Focalize K-NN: an imputation algorithm for time series datasets

The effective use of time series data is crucial in business decision-making. Temporal data reveals temporal trends and patterns, enabling decision-makers to make informed decisions and prevent potential problems. However, missing values in time series data can interfere with the analysis and lead t...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 27; no. 2
Main Authors Almeida, Ana, Brás, Susana, Sargento, Susana, Pinto, Filipe Cabral
Format Journal Article
LanguageEnglish
Published London Springer London 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1433-7541
1433-755X
DOI10.1007/s10044-024-01262-3

Cover

Loading…
Abstract The effective use of time series data is crucial in business decision-making. Temporal data reveals temporal trends and patterns, enabling decision-makers to make informed decisions and prevent potential problems. However, missing values in time series data can interfere with the analysis and lead to inaccurate conclusions. Thus, our work proposes a Focalize K-NN method that leverages time series properties to perform missing data imputation. This approach shows the benefits of taking advantage of correlated features and temporal lags to improve the performance of the traditional K-NN imputer. A similar approach could be employed in other methods. We tested this approach with two datasets, various parameter and feature combinations, and observed that it is beneficial in scenarios with disjoint missing patterns. Our findings demonstrate the effectiveness of Focalize K-NN for imputing missing values in time series data. The more noticeable benefits of our methods occur when there is a high percentage of missing data. However, as the amount of missing data increases, so does the error.
AbstractList The effective use of time series data is crucial in business decision-making. Temporal data reveals temporal trends and patterns, enabling decision-makers to make informed decisions and prevent potential problems. However, missing values in time series data can interfere with the analysis and lead to inaccurate conclusions. Thus, our work proposes a Focalize K-NN method that leverages time series properties to perform missing data imputation. This approach shows the benefits of taking advantage of correlated features and temporal lags to improve the performance of the traditional K-NN imputer. A similar approach could be employed in other methods. We tested this approach with two datasets, various parameter and feature combinations, and observed that it is beneficial in scenarios with disjoint missing patterns. Our findings demonstrate the effectiveness of Focalize K-NN for imputing missing values in time series data. The more noticeable benefits of our methods occur when there is a high percentage of missing data. However, as the amount of missing data increases, so does the error.
ArticleNumber 39
Author Almeida, Ana
Brás, Susana
Sargento, Susana
Pinto, Filipe Cabral
Author_xml – sequence: 1
  givenname: Ana
  orcidid: 0000-0002-5937-0570
  surname: Almeida
  fullname: Almeida, Ana
  email: anaa@ua.pt
  organization: Departamento de Eletrónica, Telecomunicações e Informática, Universidade de Aveiro, Instituto de Telecomunicações de Aveiro
– sequence: 2
  givenname: Susana
  orcidid: 0000-0001-8650-9219
  surname: Brás
  fullname: Brás, Susana
  organization: Departamento de Eletrónica, Telecomunicações e Informática, Universidade de Aveiro, IEETA, DETI, LASI, Universidade de Aveiro
– sequence: 3
  givenname: Susana
  orcidid: 0000-0001-8761-8281
  surname: Sargento
  fullname: Sargento, Susana
  organization: Departamento de Eletrónica, Telecomunicações e Informática, Universidade de Aveiro, Instituto de Telecomunicações de Aveiro
– sequence: 4
  givenname: Filipe Cabral
  orcidid: 0000-0001-8708-9025
  surname: Pinto
  fullname: Pinto, Filipe Cabral
  organization: Altice Labs
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz6tJJpsNXkSKVVHqRcFbyG7SmrK7qUl60F9v6oqChx7mA2ae-XgnaNT73iJ0Ssk5JaS6iNlzXhCWjTLBCjhAY8oBiqosX0e_OadHaBLjmhAAYHKMrua-0a37tPihWCwuse6x6zbbpJPzPdbtygeX3jq89AEn11kcbXA2YqOTjjbFY3S41G20Jz9xil7mN8-zu-Lx6fZ-dv1YNCAgFTXdHQi8FNpYAXUtgYMEApZRbqCSsjICKlHJsqaGGZrrpaZE2NJYKgRM0dkwdxP8-9bGpNZ-G_q8UuUpnHMBOU6RHLqa4GMMdqkaN7ySgnatokTt5FKDXCrLpb7lUpBR9g_dBNfp8LEfggGKublf2fB31R7qCysQfAc
CitedBy_id crossref_primary_10_4236_jcc_2024_1211004
Cites_doi 10.1038/s41592-019-0686-2
10.1109/MITP.2020.3016728
10.1016/j.egyai.2023.100239
10.1109/TITS.2018.2869768
10.1007/978-3-031-36616-1_3
10.1038/s41598-018-24271-9
10.1016/j.future.2021.10.022
10.14778/3377369.3377383
10.7717/peerj-cs.623
10.25080/Majora-92bf1922-00a
10.1109/CAC.2017.8244105
10.1109/SMC53654.2022.9945604
10.24963/ijcai.2019/429
10.1109/IJCNN.2016.7727549
10.1145/3447555.3466586
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s10044-024-01262-3
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
ExternalDocumentID 10_1007_s10044_024_01262_3
GrantInformation_xml – fundername: Fundação para a Ciência e Tecnologia
  grantid: 2021.06222.BD
– fundername: PRR – Plano de Recuperação e Resiliência and by the NextGenerationEU
  grantid: C645192610-00000060
– fundername: Universidade de Aveiro
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c363t-b110043456ade63bb83438303e214d37887d6376785b1d2d18345a106e5de1663
IEDL.DBID U2A
ISSN 1433-7541
IngestDate Sun Jul 13 05:17:42 EDT 2025
Thu Apr 24 22:57:56 EDT 2025
Tue Jul 01 01:15:19 EDT 2025
Fri Feb 21 02:41:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Missing data imputation
K-nearest neighbors
Machine learning
Time series
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-b110043456ade63bb83438303e214d37887d6376785b1d2d18345a106e5de1663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8650-9219
0000-0001-8761-8281
0000-0001-8708-9025
0000-0002-5937-0570
OpenAccessLink https://link.springer.com/10.1007/s10044-024-01262-3
PQID 3034446330
PQPubID 2043691
ParticipantIDs proquest_journals_3034446330
crossref_citationtrail_10_1007_s10044_024_01262_3
crossref_primary_10_1007_s10044_024_01262_3
springer_journals_10_1007_s10044_024_01262_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2024
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References CR4
CR3
Che, Purushotham, Cho, Sontag, Liu (CR7) 2018
Li, Zhang, Wang, Ran (CR12) 2019; 20
Shamsi (CR16) 2020; 22
CR17
CR15
Grus (CR9) 2019
CR14
Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski, Peterson, Weckesser, Bright, van der Walt, Brett, Wilson, Millman, Mayorov, Nelson, Jones, Kern, Larson, Carey, Polat, Feng, Moore, VanderPlas, Laxalde, Perktold, Cimrman, Henriksen, Quintero, Harris, Archibald, Ribeiro, Pedregosa, van Mulbregt (CR18) 2020; 17
CR13
Bülte, Kleinebrahm, Ümitcan Yilmaz, Gómez-Romero (CR5) 2023; 13
CR11
Davide Chicco Matthijs, Warrens (CR8) 2021; 7
Wettschereck, Dietterich, Cowan, Tesauro, Alspector (CR19) 1993
Almeida, Brás, Sargento, Pinto, Pertusa, Gallego, Sánchez, Domingues (CR1) 2023
Almeida, Brás, Oliveira, Sargento (CR2) 2022; 128
Cao, Wang, Li, Zhou, Li, Li, Bengio, Wallach, Larochelle, Grauman, Cesa-Bianchi, Garnett (CR6) 2018
Khayati, Lerner, Tymchenko, Cudre-Mauroux (CR10) 2020; 13
1262_CR4
1262_CR11
1262_CR3
Z Che (1262_CR7) 2018
1262_CR13
P Virtanen (1262_CR18) 2020; 17
1262_CR15
A Almeida (1262_CR2) 2022; 128
1262_CR14
L Li (1262_CR12) 2019; 20
1262_CR17
W Cao (1262_CR6) 2018
M Khayati (1262_CR10) 2020; 13
JA Shamsi (1262_CR16) 2020; 22
A Almeida (1262_CR1) 2023
C Bülte (1262_CR5) 2023; 13
J Davide Chicco Matthijs (1262_CR8) 2021; 7
J Grus (1262_CR9) 2019
D Wettschereck (1262_CR19) 1993
References_xml – volume: 17
  start-page: 261
  year: 2020
  end-page: 272
  ident: CR18
  article-title: SciPy 1.0 contributors: SciPy 1.0: fundamental algorithms for scientific computing in python
  publication-title: Nat Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 22
  start-page: 74
  issue: 6
  year: 2020
  end-page: 81
  ident: CR16
  article-title: Resilience in smart city applications: faults, failures, and solutions
  publication-title: IT Prof
  doi: 10.1109/MITP.2020.3016728
– ident: CR3
– ident: CR4
– ident: CR14
– ident: CR15
– volume: 13
  year: 2023
  ident: CR5
  article-title: Multivariate time series imputation for energy data using neural networks
  publication-title: Energy AI
  doi: 10.1016/j.egyai.2023.100239
– year: 2019
  ident: CR9
  publication-title: Data science from scratch: first principles with Python
– ident: CR17
– ident: CR13
– ident: CR11
– volume: 20
  start-page: 2933
  issue: 8
  year: 2019
  end-page: 2943
  ident: CR12
  article-title: Missing value imputation for traffic-related time series data based on a multi-view learning method
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2018.2869768
– start-page: 28
  year: 2023
  end-page: 39
  ident: CR1
  article-title: Time series imputation in faulty systems
  publication-title: Pattern recognition and image analysis
  doi: 10.1007/978-3-031-36616-1_3
– year: 2018
  ident: CR7
  article-title: Recurrent neural networks for multivariate time series with missing values
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-24271-9
– volume: 128
  start-page: 429
  year: 2022
  end-page: 442
  ident: CR2
  article-title: Vehicular traffic flow prediction using deployed traffic counters in a city
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2021.10.022
– volume: 13
  start-page: 768
  year: 2020
  end-page: 782
  ident: CR10
  article-title: Mind the gap: an experimental evaluation of imputation of missing values techniques in time series
  publication-title: Proc VLDB Endow
  doi: 10.14778/3377369.3377383
– year: 1993
  ident: CR19
  article-title: Locally adaptive nearest neighbor algorithms
  publication-title: Advances in neural information processing systems
– year: 2018
  ident: CR6
  article-title: Brits: bidirectional recurrent imputation for time series
  publication-title: Advances in neural information processing systems
– volume: 7
  start-page: 7
  year: 2021
  ident: CR8
  article-title: The coefficient of determination r-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation
  publication-title: PeerJ Comput Sci
  doi: 10.7717/peerj-cs.623
– volume: 7
  start-page: 7
  year: 2021
  ident: 1262_CR8
  publication-title: PeerJ Comput Sci
  doi: 10.7717/peerj-cs.623
– volume-title: Data science from scratch: first principles with Python
  year: 2019
  ident: 1262_CR9
– ident: 1262_CR14
  doi: 10.25080/Majora-92bf1922-00a
– volume: 20
  start-page: 2933
  issue: 8
  year: 2019
  ident: 1262_CR12
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2018.2869768
– ident: 1262_CR17
  doi: 10.1109/CAC.2017.8244105
– volume: 22
  start-page: 74
  issue: 6
  year: 2020
  ident: 1262_CR16
  publication-title: IT Prof
  doi: 10.1109/MITP.2020.3016728
– volume-title: Advances in neural information processing systems
  year: 2018
  ident: 1262_CR6
– year: 2018
  ident: 1262_CR7
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-24271-9
– ident: 1262_CR4
  doi: 10.1109/SMC53654.2022.9945604
– ident: 1262_CR13
  doi: 10.24963/ijcai.2019/429
– volume-title: Advances in neural information processing systems
  year: 1993
  ident: 1262_CR19
– volume: 13
  year: 2023
  ident: 1262_CR5
  publication-title: Energy AI
  doi: 10.1016/j.egyai.2023.100239
– volume: 13
  start-page: 768
  year: 2020
  ident: 1262_CR10
  publication-title: Proc VLDB Endow
  doi: 10.14778/3377369.3377383
– ident: 1262_CR15
  doi: 10.1109/IJCNN.2016.7727549
– start-page: 28
  volume-title: Pattern recognition and image analysis
  year: 2023
  ident: 1262_CR1
  doi: 10.1007/978-3-031-36616-1_3
– ident: 1262_CR11
  doi: 10.1145/3447555.3466586
– volume: 17
  start-page: 261
  year: 2020
  ident: 1262_CR18
  publication-title: Nat Methods
  doi: 10.1038/s41592-019-0686-2
– ident: 1262_CR3
– volume: 128
  start-page: 429
  year: 2022
  ident: 1262_CR2
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2021.10.022
SSID ssj0033328
Score 2.3743572
Snippet The effective use of time series data is crucial in business decision-making. Temporal data reveals temporal trends and patterns, enabling decision-makers to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Computer Science
Datasets
Decision making
Missing data
Original Article
Pattern Recognition
Time series
Title Focalize K-NN: an imputation algorithm for time series datasets
URI https://link.springer.com/article/10.1007/s10044-024-01262-3
https://www.proquest.com/docview/3034446330
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RdmHhG1EolQc2sNT4bCewoKpqqajoRKUyRUnsQKWSoiYs_HpsN6GAAInVsT3cnX3vcr53AGeBSHyFPqPIfEF5IhmN00hR37jyNE25DJTN6N6N5XDCb6diWhaF5dVr9yol6W7qT8VuHc6p8Skm_GVmT6xBQ5jY3T7km7Budf8iouuoaoAAUl9wryyV-XmPr-5ojTG_pUWdtxnswFYJE0l3pddd2NDZHmyXkJGUBzI3Q1VXhmpsH64H1j3N3jQZ0fH4ikQZmdk5TgUkmj8ulrPi6ZkYtEpsZ3lijVDnxL4VzXWRH8Bk0L_vDWnZJoEmKLGgsWN9Q4OEIqUlxnGAln-0g5p5XFm-eF9JS9oSiNhTTJlDzEVkQkEtlPYM4jiEerbI9BEQZAkGmkdKpIzHOr5EIU1AZCCG9n3peU3wKmmFSckhbltZzMM1-7GVcGgkHDoJh9iE8481LysGjT9ntyolhOVpykO0vIRcInaacFEpZv35992O_zf9BDaZsw37k6UF9WL5qk8N5ijiNjS6Nw-jfhtqPdlrO4N7B9cxyh4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFH5i5bBd6GCglXXDB25g1PjZTtgFVailrLSnVupOURw7WzUoiIQLvx47telAbFKvjvOU-D37fc_P_h7AYSLyWGPMKLJYUJ5LRlWRaRpbV14UBZeJdhnd0VgOpvzHTMz8pbAynHYPKcl6pf7rsluHc2p9ig1_mZWJ72CT2xicN2Cze_Fz2AsrMCLWNVUtFEAaCx75yzJvS3npkFYo81VitPY3_SZMw5cuj5n8OXmo1En--IrEcd1f-QhbHoCS7tJitmHDLHag6cEo8VO9tE2h3kNo-wRnfef45o-GDOl4_J1kCzJ3fWrlkuz61-39vPp9QywOJq5mPXHmbUriTqGWpip3YdrvTc4H1BdgoDlKrKiq-eTQYqxMG4lKJeiYTTtoWMS1Y6KPtXR0MIlQkWbaLg9cZDbINEKbyGKZPWgsbhfmMxBkOSaGZ1oUjCujTlFIG2pZ8GLiWEZRC6KghTT37OSuSMZ1uuJVdoOW2kFL60FLsQVHz-_cLbk5_tu7HZSb-nlapugYD7lE7LTgOOhq9fjf0vbX634A7weT0VV6dTkefoEPrFa928ppQ6O6fzBfLbKp1DdvyE9lR-eF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgSIgLb8R45sANAmucpIULQsB4DCYOIMGpapoUJkZBtLvs15N0LQMESIhr6lqt7cZfmvgzwEYgYl-jzygyX1AeS0ZVEmnq21SeJAmXgXY7updteXrDz2_F7Ycq_uK0e7UlOahpcCxNab7zopOdD4VvDc6pzS92KcysfhyFMe7I2WswdnBy1zquZmNELPqrWliA1BfcKwtnvtfyOTkNEeeXTdIi9zSnIKqeenDk5HG7l6vtuP-F0PE_rzUNkyUwJQeDSJqBEZPOwlQJUkk5BWR2qOoDUY3NwX7TJcRO35AWbbf3SJSSjpMpnE6i7v3zayd_eCIWHxPXy564sDcZcadTM5Nn83DTPL4-PKVlYwYao8ScqoJnDi32irSRqFSAjvG0gYZ5XDuGel9LRxMTCOVppu20wUVkF59GaONZjLMAtfQ5NYtAkMUYGB5pkTCujNpFIe0SzIIa4_vS8-rgVR4J45K13DXP6IZDvmVntNAaLSyMFmIdNt_veRlwdvwqvVI5Oiy_3yxEx4TIJWKjDluV34aXf9a29DfxdRi_OmqGF2ft1jJMsMLz7g_PCtTy155ZtYAnV2tlTL8BCQ7waQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Focalize+K-NN%3A+an+imputation+algorithm+for+time+series+datasets&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Almeida%2C+Ana&rft.au=Br%C3%A1s+Susana&rft.au=Sargento+Susana&rft.au=Pinto%2C+Filipe+Cabral&rft.date=2024-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=27&rft.issue=2&rft_id=info:doi/10.1007%2Fs10044-024-01262-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon