Sufficient dimension reduction for average causal effect estimation

A large number of covariates can have a negative impact on the quality of causal effect estimation since confounding adjustment becomes unreliable when the number of covariates is large relative to the number of samples. Propensity score is a common way to deal with a large covariate set, but the ac...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 36; no. 3; pp. 1174 - 1196
Main Authors Cheng, Debo, Li, Jiuyong, Liu, Lin, Le, Thuc Duy, Liu, Jixue, Yu, Kui
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A large number of covariates can have a negative impact on the quality of causal effect estimation since confounding adjustment becomes unreliable when the number of covariates is large relative to the number of samples. Propensity score is a common way to deal with a large covariate set, but the accuracy of propensity score estimation (normally done by logistic regression) is also challenged by the large number of covariates. In this paper, we prove that a large covariate set can be reduced to a lower dimensional representation which captures the complete information for adjustment in causal effect estimation. The theoretical result enables effective data-driven algorithms for causal effect estimation. Supported by the result, we develop an algorithm that employs a supervised kernel dimension reduction method to learn a lower dimensional representation from the original covariate space, and then utilises nearest neighbour matching in the reduced covariate space to impute the counterfactual outcomes to avoid the large sized covariate set problem. The proposed algorithm is evaluated on two semisynthetic and three real-world datasets and the results show the effectiveness of the proposed algorithm.
AbstractList A large number of covariates can have a negative impact on the quality of causal effect estimation since confounding adjustment becomes unreliable when the number of covariates is large relative to the number of samples. Propensity score is a common way to deal with a large covariate set, but the accuracy of propensity score estimation (normally done by logistic regression) is also challenged by the large number of covariates. In this paper, we prove that a large covariate set can be reduced to a lower dimensional representation which captures the complete information for adjustment in causal effect estimation. The theoretical result enables effective data-driven algorithms for causal effect estimation. Supported by the result, we develop an algorithm that employs a supervised kernel dimension reduction method to learn a lower dimensional representation from the original covariate space, and then utilises nearest neighbour matching in the reduced covariate space to impute the counterfactual outcomes to avoid the large sized covariate set problem. The proposed algorithm is evaluated on two semisynthetic and three real-world datasets and the results show the effectiveness of the proposed algorithm.
Author Yu, Kui
Li, Jiuyong
Le, Thuc Duy
Cheng, Debo
Liu, Jixue
Liu, Lin
Author_xml – sequence: 1
  givenname: Debo
  orcidid: 0000-0002-0383-1462
  surname: Cheng
  fullname: Cheng, Debo
  email: Debo.Cheng@unisa.edu.au
  organization: STEM, University of South Australia
– sequence: 2
  givenname: Jiuyong
  orcidid: 0000-0002-9023-1878
  surname: Li
  fullname: Li, Jiuyong
  email: Jiuyong.Li@unisa.edu.au
  organization: STEM, University of South Australia
– sequence: 3
  givenname: Lin
  orcidid: 0000-0003-2843-5738
  surname: Liu
  fullname: Liu, Lin
  organization: STEM, University of South Australia
– sequence: 4
  givenname: Thuc Duy
  orcidid: 0000-0002-9732-4313
  surname: Le
  fullname: Le, Thuc Duy
  organization: STEM, University of South Australia
– sequence: 5
  givenname: Jixue
  orcidid: 0000-0002-0794-0404
  surname: Liu
  fullname: Liu, Jixue
  organization: STEM, University of South Australia
– sequence: 6
  givenname: Kui
  orcidid: 0000-0003-2442-4572
  surname: Yu
  fullname: Yu, Kui
  organization: Key Laboratory of Knowledge Engineering With Big Data of Ministry of Education, Hefei University of Technology, School of Computer Science and Information Engineering, Hefei University of Technology
BookMark eNp9kE9LAzEQxYNUsFW_gKcFz9HJZpNNj1L8BwUPKngL2eykpLTZmuwKfnvTriB46Gne4f3mzbwZmYQuICFXDG4YQH2bGEimKJQlBVC8pOKETJmoOa2F_JhkzVVFhWJwRmYprQFAlBymZPE6OOetx9AXrd9iSL4LRcR2sP1euS4W5gujWWFhzZDMpkDn0PYFpt5vzd50QU6d2SS8_J3n5P3h_m3xRJcvj8-LuyW1XPKeNqIVsnGyqQUyhULVEpEZnDMrmWnnhvHWIdqqtgyFcSXKtuHKcgsVqMbwc3I97t3F7nPI-XrdDTHkSF1KWc2FkDXPLjW6bOxSiui09f3hzj4av9EM9L4yPVamc2X6UJkWGS3_obuYf4zfxyE-Qimbwwrj31VHqB_qNIGy
CitedBy_id crossref_primary_10_1186_s12874_024_02299_y
crossref_primary_10_1088_2632_072X_ada861
crossref_primary_10_1007_s10489_023_04623_3
crossref_primary_10_5351_KJAS_2023_36_4_323
crossref_primary_10_1016_j_inffus_2024_102669
crossref_primary_10_1016_j_ipm_2024_103932
crossref_primary_10_1145_3636423
Cites_doi 10.1017/CBO9781139025751
10.1080/01621459.1979.10482513
10.1093/aje/kwq439
10.1097/01.ede.0000215160.88317.cb
10.1111/biom.12788
10.1198/jcgs.2010.08162
10.1002/bimj.201700294
10.1080/01621459.1996.10476968
10.1080/01621459.2017.1319839
10.1155/2014/502678
10.1164/ajrccm.154.4.8887592
10.1080/07350015.2019.1609974
10.1111/biom.12679
10.1090/S0002-9947-1950-0051437-7
10.1214/09-STS313
10.1016/j.socscimed.2017.12.005
10.1037/h0037350
10.1093/pan/mpl013
10.1214/009053607000000677
10.1214/18-AOS1709
10.1093/biomet/asr041
10.1097/01.ede.0000222409.00878.37
10.1093/biomet/70.1.41
10.1111/rssb.12027
10.2307/2529684
10.1111/j.1468-0262.2006.00655.x
10.1109/TNNLS.2019.2921613
10.1073/pnas.1510489113
10.1111/j.1541-0420.2011.01619.x
10.1016/0270-0255(86)90088-6
10.1002/sim.8792
10.1111/biom.12859
10.1073/pnas.1804597116
10.1214/14-AOS1295
10.2307/2998560
10.1214/18-AOS1722
10.1002/sim.2739
10.3982/ECTA11293
10.1016/j.jeconom.2009.09.023
10.1093/biomet/asx053
10.1001/jama.1996.03540110043030
10.1017/CBO9780511803161
10.1214/09-AOS685
10.1145/3097983.3098032
10.1214/18-AOS1748
ContentType Journal Article
Copyright Crown 2022
Crown 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Crown 2022
– notice: Crown 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10618-022-00832-5
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Proquest Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 1196
ExternalDocumentID 10_1007_s10618_022_00832_5
GrantInformation_xml – fundername: the National Science Foundation of China
  grantid: 61876206
– fundername: China Scholarship Council
  grantid: 201708450092
  funderid: http://dx.doi.org/10.13039/501100004543
– fundername: Australian Research Council
  grantid: DP200101210
  funderid: http://dx.doi.org/10.13039/501100000923
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c363t-b5d56bf6b75e18e5876ee1ae91c61ad9a13dfeec47c1e5af2e6db38c3c0408ba3
IEDL.DBID U2A
ISSN 1384-5810
IngestDate Sat Aug 23 14:51:44 EDT 2025
Tue Jul 01 00:40:32 EDT 2025
Thu Apr 24 23:06:06 EDT 2025
Fri Feb 21 02:45:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Causal inference
Sufficient dimension reduction
Confounding bias
Causal effects estimation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-b5d56bf6b75e18e5876ee1ae91c61ad9a13dfeec47c1e5af2e6db38c3c0408ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0794-0404
0000-0002-0383-1462
0000-0003-2442-4572
0000-0003-2843-5738
0000-0002-9023-1878
0000-0002-9732-4313
OpenAccessLink https://link.springer.com/10.1007/s10618-022-00832-5
PQID 2664955673
PQPubID 43030
PageCount 23
ParticipantIDs proquest_journals_2664955673
crossref_citationtrail_10_1007_s10618_022_00832_5
crossref_primary_10_1007_s10618_022_00832_5
springer_journals_10_1007_s10618_022_00832_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220500
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 5
  year: 2022
  text: 20220500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Rosenbaum, Rubin (CR50) 1983; 70
Rubin (CR52) 1974; 66
Stuart (CR59) 2010; 25
VanderWeele, Shpitser (CR63) 2011; 67
Athey, Tibshirani (CR8) 2019; 47
CR35
CR34
CR33
Shortreed, Ertefaie (CR56) 2017; 73
Ma, Zhu (CR43) 2019; 47
Ho, Imai (CR29) 2007; 15
Maathuis, Kalisch (CR45) 2009; 37
Martens, Pestman (CR46) 2006; 17
Liu, Ma (CR38) 2018; 74
Abadie, Imbens (CR2) 2016; 84
Cook (CR15) 1996; 91
Wager, Athey (CR64) 2018; 113
Hahn (CR24) 1998; 66
Xie, Cai (CR66) 2019; 31
Künzel, Sekhon (CR36) 2019; 116
Deaton, Cartwright (CR18) 2018; 210
Luo, Zhu (CR41) 2020; 38
Luo, Zhu (CR42) 2017; 104
CR47
Pearl (CR48) 2009
Almond, Chay (CR4) 2005; 120
Maathuis, Colombo (CR44) 2015; 43
Benkeser, Carone (CR9) 2017; 104
CR40
Rubin (CR51) 1973; 29
Altman, Gill (CR5) 2004
Witte, Didelez (CR65) 2019; 61
Cheng, Li (CR12) 2022; 68
Connors, Dawson (CR13) 1996; 154
Häggström (CR23) 2018; 74
Imai, Ratkovic (CR31) 2014; 76
Athey, Imbens (CR7) 2016; 113
Han, Wellner (CR25) 2019; 47
Spirtes, Glymour (CR58) 2000
Van Der Laan, Starmans (CR62) 2014; 2014
Van Der Laan, Rubin (CR61) 2006; 2
Robins (CR49) 1986; 7
Loh, Vansteelandt (CR39) 2021; 40
Hernán, Robins (CR26) 2006; 17
Hofmann, Schölkopf (CR30) 2008; 36
Ghosh, Ma (CR21) 2021; 31
CR57
CR11
CR55
Aronszajn (CR6) 1950; 68
De Luna, Waernbaum (CR17) 2011; 98
Funk, Westreich (CR20) 2011; 173
Imbens, Rubin (CR32) 2015
LaLonde (CR37) 1986; 76
Connors, Speroff (CR14) 1996; 276
Fukumizu, Bach (CR19) 2004; 5
Hill (CR28) 2011; 20
Cook (CR16) 2009
CR69
CR68
CR67
CR22
Abadie, Imbens (CR1) 2006; 74
Allison (CR3) 2008; 360
Rubin (CR53) 1979; 74
CR60
Hernán, Robins (CR27) 2020
Rubin (CR54) 2007; 26
Cattaneo (CR10) 2010; 155
J Witte (832_CR65) 2019; 61
T Hofmann (832_CR30) 2008; 36
RJ LaLonde (832_CR37) 1986; 76
J Hahn (832_CR24) 1998; 66
W Luo (832_CR42) 2017; 104
N Aronszajn (832_CR6) 1950; 68
D Benkeser (832_CR9) 2017; 104
K Imai (832_CR31) 2014; 76
832_CR47
AF Connors (832_CR14) 1996; 276
DB Rubin (832_CR51) 1973; 29
DB Rubin (832_CR53) 1979; 74
PD Allison (832_CR3) 2008; 360
D Almond (832_CR4) 2005; 120
J Liu (832_CR38) 2018; 74
832_CR40
RD Cook (832_CR15) 1996; 91
S Wager (832_CR64) 2018; 113
J Robins (832_CR49) 1986; 7
RD Cook (832_CR16) 2009
DB Rubin (832_CR52) 1974; 66
MH Maathuis (832_CR44) 2015; 43
MJ Van Der Laan (832_CR62) 2014; 2014
832_CR57
T Ghosh (832_CR21) 2021; 31
832_CR11
832_CR55
PR Rosenbaum (832_CR50) 1983; 70
MH Maathuis (832_CR45) 2009; 37
WW Loh (832_CR39) 2021; 40
MJ Funk (832_CR20) 2011; 173
M Altman (832_CR5) 2004
AF Connors (832_CR13) 1996; 154
W Luo (832_CR41) 2020; 38
JL Hill (832_CR28) 2011; 20
EP Martens (832_CR46) 2006; 17
A Deaton (832_CR18) 2018; 210
A Abadie (832_CR1) 2006; 74
X De Luna (832_CR17) 2011; 98
EA Stuart (832_CR59) 2010; 25
TJ VanderWeele (832_CR63) 2011; 67
832_CR67
832_CR68
832_CR69
832_CR22
DE Ho (832_CR29) 2007; 15
D Cheng (832_CR12) 2022; 68
832_CR60
DB Rubin (832_CR54) 2007; 26
P Spirtes (832_CR58) 2000
MA Hernán (832_CR26) 2006; 17
MA Hernán (832_CR27) 2020
S Athey (832_CR7) 2016; 113
MD Cattaneo (832_CR10) 2010; 155
S Ma (832_CR43) 2019; 47
K Fukumizu (832_CR19) 2004; 5
J Häggström (832_CR23) 2018; 74
S Athey (832_CR8) 2019; 47
SM Shortreed (832_CR56) 2017; 73
F Xie (832_CR66) 2019; 31
SR Künzel (832_CR36) 2019; 116
MJ Van Der Laan (832_CR61) 2006; 2
Q Han (832_CR25) 2019; 47
832_CR34
832_CR35
J Pearl (832_CR48) 2009
A Abadie (832_CR2) 2016; 84
GW Imbens (832_CR32) 2015
832_CR33
References_xml – volume: 360
  start-page: 1
  year: 2008
  end-page: 11
  ident: CR3
  article-title: Convergence failures in logistic regression
  publication-title: SAS Global Forum
– ident: CR22
– year: 2020
  ident: CR27
  publication-title: Causal inference: what if
– year: 2015
  ident: CR32
  publication-title: Causal inference in statistics, social, and biomedical sciences
  doi: 10.1017/CBO9781139025751
– volume: 120
  start-page: 1031
  issue: 3
  year: 2005
  end-page: 1083
  ident: CR4
  article-title: The costs of low birth weight
  publication-title: Q J Econ
– ident: CR68
– volume: 47
  start-page: 2286
  issue: 4
  year: 2019
  end-page: 2319
  ident: CR25
  article-title: Convergence rates of least squares regression estimators with heavy-tailed errors
  publication-title: Annals Stat
– volume: 74
  start-page: 318
  issue: 366a
  year: 1979
  end-page: 328
  ident: CR53
  article-title: Using multivariate matched sampling and regression adjustment to control bias in observational studies
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1979.10482513
– volume: 173
  start-page: 761
  issue: 7
  year: 2011
  end-page: 767
  ident: CR20
  article-title: Doubly robust estimation of causal effects
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwq439
– volume: 17
  start-page: 260
  issue: 3
  year: 2006
  end-page: 267
  ident: CR46
  article-title: Instrumental variables: application and limitations
  publication-title: Epidemiology
  doi: 10.1097/01.ede.0000215160.88317.cb
– volume: 74
  start-page: 389
  issue: 2
  year: 2018
  end-page: 398
  ident: CR23
  article-title: Data-driven confounder selection via Markov and Bayesian networks
  publication-title: Biometrics
  doi: 10.1111/biom.12788
– volume: 20
  start-page: 217
  issue: 1
  year: 2011
  end-page: 240
  ident: CR28
  article-title: Bayesian nonparametric modeling for causal inference
  publication-title: J Comput Gr Stat
  doi: 10.1198/jcgs.2010.08162
– ident: CR35
– volume: 61
  start-page: 1270
  issue: 5
  year: 2019
  end-page: 1289
  ident: CR65
  article-title: Covariate selection strategies for causal inference: classification and comparison
  publication-title: Biometrical J
  doi: 10.1002/bimj.201700294
– volume: 91
  start-page: 983
  issue: 435
  year: 1996
  end-page: 992
  ident: CR15
  article-title: Graphics for regressions with a binary response
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1996.10476968
– volume: 113
  start-page: 1228
  issue: 523
  year: 2018
  end-page: 1242
  ident: CR64
  article-title: Estimation and inference of heterogeneous treatment effects using random forests
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2017.1319839
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 19
  ident: CR62
  article-title: Entering the era of data science: targeted learning and the integration of statistics and computational data analysis
  publication-title: Advances in Statistics
  doi: 10.1155/2014/502678
– volume: 31
  start-page: 821
  issue: 2
  year: 2021
  ident: CR21
  article-title: Sufficient dimension reduction for feasible and robust estimation of average causal effect
  publication-title: Statistica Sinica
– volume: 154
  start-page: 959
  issue: 4
  year: 1996
  end-page: 967
  ident: CR13
  article-title: Outcomes following acute exacerbation of severe chronic obstructive lung disease. the support investigators (study to understand prognoses and preferences for outcomes and risks of treatments)
  publication-title: Am J Resp Crit Care Med
  doi: 10.1164/ajrccm.154.4.8887592
– volume: 38
  start-page: 888
  issue: 4
  year: 2020
  end-page: 900
  ident: CR41
  article-title: Matching using sufficient dimension reduction for causal inference
  publication-title: J Business Econ Stat
  doi: 10.1080/07350015.2019.1609974
– volume: 73
  start-page: 1111
  issue: 4
  year: 2017
  end-page: 1122
  ident: CR56
  article-title: Outcome-adaptive lasso: variable selection for causal inference
  publication-title: Biometrics
  doi: 10.1111/biom.12679
– volume: 68
  start-page: 337
  issue: 3
  year: 1950
  end-page: 404
  ident: CR6
  article-title: Theory of reproducing kernels
  publication-title: Trans Am Math Soc
  doi: 10.1090/S0002-9947-1950-0051437-7
– ident: CR67
– volume: 25
  start-page: 1
  issue: 1
  year: 2010
  end-page: 21
  ident: CR59
  article-title: Matching methods for causal inference: a review and a look forward
  publication-title: Stat Sci: Rev J Instit Math Stat
  doi: 10.1214/09-STS313
– volume: 210
  start-page: 2
  year: 2018
  end-page: 21
  ident: CR18
  article-title: Understanding and misunderstanding randomized controlled trials
  publication-title: Soc Sci Med
  doi: 10.1016/j.socscimed.2017.12.005
– volume: 66
  start-page: 688
  issue: 5
  year: 1974
  ident: CR52
  article-title: Estimating causal effects of treatments in randomized and nonrandomized studies
  publication-title: J Educ Psychol
  doi: 10.1037/h0037350
– volume: 15
  start-page: 199
  issue: 3
  year: 2007
  end-page: 236
  ident: CR29
  article-title: Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference
  publication-title: Polit Anal
  doi: 10.1093/pan/mpl013
– ident: CR11
– ident: CR57
– volume: 36
  start-page: 1171
  issue: 3
  year: 2008
  end-page: 1220
  ident: CR30
  article-title: Kernel methods in machine learning
  publication-title: Annals Stat
  doi: 10.1214/009053607000000677
– ident: CR60
– volume: 47
  start-page: 1148
  issue: 2
  year: 2019
  end-page: 1178
  ident: CR8
  article-title: Generalized random forests
  publication-title: Annals Stat
  doi: 10.1214/18-AOS1709
– volume: 98
  start-page: 861
  issue: 4
  year: 2011
  end-page: 875
  ident: CR17
  article-title: Covariate selection for the nonparametric estimation of an average treatment effect
  publication-title: Biometrika
  doi: 10.1093/biomet/asr041
– volume: 17
  start-page: 360
  issue: 4
  year: 2006
  end-page: 372
  ident: CR26
  article-title: Instruments for causal inference: an epidemiologist’s dream?
  publication-title: Epidemiology
  doi: 10.1097/01.ede.0000222409.00878.37
– volume: 70
  start-page: 41
  issue: 1
  year: 1983
  end-page: 55
  ident: CR50
  article-title: The central role of the propensity score in observational studies for causal effects
  publication-title: Biometrika
  doi: 10.1093/biomet/70.1.41
– volume: 76
  start-page: 243
  issue: 1
  year: 2014
  end-page: 263
  ident: CR31
  article-title: Covariate balancing propensity score
  publication-title: J R Stat Soc : Ser B (Stat Methodol)
  doi: 10.1111/rssb.12027
– volume: 5
  start-page: 73
  year: 2004
  end-page: 99
  ident: CR19
  article-title: Dimensionality reduction for supervised learning with reproducing kernel hilbert spaces
  publication-title: J Mach Learn Res
– ident: CR47
– volume: 76
  start-page: 604
  issue: 4
  year: 1986
  end-page: 620
  ident: CR37
  article-title: Evaluating the econometric evaluations of training programs with experimental data
  publication-title: Am Econ Rev
– volume: 29
  start-page: 159
  year: 1973
  end-page: 183
  ident: CR51
  article-title: Matching to remove bias in observational studies
  publication-title: Biometrics
  doi: 10.2307/2529684
– year: 2009
  ident: CR16
  publication-title: Regression graphics: ideas for studying regressions through graphics
– volume: 74
  start-page: 235
  issue: 1
  year: 2006
  end-page: 267
  ident: CR1
  article-title: Large sample properties of matching estimators for average treatment effects
  publication-title: Econometrica
  doi: 10.1111/j.1468-0262.2006.00655.x
– volume: 31
  start-page: 1667
  issue: 5
  year: 2019
  end-page: 1680
  ident: CR66
  article-title: An efficient entropy-based causal discovery method for linear structural equation models with iid noise variables
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2019.2921613
– volume: 113
  start-page: 7353
  issue: 27
  year: 2016
  end-page: 7360
  ident: CR7
  article-title: Recursive partitioning for heterogeneous causal effects
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1510489113
– volume: 67
  start-page: 1406
  issue: 4
  year: 2011
  end-page: 1413
  ident: CR63
  article-title: A new criterion for confounder selection
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2011.01619.x
– ident: CR33
– volume: 7
  start-page: 1393
  issue: 9–12
  year: 1986
  end-page: 1512
  ident: CR49
  article-title: A new approach to causal inference in mortality studies with a sustained exposure period-application to control of the healthy worker survivor effect
  publication-title: Math Modell
  doi: 10.1016/0270-0255(86)90088-6
– ident: CR40
– volume: 40
  start-page: 607
  issue: 3
  year: 2021
  end-page: 630
  ident: CR39
  article-title: Confounder selection strategies targeting stable treatment effect estimators
  publication-title: Stat Med
  doi: 10.1002/sim.8792
– ident: CR69
– volume: 104
  start-page: 51
  issue: 1
  year: 2017
  end-page: 65
  ident: CR42
  article-title: On estimating regression-based causal effects using sufficient dimension reduction
  publication-title: Biometrika
– volume: 74
  start-page: 910
  issue: 3
  year: 2018
  end-page: 923
  ident: CR38
  article-title: An alternative robust estimator of average treatment effect in causal inference
  publication-title: Biometrics
  doi: 10.1111/biom.12859
– volume: 68
  start-page: 1
  year: 2022
  end-page: 13
  ident: CR12
  article-title: Toward unique and unbiased causal effect estimation from data with hidden variables
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 116
  start-page: 4156
  issue: 10
  year: 2019
  end-page: 4165
  ident: CR36
  article-title: Metalearners for estimating heterogeneous treatment effects using machine learning
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1804597116
– volume: 43
  start-page: 1060
  issue: 3
  year: 2015
  end-page: 1088
  ident: CR44
  article-title: A generalized back-door criterion
  publication-title: Annals Stat
  doi: 10.1214/14-AOS1295
– volume: 66
  start-page: 315
  issue: 2
  year: 1998
  end-page: 331
  ident: CR24
  article-title: On the role of the propensity score in efficient semiparametric estimation of average treatment effects
  publication-title: Econometrica
  doi: 10.2307/2998560
– year: 2000
  ident: CR58
  publication-title: Causation, prediction, and search
– volume: 47
  start-page: 1505
  issue: 3
  year: 2019
  ident: CR43
  article-title: A robust and efficient approach to causal inference based on sparse sufficient dimension reduction
  publication-title: Annals Stat
  doi: 10.1214/18-AOS1722
– volume: 26
  start-page: 20
  issue: 1
  year: 2007
  end-page: 36
  ident: CR54
  article-title: The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials
  publication-title: Stat Med
  doi: 10.1002/sim.2739
– volume: 2
  start-page: 871
  issue: 1
  year: 2006
  ident: CR61
  article-title: Targeted maximum likelihood learning
  publication-title: Int J Biostat
– ident: CR34
– ident: CR55
– volume: 84
  start-page: 781
  issue: 2
  year: 2016
  end-page: 807
  ident: CR2
  article-title: Matching on the estimated propensity score
  publication-title: Econometrica
  doi: 10.3982/ECTA11293
– volume: 155
  start-page: 138
  issue: 2
  year: 2010
  end-page: 154
  ident: CR10
  article-title: Efficient semiparametric estimation of multi-valued treatment effects under ignorability
  publication-title: J Econom
  doi: 10.1016/j.jeconom.2009.09.023
– volume: 104
  start-page: 863
  issue: 4
  year: 2017
  end-page: 880
  ident: CR9
  article-title: Doubly robust nonparametric inference on the average treatment effect
  publication-title: Biometrika
  doi: 10.1093/biomet/asx053
– volume: 276
  start-page: 889
  issue: 11
  year: 1996
  end-page: 897
  ident: CR14
  article-title: The effectiveness of right heart catheterization in the initial care of critically iii patients
  publication-title: J Am Med Assoc
  doi: 10.1001/jama.1996.03540110043030
– year: 2004
  ident: CR5
  publication-title: Numerical issues in statistical computing for the social scientist
– year: 2009
  ident: CR48
  publication-title: Causality
  doi: 10.1017/CBO9780511803161
– volume: 37
  start-page: 3133
  issue: 6A
  year: 2009
  end-page: 3164
  ident: CR45
  article-title: Estimating high-dimensional intervention effects from observational data
  publication-title: Annals Stat
  doi: 10.1214/09-AOS685
– volume: 47
  start-page: 1148
  issue: 2
  year: 2019
  ident: 832_CR8
  publication-title: Annals Stat
  doi: 10.1214/18-AOS1709
– volume: 74
  start-page: 389
  issue: 2
  year: 2018
  ident: 832_CR23
  publication-title: Biometrics
  doi: 10.1111/biom.12788
– ident: 832_CR34
– volume: 40
  start-page: 607
  issue: 3
  year: 2021
  ident: 832_CR39
  publication-title: Stat Med
  doi: 10.1002/sim.8792
– volume: 76
  start-page: 604
  issue: 4
  year: 1986
  ident: 832_CR37
  publication-title: Am Econ Rev
– ident: 832_CR57
– volume: 68
  start-page: 337
  issue: 3
  year: 1950
  ident: 832_CR6
  publication-title: Trans Am Math Soc
  doi: 10.1090/S0002-9947-1950-0051437-7
– ident: 832_CR35
  doi: 10.1145/3097983.3098032
– volume: 7
  start-page: 1393
  issue: 9–12
  year: 1986
  ident: 832_CR49
  publication-title: Math Modell
  doi: 10.1016/0270-0255(86)90088-6
– ident: 832_CR11
– volume: 76
  start-page: 243
  issue: 1
  year: 2014
  ident: 832_CR31
  publication-title: J R Stat Soc : Ser B (Stat Methodol)
  doi: 10.1111/rssb.12027
– volume: 210
  start-page: 2
  year: 2018
  ident: 832_CR18
  publication-title: Soc Sci Med
  doi: 10.1016/j.socscimed.2017.12.005
– volume: 17
  start-page: 260
  issue: 3
  year: 2006
  ident: 832_CR46
  publication-title: Epidemiology
  doi: 10.1097/01.ede.0000215160.88317.cb
– volume: 17
  start-page: 360
  issue: 4
  year: 2006
  ident: 832_CR26
  publication-title: Epidemiology
  doi: 10.1097/01.ede.0000222409.00878.37
– ident: 832_CR47
– volume-title: Causality
  year: 2009
  ident: 832_CR48
  doi: 10.1017/CBO9780511803161
– volume: 360
  start-page: 1
  year: 2008
  ident: 832_CR3
  publication-title: SAS Global Forum
– volume: 25
  start-page: 1
  issue: 1
  year: 2010
  ident: 832_CR59
  publication-title: Stat Sci: Rev J Instit Math Stat
  doi: 10.1214/09-STS313
– volume: 31
  start-page: 1667
  issue: 5
  year: 2019
  ident: 832_CR66
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2019.2921613
– volume: 120
  start-page: 1031
  issue: 3
  year: 2005
  ident: 832_CR4
  publication-title: Q J Econ
– volume: 104
  start-page: 863
  issue: 4
  year: 2017
  ident: 832_CR9
  publication-title: Biometrika
  doi: 10.1093/biomet/asx053
– volume-title: Regression graphics: ideas for studying regressions through graphics
  year: 2009
  ident: 832_CR16
– volume: 47
  start-page: 1505
  issue: 3
  year: 2019
  ident: 832_CR43
  publication-title: Annals Stat
  doi: 10.1214/18-AOS1722
– volume: 154
  start-page: 959
  issue: 4
  year: 1996
  ident: 832_CR13
  publication-title: Am J Resp Crit Care Med
  doi: 10.1164/ajrccm.154.4.8887592
– volume: 70
  start-page: 41
  issue: 1
  year: 1983
  ident: 832_CR50
  publication-title: Biometrika
  doi: 10.1093/biomet/70.1.41
– volume: 173
  start-page: 761
  issue: 7
  year: 2011
  ident: 832_CR20
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwq439
– volume-title: Causation, prediction, and search
  year: 2000
  ident: 832_CR58
– volume: 84
  start-page: 781
  issue: 2
  year: 2016
  ident: 832_CR2
  publication-title: Econometrica
  doi: 10.3982/ECTA11293
– volume: 74
  start-page: 910
  issue: 3
  year: 2018
  ident: 832_CR38
  publication-title: Biometrics
  doi: 10.1111/biom.12859
– volume: 37
  start-page: 3133
  issue: 6A
  year: 2009
  ident: 832_CR45
  publication-title: Annals Stat
  doi: 10.1214/09-AOS685
– ident: 832_CR67
– volume: 276
  start-page: 889
  issue: 11
  year: 1996
  ident: 832_CR14
  publication-title: J Am Med Assoc
  doi: 10.1001/jama.1996.03540110043030
– volume: 74
  start-page: 318
  issue: 366a
  year: 1979
  ident: 832_CR53
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1979.10482513
– volume: 38
  start-page: 888
  issue: 4
  year: 2020
  ident: 832_CR41
  publication-title: J Business Econ Stat
  doi: 10.1080/07350015.2019.1609974
– volume: 66
  start-page: 315
  issue: 2
  year: 1998
  ident: 832_CR24
  publication-title: Econometrica
  doi: 10.2307/2998560
– volume: 2014
  start-page: 1
  year: 2014
  ident: 832_CR62
  publication-title: Advances in Statistics
  doi: 10.1155/2014/502678
– volume: 29
  start-page: 159
  year: 1973
  ident: 832_CR51
  publication-title: Biometrics
  doi: 10.2307/2529684
– volume: 155
  start-page: 138
  issue: 2
  year: 2010
  ident: 832_CR10
  publication-title: J Econom
  doi: 10.1016/j.jeconom.2009.09.023
– volume: 36
  start-page: 1171
  issue: 3
  year: 2008
  ident: 832_CR30
  publication-title: Annals Stat
  doi: 10.1214/009053607000000677
– volume: 67
  start-page: 1406
  issue: 4
  year: 2011
  ident: 832_CR63
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2011.01619.x
– volume: 104
  start-page: 51
  issue: 1
  year: 2017
  ident: 832_CR42
  publication-title: Biometrika
– volume: 74
  start-page: 235
  issue: 1
  year: 2006
  ident: 832_CR1
  publication-title: Econometrica
  doi: 10.1111/j.1468-0262.2006.00655.x
– volume-title: Numerical issues in statistical computing for the social scientist
  year: 2004
  ident: 832_CR5
– volume: 113
  start-page: 1228
  issue: 523
  year: 2018
  ident: 832_CR64
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2017.1319839
– ident: 832_CR55
– volume: 116
  start-page: 4156
  issue: 10
  year: 2019
  ident: 832_CR36
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1804597116
– volume: 66
  start-page: 688
  issue: 5
  year: 1974
  ident: 832_CR52
  publication-title: J Educ Psychol
  doi: 10.1037/h0037350
– volume: 73
  start-page: 1111
  issue: 4
  year: 2017
  ident: 832_CR56
  publication-title: Biometrics
  doi: 10.1111/biom.12679
– ident: 832_CR22
– ident: 832_CR68
– volume: 20
  start-page: 217
  issue: 1
  year: 2011
  ident: 832_CR28
  publication-title: J Comput Gr Stat
  doi: 10.1198/jcgs.2010.08162
– volume: 61
  start-page: 1270
  issue: 5
  year: 2019
  ident: 832_CR65
  publication-title: Biometrical J
  doi: 10.1002/bimj.201700294
– volume: 2
  start-page: 871
  issue: 1
  year: 2006
  ident: 832_CR61
  publication-title: Int J Biostat
– volume: 31
  start-page: 821
  issue: 2
  year: 2021
  ident: 832_CR21
  publication-title: Statistica Sinica
– ident: 832_CR60
– ident: 832_CR33
– volume: 15
  start-page: 199
  issue: 3
  year: 2007
  ident: 832_CR29
  publication-title: Polit Anal
  doi: 10.1093/pan/mpl013
– volume-title: Causal inference in statistics, social, and biomedical sciences
  year: 2015
  ident: 832_CR32
  doi: 10.1017/CBO9781139025751
– volume: 26
  start-page: 20
  issue: 1
  year: 2007
  ident: 832_CR54
  publication-title: Stat Med
  doi: 10.1002/sim.2739
– volume: 98
  start-page: 861
  issue: 4
  year: 2011
  ident: 832_CR17
  publication-title: Biometrika
  doi: 10.1093/biomet/asr041
– volume: 68
  start-page: 1
  year: 2022
  ident: 832_CR12
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 47
  start-page: 2286
  issue: 4
  year: 2019
  ident: 832_CR25
  publication-title: Annals Stat
  doi: 10.1214/18-AOS1748
– volume: 5
  start-page: 73
  year: 2004
  ident: 832_CR19
  publication-title: J Mach Learn Res
– volume-title: Causal inference: what if
  year: 2020
  ident: 832_CR27
– ident: 832_CR69
– volume: 91
  start-page: 983
  issue: 435
  year: 1996
  ident: 832_CR15
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1996.10476968
– volume: 113
  start-page: 7353
  issue: 27
  year: 2016
  ident: 832_CR7
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1510489113
– ident: 832_CR40
– volume: 43
  start-page: 1060
  issue: 3
  year: 2015
  ident: 832_CR44
  publication-title: Annals Stat
  doi: 10.1214/14-AOS1295
SSID ssj0005230
Score 2.409686
Snippet A large number of covariates can have a negative impact on the quality of causal effect estimation since confounding adjustment becomes unreliable when the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1174
SubjectTerms Algorithms
Artificial Intelligence
Chemistry and Earth Sciences
Computer Science
Data Mining and Knowledge Discovery
Information Storage and Retrieval
Physics
Reduction
Representations
Statistics for Engineering
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gu3DhjRgMlAM3iFiWR5MTArRpQmJCwKTdqrx6QtvY4__jtCkDJHapKrXNwY7tr479GaErqzuBa6-JDEYSLuFOa29IoZTxxhTC-JjveB7KwYg_jcU4JdwWqayy9omlo_ZTF3PktxBIAMsLmbG72SeJU6Pi6WoaobGNmuCCFfx8NR96w5fXH0UerOoTVpwIRTupbSY1z0mqSKxmjzgEfsl-h6Y13vxzRFpGnv4-2k2QEd9XOj5AW2FyiPbqcQw4WecRenxblXwQEEawj6T9MRGG55GbNUofAzzFBnYueBDszGoBa1bVHDgybVQtjMdo1O-9Pw5ImpFAHJNsSazwQtpC2kwEqoIA5xYCNUFTJ6nx2lDmixAczxwNwhTdIL1lyjEH1qusYSeoMZlOwinCnBkweOqtsAW31gCUtDzANbPaKq9aiNbiyV0iEI9zLD7yNfVxFGkOIs1Lkeaiha6_v5lV9Bkb327XUs-TKS3yteJb6KbWxPrx_6udbV7tHO10S-XH4sU2aiznq3ABAGNpL9Mu-gIsMc1o
  priority: 102
  providerName: ProQuest
Title Sufficient dimension reduction for average causal effect estimation
URI https://link.springer.com/article/10.1007/s10618-022-00832-5
https://www.proquest.com/docview/2664955673
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgExIXHgPEYEw5cINKy9Kk6XFUewjEhIBJ41Tl1RMaaI__j9MHGwiQuLRVm-bg2M6XxP4McKnjjgtjGwfCKRGEAp_i2Kogk1JZpTKurN_vuB-L0SS8nfJpmRS2qKLdqyPJ3FNvJLsJKgMffe5xAy6htqHO_dodtXjS7W0EdrAiN1iGAZe0U6bK_NzH1-lojTG_HYvms83gAPZKmEh6xbgewpabNWC_KsFASotswE4ewWkWR5A8rXI2CJxEiPWU_X4bjMw9M6uXPUFwShTqLfoPYtRqgb0XsRzE82wUCYzHMBn0n5NRUFZICAwTbBlobrnQmdARd1Q6jq7NOapcTI2gysaKMps5Z8LIUMdV1nXCaiYNM2i7Uit2ArXZ28ydAgmZQnOnVnOdhVorBJI6dHiNdKyllU2glaBSU9KH-yoWr-ma-NgLN0XhprlwU96Eq89_3gvyjD9btyr5p6UhLVLED7iE4yJiTbiuxmT9-ffezv7X_Bx2u7la-FDGFtSW85W7QLix1G3YloNhG-q94ctdH-83_fHDI75NRNLONe8DJA7Qtw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6l5dBeoLRFDbTgQzmBRR0_Yh8QqgIhaZtcSKTctn7tCSUhDyH-FL-R8T6agkRuuaxWWu8cxp9nPtvzALh05ioKEwxV0SoqFL4ZEyzNtbbB2lzakM47BkPVG4ubiZw04HedC5PCKmubWBjqMPPpjPwDOhLk8lK1-af5D5q6RqXb1bqFRgmL2_jrJ27Zlh_7n3F-37Za3S-jTo9WXQWo54qvqJNBKpcr15aR6SjRHMTIbDTMK2aDsYyHPEYv2p5FafNWVMFx7blHvGtnOcrdgyeCc5NWlO5-fRRSwsusZC2o1OyqStKpUvUU0zTFzifWgxvAvx3hht3-cyFb-LnuETytCCq5LhH1HBpxegzP6uYPpLIFJ9D5ti6qT6DTIiG1CEjHbmSRKsGmuSZIhonFdYL2ini7XqLMMnaEpLoeZcLkKYx3orsXsD-dTeMZEMEtmhcWnHS5cM4icXUi4rPtjNNBN4HV6sl8Va48dc34nm0KLSeVZqjSrFBpJpvw7uGfeVmsY-vo81rrWbVwl9kGZk14X8_E5vP_pb3cLu0NHPRGg7vsrj-8fQWHrQIIKWzyHPZXi3W8QGqzcq8LPBG43zWA_wCeugtb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT-swEB5BkRAXlgeIvsfiw-MEFnUdO84BIbaKtUIsErfgLSdUeLTVE3-NX8c4cSggwY1LFCnOHMafZz7bswD8NVnLJ5nLqPRa0kTiW5Y5TQultNO6ENqF847zrjy6SU5uxe0YvNS5MCGssraJpaF2DzackW-hI0EuL2TKt4oYFnFx0Nl5_EdDB6lw01q306ggcuqf_-P2rb99fIBzvd5udw6v949o7DBALZd8QI1wQppCmlR4prxA0-A90z5jVjLtMs24K7y3SWqZF7poe-kMV5ZbxL4ymqPccZhIcVfUasDE3mH34vJdgAmvcpRVQoVirZiyExP3JFM0RNIHDoTbwY9uccR1P13Pll6vMwvTka6S3QpfczDme79gpm4FQaJlmIf9q2FZiwJdGHGhYUA4hCNPoS5smHmC1JhoXDVovYjVwz7KrCJJSKjyUaVPLsDNj2hvERq9h55fApJwjcaGOSNMkRijkcaaxOMzNZlRTjWB1erJbSxeHnpo3OejsstBpTmqNC9VmosmbLz981iV7vh29HKt9Twu434-Al0TNuuZGH3-Wtrv76WtwSSCNz877p7-gal2iYMQQ7kMjcHT0K8gzxmY1QgoAnc_jeFXcpcQ7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sufficient+dimension+reduction+for+average+causal+effect+estimation&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Cheng%2C+Debo&rft.au=Li%2C+Jiuyong&rft.au=Liu%2C+Lin&rft.au=Le%2C+Thuc+Duy&rft.date=2022-05-01&rft.pub=Springer+US&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=36&rft.issue=3&rft.spage=1174&rft.epage=1196&rft_id=info:doi/10.1007%2Fs10618-022-00832-5&rft.externalDocID=10_1007_s10618_022_00832_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon