Focalize K-NN: an imputation algorithm for time series datasets
The effective use of time series data is crucial in business decision-making. Temporal data reveals temporal trends and patterns, enabling decision-makers to make informed decisions and prevent potential problems. However, missing values in time series data can interfere with the analysis and lead t...
Saved in:
Published in | Pattern analysis and applications : PAA Vol. 27; no. 2 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.06.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7541 1433-755X |
DOI | 10.1007/s10044-024-01262-3 |
Cover
Loading…
Abstract | The effective use of time series data is crucial in business decision-making. Temporal data reveals temporal trends and patterns, enabling decision-makers to make informed decisions and prevent potential problems. However, missing values in time series data can interfere with the analysis and lead to inaccurate conclusions. Thus, our work proposes a Focalize K-NN method that leverages time series properties to perform missing data imputation. This approach shows the benefits of taking advantage of correlated features and temporal lags to improve the performance of the traditional K-NN imputer. A similar approach could be employed in other methods. We tested this approach with two datasets, various parameter and feature combinations, and observed that it is beneficial in scenarios with disjoint missing patterns. Our findings demonstrate the effectiveness of Focalize K-NN for imputing missing values in time series data. The more noticeable benefits of our methods occur when there is a high percentage of missing data. However, as the amount of missing data increases, so does the error. |
---|---|
AbstractList | The effective use of time series data is crucial in business decision-making. Temporal data reveals temporal trends and patterns, enabling decision-makers to make informed decisions and prevent potential problems. However, missing values in time series data can interfere with the analysis and lead to inaccurate conclusions. Thus, our work proposes a Focalize K-NN method that leverages time series properties to perform missing data imputation. This approach shows the benefits of taking advantage of correlated features and temporal lags to improve the performance of the traditional K-NN imputer. A similar approach could be employed in other methods. We tested this approach with two datasets, various parameter and feature combinations, and observed that it is beneficial in scenarios with disjoint missing patterns. Our findings demonstrate the effectiveness of Focalize K-NN for imputing missing values in time series data. The more noticeable benefits of our methods occur when there is a high percentage of missing data. However, as the amount of missing data increases, so does the error. |
ArticleNumber | 39 |
Author | Almeida, Ana Brás, Susana Sargento, Susana Pinto, Filipe Cabral |
Author_xml | – sequence: 1 givenname: Ana orcidid: 0000-0002-5937-0570 surname: Almeida fullname: Almeida, Ana email: anaa@ua.pt organization: Departamento de Eletrónica, Telecomunicações e Informática, Universidade de Aveiro, Instituto de Telecomunicações de Aveiro – sequence: 2 givenname: Susana orcidid: 0000-0001-8650-9219 surname: Brás fullname: Brás, Susana organization: Departamento de Eletrónica, Telecomunicações e Informática, Universidade de Aveiro, IEETA, DETI, LASI, Universidade de Aveiro – sequence: 3 givenname: Susana orcidid: 0000-0001-8761-8281 surname: Sargento fullname: Sargento, Susana organization: Departamento de Eletrónica, Telecomunicações e Informática, Universidade de Aveiro, Instituto de Telecomunicações de Aveiro – sequence: 4 givenname: Filipe Cabral orcidid: 0000-0001-8708-9025 surname: Pinto fullname: Pinto, Filipe Cabral organization: Altice Labs |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz6tJJpsNXkSKVVHqRcFbyG7SmrK7qUl60F9v6oqChx7mA2ae-XgnaNT73iJ0Ssk5JaS6iNlzXhCWjTLBCjhAY8oBiqosX0e_OadHaBLjmhAAYHKMrua-0a37tPihWCwuse6x6zbbpJPzPdbtygeX3jq89AEn11kcbXA2YqOTjjbFY3S41G20Jz9xil7mN8-zu-Lx6fZ-dv1YNCAgFTXdHQi8FNpYAXUtgYMEApZRbqCSsjICKlHJsqaGGZrrpaZE2NJYKgRM0dkwdxP8-9bGpNZ-G_q8UuUpnHMBOU6RHLqa4GMMdqkaN7ySgnatokTt5FKDXCrLpb7lUpBR9g_dBNfp8LEfggGKublf2fB31R7qCysQfAc |
CitedBy_id | crossref_primary_10_4236_jcc_2024_1211004 |
Cites_doi | 10.1038/s41592-019-0686-2 10.1109/MITP.2020.3016728 10.1016/j.egyai.2023.100239 10.1109/TITS.2018.2869768 10.1007/978-3-031-36616-1_3 10.1038/s41598-018-24271-9 10.1016/j.future.2021.10.022 10.14778/3377369.3377383 10.7717/peerj-cs.623 10.25080/Majora-92bf1922-00a 10.1109/CAC.2017.8244105 10.1109/SMC53654.2022.9945604 10.24963/ijcai.2019/429 10.1109/IJCNN.2016.7727549 10.1145/3447555.3466586 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s10044-024-01262-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1433-755X |
ExternalDocumentID | 10_1007_s10044_024_01262_3 |
GrantInformation_xml | – fundername: Fundação para a Ciência e Tecnologia grantid: 2021.06222.BD – fundername: PRR – Plano de Recuperação e Resiliência and by the NextGenerationEU grantid: C645192610-00000060 – fundername: Universidade de Aveiro |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS C6C CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c363t-b110043456ade63bb83438303e214d37887d6376785b1d2d18345a106e5de1663 |
IEDL.DBID | U2A |
ISSN | 1433-7541 |
IngestDate | Sun Jul 13 05:17:42 EDT 2025 Thu Apr 24 22:57:56 EDT 2025 Tue Jul 01 01:15:19 EDT 2025 Fri Feb 21 02:41:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Missing data imputation K-nearest neighbors Machine learning Time series |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-b110043456ade63bb83438303e214d37887d6376785b1d2d18345a106e5de1663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8650-9219 0000-0001-8761-8281 0000-0001-8708-9025 0000-0002-5937-0570 |
OpenAccessLink | https://link.springer.com/10.1007/s10044-024-01262-3 |
PQID | 3034446330 |
PQPubID | 2043691 |
ParticipantIDs | proquest_journals_3034446330 crossref_citationtrail_10_1007_s10044_024_01262_3 crossref_primary_10_1007_s10044_024_01262_3 springer_journals_10_1007_s10044_024_01262_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Pattern analysis and applications : PAA |
PublicationTitleAbbrev | Pattern Anal Applic |
PublicationYear | 2024 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | CR4 CR3 Che, Purushotham, Cho, Sontag, Liu (CR7) 2018 Li, Zhang, Wang, Ran (CR12) 2019; 20 Shamsi (CR16) 2020; 22 CR17 CR15 Grus (CR9) 2019 CR14 Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski, Peterson, Weckesser, Bright, van der Walt, Brett, Wilson, Millman, Mayorov, Nelson, Jones, Kern, Larson, Carey, Polat, Feng, Moore, VanderPlas, Laxalde, Perktold, Cimrman, Henriksen, Quintero, Harris, Archibald, Ribeiro, Pedregosa, van Mulbregt (CR18) 2020; 17 CR13 Bülte, Kleinebrahm, Ümitcan Yilmaz, Gómez-Romero (CR5) 2023; 13 CR11 Davide Chicco Matthijs, Warrens (CR8) 2021; 7 Wettschereck, Dietterich, Cowan, Tesauro, Alspector (CR19) 1993 Almeida, Brás, Sargento, Pinto, Pertusa, Gallego, Sánchez, Domingues (CR1) 2023 Almeida, Brás, Oliveira, Sargento (CR2) 2022; 128 Cao, Wang, Li, Zhou, Li, Li, Bengio, Wallach, Larochelle, Grauman, Cesa-Bianchi, Garnett (CR6) 2018 Khayati, Lerner, Tymchenko, Cudre-Mauroux (CR10) 2020; 13 1262_CR4 1262_CR11 1262_CR3 Z Che (1262_CR7) 2018 1262_CR13 P Virtanen (1262_CR18) 2020; 17 1262_CR15 A Almeida (1262_CR2) 2022; 128 1262_CR14 L Li (1262_CR12) 2019; 20 1262_CR17 W Cao (1262_CR6) 2018 M Khayati (1262_CR10) 2020; 13 JA Shamsi (1262_CR16) 2020; 22 A Almeida (1262_CR1) 2023 C Bülte (1262_CR5) 2023; 13 J Davide Chicco Matthijs (1262_CR8) 2021; 7 J Grus (1262_CR9) 2019 D Wettschereck (1262_CR19) 1993 |
References_xml | – volume: 17 start-page: 261 year: 2020 end-page: 272 ident: CR18 article-title: SciPy 1.0 contributors: SciPy 1.0: fundamental algorithms for scientific computing in python publication-title: Nat Methods doi: 10.1038/s41592-019-0686-2 – volume: 22 start-page: 74 issue: 6 year: 2020 end-page: 81 ident: CR16 article-title: Resilience in smart city applications: faults, failures, and solutions publication-title: IT Prof doi: 10.1109/MITP.2020.3016728 – ident: CR3 – ident: CR4 – ident: CR14 – ident: CR15 – volume: 13 year: 2023 ident: CR5 article-title: Multivariate time series imputation for energy data using neural networks publication-title: Energy AI doi: 10.1016/j.egyai.2023.100239 – year: 2019 ident: CR9 publication-title: Data science from scratch: first principles with Python – ident: CR17 – ident: CR13 – ident: CR11 – volume: 20 start-page: 2933 issue: 8 year: 2019 end-page: 2943 ident: CR12 article-title: Missing value imputation for traffic-related time series data based on a multi-view learning method publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2018.2869768 – start-page: 28 year: 2023 end-page: 39 ident: CR1 article-title: Time series imputation in faulty systems publication-title: Pattern recognition and image analysis doi: 10.1007/978-3-031-36616-1_3 – year: 2018 ident: CR7 article-title: Recurrent neural networks for multivariate time series with missing values publication-title: Sci Rep doi: 10.1038/s41598-018-24271-9 – volume: 128 start-page: 429 year: 2022 end-page: 442 ident: CR2 article-title: Vehicular traffic flow prediction using deployed traffic counters in a city publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2021.10.022 – volume: 13 start-page: 768 year: 2020 end-page: 782 ident: CR10 article-title: Mind the gap: an experimental evaluation of imputation of missing values techniques in time series publication-title: Proc VLDB Endow doi: 10.14778/3377369.3377383 – year: 1993 ident: CR19 article-title: Locally adaptive nearest neighbor algorithms publication-title: Advances in neural information processing systems – year: 2018 ident: CR6 article-title: Brits: bidirectional recurrent imputation for time series publication-title: Advances in neural information processing systems – volume: 7 start-page: 7 year: 2021 ident: CR8 article-title: The coefficient of determination r-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation publication-title: PeerJ Comput Sci doi: 10.7717/peerj-cs.623 – volume: 7 start-page: 7 year: 2021 ident: 1262_CR8 publication-title: PeerJ Comput Sci doi: 10.7717/peerj-cs.623 – volume-title: Data science from scratch: first principles with Python year: 2019 ident: 1262_CR9 – ident: 1262_CR14 doi: 10.25080/Majora-92bf1922-00a – volume: 20 start-page: 2933 issue: 8 year: 2019 ident: 1262_CR12 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2018.2869768 – ident: 1262_CR17 doi: 10.1109/CAC.2017.8244105 – volume: 22 start-page: 74 issue: 6 year: 2020 ident: 1262_CR16 publication-title: IT Prof doi: 10.1109/MITP.2020.3016728 – volume-title: Advances in neural information processing systems year: 2018 ident: 1262_CR6 – year: 2018 ident: 1262_CR7 publication-title: Sci Rep doi: 10.1038/s41598-018-24271-9 – ident: 1262_CR4 doi: 10.1109/SMC53654.2022.9945604 – ident: 1262_CR13 doi: 10.24963/ijcai.2019/429 – volume-title: Advances in neural information processing systems year: 1993 ident: 1262_CR19 – volume: 13 year: 2023 ident: 1262_CR5 publication-title: Energy AI doi: 10.1016/j.egyai.2023.100239 – volume: 13 start-page: 768 year: 2020 ident: 1262_CR10 publication-title: Proc VLDB Endow doi: 10.14778/3377369.3377383 – ident: 1262_CR15 doi: 10.1109/IJCNN.2016.7727549 – start-page: 28 volume-title: Pattern recognition and image analysis year: 2023 ident: 1262_CR1 doi: 10.1007/978-3-031-36616-1_3 – ident: 1262_CR11 doi: 10.1145/3447555.3466586 – volume: 17 start-page: 261 year: 2020 ident: 1262_CR18 publication-title: Nat Methods doi: 10.1038/s41592-019-0686-2 – ident: 1262_CR3 – volume: 128 start-page: 429 year: 2022 ident: 1262_CR2 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2021.10.022 |
SSID | ssj0033328 |
Score | 2.3743572 |
Snippet | The effective use of time series data is crucial in business decision-making. Temporal data reveals temporal trends and patterns, enabling decision-makers to... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Algorithms Computer Science Datasets Decision making Missing data Original Article Pattern Recognition Time series |
Title | Focalize K-NN: an imputation algorithm for time series datasets |
URI | https://link.springer.com/article/10.1007/s10044-024-01262-3 https://www.proquest.com/docview/3034446330 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RdmHhG1EolQc2sNT4bCewoKpqqajoRKUyRUnsQKWSoiYs_HpsN6GAAInVsT3cnX3vcr53AGeBSHyFPqPIfEF5IhmN00hR37jyNE25DJTN6N6N5XDCb6diWhaF5dVr9yol6W7qT8VuHc6p8Skm_GVmT6xBQ5jY3T7km7Budf8iouuoaoAAUl9wryyV-XmPr-5ojTG_pUWdtxnswFYJE0l3pddd2NDZHmyXkJGUBzI3Q1VXhmpsH64H1j3N3jQZ0fH4ikQZmdk5TgUkmj8ulrPi6ZkYtEpsZ3lijVDnxL4VzXWRH8Bk0L_vDWnZJoEmKLGgsWN9Q4OEIqUlxnGAln-0g5p5XFm-eF9JS9oSiNhTTJlDzEVkQkEtlPYM4jiEerbI9BEQZAkGmkdKpIzHOr5EIU1AZCCG9n3peU3wKmmFSckhbltZzMM1-7GVcGgkHDoJh9iE8481LysGjT9ntyolhOVpykO0vIRcInaacFEpZv35992O_zf9BDaZsw37k6UF9WL5qk8N5ijiNjS6Nw-jfhtqPdlrO4N7B9cxyh4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFH5i5bBd6GCglXXDB25g1PjZTtgFVailrLSnVupOURw7WzUoiIQLvx47telAbFKvjvOU-D37fc_P_h7AYSLyWGPMKLJYUJ5LRlWRaRpbV14UBZeJdhnd0VgOpvzHTMz8pbAynHYPKcl6pf7rsluHc2p9ig1_mZWJ72CT2xicN2Cze_Fz2AsrMCLWNVUtFEAaCx75yzJvS3npkFYo81VitPY3_SZMw5cuj5n8OXmo1En--IrEcd1f-QhbHoCS7tJitmHDLHag6cEo8VO9tE2h3kNo-wRnfef45o-GDOl4_J1kCzJ3fWrlkuz61-39vPp9QywOJq5mPXHmbUriTqGWpip3YdrvTc4H1BdgoDlKrKiq-eTQYqxMG4lKJeiYTTtoWMS1Y6KPtXR0MIlQkWbaLg9cZDbINEKbyGKZPWgsbhfmMxBkOSaGZ1oUjCujTlFIG2pZ8GLiWEZRC6KghTT37OSuSMZ1uuJVdoOW2kFL60FLsQVHz-_cLbk5_tu7HZSb-nlapugYD7lE7LTgOOhq9fjf0vbX634A7weT0VV6dTkefoEPrFa928ppQ6O6fzBfLbKp1DdvyE9lR-eF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgSIgLb8R45sANAmucpIULQsB4DCYOIMGpapoUJkZBtLvs15N0LQMESIhr6lqt7cZfmvgzwEYgYl-jzygyX1AeS0ZVEmnq21SeJAmXgXY7updteXrDz2_F7Ycq_uK0e7UlOahpcCxNab7zopOdD4VvDc6pzS92KcysfhyFMe7I2WswdnBy1zquZmNELPqrWliA1BfcKwtnvtfyOTkNEeeXTdIi9zSnIKqeenDk5HG7l6vtuP-F0PE_rzUNkyUwJQeDSJqBEZPOwlQJUkk5BWR2qOoDUY3NwX7TJcRO35AWbbf3SJSSjpMpnE6i7v3zayd_eCIWHxPXy564sDcZcadTM5Nn83DTPL4-PKVlYwYao8ScqoJnDi32irSRqFSAjvG0gYZ5XDuGel9LRxMTCOVppu20wUVkF59GaONZjLMAtfQ5NYtAkMUYGB5pkTCujNpFIe0SzIIa4_vS8-rgVR4J45K13DXP6IZDvmVntNAaLSyMFmIdNt_veRlwdvwqvVI5Oiy_3yxEx4TIJWKjDluV34aXf9a29DfxdRi_OmqGF2ft1jJMsMLz7g_PCtTy155ZtYAnV2tlTL8BCQ7waQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Focalize+K-NN%3A+an+imputation+algorithm+for+time+series+datasets&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Almeida%2C+Ana&rft.au=Br%C3%A1s+Susana&rft.au=Sargento+Susana&rft.au=Pinto%2C+Filipe+Cabral&rft.date=2024-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=27&rft.issue=2&rft_id=info:doi/10.1007%2Fs10044-024-01262-3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |