off the shelf’ classifier. This distillation of interval-based approaches represents a fast and accurate method for time series classification, achieving state-of-the-art accuracy on the expanded set of 142 datasets in the UCR archive with a total compute time (training and inference) of less than 15 min using a single CPU core.
AbstractList We show that it is possible to achieve the same accuracy, on average, as the most accurate existing interval methods for time series classification on a standard set of benchmark datasets using a single type of feature (quantiles), fixed intervals, and an ‘off the shelf’ classifier. This distillation of interval-based approaches represents a fast and accurate method for time series classification, achieving state-of-the-art accuracy on the expanded set of 142 datasets in the UCR archive with a total compute time (training and inference) of less than 15 min using a single CPU core.
We show that it is possible to achieve the same accuracy, on average, as the most accurate existing interval methods for time series classification on a standard set of benchmark datasets using a single type of feature (quantiles), fixed intervals, and an ‘off the shelf’ classifier. This distillation of interval-based approaches represents a fast and accurate method for time series classification, achieving state-of-the-art accuracy on the expanded set of 142 datasets in the UCR archive with a total compute time (training and inference) of less than 15 min using a single CPU core.
Author Schmidt, Daniel F.
Webb, Geoffrey I.
Dempster, Angus
Author_xml – sequence: 1
  givenname: Angus
  surname: Dempster
  fullname: Dempster, Angus
  email: angus.dempster@monash.edu
  organization: Monash University
– sequence: 2
  givenname: Daniel F.
  surname: Schmidt
  fullname: Schmidt, Daniel F.
  organization: Monash University
– sequence: 3
  givenname: Geoffrey I.
  surname: Webb
  fullname: Webb, Geoffrey I.
  organization: Monash University
BookMark eNp9kE9LxDAQxYOs4O7qF_AU8BydNGmaetPFf7DgRcFbSNNUs7TpbpIKfnvrVhA87Gnm8H7z5r0FmvneW4TOKVxSgOIqUhBUEsg4AQpMkPIIzWleMFLk4m027kxykksKJ2gR4wYA8ozBHN3uBu3TNda4c951unUxYeeTDZ-6xZ1NH32Nmz7g5DqLow3ORmxaHaNrnNHJ9f4UHTe6jfbsdy7R6_3dy-qRrJ8fnlY3a2KYYIlUggow0oqm1pmV3GqaVdrwTBYF0IIxXue8ZrnIbZMJWlacg6mpqGzNTMkbtkQX091t6HeDjUlt-iH40VIxkILykspiVGWTyoQ-xmAbtQ1jrvClKKifrtTUlRq7UvuuVDlC8h9kXNqHS0G79jDKJjSOPv7dhr-vDlDflMF_xg
CitedBy_id crossref_primary_10_1016_j_chemolab_2024_105279
crossref_primary_10_1007_s10618_024_01022_1
Cites_doi 10.1007/s10994-006-6226-1
10.1007/s10994-021-06057-9
10.1007/s10618-022-00844-1
10.1007/3-540-44794-6_10
10.1007/978-3-030-67658-2_38
10.1016/j.ins.2013.02.030
10.1007/978-3-031-09037-0_53
10.1007/1-84628-102-4_18
10.1007/s10618-020-00701-z
10.1109/JAS.2019.1911747
10.1109/TPAMI.2013.72
10.1145/3182382
10.1007/3-540-45372-5_29
10.1007/s10618-020-00710-y
10.1007/s10618-019-00617-3
10.1007/s10618-019-00647-x
10.3233/IDA-2001-5305
10.1007/s10618-015-0425-y
10.1007/s10618-016-0483-9
10.1007/978-3-030-29859-3_33
10.1007/978-3-031-09282-4_13
10.1007/s10618-023-00939-3
10.1007/s10618-023-00978-w
10.1016/j.eswa.2022.118923
10.58895/ksp/1000138532-7
10.1007/s10618-024-01022-1
10.1109/BigData50022.2020.9378424
10.1109/ICDM51629.2021.00113
10.1007/s10994-023-06395-w
10.1145/3132847.3132980
10.1109/BigData55660.2022.10020496
10.1145/967900.968015
10.1109/ICDM50108.2020.00107
10.1145/3447548.3467231
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10618-024-01036-9
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 2402
ExternalDocumentID 10_1007_s10618_024_01036_9
GrantInformation_xml – fundername: Australian Research Council
  grantid: DP210100072; DP210100072; DP210100072
  funderid: http://dx.doi.org/10.13039/501100000923
– fundername: Monash University
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c363t-b6160c8e6fda2e84ea12bac42877017334d54d3565ef2619b440cd16bed3c94f3
IEDL.DBID BENPR
ISSN 1384-5810
IngestDate Sat Aug 16 17:42:45 EDT 2025
Tue Jul 01 00:40:33 EDT 2025
Thu Apr 24 22:55:24 EDT 2025
Fri Feb 21 02:39:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Subseries
Time series classification
Quantile
Fast
Interval
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-b6160c8e6fda2e84ea12bac42877017334d54d3565ef2619b440cd16bed3c94f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s10618-024-01036-9
PQID 3086149187
PQPubID 43030
PageCount 26
ParticipantIDs proquest_journals_3086149187
crossref_primary_10_1007_s10618_024_01036_9
crossref_citationtrail_10_1007_s10618_024_01036_9
springer_journals_10_1007_s10618_024_01036_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240700
2024-07-00
20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 7
  year: 2024
  text: 20240700
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Dau, Bagnall, Kamgar (CR8) 2019; 6
CR19
CR18
Dempster, Petitjean, Webb (CR9) 2020; 34
CR17
CR39
Tan, Dempster, Bergmeir (CR41) 2022; 36
CR38
Rodríguez, Alonso, Bramer, Coenen, Allen (CR35) 2005
Guillaume, Vrain, Elloumi, El Yacoubi, Granger, Yuen (CR16) 2022
Ismail Fawaz, Lucas, Forestier (CR21) 2020; 34
CR34
Baydoğan, Runger, Tuv (CR4) 2013; 35
CR11
CR10
CR32
CR31
Lubba, Sethi, Knaute (CR25) 2019; 33
Middlehurst, Large, Cawley, Hutter, Kersting, Lijffijt (CR29) 2021
Middlehurst, Large, Flynn (CR30) 2021; 110
Geurts, Ernst, Wehenke (CR15) 2006; 63
Lines, Taylor, Bagnall (CR23) 2018; 12
Altay, Baydoğan (CR1) 2021; 24
Bagnall, Lines, Bostrom (CR2) 2017; 31
Baydoğan, Runger (CR3) 2016; 30
Middlehurst, Bagnall, El Yacoubi, Granger, Yuen (CR27) 2022
Flynn, Large, Bagnall, Pérez García, Sánchez González, Castejón Limas (CR13) 2019
CR6
CR5
CR7
CR28
CR24
Geurts, De Raedt, Siebes (CR14) 2001
Rodríguez, Alonso, Boström, Zighed, Komorowski, Żytkow (CR36) 2000
CR22
CR20
CR40
Lucas, Shifaz, Pelletier (CR26) 2019; 33
Deng, Runger, Tuv (CR12) 2013; 239
Rodríguez, Alonso, Boström (CR37) 2001; 12
Pedregosa, Varoquaux, Gramfort (CR33) 2011; 12
P Geurts (1036_CR15) 2006; 63
JJ Rodríguez (1036_CR37) 2001; 12
1036_CR34
1036_CR11
M Flynn (1036_CR13) 2019
HA Dau (1036_CR8) 2019; 6
1036_CR10
1036_CR32
1036_CR31
CW Tan (1036_CR41) 2022; 36
A Dempster (1036_CR9) 2020; 34
JJ Rodríguez (1036_CR35) 2005
T Altay (1036_CR1) 2021; 24
MG Baydoğan (1036_CR3) 2016; 30
A Guillaume (1036_CR16) 2022
M Middlehurst (1036_CR27) 2022
A Bagnall (1036_CR2) 2017; 31
F Pedregosa (1036_CR33) 2011; 12
JJ Rodríguez (1036_CR36) 2000
MG Baydoğan (1036_CR4) 2013; 35
1036_CR5
M Middlehurst (1036_CR29) 2021
1036_CR7
J Lines (1036_CR23) 2018; 12
1036_CR6
1036_CR19
CH Lubba (1036_CR25) 2019; 33
M Middlehurst (1036_CR30) 2021; 110
1036_CR18
1036_CR17
1036_CR39
1036_CR38
1036_CR24
1036_CR22
1036_CR20
H Deng (1036_CR12) 2013; 239
1036_CR40
H Ismail Fawaz (1036_CR21) 2020; 34
P Geurts (1036_CR14) 2001
B Lucas (1036_CR26) 2019; 33
1036_CR28
References_xml – volume: 63
  start-page: 3
  issue: 1
  year: 2006
  end-page: 42
  ident: CR15
  article-title: Extremely randomized trees
  publication-title: Mach Learn
  doi: 10.1007/s10994-006-6226-1
– ident: CR22
– volume: 110
  start-page: 3211
  year: 2021
  end-page: 3243
  ident: CR30
  article-title: HIVE-COTE 2.0: a new meta ensemble for time series classification
  publication-title: Mach Learn
  doi: 10.1007/s10994-021-06057-9
– volume: 24
  start-page: 1490
  issue: 6
  year: 2021
  end-page: 1497
  ident: CR1
  article-title: A new feature-based time series classification method by using scale-space extrema
  publication-title: Eng Sci Technol Int J
– ident: CR18
– volume: 36
  start-page: 1623
  issue: 5
  year: 2022
  end-page: 1646
  ident: CR41
  article-title: MultiRocket: multiple pooling operators and transformations for fast and effective time series classification
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-022-00844-1
– start-page: 115
  year: 2001
  end-page: 127
  ident: CR14
  article-title: Pattern extraction for time series classification
  publication-title: Princip Data Min Knowl Discov
  doi: 10.1007/3-540-44794-6_10
– start-page: 660
  year: 2021
  end-page: 676
  ident: CR29
  article-title: The temporal dictionary ensemble (TDE) classifier for time series classification
  publication-title: Machine learning and knowledge discovery in databases
  doi: 10.1007/978-3-030-67658-2_38
– volume: 239
  start-page: 142
  year: 2013
  end-page: 153
  ident: CR12
  article-title: A time series forest for classification and feature extraction
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2013.02.030
– start-page: 653
  year: 2022
  end-page: 664
  ident: CR16
  article-title: Random dilated shapelet transform: a new approach for time series shapelets
  publication-title: Pattern Recognit Artif Intell
  doi: 10.1007/978-3-031-09037-0_53
– start-page: 244
  year: 2005
  end-page: 257
  ident: CR35
  article-title: Support vector machines of interval-based features for time series classification
  publication-title: Research and development in intelligent systems XXI
  doi: 10.1007/1-84628-102-4_18
– ident: CR39
– volume: 34
  start-page: 1454
  issue: 5
  year: 2020
  end-page: 1495
  ident: CR9
  article-title: Rocket: exceptionally fast and accurate time series classification using random convolutional kernels
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-020-00701-z
– volume: 6
  start-page: 1293
  issue: 6
  year: 2019
  end-page: 1305
  ident: CR8
  article-title: The UCR time series archive
  publication-title: IEEE/CAA J Automatica Sin
  doi: 10.1109/JAS.2019.1911747
– volume: 35
  start-page: 2796
  issue: 11
  year: 2013
  end-page: 2802
  ident: CR4
  article-title: A bag-of-features framework to classify time series
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.72
– ident: CR10
– ident: CR6
– volume: 12
  start-page: 521
  issue: 5
  year: 2018
  end-page: 5235
  ident: CR23
  article-title: Time series classification with HIVE-COTE: the hierarchical vote collective of transformation-based ensembles
  publication-title: ACM Trans Knowl Discov Data
  doi: 10.1145/3182382
– start-page: 299
  year: 2000
  end-page: 308
  ident: CR36
  article-title: Learning first order logic time series classifiers: Rules and boosting
  publication-title: Principles of data mining and knowledge discovery
  doi: 10.1007/3-540-45372-5_29
– ident: CR40
– volume: 34
  start-page: 1936
  issue: 6
  year: 2020
  end-page: 1962
  ident: CR21
  article-title: InceptionTime: finding AlexNet for time series classification
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-020-00710-y
– volume: 33
  start-page: 607
  issue: 3
  year: 2019
  end-page: 635
  ident: CR26
  article-title: Proximity forest: an effective and scalable distance-based classifier for time series
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-019-00617-3
– ident: CR19
– volume: 33
  start-page: 1821
  issue: 6
  year: 2019
  end-page: 1852
  ident: CR25
  article-title: catch22: CAnonical time-series characteristics
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-019-00647-x
– ident: CR38
– ident: CR17
– ident: CR31
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR33
  article-title: Scikit-learn: machine learning in python
  publication-title: J Mach Learn Res
– volume: 12
  start-page: 245
  issue: 3
  year: 2001
  end-page: 262
  ident: CR37
  article-title: Boosting interval based literals
  publication-title: Intell Data Anal
  doi: 10.3233/IDA-2001-5305
– ident: CR11
– volume: 30
  start-page: 476
  issue: 2
  year: 2016
  end-page: 509
  ident: CR3
  article-title: Time series representation and similarity based on local autopatterns
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-015-0425-y
– ident: CR32
– ident: CR34
– ident: CR5
– ident: CR7
– volume: 31
  start-page: 606
  issue: 3
  year: 2017
  end-page: 660
  ident: CR2
  article-title: The great time series classification bake off: A review and experimental evaluation of recent algorithmic advances
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-016-0483-9
– ident: CR28
– start-page: 381
  year: 2019
  end-page: 392
  ident: CR13
  article-title: The contract random interval spectral ensemble (c-RISE): the effect of contracting a classifier on accuracy
  publication-title: Hybrid Artif Intell Syst
  doi: 10.1007/978-3-030-29859-3_33
– ident: CR24
– start-page: 150
  year: 2022
  end-page: 161
  ident: CR27
  article-title: The FreshPRINCE: a simple transformation based pipeline time series classifier
  publication-title: Pattern Recognit Artif Intell
  doi: 10.1007/978-3-031-09282-4_13
– ident: CR20
– ident: 1036_CR17
– volume: 24
  start-page: 1490
  issue: 6
  year: 2021
  ident: 1036_CR1
  publication-title: Eng Sci Technol Int J
– ident: 1036_CR11
  doi: 10.1007/s10618-023-00939-3
– ident: 1036_CR7
  doi: 10.1007/s10618-023-00978-w
– ident: 1036_CR22
  doi: 10.1016/j.eswa.2022.118923
– volume: 63
  start-page: 3
  issue: 1
  year: 2006
  ident: 1036_CR15
  publication-title: Mach Learn
  doi: 10.1007/s10994-006-6226-1
– volume: 12
  start-page: 2825
  year: 2011
  ident: 1036_CR33
  publication-title: J Mach Learn Res
– volume: 12
  start-page: 245
  issue: 3
  year: 2001
  ident: 1036_CR37
  publication-title: Intell Data Anal
  doi: 10.3233/IDA-2001-5305
– start-page: 381
  volume-title: Hybrid Artif Intell Syst
  year: 2019
  ident: 1036_CR13
  doi: 10.1007/978-3-030-29859-3_33
– volume: 31
  start-page: 606
  issue: 3
  year: 2017
  ident: 1036_CR2
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-016-0483-9
– ident: 1036_CR40
  doi: 10.58895/ksp/1000138532-7
– volume: 34
  start-page: 1936
  issue: 6
  year: 2020
  ident: 1036_CR21
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-020-00710-y
– ident: 1036_CR32
  doi: 10.1007/s10618-024-01022-1
– start-page: 660
  volume-title: Machine learning and knowledge discovery in databases
  year: 2021
  ident: 1036_CR29
  doi: 10.1007/978-3-030-67658-2_38
– start-page: 244
  volume-title: Research and development in intelligent systems XXI
  year: 2005
  ident: 1036_CR35
  doi: 10.1007/1-84628-102-4_18
– ident: 1036_CR28
  doi: 10.1109/BigData50022.2020.9378424
– start-page: 299
  volume-title: Principles of data mining and knowledge discovery
  year: 2000
  ident: 1036_CR36
  doi: 10.1007/3-540-45372-5_29
– ident: 1036_CR5
  doi: 10.1109/ICDM51629.2021.00113
– ident: 1036_CR18
– start-page: 115
  volume-title: Princip Data Min Knowl Discov
  year: 2001
  ident: 1036_CR14
  doi: 10.1007/3-540-44794-6_10
– ident: 1036_CR39
  doi: 10.1007/s10994-023-06395-w
– volume: 30
  start-page: 476
  issue: 2
  year: 2016
  ident: 1036_CR3
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-015-0425-y
– volume: 34
  start-page: 1454
  issue: 5
  year: 2020
  ident: 1036_CR9
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-020-00701-z
– ident: 1036_CR20
– volume: 239
  start-page: 142
  year: 2013
  ident: 1036_CR12
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2013.02.030
– ident: 1036_CR24
– volume: 33
  start-page: 1821
  issue: 6
  year: 2019
  ident: 1036_CR25
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-019-00647-x
– ident: 1036_CR31
  doi: 10.1007/s10618-024-01022-1
– volume: 12
  start-page: 521
  issue: 5
  year: 2018
  ident: 1036_CR23
  publication-title: ACM Trans Knowl Discov Data
  doi: 10.1145/3182382
– volume: 35
  start-page: 2796
  issue: 11
  year: 2013
  ident: 1036_CR4
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.72
– start-page: 653
  volume-title: Pattern Recognit Artif Intell
  year: 2022
  ident: 1036_CR16
  doi: 10.1007/978-3-031-09037-0_53
– ident: 1036_CR38
  doi: 10.1145/3132847.3132980
– ident: 1036_CR19
  doi: 10.1109/BigData55660.2022.10020496
– ident: 1036_CR34
  doi: 10.1145/967900.968015
– volume: 6
  start-page: 1293
  issue: 6
  year: 2019
  ident: 1036_CR8
  publication-title: IEEE/CAA J Automatica Sin
  doi: 10.1109/JAS.2019.1911747
– ident: 1036_CR6
  doi: 10.1109/ICDM50108.2020.00107
– volume: 33
  start-page: 607
  issue: 3
  year: 2019
  ident: 1036_CR26
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-019-00617-3
– volume: 36
  start-page: 1623
  issue: 5
  year: 2022
  ident: 1036_CR41
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-022-00844-1
– start-page: 150
  volume-title: Pattern Recognit Artif Intell
  year: 2022
  ident: 1036_CR27
  doi: 10.1007/978-3-031-09282-4_13
– ident: 1036_CR10
  doi: 10.1145/3447548.3467231
– volume: 110
  start-page: 3211
  year: 2021
  ident: 1036_CR30
  publication-title: Mach Learn
  doi: 10.1007/s10994-021-06057-9
SSID ssj0005230
Score 2.459134
Snippet We show that it is possible to achieve the same accuracy, on average, as the most accurate existing interval methods for time series classification on a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2377
SubjectTerms Accuracy
Archives & records
Artificial Intelligence
Chemistry and Earth Sciences
Classification
Computer Science
Data Mining and Knowledge Discovery
Datasets
Decision trees
Feature selection
Fourier transforms
Information Storage and Retrieval
Methods
Physics
Statistics for Engineering
Time series
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60InjxURWrVfbgTRe62Uc23lQsRdCThd5Csw8QtD6S_n9nN4mtooLnbOYwj8w32Zn5AE6N8ZKn0tNCO06F5AXNhLE0SQ03VgTqtPBr4O5ejcbidiInzVBY2Xa7t1eS8Uu9NOymmKaYU2jgJlA0W4U1GWp39OJxcrnU2MHr2WAtqNRs0IzK_CzjazpaYMxv16Ix2wy3YbOBieSytusOrLhZF7ZaCgbSRGQX1mMHpyl34eptjkq6IFMStoU8h72GFXmMHY0oqCaKJohQSWCTJ8HxXElMwM6hWSjaZw_Gw5uH6xFtCBKo4YpXtFBMDYx2yttp4rRwU5YUUxOqoBQjjXNhpbAcMZvzoVIqhBgYy1ThLDeZ8HwfOrOXmTsAIhC3MmMRXnGPCElrJpxO0c28YCb1sges1VNumu3hgcTiKV_sPQ66zVG3edRtnvXg7POd13p3xp-n-6368yaOypxjxYU1HNNpD85bkywe_y7t8H_Hj2AjiV4R-nD70Kne5-4Y0UZVnETn-gDwRci-
  priority: 102
  providerName: Springer Nature
Title quant: a minimalist interval method for time series classification
URI https://link.springer.com/article/10.1007/s10618-024-01036-9
https://www.proquest.com/docview/3086149187
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTwIxEJ0oXLz4bUSR9OBNG-m22y1eDBKQaCTGSKKnDdt2ExMFFPz_zixdURO97GF328ObtvOmnc4DOLY2j2US5zwzXnIVy4y3lHU8Sqy0TpF0Gm0N3A50f6iuH-PHsOE2C2mV5ZpYLNRuYmmP_Ewi90Y2L0xyMX3jpBpFp6tBQmMVqrgEGwy-qpfdwd39tyQPubgnbBSPjWiGazPh8pwWhqOP4qR1oHnrp2ta8s1fR6SF5-ltwnqgjKy9sPEWrPjxNmyUcgwszM4duHz7QJjO2YhRvZBXqmw4Z89FTiM2X0hFM-SojPTkGQ09P2OW2DOlCxUW2oVhr_vQ6fMgkcCt1HLOMy100xqvczeKvFF-JKJsZCkOSnCuSalcrJxE1uZzipUypZrWCZ15J21L5XIPKuPJ2O8DU8hchXVIsGSOHMkYobxJcKDlStgkj2sgSnRSG-qHk4zFS7qsfEyIpohoWiCatmpw8tVmuqie8e_f9RL0NMykWbq0ew1OS0MsP__d28H_vR3CWlTYnjJv61CZv3_4I-QX86wBq6Z31YBq--rpptsIQwrfdnQHn8Oo_QlXs86O
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BOcCFHVEo4AOcwKKOncRBQoittGwnkLiFxnYkJCiUtkL8FN_ITBYKSHDrObEP42fPG3tmHsCmMakvQz_liXaSK18mPFLGci800lhF0ml0NXB1HTRv1fmdfzcGH2UtDKVVlmdidlDbZ0N35LsSuTeyeaHDg5cuJ9Uoel0tJTRyWFy49zcM2Xr7rRNc3y3Pa5zeHDd5oSrAjQxknyeBCOpGuyC1bc9p5drCS9qGQocQ4Smlsr6yEomOSym8SJSqGyuCxFlpIpVKnHccJpSUEe0o3Tj7llIi86pkrbivRb0o0ilK9QKhOXpETsoKAY9-OsIhu_31IJv5ucYsTBcElR3miJqDMdeZh5lS_IEVZ8ECHHUHuCh7rM2oO8kT9VHss4csgxKH58LUDBkxI_V6RkB3PWaIq1NyUoaHRbgdiemWoNJ57rhlYAp5sjAW6ZxMkZFpLZTTIcI6VcKEqV8FUVonNkW3chLNeIyHfZbJojFaNM4sGkdV2P4a85L36vj371pp9LjYt714iLIq7JQLMfz892wr_8-2AZPNm6vL-LJ1fbEKU16GA8r5rUGl_zpwa8hs-sl6BicG96PG7ycoEgWT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7RIFW9FOhDpFDwoZzAIl57dx2kquKRiEcbRahI3LZZPyQkmkeTCPHX-HWd2fUSQCK3nHc9h_Fn-xt7Zj6Ab8b4WKax57l2kqtY5rypjOVRaqSxiqTT6GrgVyc5vVLn1_H1EjxUtTCUVlnticVGbQeG7sj3JXJvZPNCp_s-pEV0T9o_hiNOClL00lrJaZQQuXD3dxi-jb-fneBc70RRu_X7-JQHhQFuZCInPE9E0jDaJd72IqeV64ko7xkKI1KEqpTKxspKJD3OU6iRK9UwViS5s9I0lZdo9w0spxgVNWqwfNTqdC-fJJjIskZZKx5r0QglO6FwLxGa4_nISWch4c3nx-KM6754ni1OvfYqvA90lR2W-FqDJdf_ACuVFAQLO8NHOBpNcYoOWI9Rr5K_1FVxwm6KfEocXspUM-THjLTsGcHejZkh5k6pSgU6PsHVQpz3GWr9Qd-tA1PImoWxSO6kR36mtVBOpwhyr4RJfVwHUXknM6F3OUlo3Gazrsvk0Qw9mhUezZp12H0cMyw7d8z9e7NyehZW8TibYa4Oe9VEzD6_bu3LfGvb8Baxm_0861xswLuogAElAG9CbfJv6r4izZnkWwFPDP4sGsL_AeM9CyU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=quant%3A+a+minimalist+interval+method+for+time+series+classification&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Dempster%2C+Angus&rft.au=Schmidt%2C+Daniel+F&rft.au=Webb%2C+Geoffrey+I&rft.date=2024-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=38&rft.issue=4&rft.spage=2377&rft.epage=2402&rft_id=info:doi/10.1007%2Fs10618-024-01036-9&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon