Sufficient dimension reduction for average causal effect estimation
A large number of covariates can have a negative impact on the quality of causal effect estimation since confounding adjustment becomes unreliable when the number of covariates is large relative to the number of samples. Propensity score is a common way to deal with a large covariate set, but the ac...
Saved in:
Published in | Data mining and knowledge discovery Vol. 36; no. 3; pp. 1174 - 1196 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A large number of covariates can have a negative impact on the quality of causal effect estimation since confounding adjustment becomes unreliable when the number of covariates is large relative to the number of samples. Propensity score is a common way to deal with a large covariate set, but the accuracy of propensity score estimation (normally done by logistic regression) is also challenged by the large number of covariates. In this paper, we prove that a large covariate set can be reduced to a lower dimensional representation which captures the complete information for adjustment in causal effect estimation. The theoretical result enables effective data-driven algorithms for causal effect estimation. Supported by the result, we develop an algorithm that employs a supervised kernel dimension reduction method to learn a lower dimensional representation from the original covariate space, and then utilises nearest neighbour matching in the reduced covariate space to impute the counterfactual outcomes to avoid the large sized covariate set problem. The proposed algorithm is evaluated on two semisynthetic and three real-world datasets and the results show the effectiveness of the proposed algorithm. |
---|---|
AbstractList | A large number of covariates can have a negative impact on the quality of causal effect estimation since confounding adjustment becomes unreliable when the number of covariates is large relative to the number of samples. Propensity score is a common way to deal with a large covariate set, but the accuracy of propensity score estimation (normally done by logistic regression) is also challenged by the large number of covariates. In this paper, we prove that a large covariate set can be reduced to a lower dimensional representation which captures the complete information for adjustment in causal effect estimation. The theoretical result enables effective data-driven algorithms for causal effect estimation. Supported by the result, we develop an algorithm that employs a supervised kernel dimension reduction method to learn a lower dimensional representation from the original covariate space, and then utilises nearest neighbour matching in the reduced covariate space to impute the counterfactual outcomes to avoid the large sized covariate set problem. The proposed algorithm is evaluated on two semisynthetic and three real-world datasets and the results show the effectiveness of the proposed algorithm. |
Author | Yu, Kui Li, Jiuyong Le, Thuc Duy Cheng, Debo Liu, Jixue Liu, Lin |
Author_xml | – sequence: 1 givenname: Debo orcidid: 0000-0002-0383-1462 surname: Cheng fullname: Cheng, Debo email: Debo.Cheng@unisa.edu.au organization: STEM, University of South Australia – sequence: 2 givenname: Jiuyong orcidid: 0000-0002-9023-1878 surname: Li fullname: Li, Jiuyong email: Jiuyong.Li@unisa.edu.au organization: STEM, University of South Australia – sequence: 3 givenname: Lin orcidid: 0000-0003-2843-5738 surname: Liu fullname: Liu, Lin organization: STEM, University of South Australia – sequence: 4 givenname: Thuc Duy orcidid: 0000-0002-9732-4313 surname: Le fullname: Le, Thuc Duy organization: STEM, University of South Australia – sequence: 5 givenname: Jixue orcidid: 0000-0002-0794-0404 surname: Liu fullname: Liu, Jixue organization: STEM, University of South Australia – sequence: 6 givenname: Kui orcidid: 0000-0003-2442-4572 surname: Yu fullname: Yu, Kui organization: Key Laboratory of Knowledge Engineering With Big Data of Ministry of Education, Hefei University of Technology, School of Computer Science and Information Engineering, Hefei University of Technology |
BookMark | eNp9kE9LAzEQxYNUsFW_gKcFz9HJZpNNj1L8BwUPKngL2eykpLTZmuwKfnvTriB46Gne4f3mzbwZmYQuICFXDG4YQH2bGEimKJQlBVC8pOKETJmoOa2F_JhkzVVFhWJwRmYprQFAlBymZPE6OOetx9AXrd9iSL4LRcR2sP1euS4W5gujWWFhzZDMpkDn0PYFpt5vzd50QU6d2SS8_J3n5P3h_m3xRJcvj8-LuyW1XPKeNqIVsnGyqQUyhULVEpEZnDMrmWnnhvHWIdqqtgyFcSXKtuHKcgsVqMbwc3I97t3F7nPI-XrdDTHkSF1KWc2FkDXPLjW6bOxSiui09f3hzj4av9EM9L4yPVamc2X6UJkWGS3_obuYf4zfxyE-Qimbwwrj31VHqB_qNIGy |
CitedBy_id | crossref_primary_10_1186_s12874_024_02299_y crossref_primary_10_1088_2632_072X_ada861 crossref_primary_10_1007_s10489_023_04623_3 crossref_primary_10_5351_KJAS_2023_36_4_323 crossref_primary_10_1016_j_inffus_2024_102669 crossref_primary_10_1016_j_ipm_2024_103932 crossref_primary_10_1145_3636423 |
Cites_doi | 10.1017/CBO9781139025751 10.1080/01621459.1979.10482513 10.1093/aje/kwq439 10.1097/01.ede.0000215160.88317.cb 10.1111/biom.12788 10.1198/jcgs.2010.08162 10.1002/bimj.201700294 10.1080/01621459.1996.10476968 10.1080/01621459.2017.1319839 10.1155/2014/502678 10.1164/ajrccm.154.4.8887592 10.1080/07350015.2019.1609974 10.1111/biom.12679 10.1090/S0002-9947-1950-0051437-7 10.1214/09-STS313 10.1016/j.socscimed.2017.12.005 10.1037/h0037350 10.1093/pan/mpl013 10.1214/009053607000000677 10.1214/18-AOS1709 10.1093/biomet/asr041 10.1097/01.ede.0000222409.00878.37 10.1093/biomet/70.1.41 10.1111/rssb.12027 10.2307/2529684 10.1111/j.1468-0262.2006.00655.x 10.1109/TNNLS.2019.2921613 10.1073/pnas.1510489113 10.1111/j.1541-0420.2011.01619.x 10.1016/0270-0255(86)90088-6 10.1002/sim.8792 10.1111/biom.12859 10.1073/pnas.1804597116 10.1214/14-AOS1295 10.2307/2998560 10.1214/18-AOS1722 10.1002/sim.2739 10.3982/ECTA11293 10.1016/j.jeconom.2009.09.023 10.1093/biomet/asx053 10.1001/jama.1996.03540110043030 10.1017/CBO9780511803161 10.1214/09-AOS685 10.1145/3097983.3098032 10.1214/18-AOS1748 |
ContentType | Journal Article |
Copyright | Crown 2022 Crown 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Crown 2022 – notice: Crown 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s10618-022-00832-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library ProQuest SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Proquest Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1573-756X |
EndPage | 1196 |
ExternalDocumentID | 10_1007_s10618_022_00832_5 |
GrantInformation_xml | – fundername: the National Science Foundation of China grantid: 61876206 – fundername: China Scholarship Council grantid: 201708450092 funderid: http://dx.doi.org/10.13039/501100004543 – fundername: Australian Research Council grantid: DP200101210 funderid: http://dx.doi.org/10.13039/501100000923 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c363t-b5d56bf6b75e18e5876ee1ae91c61ad9a13dfeec47c1e5af2e6db38c3c0408ba3 |
IEDL.DBID | U2A |
ISSN | 1384-5810 |
IngestDate | Sat Aug 23 14:51:44 EDT 2025 Tue Jul 01 00:40:32 EDT 2025 Thu Apr 24 23:06:06 EDT 2025 Fri Feb 21 02:45:15 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Causal inference Sufficient dimension reduction Confounding bias Causal effects estimation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-b5d56bf6b75e18e5876ee1ae91c61ad9a13dfeec47c1e5af2e6db38c3c0408ba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0794-0404 0000-0002-0383-1462 0000-0003-2442-4572 0000-0003-2843-5738 0000-0002-9023-1878 0000-0002-9732-4313 |
OpenAccessLink | https://link.springer.com/10.1007/s10618-022-00832-5 |
PQID | 2664955673 |
PQPubID | 43030 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2664955673 crossref_citationtrail_10_1007_s10618_022_00832_5 crossref_primary_10_1007_s10618_022_00832_5 springer_journals_10_1007_s10618_022_00832_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220500 2022-05-00 20220501 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 5 year: 2022 text: 20220500 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Data mining and knowledge discovery |
PublicationTitleAbbrev | Data Min Knowl Disc |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Rosenbaum, Rubin (CR50) 1983; 70 Rubin (CR52) 1974; 66 Stuart (CR59) 2010; 25 VanderWeele, Shpitser (CR63) 2011; 67 Athey, Tibshirani (CR8) 2019; 47 CR35 CR34 CR33 Shortreed, Ertefaie (CR56) 2017; 73 Ma, Zhu (CR43) 2019; 47 Ho, Imai (CR29) 2007; 15 Maathuis, Kalisch (CR45) 2009; 37 Martens, Pestman (CR46) 2006; 17 Liu, Ma (CR38) 2018; 74 Abadie, Imbens (CR2) 2016; 84 Cook (CR15) 1996; 91 Wager, Athey (CR64) 2018; 113 Hahn (CR24) 1998; 66 Xie, Cai (CR66) 2019; 31 Künzel, Sekhon (CR36) 2019; 116 Deaton, Cartwright (CR18) 2018; 210 Luo, Zhu (CR41) 2020; 38 Luo, Zhu (CR42) 2017; 104 CR47 Pearl (CR48) 2009 Almond, Chay (CR4) 2005; 120 Maathuis, Colombo (CR44) 2015; 43 Benkeser, Carone (CR9) 2017; 104 CR40 Rubin (CR51) 1973; 29 Altman, Gill (CR5) 2004 Witte, Didelez (CR65) 2019; 61 Cheng, Li (CR12) 2022; 68 Connors, Dawson (CR13) 1996; 154 Häggström (CR23) 2018; 74 Imai, Ratkovic (CR31) 2014; 76 Athey, Imbens (CR7) 2016; 113 Han, Wellner (CR25) 2019; 47 Spirtes, Glymour (CR58) 2000 Van Der Laan, Starmans (CR62) 2014; 2014 Van Der Laan, Rubin (CR61) 2006; 2 Robins (CR49) 1986; 7 Loh, Vansteelandt (CR39) 2021; 40 Hernán, Robins (CR26) 2006; 17 Hofmann, Schölkopf (CR30) 2008; 36 Ghosh, Ma (CR21) 2021; 31 CR57 CR11 CR55 Aronszajn (CR6) 1950; 68 De Luna, Waernbaum (CR17) 2011; 98 Funk, Westreich (CR20) 2011; 173 Imbens, Rubin (CR32) 2015 LaLonde (CR37) 1986; 76 Connors, Speroff (CR14) 1996; 276 Fukumizu, Bach (CR19) 2004; 5 Hill (CR28) 2011; 20 Cook (CR16) 2009 CR69 CR68 CR67 CR22 Abadie, Imbens (CR1) 2006; 74 Allison (CR3) 2008; 360 Rubin (CR53) 1979; 74 CR60 Hernán, Robins (CR27) 2020 Rubin (CR54) 2007; 26 Cattaneo (CR10) 2010; 155 J Witte (832_CR65) 2019; 61 T Hofmann (832_CR30) 2008; 36 RJ LaLonde (832_CR37) 1986; 76 J Hahn (832_CR24) 1998; 66 W Luo (832_CR42) 2017; 104 N Aronszajn (832_CR6) 1950; 68 D Benkeser (832_CR9) 2017; 104 K Imai (832_CR31) 2014; 76 832_CR47 AF Connors (832_CR14) 1996; 276 DB Rubin (832_CR51) 1973; 29 DB Rubin (832_CR53) 1979; 74 PD Allison (832_CR3) 2008; 360 D Almond (832_CR4) 2005; 120 J Liu (832_CR38) 2018; 74 832_CR40 RD Cook (832_CR15) 1996; 91 S Wager (832_CR64) 2018; 113 J Robins (832_CR49) 1986; 7 RD Cook (832_CR16) 2009 DB Rubin (832_CR52) 1974; 66 MH Maathuis (832_CR44) 2015; 43 MJ Van Der Laan (832_CR62) 2014; 2014 832_CR57 T Ghosh (832_CR21) 2021; 31 832_CR11 832_CR55 PR Rosenbaum (832_CR50) 1983; 70 MH Maathuis (832_CR45) 2009; 37 WW Loh (832_CR39) 2021; 40 MJ Funk (832_CR20) 2011; 173 M Altman (832_CR5) 2004 AF Connors (832_CR13) 1996; 154 W Luo (832_CR41) 2020; 38 JL Hill (832_CR28) 2011; 20 EP Martens (832_CR46) 2006; 17 A Deaton (832_CR18) 2018; 210 A Abadie (832_CR1) 2006; 74 X De Luna (832_CR17) 2011; 98 EA Stuart (832_CR59) 2010; 25 TJ VanderWeele (832_CR63) 2011; 67 832_CR67 832_CR68 832_CR69 832_CR22 DE Ho (832_CR29) 2007; 15 D Cheng (832_CR12) 2022; 68 832_CR60 DB Rubin (832_CR54) 2007; 26 P Spirtes (832_CR58) 2000 MA Hernán (832_CR26) 2006; 17 MA Hernán (832_CR27) 2020 S Athey (832_CR7) 2016; 113 MD Cattaneo (832_CR10) 2010; 155 S Ma (832_CR43) 2019; 47 K Fukumizu (832_CR19) 2004; 5 J Häggström (832_CR23) 2018; 74 S Athey (832_CR8) 2019; 47 SM Shortreed (832_CR56) 2017; 73 F Xie (832_CR66) 2019; 31 SR Künzel (832_CR36) 2019; 116 MJ Van Der Laan (832_CR61) 2006; 2 Q Han (832_CR25) 2019; 47 832_CR34 832_CR35 J Pearl (832_CR48) 2009 A Abadie (832_CR2) 2016; 84 GW Imbens (832_CR32) 2015 832_CR33 |
References_xml | – volume: 360 start-page: 1 year: 2008 end-page: 11 ident: CR3 article-title: Convergence failures in logistic regression publication-title: SAS Global Forum – ident: CR22 – year: 2020 ident: CR27 publication-title: Causal inference: what if – year: 2015 ident: CR32 publication-title: Causal inference in statistics, social, and biomedical sciences doi: 10.1017/CBO9781139025751 – volume: 120 start-page: 1031 issue: 3 year: 2005 end-page: 1083 ident: CR4 article-title: The costs of low birth weight publication-title: Q J Econ – ident: CR68 – volume: 47 start-page: 2286 issue: 4 year: 2019 end-page: 2319 ident: CR25 article-title: Convergence rates of least squares regression estimators with heavy-tailed errors publication-title: Annals Stat – volume: 74 start-page: 318 issue: 366a year: 1979 end-page: 328 ident: CR53 article-title: Using multivariate matched sampling and regression adjustment to control bias in observational studies publication-title: J Am Stat Assoc doi: 10.1080/01621459.1979.10482513 – volume: 173 start-page: 761 issue: 7 year: 2011 end-page: 767 ident: CR20 article-title: Doubly robust estimation of causal effects publication-title: Am J Epidemiol doi: 10.1093/aje/kwq439 – volume: 17 start-page: 260 issue: 3 year: 2006 end-page: 267 ident: CR46 article-title: Instrumental variables: application and limitations publication-title: Epidemiology doi: 10.1097/01.ede.0000215160.88317.cb – volume: 74 start-page: 389 issue: 2 year: 2018 end-page: 398 ident: CR23 article-title: Data-driven confounder selection via Markov and Bayesian networks publication-title: Biometrics doi: 10.1111/biom.12788 – volume: 20 start-page: 217 issue: 1 year: 2011 end-page: 240 ident: CR28 article-title: Bayesian nonparametric modeling for causal inference publication-title: J Comput Gr Stat doi: 10.1198/jcgs.2010.08162 – ident: CR35 – volume: 61 start-page: 1270 issue: 5 year: 2019 end-page: 1289 ident: CR65 article-title: Covariate selection strategies for causal inference: classification and comparison publication-title: Biometrical J doi: 10.1002/bimj.201700294 – volume: 91 start-page: 983 issue: 435 year: 1996 end-page: 992 ident: CR15 article-title: Graphics for regressions with a binary response publication-title: J Am Stat Assoc doi: 10.1080/01621459.1996.10476968 – volume: 113 start-page: 1228 issue: 523 year: 2018 end-page: 1242 ident: CR64 article-title: Estimation and inference of heterogeneous treatment effects using random forests publication-title: J Am Stat Assoc doi: 10.1080/01621459.2017.1319839 – volume: 2014 start-page: 1 year: 2014 end-page: 19 ident: CR62 article-title: Entering the era of data science: targeted learning and the integration of statistics and computational data analysis publication-title: Advances in Statistics doi: 10.1155/2014/502678 – volume: 31 start-page: 821 issue: 2 year: 2021 ident: CR21 article-title: Sufficient dimension reduction for feasible and robust estimation of average causal effect publication-title: Statistica Sinica – volume: 154 start-page: 959 issue: 4 year: 1996 end-page: 967 ident: CR13 article-title: Outcomes following acute exacerbation of severe chronic obstructive lung disease. the support investigators (study to understand prognoses and preferences for outcomes and risks of treatments) publication-title: Am J Resp Crit Care Med doi: 10.1164/ajrccm.154.4.8887592 – volume: 38 start-page: 888 issue: 4 year: 2020 end-page: 900 ident: CR41 article-title: Matching using sufficient dimension reduction for causal inference publication-title: J Business Econ Stat doi: 10.1080/07350015.2019.1609974 – volume: 73 start-page: 1111 issue: 4 year: 2017 end-page: 1122 ident: CR56 article-title: Outcome-adaptive lasso: variable selection for causal inference publication-title: Biometrics doi: 10.1111/biom.12679 – volume: 68 start-page: 337 issue: 3 year: 1950 end-page: 404 ident: CR6 article-title: Theory of reproducing kernels publication-title: Trans Am Math Soc doi: 10.1090/S0002-9947-1950-0051437-7 – ident: CR67 – volume: 25 start-page: 1 issue: 1 year: 2010 end-page: 21 ident: CR59 article-title: Matching methods for causal inference: a review and a look forward publication-title: Stat Sci: Rev J Instit Math Stat doi: 10.1214/09-STS313 – volume: 210 start-page: 2 year: 2018 end-page: 21 ident: CR18 article-title: Understanding and misunderstanding randomized controlled trials publication-title: Soc Sci Med doi: 10.1016/j.socscimed.2017.12.005 – volume: 66 start-page: 688 issue: 5 year: 1974 ident: CR52 article-title: Estimating causal effects of treatments in randomized and nonrandomized studies publication-title: J Educ Psychol doi: 10.1037/h0037350 – volume: 15 start-page: 199 issue: 3 year: 2007 end-page: 236 ident: CR29 article-title: Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference publication-title: Polit Anal doi: 10.1093/pan/mpl013 – ident: CR11 – ident: CR57 – volume: 36 start-page: 1171 issue: 3 year: 2008 end-page: 1220 ident: CR30 article-title: Kernel methods in machine learning publication-title: Annals Stat doi: 10.1214/009053607000000677 – ident: CR60 – volume: 47 start-page: 1148 issue: 2 year: 2019 end-page: 1178 ident: CR8 article-title: Generalized random forests publication-title: Annals Stat doi: 10.1214/18-AOS1709 – volume: 98 start-page: 861 issue: 4 year: 2011 end-page: 875 ident: CR17 article-title: Covariate selection for the nonparametric estimation of an average treatment effect publication-title: Biometrika doi: 10.1093/biomet/asr041 – volume: 17 start-page: 360 issue: 4 year: 2006 end-page: 372 ident: CR26 article-title: Instruments for causal inference: an epidemiologist’s dream? publication-title: Epidemiology doi: 10.1097/01.ede.0000222409.00878.37 – volume: 70 start-page: 41 issue: 1 year: 1983 end-page: 55 ident: CR50 article-title: The central role of the propensity score in observational studies for causal effects publication-title: Biometrika doi: 10.1093/biomet/70.1.41 – volume: 76 start-page: 243 issue: 1 year: 2014 end-page: 263 ident: CR31 article-title: Covariate balancing propensity score publication-title: J R Stat Soc : Ser B (Stat Methodol) doi: 10.1111/rssb.12027 – volume: 5 start-page: 73 year: 2004 end-page: 99 ident: CR19 article-title: Dimensionality reduction for supervised learning with reproducing kernel hilbert spaces publication-title: J Mach Learn Res – ident: CR47 – volume: 76 start-page: 604 issue: 4 year: 1986 end-page: 620 ident: CR37 article-title: Evaluating the econometric evaluations of training programs with experimental data publication-title: Am Econ Rev – volume: 29 start-page: 159 year: 1973 end-page: 183 ident: CR51 article-title: Matching to remove bias in observational studies publication-title: Biometrics doi: 10.2307/2529684 – year: 2009 ident: CR16 publication-title: Regression graphics: ideas for studying regressions through graphics – volume: 74 start-page: 235 issue: 1 year: 2006 end-page: 267 ident: CR1 article-title: Large sample properties of matching estimators for average treatment effects publication-title: Econometrica doi: 10.1111/j.1468-0262.2006.00655.x – volume: 31 start-page: 1667 issue: 5 year: 2019 end-page: 1680 ident: CR66 article-title: An efficient entropy-based causal discovery method for linear structural equation models with iid noise variables publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2019.2921613 – volume: 113 start-page: 7353 issue: 27 year: 2016 end-page: 7360 ident: CR7 article-title: Recursive partitioning for heterogeneous causal effects publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1510489113 – volume: 67 start-page: 1406 issue: 4 year: 2011 end-page: 1413 ident: CR63 article-title: A new criterion for confounder selection publication-title: Biometrics doi: 10.1111/j.1541-0420.2011.01619.x – ident: CR33 – volume: 7 start-page: 1393 issue: 9–12 year: 1986 end-page: 1512 ident: CR49 article-title: A new approach to causal inference in mortality studies with a sustained exposure period-application to control of the healthy worker survivor effect publication-title: Math Modell doi: 10.1016/0270-0255(86)90088-6 – ident: CR40 – volume: 40 start-page: 607 issue: 3 year: 2021 end-page: 630 ident: CR39 article-title: Confounder selection strategies targeting stable treatment effect estimators publication-title: Stat Med doi: 10.1002/sim.8792 – ident: CR69 – volume: 104 start-page: 51 issue: 1 year: 2017 end-page: 65 ident: CR42 article-title: On estimating regression-based causal effects using sufficient dimension reduction publication-title: Biometrika – volume: 74 start-page: 910 issue: 3 year: 2018 end-page: 923 ident: CR38 article-title: An alternative robust estimator of average treatment effect in causal inference publication-title: Biometrics doi: 10.1111/biom.12859 – volume: 68 start-page: 1 year: 2022 end-page: 13 ident: CR12 article-title: Toward unique and unbiased causal effect estimation from data with hidden variables publication-title: IEEE Trans Neural Netw Learn Syst – volume: 116 start-page: 4156 issue: 10 year: 2019 end-page: 4165 ident: CR36 article-title: Metalearners for estimating heterogeneous treatment effects using machine learning publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1804597116 – volume: 43 start-page: 1060 issue: 3 year: 2015 end-page: 1088 ident: CR44 article-title: A generalized back-door criterion publication-title: Annals Stat doi: 10.1214/14-AOS1295 – volume: 66 start-page: 315 issue: 2 year: 1998 end-page: 331 ident: CR24 article-title: On the role of the propensity score in efficient semiparametric estimation of average treatment effects publication-title: Econometrica doi: 10.2307/2998560 – year: 2000 ident: CR58 publication-title: Causation, prediction, and search – volume: 47 start-page: 1505 issue: 3 year: 2019 ident: CR43 article-title: A robust and efficient approach to causal inference based on sparse sufficient dimension reduction publication-title: Annals Stat doi: 10.1214/18-AOS1722 – volume: 26 start-page: 20 issue: 1 year: 2007 end-page: 36 ident: CR54 article-title: The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials publication-title: Stat Med doi: 10.1002/sim.2739 – volume: 2 start-page: 871 issue: 1 year: 2006 ident: CR61 article-title: Targeted maximum likelihood learning publication-title: Int J Biostat – ident: CR34 – ident: CR55 – volume: 84 start-page: 781 issue: 2 year: 2016 end-page: 807 ident: CR2 article-title: Matching on the estimated propensity score publication-title: Econometrica doi: 10.3982/ECTA11293 – volume: 155 start-page: 138 issue: 2 year: 2010 end-page: 154 ident: CR10 article-title: Efficient semiparametric estimation of multi-valued treatment effects under ignorability publication-title: J Econom doi: 10.1016/j.jeconom.2009.09.023 – volume: 104 start-page: 863 issue: 4 year: 2017 end-page: 880 ident: CR9 article-title: Doubly robust nonparametric inference on the average treatment effect publication-title: Biometrika doi: 10.1093/biomet/asx053 – volume: 276 start-page: 889 issue: 11 year: 1996 end-page: 897 ident: CR14 article-title: The effectiveness of right heart catheterization in the initial care of critically iii patients publication-title: J Am Med Assoc doi: 10.1001/jama.1996.03540110043030 – year: 2004 ident: CR5 publication-title: Numerical issues in statistical computing for the social scientist – year: 2009 ident: CR48 publication-title: Causality doi: 10.1017/CBO9780511803161 – volume: 37 start-page: 3133 issue: 6A year: 2009 end-page: 3164 ident: CR45 article-title: Estimating high-dimensional intervention effects from observational data publication-title: Annals Stat doi: 10.1214/09-AOS685 – volume: 47 start-page: 1148 issue: 2 year: 2019 ident: 832_CR8 publication-title: Annals Stat doi: 10.1214/18-AOS1709 – volume: 74 start-page: 389 issue: 2 year: 2018 ident: 832_CR23 publication-title: Biometrics doi: 10.1111/biom.12788 – ident: 832_CR34 – volume: 40 start-page: 607 issue: 3 year: 2021 ident: 832_CR39 publication-title: Stat Med doi: 10.1002/sim.8792 – volume: 76 start-page: 604 issue: 4 year: 1986 ident: 832_CR37 publication-title: Am Econ Rev – ident: 832_CR57 – volume: 68 start-page: 337 issue: 3 year: 1950 ident: 832_CR6 publication-title: Trans Am Math Soc doi: 10.1090/S0002-9947-1950-0051437-7 – ident: 832_CR35 doi: 10.1145/3097983.3098032 – volume: 7 start-page: 1393 issue: 9–12 year: 1986 ident: 832_CR49 publication-title: Math Modell doi: 10.1016/0270-0255(86)90088-6 – ident: 832_CR11 – volume: 76 start-page: 243 issue: 1 year: 2014 ident: 832_CR31 publication-title: J R Stat Soc : Ser B (Stat Methodol) doi: 10.1111/rssb.12027 – volume: 210 start-page: 2 year: 2018 ident: 832_CR18 publication-title: Soc Sci Med doi: 10.1016/j.socscimed.2017.12.005 – volume: 17 start-page: 260 issue: 3 year: 2006 ident: 832_CR46 publication-title: Epidemiology doi: 10.1097/01.ede.0000215160.88317.cb – volume: 17 start-page: 360 issue: 4 year: 2006 ident: 832_CR26 publication-title: Epidemiology doi: 10.1097/01.ede.0000222409.00878.37 – ident: 832_CR47 – volume-title: Causality year: 2009 ident: 832_CR48 doi: 10.1017/CBO9780511803161 – volume: 360 start-page: 1 year: 2008 ident: 832_CR3 publication-title: SAS Global Forum – volume: 25 start-page: 1 issue: 1 year: 2010 ident: 832_CR59 publication-title: Stat Sci: Rev J Instit Math Stat doi: 10.1214/09-STS313 – volume: 31 start-page: 1667 issue: 5 year: 2019 ident: 832_CR66 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2019.2921613 – volume: 120 start-page: 1031 issue: 3 year: 2005 ident: 832_CR4 publication-title: Q J Econ – volume: 104 start-page: 863 issue: 4 year: 2017 ident: 832_CR9 publication-title: Biometrika doi: 10.1093/biomet/asx053 – volume-title: Regression graphics: ideas for studying regressions through graphics year: 2009 ident: 832_CR16 – volume: 47 start-page: 1505 issue: 3 year: 2019 ident: 832_CR43 publication-title: Annals Stat doi: 10.1214/18-AOS1722 – volume: 154 start-page: 959 issue: 4 year: 1996 ident: 832_CR13 publication-title: Am J Resp Crit Care Med doi: 10.1164/ajrccm.154.4.8887592 – volume: 70 start-page: 41 issue: 1 year: 1983 ident: 832_CR50 publication-title: Biometrika doi: 10.1093/biomet/70.1.41 – volume: 173 start-page: 761 issue: 7 year: 2011 ident: 832_CR20 publication-title: Am J Epidemiol doi: 10.1093/aje/kwq439 – volume-title: Causation, prediction, and search year: 2000 ident: 832_CR58 – volume: 84 start-page: 781 issue: 2 year: 2016 ident: 832_CR2 publication-title: Econometrica doi: 10.3982/ECTA11293 – volume: 74 start-page: 910 issue: 3 year: 2018 ident: 832_CR38 publication-title: Biometrics doi: 10.1111/biom.12859 – volume: 37 start-page: 3133 issue: 6A year: 2009 ident: 832_CR45 publication-title: Annals Stat doi: 10.1214/09-AOS685 – ident: 832_CR67 – volume: 276 start-page: 889 issue: 11 year: 1996 ident: 832_CR14 publication-title: J Am Med Assoc doi: 10.1001/jama.1996.03540110043030 – volume: 74 start-page: 318 issue: 366a year: 1979 ident: 832_CR53 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1979.10482513 – volume: 38 start-page: 888 issue: 4 year: 2020 ident: 832_CR41 publication-title: J Business Econ Stat doi: 10.1080/07350015.2019.1609974 – volume: 66 start-page: 315 issue: 2 year: 1998 ident: 832_CR24 publication-title: Econometrica doi: 10.2307/2998560 – volume: 2014 start-page: 1 year: 2014 ident: 832_CR62 publication-title: Advances in Statistics doi: 10.1155/2014/502678 – volume: 29 start-page: 159 year: 1973 ident: 832_CR51 publication-title: Biometrics doi: 10.2307/2529684 – volume: 155 start-page: 138 issue: 2 year: 2010 ident: 832_CR10 publication-title: J Econom doi: 10.1016/j.jeconom.2009.09.023 – volume: 36 start-page: 1171 issue: 3 year: 2008 ident: 832_CR30 publication-title: Annals Stat doi: 10.1214/009053607000000677 – volume: 67 start-page: 1406 issue: 4 year: 2011 ident: 832_CR63 publication-title: Biometrics doi: 10.1111/j.1541-0420.2011.01619.x – volume: 104 start-page: 51 issue: 1 year: 2017 ident: 832_CR42 publication-title: Biometrika – volume: 74 start-page: 235 issue: 1 year: 2006 ident: 832_CR1 publication-title: Econometrica doi: 10.1111/j.1468-0262.2006.00655.x – volume-title: Numerical issues in statistical computing for the social scientist year: 2004 ident: 832_CR5 – volume: 113 start-page: 1228 issue: 523 year: 2018 ident: 832_CR64 publication-title: J Am Stat Assoc doi: 10.1080/01621459.2017.1319839 – ident: 832_CR55 – volume: 116 start-page: 4156 issue: 10 year: 2019 ident: 832_CR36 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1804597116 – volume: 66 start-page: 688 issue: 5 year: 1974 ident: 832_CR52 publication-title: J Educ Psychol doi: 10.1037/h0037350 – volume: 73 start-page: 1111 issue: 4 year: 2017 ident: 832_CR56 publication-title: Biometrics doi: 10.1111/biom.12679 – ident: 832_CR22 – ident: 832_CR68 – volume: 20 start-page: 217 issue: 1 year: 2011 ident: 832_CR28 publication-title: J Comput Gr Stat doi: 10.1198/jcgs.2010.08162 – volume: 61 start-page: 1270 issue: 5 year: 2019 ident: 832_CR65 publication-title: Biometrical J doi: 10.1002/bimj.201700294 – volume: 2 start-page: 871 issue: 1 year: 2006 ident: 832_CR61 publication-title: Int J Biostat – volume: 31 start-page: 821 issue: 2 year: 2021 ident: 832_CR21 publication-title: Statistica Sinica – ident: 832_CR60 – ident: 832_CR33 – volume: 15 start-page: 199 issue: 3 year: 2007 ident: 832_CR29 publication-title: Polit Anal doi: 10.1093/pan/mpl013 – volume-title: Causal inference in statistics, social, and biomedical sciences year: 2015 ident: 832_CR32 doi: 10.1017/CBO9781139025751 – volume: 26 start-page: 20 issue: 1 year: 2007 ident: 832_CR54 publication-title: Stat Med doi: 10.1002/sim.2739 – volume: 98 start-page: 861 issue: 4 year: 2011 ident: 832_CR17 publication-title: Biometrika doi: 10.1093/biomet/asr041 – volume: 68 start-page: 1 year: 2022 ident: 832_CR12 publication-title: IEEE Trans Neural Netw Learn Syst – volume: 47 start-page: 2286 issue: 4 year: 2019 ident: 832_CR25 publication-title: Annals Stat doi: 10.1214/18-AOS1748 – volume: 5 start-page: 73 year: 2004 ident: 832_CR19 publication-title: J Mach Learn Res – volume-title: Causal inference: what if year: 2020 ident: 832_CR27 – ident: 832_CR69 – volume: 91 start-page: 983 issue: 435 year: 1996 ident: 832_CR15 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1996.10476968 – volume: 113 start-page: 7353 issue: 27 year: 2016 ident: 832_CR7 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1510489113 – ident: 832_CR40 – volume: 43 start-page: 1060 issue: 3 year: 2015 ident: 832_CR44 publication-title: Annals Stat doi: 10.1214/14-AOS1295 |
SSID | ssj0005230 |
Score | 2.409686 |
Snippet | A large number of covariates can have a negative impact on the quality of causal effect estimation since confounding adjustment becomes unreliable when the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1174 |
SubjectTerms | Algorithms Artificial Intelligence Chemistry and Earth Sciences Computer Science Data Mining and Knowledge Discovery Information Storage and Retrieval Physics Reduction Representations Statistics for Engineering |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gu3DhjRgMlAM3iFiWR5MTArRpQmJCwKTdqrx6QtvY4__jtCkDJHapKrXNwY7tr479GaErqzuBa6-JDEYSLuFOa29IoZTxxhTC-JjveB7KwYg_jcU4JdwWqayy9omlo_ZTF3PktxBIAMsLmbG72SeJU6Pi6WoaobGNmuCCFfx8NR96w5fXH0UerOoTVpwIRTupbSY1z0mqSKxmjzgEfsl-h6Y13vxzRFpGnv4-2k2QEd9XOj5AW2FyiPbqcQw4WecRenxblXwQEEawj6T9MRGG55GbNUofAzzFBnYueBDszGoBa1bVHDgybVQtjMdo1O-9Pw5ImpFAHJNsSazwQtpC2kwEqoIA5xYCNUFTJ6nx2lDmixAczxwNwhTdIL1lyjEH1qusYSeoMZlOwinCnBkweOqtsAW31gCUtDzANbPaKq9aiNbiyV0iEI9zLD7yNfVxFGkOIs1Lkeaiha6_v5lV9Bkb327XUs-TKS3yteJb6KbWxPrx_6udbV7tHO10S-XH4sU2aiznq3ABAGNpL9Mu-gIsMc1o priority: 102 providerName: ProQuest |
Title | Sufficient dimension reduction for average causal effect estimation |
URI | https://link.springer.com/article/10.1007/s10618-022-00832-5 https://www.proquest.com/docview/2664955673 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgExIXHgPEYEw5cINKy9Kk6XFUewjEhIBJ41Tl1RMaaI__j9MHGwiQuLRVm-bg2M6XxP4McKnjjgtjGwfCKRGEAp_i2Kogk1JZpTKurN_vuB-L0SS8nfJpmRS2qKLdqyPJ3FNvJLsJKgMffe5xAy6htqHO_dodtXjS7W0EdrAiN1iGAZe0U6bK_NzH1-lojTG_HYvms83gAPZKmEh6xbgewpabNWC_KsFASotswE4ewWkWR5A8rXI2CJxEiPWU_X4bjMw9M6uXPUFwShTqLfoPYtRqgb0XsRzE82wUCYzHMBn0n5NRUFZICAwTbBlobrnQmdARd1Q6jq7NOapcTI2gysaKMps5Z8LIUMdV1nXCaiYNM2i7Uit2ArXZ28ydAgmZQnOnVnOdhVorBJI6dHiNdKyllU2glaBSU9KH-yoWr-ma-NgLN0XhprlwU96Eq89_3gvyjD9btyr5p6UhLVLED7iE4yJiTbiuxmT9-ffezv7X_Bx2u7la-FDGFtSW85W7QLix1G3YloNhG-q94ctdH-83_fHDI75NRNLONe8DJA7Qtw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6l5dBeoLRFDbTgQzmBRR0_Yh8QqgIhaZtcSKTctn7tCSUhDyH-FL-R8T6agkRuuaxWWu8cxp9nPtvzALh05ioKEwxV0SoqFL4ZEyzNtbbB2lzakM47BkPVG4ubiZw04HedC5PCKmubWBjqMPPpjPwDOhLk8lK1-af5D5q6RqXb1bqFRgmL2_jrJ27Zlh_7n3F-37Za3S-jTo9WXQWo54qvqJNBKpcr15aR6SjRHMTIbDTMK2aDsYyHPEYv2p5FafNWVMFx7blHvGtnOcrdgyeCc5NWlO5-fRRSwsusZC2o1OyqStKpUvUU0zTFzifWgxvAvx3hht3-cyFb-LnuETytCCq5LhH1HBpxegzP6uYPpLIFJ9D5ti6qT6DTIiG1CEjHbmSRKsGmuSZIhonFdYL2ini7XqLMMnaEpLoeZcLkKYx3orsXsD-dTeMZEMEtmhcWnHS5cM4icXUi4rPtjNNBN4HV6sl8Va48dc34nm0KLSeVZqjSrFBpJpvw7uGfeVmsY-vo81rrWbVwl9kGZk14X8_E5vP_pb3cLu0NHPRGg7vsrj-8fQWHrQIIKWzyHPZXi3W8QGqzcq8LPBG43zWA_wCeugtb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT-swEB5BkRAXlgeIvsfiw-MEFnUdO84BIbaKtUIsErfgLSdUeLTVE3-NX8c4cSggwY1LFCnOHMafZz7bswD8NVnLJ5nLqPRa0kTiW5Y5TQultNO6ENqF847zrjy6SU5uxe0YvNS5MCGssraJpaF2DzackW-hI0EuL2TKt4oYFnFx0Nl5_EdDB6lw01q306ggcuqf_-P2rb99fIBzvd5udw6v949o7DBALZd8QI1wQppCmlR4prxA0-A90z5jVjLtMs24K7y3SWqZF7poe-kMV5ZbxL4ymqPccZhIcVfUasDE3mH34vJdgAmvcpRVQoVirZiyExP3JFM0RNIHDoTbwY9uccR1P13Pll6vMwvTka6S3QpfczDme79gpm4FQaJlmIf9q2FZiwJdGHGhYUA4hCNPoS5smHmC1JhoXDVovYjVwz7KrCJJSKjyUaVPLsDNj2hvERq9h55fApJwjcaGOSNMkRijkcaaxOMzNZlRTjWB1erJbSxeHnpo3OejsstBpTmqNC9VmosmbLz981iV7vh29HKt9Twu434-Al0TNuuZGH3-Wtrv76WtwSSCNz877p7-gal2iYMQQ7kMjcHT0K8gzxmY1QgoAnc_jeFXcpcQ7Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sufficient+dimension+reduction+for+average+causal+effect+estimation&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Cheng%2C+Debo&rft.au=Li%2C+Jiuyong&rft.au=Liu%2C+Lin&rft.au=Le%2C+Thuc+Duy&rft.date=2022-05-01&rft.pub=Springer+US&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=36&rft.issue=3&rft.spage=1174&rft.epage=1196&rft_id=info:doi/10.1007%2Fs10618-022-00832-5&rft.externalDocID=10_1007_s10618_022_00832_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |