Designs and experiments on infrared two-dimensional silicon photonic crystal slab devices

Photonic crystal (PhC) has offered a powerful means to mold the flow of light and manipulate light- matter interaction at subwavelength scale. Silicon has a large refraction index and low loss in infrared wavelengths, which makes it an important optical material. And silicon has been widely used for...

Full description

Saved in:
Bibliographic Details
Published inFrontiers of Optoelectronics (Online) Vol. 5; no. 1; pp. 21 - 40
Main Authors GAN, Lin, LI, Zhiyuan
Format Journal Article
LanguageEnglish
Published Heidelberg Higher Education Press 01.03.2012
SP Higher Education Press
Subjects
Online AccessGet full text
ISSN1674-4128
2095-2759
1674-4594
2095-2767
DOI10.1007/s12200-012-0192-y

Cover

Abstract Photonic crystal (PhC) has offered a powerful means to mold the flow of light and manipulate light- matter interaction at subwavelength scale. Silicon has a large refraction index and low loss in infrared wavelengths, which makes it an important optical material. And silicon has been widely used for integrated photonics applications. In this paper, we have reviewed some recent theoretical and experimental works in our group on infrared two- dimensional (2D) air-bridged silicon PhC slab devices that are based on both band gap and band structure engineering. We have designed, fabricated, and characterized a series of PhC waveguides with novel geometries, PhC high-quality (high-Q) cavity, and channel drop filters utilizing resonant coupling between waveguide and cavity. These devices are aimed to construct a more flexible network of transport channel for infrared light at micrometer/nanometer scale. We have also explored the remarkable dispersion proper- ties of PhCs by engineering the band structures to achieve negative refraction, self-collimation, superprism, and other anomalous dispersion behaviors of infrared light beam. Furthermore, we have designed and fabricated a PhC structure with negative refraction effect and used scanning near-field optical microscopy to observe the negative refraction beam. Finally, we have designed and realized a PhC structure that exhibits a self-collimation effect in a wide angle range and with a large bandwidth. Our works presented in this review show that PhCs have a strong power of controlling propagation of light at micrometer/ nanometer scale and possess a great potential of applications in integrated photonic circuits.
AbstractList Photonic crystal (PhC) has offered a powerful means to mold the flow of light and manipulate light-matter interaction at subwavelength scale. Silicon has a large refraction index and low loss in infrared wavelengths, which makes it an important optical material. And silicon has been widely used for integrated photonics applications. In this paper, we have reviewed some recent theoretical and experimental works in our group on infrared two-dimensional (2D) air-bridged silicon PhC slab devices that are based on both band gap and band structure engineering. We have designed, fabricated, and characterized a series of PhC waveguides with novel geometries, PhC high-quality (high- Q) cavity, and channel drop filters utilizing resonant coupling between waveguide and cavity. These devices are aimed to construct a more flexible network of transport channel for infrared light at micrometer/nanometer scale. We have also explored the remarkable dispersion properties of PhCs by engineering the band structures to achieve negative refraction, self-collimation, superprism, and other anomalous dispersion behaviors of infrared light beam. Furthermore, we have designed and fabricated a PhC structure with negative refraction effect and used scanning near-field optical microscopy to observe the negative refraction beam. Finally, we have designed and realized a PhC structure that exhibits a self-collimation effect in a wide angle range and with a large bandwidth. Our works presented in this review show that PhCs have a strong power of controlling propagation of light at micrometer/nanometer scale and possess a great potential of applications in integrated photonic circuits.
Photonic crystal (PhC) has offered a powerful means to mold the flow of light and manipulate light- matter interaction at subwavelength scale. Silicon has a large refraction index and low loss in infrared wavelengths, which makes it an important optical material. And silicon has been widely used for integrated photonics applications. In this paper, we have reviewed some recent theoretical and experimental works in our group on infrared two- dimensional (2D) air-bridged silicon PhC slab devices that are based on both band gap and band structure engineering. We have designed, fabricated, and characterized a series of PhC waveguides with novel geometries, PhC high-quality (high-Q) cavity, and channel drop filters utilizing resonant coupling between waveguide and cavity. These devices are aimed to construct a more flexible network of transport channel for infrared light at micrometer/nanometer scale. We have also explored the remarkable dispersion proper- ties of PhCs by engineering the band structures to achieve negative refraction, self-collimation, superprism, and other anomalous dispersion behaviors of infrared light beam. Furthermore, we have designed and fabricated a PhC structure with negative refraction effect and used scanning near-field optical microscopy to observe the negative refraction beam. Finally, we have designed and realized a PhC structure that exhibits a self-collimation effect in a wide angle range and with a large bandwidth. Our works presented in this review show that PhCs have a strong power of controlling propagation of light at micrometer/ nanometer scale and possess a great potential of applications in integrated photonic circuits.
Author Lin GAN Zhiyuan LI
AuthorAffiliation Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Author_xml – sequence: 1
  givenname: Lin
  surname: GAN
  fullname: GAN, Lin
  organization: Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 2
  givenname: Zhiyuan
  surname: LI
  fullname: LI, Zhiyuan
  email: lizy@aphy.iphy.ac.cn
  organization: Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
BookMark eNp9kMtOwzAQRS0EEqX0A9iFDwjYcR7OEpWnVIkNLFhZrjNJXAW7eMIjf49DCgsWtTTyaGaOfeeekEPrLBByxugFo7S4RJYklMaUJSHKJB4OyIzlRRqnWZke_uYsEcdkgbih4XCWCZ7PyMs1oGksRspWEXxtwZtXsD1GzkbG1l55qKL-08XVWEfjrOoiNJ3RYWDbut5ZoyPtB-zHRqfWUQUfRgOekqNadQiL3T0nz7c3T8v7ePV497C8WsWa57yPVc1LUYiCauBM1FwLyChbKxFEi5TTIpSqgpX5T4uu86yu85AleZWUFRR8TorpXe0doodaatOrPijtvTKdZFSOJsnJJBlMkqNJcggk-0duw_bKD3uZZGIwzNoGvNy4dx9Mwb2QmKDWNC0ER7ceEGXtg0YDfj96vtPYOtu8hS__RKYsY2XKU_4NiXqbBA
CitedBy_id crossref_primary_10_1007_s11082_016_0478_1
crossref_primary_10_1088_1367_2630_16_5_053026
crossref_primary_10_1103_PhysRevB_86_201106
crossref_primary_10_1080_09500340_2013_787464
Cites_doi 10.1103/PhysRevB.67.165104
10.1038/nature07247
10.1103/PhysRevLett.65.3152
10.1063/1.1621736
10.1103/PhysRevB.58.3721
10.1364/OE.8.000173
10.1103/PhysRevB.60.5751
10.1126/science.284.5421.1819
10.1063/1.1587011
10.1109/50.802991
10.1103/PhysRevE.52.1135
10.1364/OE.18.023994
10.1364/OPEX.12.004608
10.1103/PhysRevE.75.056606
10.1038/nature03119
10.1063/1.3052687
10.1103/PhysRevB.77.125138
10.1080/09500348714551531
10.1103/PhysRevLett.81.2574
10.1103/PhysRevB.58.9587
10.1063/1.1760596
10.1364/OPEX.13.004202
10.1038/nature02063
10.1364/OE.14.010014
10.1126/science.1157566
10.1088/0256-307X/27/8/084203
10.1364/OE.17.009962
10.1103/PhysRevB.68.245110
10.1364/AO.48.004899
10.1103/PhysRevB.77.195127
10.1080/09500349414550281
10.1016/j.cpc.2009.11.008
10.1063/1.2769263
10.1364/OE.11.002927
10.1063/1.2048823
10.1364/OE.16.021483
10.1103/PhysRevB.65.201104
10.1103/PhysRevB.51.16635
10.1038/nature05586
10.1103/PhysRevLett.58.2059
10.1103/PhysRevLett.93.073902
10.1063/1.123502
10.1364/JOSAA.25.002177
10.1103/PhysRevE.67.046607
10.1103/PhysRevB.68.155101
10.1364/OE.18.006437
10.1017/CBO9781139644181
ContentType Journal Article
Copyright Copyright reserved, 2014, Higher Education Press and Springer-Verlag Berlin Heidelberg
Higher Education Press and Springer-Verlag Berlin Heidelberg 2012
Copyright_xml – notice: Copyright reserved, 2014, Higher Education Press and Springer-Verlag Berlin Heidelberg
– notice: Higher Education Press and Springer-Verlag Berlin Heidelberg 2012
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
DOI 10.1007/s12200-012-0192-y
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
DocumentTitleAlternate Designs and experiments on infrared two-dimensional silicon photonic crystal slab devices
EISSN 1674-4594
2095-2767
EndPage 40
ExternalDocumentID 10_1007_s12200_012_0192_y
10.1007/s12200-012-0192-y
41519434
GroupedDBID -5B
-5G
-BR
-Y2
1-T
29H
2RA
2VQ
2~H
4.4
5GY
6NX
8UJ
92L
AABHQ
AARTL
AAWCG
ABFTV
ABJNI
ABJOX
ABKCH
ABTMW
ACGFS
ACOMO
ADHHG
ADURQ
ADYFF
AEGAL
AEGNC
AEKMD
AEOHA
AFGCZ
AGDGC
AGQMX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMYQR
BA0
BGNMA
CAG
COF
CQIGP
EBS
EJD
GQ6
HF~
HG6
HMJXF
HRMNR
IJ-
IXC
JBSCW
M4Y
NQJWS
NU0
P9P
QOS
RLLFE
ROL
RSV
S1Z
S27
S3B
SDH
SEG
SNE
SOJ
T13
U2A
UG4
VC2
W92
WK8
~A9
~WA
-EM
06D
0VY
29~
2JY
2KG
30V
408
5VS
96X
AAFGU
AAFWJ
AAIAL
AAJKR
AAKKN
AARHV
AATLR
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
AAYZJ
ABDZT
ABECU
ABFGW
ABHQN
ABKAS
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABWNU
ABXPI
ACACY
ACBMV
ACBRV
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACTTH
ACULB
ACVWB
ACWMK
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADRFC
ADZKW
AEBTG
AEFTE
AEJHL
AEJRE
AEPYU
AESTI
AETLH
AEVTX
AEXYK
AFLOW
AFNRJ
AFPKN
AFQWF
AFWTZ
AFZKB
AGAYW
AGGBP
AGJBK
AGWZB
AGYKE
AHBXF
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
ALFXC
ALWAN
ANMIH
AOCGG
AUKKA
AXYYD
B-.
BDATZ
C24
C6C
CSCUP
DNIVK
EBLON
EIOEI
ESBYG
FERAY
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GROUPED_DOAJ
HZ~
I0C
IKXTQ
IXD
J-C
JZLTJ
KOV
MA-
O9J
P4S
R89
RPM
S..
S16
SAP
SCL
SHX
SISQX
SNPRN
SNX
SOHCF
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
W48
XT3
YLTOR
Z7R
Z7X
Z83
Z88
-SI
-S~
0R~
AAXDM
AAYXX
AAYZH
ABEEZ
ABFSG
ACSTC
ADMLS
AEZWR
AFBBN
AFGXO
AFHIU
AHWEU
AIXLP
CAJEI
CITATION
Q--
U1G
U5S
ZMTXR
ID FETCH-LOGICAL-c363t-af3987870ce318f3c8e501ba816784307f3cd7196f3c8e0b65ff6c8e26d29de73
IEDL.DBID U2A
ISSN 1674-4128
2095-2759
IngestDate Tue Jul 01 01:20:49 EDT 2025
Thu Apr 24 23:12:07 EDT 2025
Fri Feb 21 02:37:26 EST 2025
Tue Feb 27 04:43:01 EST 2024
Wed Feb 14 10:47:00 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords photonic crystal (PhC)
negative refraction
channel-drop filter
highquality (high-Q) cavity
waveguide
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-af3987870ce318f3c8e501ba816784307f3cd7196f3c8e0b65ff6c8e26d29de73
Notes photonic crystal (PhC), waveguide, high-quality (high-Q) cavity, channel-drop filter, negativerefraction
Photonic crystal (PhC) has offered a powerful means to mold the flow of light and manipulate light- matter interaction at subwavelength scale. Silicon has a large refraction index and low loss in infrared wavelengths, which makes it an important optical material. And silicon has been widely used for integrated photonics applications. In this paper, we have reviewed some recent theoretical and experimental works in our group on infrared two- dimensional (2D) air-bridged silicon PhC slab devices that are based on both band gap and band structure engineering. We have designed, fabricated, and characterized a series of PhC waveguides with novel geometries, PhC high-quality (high-Q) cavity, and channel drop filters utilizing resonant coupling between waveguide and cavity. These devices are aimed to construct a more flexible network of transport channel for infrared light at micrometer/nanometer scale. We have also explored the remarkable dispersion proper- ties of PhCs by engineering the band structures to achieve negative refraction, self-collimation, superprism, and other anomalous dispersion behaviors of infrared light beam. Furthermore, we have designed and fabricated a PhC structure with negative refraction effect and used scanning near-field optical microscopy to observe the negative refraction beam. Finally, we have designed and realized a PhC structure that exhibits a self-collimation effect in a wide angle range and with a large bandwidth. Our works presented in this review show that PhCs have a strong power of controlling propagation of light at micrometer/ nanometer scale and possess a great potential of applications in integrated photonic circuits.
11-5738/TN
photonic crystal (PhC)
high-quality (high- Q) cavity
Document received on :2011-09-13
negative refraction
channel-drop filter
Document accepted on :2011-11-08
waveguide
OpenAccessLink https://journal.hep.com.cn/foe/EN/10.1007/s12200-012-0192-y
PageCount 20
ParticipantIDs crossref_citationtrail_10_1007_s12200_012_0192_y
crossref_primary_10_1007_s12200_012_0192_y
springer_journals_10_1007_s12200_012_0192_y
higheredpress_frontiers_10_1007_s12200_012_0192_y
chongqing_primary_41519434
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-03-01
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationSubtitle Selected Publications from Chinese Universities
PublicationTitle Frontiers of Optoelectronics (Online)
PublicationTitleAbbrev Front Optoelec
Front. Optoelectron
PublicationTitleAlternate Frontiers of Optoelectronics
PublicationYear 2012
Publisher Higher Education Press
SP Higher Education Press
Publisher_xml – name: Higher Education Press
– name: SP Higher Education Press
References Valentine, Zhang, Zentgraf, Ulin-Avila, Genov, Bartal, Zhang (CR3) 2008; 455
Yao, Liu, Liu, Wang, Sun, Bartal, Stacy, Zhang (CR4) 2008; 321
Yu, Fan (CR10) 2003; 83
Luo, Johnson, Joannopoulos, Pendry (CR8) 2002; 65
Nguyen, Dundar, van der Heijden, van der Drift, Salemink, Rogge, Caro (CR47) 2010; 18
Born, Wolf, Bhatia (CR14) 1999
Nicorovici, McPhedran, Botten (CR22) 1995; 52
Liu, Feng, Tian, Ren, Tao, Li, Cheng, Zhang, Luo (CR44) 2007; 102
Ho, Chan, Soukoulis (CR15) 1990; 65
Chan, Yu, Ho (CR20) 1995; 51
McNab, Moll, Vlasov (CR7) 2003; 11
Li, Ho (CR31) 2003; 67
Li, Gu, Yang (CR17) 1998; 81
Yoshie, Scherer, Hendrickson, Khitrova, Gibbs, Rupper, Ell, Shchekin, Deppe (CR41) 2004; 432
Che, Li (CR29) 2008; 77
Li, Lin (CR24) 2003; 67
Li, Ho (CR27) 2003; 68
Oskooi, Roundy, Ibanescu, Bermel, Joannopoulos, Johnson (CR34) 2010; 181
Ren, Tian, Feng, Tao, Liu, Ren, Li, Cheng, Zhang, Yang (CR43) 2006; 14
Li, Wang, Gu (CR18) 1998; 58
Liu, Liu, Zhou, Zhang, Li (CR37) 2008; 16
Hennessy, Badolato, Winger, Gerace, Atatüre, Gulde, Fält, Hu, Imamoğlu (CR40) 2007; 445
Johnson, Fan, Villeneuve, Joannopoulos, Kolodziejski (CR5) 1999; 60
Kosaka, Kawashima, Tomita, Notomi, Tamamura, Sato, Kawakami (CR11) 1999; 17
Lin, Li, Ho (CR26) 2003; 94
Tao, Ren, Liu, Wang, Zhang, Li (CR39) 2010; 18
Gan, Liu, Li, Zhang, Zhang, Li (CR46) 2009; 17
Baba, Matsumoto, Echizen (CR12) 2004; 12
Johnson, Joannopoulos (CR16) 2001; 8
Song, Nagashima, Asano, Noda (CR36) 2009; 48
Li, Lin (CR25) 2003; 68
Li, Li, Zhang (CR32) 2007; 75
Yablonovitch (CR1) 1987; 58
Painter, Lee, Scherer, Yariv, O’Brien, Dapkus, Kim (CR6) 1999; 284
Taflove (CR21) 1995
Li, Lin, Ho (CR28) 2004; 84
Pendry (CR19) 1994; 41
Che, Li (CR30) 2008; 25
Kosaka, Kawashima, Tomita, Notomi, Tamamura, Sato, Kawakami (CR9) 1999; 74
Li, Zhang (CR23) 1998; 58
Zengerle (CR49) 1987; 34
Berrier, Mulot, Swillo, Qiu, Thylén, Talneau, Anand (CR13) 2004; 93
White, de Sterke, McPhedran, Botten (CR48) 2005; 87
Shinya, Mitsugi, Kuramochi, Notomi (CR35) 2005; 13
Liu, Liu, Feng, Ren, Yang, Zhang, Li (CR45) 2008; 93
Li, Li, Zhang (CR33) 2008; 77
Zhou, Liu, Li (CR38) 2010; 27
Akahane, Asano, Song, Noda (CR42) 2003; 425
Joannopoulos, Johnson, Winn, Meade (CR2) 2008
S. J. McNab (192_CR7) 2003; 11
T. Baba (192_CR12) 2004; 12
Z. Y. Li (192_CR31) 2003; 67
A. F. Oskooi (192_CR34) 2010; 181
H. H. Tao (192_CR39) 2010; 18
H. Kosaka (192_CR11) 1999; 17
J. B. Pendry (192_CR19) 1994; 41
C. Z. Zhou (192_CR38) 2010; 27
J. Valentine (192_CR3) 2008; 455
J. Yao (192_CR4) 2008; 321
C. Ren (192_CR43) 2006; 14
O. Painter (192_CR6) 1999; 284
Z. Y. Li (192_CR28) 2004; 84
M. Born (192_CR14) 1999
H. Kosaka (192_CR9) 1999; 74
L. M. Li (192_CR23) 1998; 58
Y. Akahane (192_CR42) 2003; 425
Z. Y. Li (192_CR27) 2003; 68
K. Hennessy (192_CR40) 2007; 445
T. P. White (192_CR48) 2005; 87
Z. Y. Li (192_CR24) 2003; 67
M. Che (192_CR30) 2008; 25
X. F. Yu (192_CR10) 2003; 83
S. G. Johnson (192_CR5) 1999; 60
A. Berrier (192_CR13) 2004; 93
H.M. Nguyen (192_CR47) 2010; 18
E. Yablonovitch (192_CR1) 1987; 58
Y. Z. Liu (192_CR45) 2008; 93
Z. Y. Li (192_CR25) 2003; 68
T. Yoshie (192_CR41) 2004; 432
C. T. Chan (192_CR20) 1995; 51
Z. Y. Li (192_CR18) 1998; 58
L. Gan (192_CR46) 2009; 17
J. D. Joannopoulos (192_CR2) 2008
A. Shinya (192_CR35) 2005; 13
Z. Y. Li (192_CR17) 1998; 81
J. J. Li (192_CR32) 2007; 75
R. Zengerle (192_CR49) 1987; 34
S. Johnson (192_CR16) 2001; 8
L. L. Lin (192_CR26) 2003; 94
K. M. Ho (192_CR15) 1990; 65
A. Taflove (192_CR21) 1995
M. Che (192_CR29) 2008; 77
B. S. Song (192_CR36) 2009; 48
Y. Z. Liu (192_CR44) 2007; 102
N. A. Nicorovici (192_CR22) 1995; 52
C. Y. Luo (192_CR8) 2002; 65
Y. Z. Liu (192_CR37) 2008; 16
Z. Y. Li (192_CR33) 2008; 77
References_xml – volume: 67
  start-page: 165104
  issue: 16
  year: 2003
  ident: CR31
  article-title: Analytic modal solution to light propagation through layer-by-layer metallic photonic crystals
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.67.165104
– volume: 455
  start-page: 376
  issue: 7211
  year: 2008
  end-page: 379
  ident: CR3
  article-title: Three-dimensional optical metamaterial with a negative refractive index
  publication-title: Nature
  doi: 10.1038/nature07247
– volume: 65
  start-page: 3152
  issue: 25
  year: 1990
  end-page: 3155
  ident: CR15
  article-title: Existence of a photonic gap in periodic dielectric structures
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.65.3152
– volume: 83
  start-page: 3251
  issue: 16
  year: 2003
  end-page: 3253
  ident: CR10
  article-title: Bends and splitters for self-collimated beams in photonic crystals
  publication-title: Applied Physics Letters
  doi: 10.1063/1.1621736
– volume: 58
  start-page: 3721
  issue: 7
  year: 1998
  end-page: 3729
  ident: CR18
  article-title: Creation of partial band gaps in anisotropic photonic-band-gap structures
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.58.3721
– volume: 8
  start-page: 173
  issue: 3
  year: 2001
  end-page: 190
  ident: CR16
  article-title: Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis
  publication-title: Optics Express
  doi: 10.1364/OE.8.000173
– volume: 60
  start-page: 5751
  issue: 8
  year: 1999
  end-page: 5758
  ident: CR5
  article-title: Guided modes in photonic crystal slabs
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.60.5751
– volume: 284
  start-page: 1819
  issue: 5421
  year: 1999
  end-page: 1821
  ident: CR6
  article-title: Two-dimensional photonic band-gap defect mode laser
  publication-title: Science
  doi: 10.1126/science.284.5421.1819
– year: 1999
  ident: CR14
  publication-title: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light
– volume: 94
  start-page: 811
  issue: 2
  year: 2003
  end-page: 821
  ident: CR26
  article-title: Lattice symmetry applied in transfermatrix methods for photonic crystals
  publication-title: Journal of Applied Physics
  doi: 10.1063/1.1587011
– volume: 17
  start-page: 2032
  issue: 11
  year: 1999
  end-page: 2038
  ident: CR11
  article-title: Superprism phenomena in photonic crystals: toward microscale lightwave circuits
  publication-title: Journal of Lightwave Technology
  doi: 10.1109/50.802991
– volume: 52
  start-page: 1135
  issue: 1
  year: 1995
  end-page: 1145
  ident: CR22
  article-title: Photonic band gaps for arrays of perfectly conducting cylinders
  publication-title: Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
  doi: 10.1103/PhysRevE.52.1135
– volume: 18
  start-page: 23994
  issue: 23
  year: 2010
  end-page: 24002
  ident: CR39
  article-title: Near-field observation of anomalous optical propagation in photonic crystal coupled-cavity waveguides
  publication-title: Optics Express
  doi: 10.1364/OE.18.023994
– volume: 12
  start-page: 4608
  issue: 19
  year: 2004
  end-page: 4613
  ident: CR12
  article-title: Finite difference time domain study of high efficiency photonic crystal superprisms
  publication-title: Optics Express
  doi: 10.1364/OPEX.12.004608
– volume: 75
  start-page: 056606
  issue: 5
  year: 2007
  ident: CR32
  article-title: Second harmonic generation in one-dimensional nonlinear photonic crystals solved by the transfer matrix method
  publication-title: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics
  doi: 10.1103/PhysRevE.75.056606
– volume: 432
  start-page: 200
  issue: 7014
  year: 2004
  end-page: 203
  ident: CR41
  article-title: Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity
  publication-title: Nature
  doi: 10.1038/nature03119
– volume: 93
  start-page: 241107
  issue: 24
  year: 2008
  ident: CR45
  article-title: Multichannel filters via Γ-M and Γ-K waveguide coupling in two-dimensional triangular-lattice photonic crystal slabs
  publication-title: Applied Physics Letters
  doi: 10.1063/1.3052687
– volume: 77
  start-page: 125138
  issue: 12
  year: 2008
  ident: CR29
  article-title: Analysis of photonic crystal waveguide bends by a plane-wave transfer-matrix method
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.77.125138
– volume: 34
  start-page: 1589
  issue: 12
  year: 1987
  end-page: 1617
  ident: CR49
  article-title: Light-propagation in singly and doubly periodic planar wave-guides
  publication-title: Journal of Modern Optics
  doi: 10.1080/09500348714551531
– volume: 81
  start-page: 2574
  issue: 12
  year: 1998
  end-page: 2577
  ident: CR17
  article-title: Large absolute band gap in 2D anisotropic photonic crystals
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.81.2574
– volume: 58
  start-page: 9587
  issue: 15
  year: 1998
  end-page: 9590
  ident: CR23
  article-title: Muitiple-scattering approach to finite-sized photonic band-gap materials
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.58.9587
– volume: 84
  start-page: 4699
  issue: 23
  year: 2004
  end-page: 4701
  ident: CR28
  article-title: Light coupling with multimode photonic crystal waveguides
  publication-title: Applied Physics Letters
  doi: 10.1063/1.1760596
– volume: 13
  start-page: 4202
  issue: 11
  year: 2005
  end-page: 4209
  ident: CR35
  article-title: Ultrasmall multichannel resonant-tunneling filter using mode gap of width-tuned photonic-crystal waveguide
  publication-title: Optics Express
  doi: 10.1364/OPEX.13.004202
– volume: 425
  start-page: 944
  issue: 6961
  year: 2003
  end-page: 947
  ident: CR42
  article-title: High- photonic nanocavity in a two-dimensional photonic crystal
  publication-title: Nature
  doi: 10.1038/nature02063
– volume: 14
  start-page: 10014
  issue: 21
  year: 2006
  end-page: 10020
  ident: CR43
  article-title: High resolution three-port filter in two dimensional photonic crystal slabs
  publication-title: Optics Express
  doi: 10.1364/OE.14.010014
– volume: 321
  start-page: 930
  issue: 5891
  year: 2008
  ident: CR4
  article-title: Optical negative refraction in bulk metamaterials of nanowires
  publication-title: Science
  doi: 10.1126/science.1157566
– volume: 27
  start-page: 084203
  issue: 8
  year: 2010
  ident: CR38
  article-title: Waveguide bend of 90° in two-dimensional triangular lattice silicon photonic crystal slabs
  publication-title: Chinese Physics Letters
  doi: 10.1088/0256-307X/27/8/084203
– volume: 17
  start-page: 9962
  issue: 12
  year: 2009
  end-page: 9970
  ident: CR46
  article-title: Ray trace visualization of negative refraction of light in two-dimensional air-bridged silicon photonic crystal slabs at 1.55 μm
  publication-title: Optics Express
  doi: 10.1364/OE.17.009962
– volume: 68
  start-page: 245110
  issue: 24
  year: 2003
  ident: CR25
  article-title: Evaluation of lensing in photonic crystal slabs exhibiting negative refraction
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.68.245110
– volume: 48
  start-page: 4899
  issue: 26
  year: 2009
  end-page: 4903
  ident: CR36
  article-title: Resonant-wavelength tuning of a nanocavity by subnanometer control of a two-dimensional silicon-based photonic crystal slab structure
  publication-title: Applied Optics
  doi: 10.1364/AO.48.004899
– volume: 77
  start-page: 195127
  issue: 19
  year: 2008
  ident: CR33
  article-title: Nonlinear frequency conversion in two-dimensional nonlinear photonic crystals solved by a plane-wave-based transfer-matrix method
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.77.195127
– volume: 41
  start-page: 209
  issue: 2
  year: 1994
  end-page: 229
  ident: CR19
  article-title: Photonic Band Structures
  publication-title: Journal of Modern Optics
  doi: 10.1080/09500349414550281
– volume: 181
  start-page: 687
  issue: 3
  year: 2010
  end-page: 702
  ident: CR34
  article-title: MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method
  publication-title: Computer Physics Communications
  doi: 10.1016/j.cpc.2009.11.008
– volume: 102
  start-page: 043102
  issue: 4
  year: 2007
  ident: CR44
  article-title: Multichannel filters with shape designing in two-dimensional photonic crystal slabs
  publication-title: Journal of Applied Physics
  doi: 10.1063/1.2769263
– volume: 11
  start-page: 2927
  issue: 22
  year: 2003
  end-page: 2939
  ident: CR7
  article-title: Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides
  publication-title: Optics Express
  doi: 10.1364/OE.11.002927
– volume: 87
  start-page: 111107
  issue: 11
  year: 2005
  ident: CR48
  article-title: Highly efficient wide-angle transmission into uniform rod-type photonic crystals
  publication-title: Applied Physics Letters
  doi: 10.1063/1.2048823
– volume: 16
  start-page: 21483
  issue: 26
  year: 2008
  end-page: 21491
  ident: CR37
  article-title: Gamma-Mu waveguides in two-dimensional triangular-lattice photonic crystal slabs
  publication-title: Optics Express
  doi: 10.1364/OE.16.021483
– volume: 65
  start-page: 201104
  issue: 20
  year: 2002
  ident: CR8
  article-title: All-angle negative refraction without negative effective index
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.65.201104
– volume: 51
  start-page: 16635
  issue: 23
  year: 1995
  end-page: 16642
  ident: CR20
  article-title: Order-N spectral method for electromagnetic waves
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.51.16635
– year: 1995
  ident: CR21
  publication-title: Computational Electrodynamics: the Finite-Difference Time-Domain Method
– volume: 445
  start-page: 896
  issue: 7130
  year: 2007
  end-page: 899
  ident: CR40
  article-title: Quantum nature of a strongly coupled single quantum dot-cavity system
  publication-title: Nature
  doi: 10.1038/nature05586
– volume: 58
  start-page: 2059
  issue: 20
  year: 1987
  end-page: 2062
  ident: CR1
  article-title: Inhibited spontaneous emission in solid-state physics and electronics
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.58.2059
– volume: 93
  start-page: 073902
  issue: 7
  year: 2004
  ident: CR13
  article-title: Negative refraction at infrared wavelengths in a two-dimensional photonic crystal
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.93.073902
– year: 2008
  ident: CR2
  publication-title: Photonic Crystals: Molding the Flow of Light
– volume: 74
  start-page: 1212
  issue: 9
  year: 1999
  end-page: 1214
  ident: CR9
  article-title: Self-collimating phenomena in photonic crystals
  publication-title: Applied Physics Letters
  doi: 10.1063/1.123502
– volume: 25
  start-page: 2177
  issue: 9
  year: 2008
  end-page: 2184
  ident: CR30
  article-title: Analysis of surface modes in photonic crystals by a plane-wave transfer-matrix method
  publication-title: Journal of the Optical Society of America a-Optics Image Science and Vision
  doi: 10.1364/JOSAA.25.002177
– volume: 67
  start-page: 046607
  issue: 4
  year: 2003
  ident: CR24
  article-title: Photonic band structures solved by a plane-wave-based transfer-matrix method
  publication-title: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics
  doi: 10.1103/PhysRevE.67.046607
– volume: 68
  start-page: 155101
  issue: 15
  year: 2003
  ident: CR27
  article-title: Light propagation in semi-infinite photonic crystals and related waveguide structures
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.68.155101
– volume: 18
  start-page: 6437
  issue: 7
  year: 2010
  end-page: 6446
  ident: CR47
  article-title: Compact Mach-Zehnder interferometer based on self-collimation of light in a silicon photonic crystal
  publication-title: Optics Express
  doi: 10.1364/OE.18.006437
– volume: 87
  start-page: 111107
  issue: 11
  year: 2005
  ident: 192_CR48
  publication-title: Applied Physics Letters
  doi: 10.1063/1.2048823
– volume: 51
  start-page: 16635
  issue: 23
  year: 1995
  ident: 192_CR20
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.51.16635
– volume: 93
  start-page: 073902
  issue: 7
  year: 2004
  ident: 192_CR13
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.93.073902
– volume: 41
  start-page: 209
  issue: 2
  year: 1994
  ident: 192_CR19
  publication-title: Journal of Modern Optics
  doi: 10.1080/09500349414550281
– volume: 181
  start-page: 687
  issue: 3
  year: 2010
  ident: 192_CR34
  publication-title: Computer Physics Communications
  doi: 10.1016/j.cpc.2009.11.008
– volume: 77
  start-page: 195127
  issue: 19
  year: 2008
  ident: 192_CR33
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.77.195127
– volume: 74
  start-page: 1212
  issue: 9
  year: 1999
  ident: 192_CR9
  publication-title: Applied Physics Letters
  doi: 10.1063/1.123502
– volume: 94
  start-page: 811
  issue: 2
  year: 2003
  ident: 192_CR26
  publication-title: Journal of Applied Physics
  doi: 10.1063/1.1587011
– volume: 432
  start-page: 200
  issue: 7014
  year: 2004
  ident: 192_CR41
  publication-title: Nature
  doi: 10.1038/nature03119
– volume-title: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light
  year: 1999
  ident: 192_CR14
  doi: 10.1017/CBO9781139644181
– volume: 13
  start-page: 4202
  issue: 11
  year: 2005
  ident: 192_CR35
  publication-title: Optics Express
  doi: 10.1364/OPEX.13.004202
– volume: 14
  start-page: 10014
  issue: 21
  year: 2006
  ident: 192_CR43
  publication-title: Optics Express
  doi: 10.1364/OE.14.010014
– volume: 84
  start-page: 4699
  issue: 23
  year: 2004
  ident: 192_CR28
  publication-title: Applied Physics Letters
  doi: 10.1063/1.1760596
– volume: 67
  start-page: 046607
  issue: 4
  year: 2003
  ident: 192_CR24
  publication-title: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics
  doi: 10.1103/PhysRevE.67.046607
– volume: 65
  start-page: 201104
  issue: 20
  year: 2002
  ident: 192_CR8
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.65.201104
– volume: 68
  start-page: 155101
  issue: 15
  year: 2003
  ident: 192_CR27
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.68.155101
– volume: 48
  start-page: 4899
  issue: 26
  year: 2009
  ident: 192_CR36
  publication-title: Applied Optics
  doi: 10.1364/AO.48.004899
– volume: 284
  start-page: 1819
  issue: 5421
  year: 1999
  ident: 192_CR6
  publication-title: Science
  doi: 10.1126/science.284.5421.1819
– volume: 75
  start-page: 056606
  issue: 5
  year: 2007
  ident: 192_CR32
  publication-title: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics
  doi: 10.1103/PhysRevE.75.056606
– volume: 67
  start-page: 165104
  issue: 16
  year: 2003
  ident: 192_CR31
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.67.165104
– volume: 65
  start-page: 3152
  issue: 25
  year: 1990
  ident: 192_CR15
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.65.3152
– volume: 18
  start-page: 6437
  issue: 7
  year: 2010
  ident: 192_CR47
  publication-title: Optics Express
  doi: 10.1364/OE.18.006437
– volume: 58
  start-page: 3721
  issue: 7
  year: 1998
  ident: 192_CR18
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.58.3721
– volume: 12
  start-page: 4608
  issue: 19
  year: 2004
  ident: 192_CR12
  publication-title: Optics Express
  doi: 10.1364/OPEX.12.004608
– volume-title: Computational Electrodynamics: the Finite-Difference Time-Domain Method
  year: 1995
  ident: 192_CR21
– volume: 25
  start-page: 2177
  issue: 9
  year: 2008
  ident: 192_CR30
  publication-title: Journal of the Optical Society of America a-Optics Image Science and Vision
  doi: 10.1364/JOSAA.25.002177
– volume: 34
  start-page: 1589
  issue: 12
  year: 1987
  ident: 192_CR49
  publication-title: Journal of Modern Optics
  doi: 10.1080/09500348714551531
– volume-title: Photonic Crystals: Molding the Flow of Light
  year: 2008
  ident: 192_CR2
– volume: 17
  start-page: 2032
  issue: 11
  year: 1999
  ident: 192_CR11
  publication-title: Journal of Lightwave Technology
  doi: 10.1109/50.802991
– volume: 81
  start-page: 2574
  issue: 12
  year: 1998
  ident: 192_CR17
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.81.2574
– volume: 68
  start-page: 245110
  issue: 24
  year: 2003
  ident: 192_CR25
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.68.245110
– volume: 425
  start-page: 944
  issue: 6961
  year: 2003
  ident: 192_CR42
  publication-title: Nature
  doi: 10.1038/nature02063
– volume: 445
  start-page: 896
  issue: 7130
  year: 2007
  ident: 192_CR40
  publication-title: Nature
  doi: 10.1038/nature05586
– volume: 8
  start-page: 173
  issue: 3
  year: 2001
  ident: 192_CR16
  publication-title: Optics Express
  doi: 10.1364/OE.8.000173
– volume: 17
  start-page: 9962
  issue: 12
  year: 2009
  ident: 192_CR46
  publication-title: Optics Express
  doi: 10.1364/OE.17.009962
– volume: 60
  start-page: 5751
  issue: 8
  year: 1999
  ident: 192_CR5
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.60.5751
– volume: 11
  start-page: 2927
  issue: 22
  year: 2003
  ident: 192_CR7
  publication-title: Optics Express
  doi: 10.1364/OE.11.002927
– volume: 77
  start-page: 125138
  issue: 12
  year: 2008
  ident: 192_CR29
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.77.125138
– volume: 102
  start-page: 043102
  issue: 4
  year: 2007
  ident: 192_CR44
  publication-title: Journal of Applied Physics
  doi: 10.1063/1.2769263
– volume: 27
  start-page: 084203
  issue: 8
  year: 2010
  ident: 192_CR38
  publication-title: Chinese Physics Letters
  doi: 10.1088/0256-307X/27/8/084203
– volume: 93
  start-page: 241107
  issue: 24
  year: 2008
  ident: 192_CR45
  publication-title: Applied Physics Letters
  doi: 10.1063/1.3052687
– volume: 18
  start-page: 23994
  issue: 23
  year: 2010
  ident: 192_CR39
  publication-title: Optics Express
  doi: 10.1364/OE.18.023994
– volume: 16
  start-page: 21483
  issue: 26
  year: 2008
  ident: 192_CR37
  publication-title: Optics Express
  doi: 10.1364/OE.16.021483
– volume: 83
  start-page: 3251
  issue: 16
  year: 2003
  ident: 192_CR10
  publication-title: Applied Physics Letters
  doi: 10.1063/1.1621736
– volume: 58
  start-page: 9587
  issue: 15
  year: 1998
  ident: 192_CR23
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.58.9587
– volume: 58
  start-page: 2059
  issue: 20
  year: 1987
  ident: 192_CR1
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.58.2059
– volume: 455
  start-page: 376
  issue: 7211
  year: 2008
  ident: 192_CR3
  publication-title: Nature
  doi: 10.1038/nature07247
– volume: 321
  start-page: 930
  issue: 5891
  year: 2008
  ident: 192_CR4
  publication-title: Science
  doi: 10.1126/science.1157566
– volume: 52
  start-page: 1135
  issue: 1
  year: 1995
  ident: 192_CR22
  publication-title: Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
  doi: 10.1103/PhysRevE.52.1135
SSID ssj0000315836
ssib031263387
ssib044084465
ssj0002710203
ssib013581866
ssib051630257
ssib020093027
ssib058688231
Score 1.8431598
SecondaryResourceType review_article
Snippet Photonic crystal (PhC) has offered a powerful means to mold the flow of light and manipulate light- matter interaction at subwavelength scale. Silicon has a...
Photonic crystal (PhC) has offered a powerful means to mold the flow of light and manipulate light-matter interaction at subwavelength scale. Silicon has a...
SourceID crossref
springer
higheredpress
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 21
SubjectTerms Biomedical Engineering and Bioengineering
channel-drop filter
Electrical Engineering
Engineering
high-quality (high- Q) cavity
negative refraction
photonic crystal (PhC)
Physics
Review Article
waveguide
二维光子晶体
光子晶体波导
实验工作
扫描近场光学
硅板
红外波段
经设计
设备
Title Designs and experiments on infrared two-dimensional silicon photonic crystal slab devices
URI http://lib.cqvip.com/qk/71244X/201201/41519434.html
https://journal.hep.com.cn/foe/EN/10.1007/s12200-012-0192-y
https://link.springer.com/article/10.1007/s12200-012-0192-y
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB5qRbBI1VPxWit58EkJ3CbZbPaxaEsR2icP6lPYTbKeUHbr7Uq5_96Z3ObOohz0bbNJ9kdmJvmSTL4B-CArU1RFrnmNM2uupHK8Ji5CHGobEaTWKsYhu7zSF3P19Tq_Hs9x98nbPW1Jxp56e9hNCDoFHV0JSsFXj-Bxji8ga5yL06REGRF6mS1GodV_2ptLaZkJjdOyTZoiLhNpWErnCFAQBxSbhRoKg2BiqEGBcISLIi_T7uj_voo4GhZd--MX_sG9se7ZIjpuBB8dXP_ZeI3j2fkLOByBKDtda85L2AvtBJ6PoJSNJt9P4OAvxsIJPIkeo65_Bd-_RN-PnlWtZ9s4AT3rWoZauyTHdjbcddzT_TX3B-t_3qDmtex20Q3EycvccoXwFDNQGZkPsdt6DfPzs2-fL_gYp4E7qeXAq0aWhgzf0YJqI50J-SyrK5PhSKhQ8njLF2jqMWtW67xpNF4J7UXpQyHfwH7bteEtMNfMGh0yUyIQVFWB8ytVlblXXhlRZsZN4WjTuvZ2zcdhEYNkRHM3hVlqbutGhnMKtHFjt9zMJC2L0rIkLbuawsdNlfS4HYWzezK0DXFMUMTyXXU-JTnbsXfYUfroQaWP4amIikcece9gf1j-DicIkYb6fTSJP5WW_R4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BEQJU8bFQdcuXD5xAkTa24zjHilIt0PbUlcrJSmyni1Ql7SYI7b_vjDfepQKtxC127CjJjO1ne_wewAdR6rzMM5VUOLNOpJA2qYiLEIfamnuhlAw6ZKdnajqT3y6yi-Ecdxej3eOWZOipN4fdOKdT0CGUoODJ8j48QCygSbZgxg-jE6VE6KU3GIVW_2lvLqZFyhVOy9ZpUlwm0rCYzhCgIA7I1ws1JIOgg9QgRziS8Dwr4u7ov96KOBrmbXN5g19wZ6zbnYfADe9CgOtfG69hPDt-Dk8HIMoOV57zAu75ZgTPBlDKhibfjeDJH4yFI3gYIkZt9xJ-HIXYj46VjWMbnYCOtQ1Dr11QYDvrf7eJo_wV9wfrfl6h5zXset72xMnL7GKJ8BRvoDMy50O39Qpmx1_OP0-TQachsUKJPilrUWhq-JYWVGthtc8maVXqFEdCiZbHLJdjUw-3JpXK6lrhFVeOF87nYg92mrbx-8BsPamVT3WBQFCWOc6vZFlkTjqpeZFqO4aD9d811ys-DoMYJCWauzFM4u82dmA4J6GNK7PhZiZrGbSWIWuZ5Rg-rqvEx20pnN6xoamJY4IUy7fV-RTtbIbeYUvpg_8q_R4eTc9PT8zJ17Pvr-ExD05I0XFvYKdf_PJvES711bvQPG4BsiYAIA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZgCARCXMrQOm5-4Alkrb7EcR4nRjVuEw9UGk9WYsd00pSUJmjqv-ccN26ZQJV4ixMnSnKO7c8-x99HyGtZmrzMM80qmFkzJZVjFXIRwlAbRC21VlGH7MuZPp2pj-fZ-aBz2qVs9xSSXO9pQJampj9a-HC03fgmBO6IjmkFhWCrm-QW9MYcHX0mjpNDcST3Mlu8gpEAjNOlsuRCwxRtU0b1ZSQQS-UMwApggnyzaIOSCCbKDgqAJkzkWZEipf96K-RrmLfNj5_wNdfGvfvzmMRR-5js-lcQNo5t00fkwQBK6fHaix6TG3UzIg8HgEqH5t-NyL0_2AtH5HbMHnXdE_L9JOaBdLRsPN1qBnS0bSh48BKT3Gl_1TKP59c8ILS7uAQvbOhi3vbIz0vdcgVQFS6AY1Jfxy5sn8ym77-9O2WDZgNzUsuelUEWBjsBh4urQTpTZxNelYbDqKjAC-CUz6HZx0uTSmchaDgS2ovC17l8SvaatqkPCHVhEnTNTQGgUJU5zLVUWWReeWVEwY0bk8PN37WLNTeHBTzCkfJuTCbpd1s3sJ2j6Mal3fI0o7UsWMuitexqTN5sbkmP21GZX7OhDcg3gerlu-55m-xsh55iR-3D_6r9itz5ejK1nz-cfXpG7orog5go95zs9ctf9QtATn31MraO39UvBFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designs+and+experiments+on+infrared+two-dimensional+silicon+photonic+crystal+slab+devices&rft.jtitle=%E4%B8%AD%E5%9B%BD%E5%85%89%E7%94%B5%E5%AD%90%E5%AD%A6%E5%89%8D%E6%B2%BF%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Lin+GAN+Zhiyuan+LI&rft.date=2012-03-01&rft.issn=1674-4128&rft.eissn=1674-4594&rft.volume=5&rft.issue=1&rft.spage=21&rft.epage=40&rft_id=info:doi/10.1007%2Fs12200-012-0192-y&rft.externalDocID=41519434
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F71244X%2F71244X.jpg