Designs and experiments on infrared two-dimensional silicon photonic crystal slab devices
Photonic crystal (PhC) has offered a powerful means to mold the flow of light and manipulate light- matter interaction at subwavelength scale. Silicon has a large refraction index and low loss in infrared wavelengths, which makes it an important optical material. And silicon has been widely used for...
Saved in:
Published in | Frontiers of Optoelectronics (Online) Vol. 5; no. 1; pp. 21 - 40 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Higher Education Press
01.03.2012
SP Higher Education Press |
Subjects | |
Online Access | Get full text |
ISSN | 1674-4128 2095-2759 1674-4594 2095-2767 |
DOI | 10.1007/s12200-012-0192-y |
Cover
Abstract | Photonic crystal (PhC) has offered a powerful means to mold the flow of light and manipulate light- matter interaction at subwavelength scale. Silicon has a large refraction index and low loss in infrared wavelengths, which makes it an important optical material. And silicon has been widely used for integrated photonics applications. In this paper, we have reviewed some recent theoretical and experimental works in our group on infrared two- dimensional (2D) air-bridged silicon PhC slab devices that are based on both band gap and band structure engineering. We have designed, fabricated, and characterized a series of PhC waveguides with novel geometries, PhC high-quality (high-Q) cavity, and channel drop filters utilizing resonant coupling between waveguide and cavity. These devices are aimed to construct a more flexible network of transport channel for infrared light at micrometer/nanometer scale. We have also explored the remarkable dispersion proper- ties of PhCs by engineering the band structures to achieve negative refraction, self-collimation, superprism, and other anomalous dispersion behaviors of infrared light beam. Furthermore, we have designed and fabricated a PhC structure with negative refraction effect and used scanning near-field optical microscopy to observe the negative refraction beam. Finally, we have designed and realized a PhC structure that exhibits a self-collimation effect in a wide angle range and with a large bandwidth. Our works presented in this review show that PhCs have a strong power of controlling propagation of light at micrometer/ nanometer scale and possess a great potential of applications in integrated photonic circuits. |
---|---|
AbstractList | Photonic crystal (PhC) has offered a powerful means to mold the flow of light and manipulate light-matter interaction at subwavelength scale. Silicon has a large refraction index and low loss in infrared wavelengths, which makes it an important optical material. And silicon has been widely used for integrated photonics applications. In this paper, we have reviewed some recent theoretical and experimental works in our group on infrared two-dimensional (2D) air-bridged silicon PhC slab devices that are based on both band gap and band structure engineering. We have designed, fabricated, and characterized a series of PhC waveguides with novel geometries, PhC high-quality (high- Q) cavity, and channel drop filters utilizing resonant coupling between waveguide and cavity. These devices are aimed to construct a more flexible network of transport channel for infrared light at micrometer/nanometer scale. We have also explored the remarkable dispersion properties of PhCs by engineering the band structures to achieve negative refraction, self-collimation, superprism, and other anomalous dispersion behaviors of infrared light beam. Furthermore, we have designed and fabricated a PhC structure with negative refraction effect and used scanning near-field optical microscopy to observe the negative refraction beam. Finally, we have designed and realized a PhC structure that exhibits a self-collimation effect in a wide angle range and with a large bandwidth. Our works presented in this review show that PhCs have a strong power of controlling propagation of light at micrometer/nanometer scale and possess a great potential of applications in integrated photonic circuits. Photonic crystal (PhC) has offered a powerful means to mold the flow of light and manipulate light- matter interaction at subwavelength scale. Silicon has a large refraction index and low loss in infrared wavelengths, which makes it an important optical material. And silicon has been widely used for integrated photonics applications. In this paper, we have reviewed some recent theoretical and experimental works in our group on infrared two- dimensional (2D) air-bridged silicon PhC slab devices that are based on both band gap and band structure engineering. We have designed, fabricated, and characterized a series of PhC waveguides with novel geometries, PhC high-quality (high-Q) cavity, and channel drop filters utilizing resonant coupling between waveguide and cavity. These devices are aimed to construct a more flexible network of transport channel for infrared light at micrometer/nanometer scale. We have also explored the remarkable dispersion proper- ties of PhCs by engineering the band structures to achieve negative refraction, self-collimation, superprism, and other anomalous dispersion behaviors of infrared light beam. Furthermore, we have designed and fabricated a PhC structure with negative refraction effect and used scanning near-field optical microscopy to observe the negative refraction beam. Finally, we have designed and realized a PhC structure that exhibits a self-collimation effect in a wide angle range and with a large bandwidth. Our works presented in this review show that PhCs have a strong power of controlling propagation of light at micrometer/ nanometer scale and possess a great potential of applications in integrated photonic circuits. |
Author | Lin GAN Zhiyuan LI |
AuthorAffiliation | Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
Author_xml | – sequence: 1 givenname: Lin surname: GAN fullname: GAN, Lin organization: Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China – sequence: 2 givenname: Zhiyuan surname: LI fullname: LI, Zhiyuan email: lizy@aphy.iphy.ac.cn organization: Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
BookMark | eNp9kMtOwzAQRS0EEqX0A9iFDwjYcR7OEpWnVIkNLFhZrjNJXAW7eMIjf49DCgsWtTTyaGaOfeeekEPrLBByxugFo7S4RJYklMaUJSHKJB4OyIzlRRqnWZke_uYsEcdkgbih4XCWCZ7PyMs1oGksRspWEXxtwZtXsD1GzkbG1l55qKL-08XVWEfjrOoiNJ3RYWDbut5ZoyPtB-zHRqfWUQUfRgOekqNadQiL3T0nz7c3T8v7ePV497C8WsWa57yPVc1LUYiCauBM1FwLyChbKxFEi5TTIpSqgpX5T4uu86yu85AleZWUFRR8TorpXe0doodaatOrPijtvTKdZFSOJsnJJBlMkqNJcggk-0duw_bKD3uZZGIwzNoGvNy4dx9Mwb2QmKDWNC0ER7ceEGXtg0YDfj96vtPYOtu8hS__RKYsY2XKU_4NiXqbBA |
CitedBy_id | crossref_primary_10_1007_s11082_016_0478_1 crossref_primary_10_1088_1367_2630_16_5_053026 crossref_primary_10_1103_PhysRevB_86_201106 crossref_primary_10_1080_09500340_2013_787464 |
Cites_doi | 10.1103/PhysRevB.67.165104 10.1038/nature07247 10.1103/PhysRevLett.65.3152 10.1063/1.1621736 10.1103/PhysRevB.58.3721 10.1364/OE.8.000173 10.1103/PhysRevB.60.5751 10.1126/science.284.5421.1819 10.1063/1.1587011 10.1109/50.802991 10.1103/PhysRevE.52.1135 10.1364/OE.18.023994 10.1364/OPEX.12.004608 10.1103/PhysRevE.75.056606 10.1038/nature03119 10.1063/1.3052687 10.1103/PhysRevB.77.125138 10.1080/09500348714551531 10.1103/PhysRevLett.81.2574 10.1103/PhysRevB.58.9587 10.1063/1.1760596 10.1364/OPEX.13.004202 10.1038/nature02063 10.1364/OE.14.010014 10.1126/science.1157566 10.1088/0256-307X/27/8/084203 10.1364/OE.17.009962 10.1103/PhysRevB.68.245110 10.1364/AO.48.004899 10.1103/PhysRevB.77.195127 10.1080/09500349414550281 10.1016/j.cpc.2009.11.008 10.1063/1.2769263 10.1364/OE.11.002927 10.1063/1.2048823 10.1364/OE.16.021483 10.1103/PhysRevB.65.201104 10.1103/PhysRevB.51.16635 10.1038/nature05586 10.1103/PhysRevLett.58.2059 10.1103/PhysRevLett.93.073902 10.1063/1.123502 10.1364/JOSAA.25.002177 10.1103/PhysRevE.67.046607 10.1103/PhysRevB.68.155101 10.1364/OE.18.006437 10.1017/CBO9781139644181 |
ContentType | Journal Article |
Copyright | Copyright reserved, 2014, Higher Education Press and Springer-Verlag Berlin Heidelberg Higher Education Press and Springer-Verlag Berlin Heidelberg 2012 |
Copyright_xml | – notice: Copyright reserved, 2014, Higher Education Press and Springer-Verlag Berlin Heidelberg – notice: Higher Education Press and Springer-Verlag Berlin Heidelberg 2012 |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION |
DOI | 10.1007/s12200-012-0192-y |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
DocumentTitleAlternate | Designs and experiments on infrared two-dimensional silicon photonic crystal slab devices |
EISSN | 1674-4594 2095-2767 |
EndPage | 40 |
ExternalDocumentID | 10_1007_s12200_012_0192_y 10.1007/s12200-012-0192-y 41519434 |
GroupedDBID | -5B -5G -BR -Y2 1-T 29H 2RA 2VQ 2~H 4.4 5GY 6NX 8UJ 92L AABHQ AARTL AAWCG ABFTV ABJNI ABJOX ABKCH ABTMW ACGFS ACOMO ADHHG ADURQ ADYFF AEGAL AEGNC AEKMD AEOHA AFGCZ AGDGC AGQMX ALMA_UNASSIGNED_HOLDINGS AMKLP AMYQR BA0 BGNMA CAG COF CQIGP EBS EJD GQ6 HF~ HG6 HMJXF HRMNR IJ- IXC JBSCW M4Y NQJWS NU0 P9P QOS RLLFE ROL RSV S1Z S27 S3B SDH SEG SNE SOJ T13 U2A UG4 VC2 W92 WK8 ~A9 ~WA -EM 06D 0VY 29~ 2JY 2KG 30V 408 5VS 96X AAFGU AAFWJ AAIAL AAJKR AAKKN AARHV AATLR AATVU AAUYE AAYIU AAYQN AAYTO AAYZJ ABDZT ABECU ABFGW ABHQN ABKAS ABMQK ABQBU ABSXP ABTEG ABTHY ABWNU ABXPI ACACY ACBMV ACBRV ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACTTH ACULB ACVWB ACWMK ACZOJ ADHIR ADINQ ADKNI ADKPE ADMDM ADRFC ADZKW AEBTG AEFTE AEJHL AEJRE AEPYU AESTI AETLH AEVTX AEXYK AFLOW AFNRJ AFPKN AFQWF AFWTZ AFZKB AGAYW AGGBP AGJBK AGWZB AGYKE AHBXF AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ ALFXC ALWAN ANMIH AOCGG AUKKA AXYYD B-. BDATZ C24 C6C CSCUP DNIVK EBLON EIOEI ESBYG FERAY FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GROUPED_DOAJ HZ~ I0C IKXTQ IXD J-C JZLTJ KOV MA- O9J P4S R89 RPM S.. S16 SAP SCL SHX SISQX SNPRN SNX SOHCF SPISZ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW W48 XT3 YLTOR Z7R Z7X Z83 Z88 -SI -S~ 0R~ AAXDM AAYXX AAYZH ABEEZ ABFSG ACSTC ADMLS AEZWR AFBBN AFGXO AFHIU AHWEU AIXLP CAJEI CITATION Q-- U1G U5S ZMTXR |
ID | FETCH-LOGICAL-c363t-af3987870ce318f3c8e501ba816784307f3cd7196f3c8e0b65ff6c8e26d29de73 |
IEDL.DBID | U2A |
ISSN | 1674-4128 2095-2759 |
IngestDate | Tue Jul 01 01:20:49 EDT 2025 Thu Apr 24 23:12:07 EDT 2025 Fri Feb 21 02:37:26 EST 2025 Tue Feb 27 04:43:01 EST 2024 Wed Feb 14 10:47:00 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | photonic crystal (PhC) negative refraction channel-drop filter highquality (high-Q) cavity waveguide |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-af3987870ce318f3c8e501ba816784307f3cd7196f3c8e0b65ff6c8e26d29de73 |
Notes | photonic crystal (PhC), waveguide, high-quality (high-Q) cavity, channel-drop filter, negativerefraction Photonic crystal (PhC) has offered a powerful means to mold the flow of light and manipulate light- matter interaction at subwavelength scale. Silicon has a large refraction index and low loss in infrared wavelengths, which makes it an important optical material. And silicon has been widely used for integrated photonics applications. In this paper, we have reviewed some recent theoretical and experimental works in our group on infrared two- dimensional (2D) air-bridged silicon PhC slab devices that are based on both band gap and band structure engineering. We have designed, fabricated, and characterized a series of PhC waveguides with novel geometries, PhC high-quality (high-Q) cavity, and channel drop filters utilizing resonant coupling between waveguide and cavity. These devices are aimed to construct a more flexible network of transport channel for infrared light at micrometer/nanometer scale. We have also explored the remarkable dispersion proper- ties of PhCs by engineering the band structures to achieve negative refraction, self-collimation, superprism, and other anomalous dispersion behaviors of infrared light beam. Furthermore, we have designed and fabricated a PhC structure with negative refraction effect and used scanning near-field optical microscopy to observe the negative refraction beam. Finally, we have designed and realized a PhC structure that exhibits a self-collimation effect in a wide angle range and with a large bandwidth. Our works presented in this review show that PhCs have a strong power of controlling propagation of light at micrometer/ nanometer scale and possess a great potential of applications in integrated photonic circuits. 11-5738/TN photonic crystal (PhC) high-quality (high- Q) cavity Document received on :2011-09-13 negative refraction channel-drop filter Document accepted on :2011-11-08 waveguide |
OpenAccessLink | https://journal.hep.com.cn/foe/EN/10.1007/s12200-012-0192-y |
PageCount | 20 |
ParticipantIDs | crossref_citationtrail_10_1007_s12200_012_0192_y crossref_primary_10_1007_s12200_012_0192_y springer_journals_10_1007_s12200_012_0192_y higheredpress_frontiers_10_1007_s12200_012_0192_y chongqing_primary_41519434 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-03-01 |
PublicationDateYYYYMMDD | 2012-03-01 |
PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationSubtitle | Selected Publications from Chinese Universities |
PublicationTitle | Frontiers of Optoelectronics (Online) |
PublicationTitleAbbrev | Front Optoelec Front. Optoelectron |
PublicationTitleAlternate | Frontiers of Optoelectronics |
PublicationYear | 2012 |
Publisher | Higher Education Press SP Higher Education Press |
Publisher_xml | – name: Higher Education Press – name: SP Higher Education Press |
References | Valentine, Zhang, Zentgraf, Ulin-Avila, Genov, Bartal, Zhang (CR3) 2008; 455 Yao, Liu, Liu, Wang, Sun, Bartal, Stacy, Zhang (CR4) 2008; 321 Yu, Fan (CR10) 2003; 83 Luo, Johnson, Joannopoulos, Pendry (CR8) 2002; 65 Nguyen, Dundar, van der Heijden, van der Drift, Salemink, Rogge, Caro (CR47) 2010; 18 Born, Wolf, Bhatia (CR14) 1999 Nicorovici, McPhedran, Botten (CR22) 1995; 52 Liu, Feng, Tian, Ren, Tao, Li, Cheng, Zhang, Luo (CR44) 2007; 102 Ho, Chan, Soukoulis (CR15) 1990; 65 Chan, Yu, Ho (CR20) 1995; 51 McNab, Moll, Vlasov (CR7) 2003; 11 Li, Ho (CR31) 2003; 67 Li, Gu, Yang (CR17) 1998; 81 Yoshie, Scherer, Hendrickson, Khitrova, Gibbs, Rupper, Ell, Shchekin, Deppe (CR41) 2004; 432 Che, Li (CR29) 2008; 77 Li, Lin (CR24) 2003; 67 Li, Ho (CR27) 2003; 68 Oskooi, Roundy, Ibanescu, Bermel, Joannopoulos, Johnson (CR34) 2010; 181 Ren, Tian, Feng, Tao, Liu, Ren, Li, Cheng, Zhang, Yang (CR43) 2006; 14 Li, Wang, Gu (CR18) 1998; 58 Liu, Liu, Zhou, Zhang, Li (CR37) 2008; 16 Hennessy, Badolato, Winger, Gerace, Atatüre, Gulde, Fält, Hu, Imamoğlu (CR40) 2007; 445 Johnson, Fan, Villeneuve, Joannopoulos, Kolodziejski (CR5) 1999; 60 Kosaka, Kawashima, Tomita, Notomi, Tamamura, Sato, Kawakami (CR11) 1999; 17 Lin, Li, Ho (CR26) 2003; 94 Tao, Ren, Liu, Wang, Zhang, Li (CR39) 2010; 18 Gan, Liu, Li, Zhang, Zhang, Li (CR46) 2009; 17 Baba, Matsumoto, Echizen (CR12) 2004; 12 Johnson, Joannopoulos (CR16) 2001; 8 Song, Nagashima, Asano, Noda (CR36) 2009; 48 Li, Lin (CR25) 2003; 68 Li, Li, Zhang (CR32) 2007; 75 Yablonovitch (CR1) 1987; 58 Painter, Lee, Scherer, Yariv, O’Brien, Dapkus, Kim (CR6) 1999; 284 Taflove (CR21) 1995 Li, Lin, Ho (CR28) 2004; 84 Pendry (CR19) 1994; 41 Che, Li (CR30) 2008; 25 Kosaka, Kawashima, Tomita, Notomi, Tamamura, Sato, Kawakami (CR9) 1999; 74 Li, Zhang (CR23) 1998; 58 Zengerle (CR49) 1987; 34 Berrier, Mulot, Swillo, Qiu, Thylén, Talneau, Anand (CR13) 2004; 93 White, de Sterke, McPhedran, Botten (CR48) 2005; 87 Shinya, Mitsugi, Kuramochi, Notomi (CR35) 2005; 13 Liu, Liu, Feng, Ren, Yang, Zhang, Li (CR45) 2008; 93 Li, Li, Zhang (CR33) 2008; 77 Zhou, Liu, Li (CR38) 2010; 27 Akahane, Asano, Song, Noda (CR42) 2003; 425 Joannopoulos, Johnson, Winn, Meade (CR2) 2008 S. J. McNab (192_CR7) 2003; 11 T. Baba (192_CR12) 2004; 12 Z. Y. Li (192_CR31) 2003; 67 A. F. Oskooi (192_CR34) 2010; 181 H. H. Tao (192_CR39) 2010; 18 H. Kosaka (192_CR11) 1999; 17 J. B. Pendry (192_CR19) 1994; 41 C. Z. Zhou (192_CR38) 2010; 27 J. Valentine (192_CR3) 2008; 455 J. Yao (192_CR4) 2008; 321 C. Ren (192_CR43) 2006; 14 O. Painter (192_CR6) 1999; 284 Z. Y. Li (192_CR28) 2004; 84 M. Born (192_CR14) 1999 H. Kosaka (192_CR9) 1999; 74 L. M. Li (192_CR23) 1998; 58 Y. Akahane (192_CR42) 2003; 425 Z. Y. Li (192_CR27) 2003; 68 K. Hennessy (192_CR40) 2007; 445 T. P. White (192_CR48) 2005; 87 Z. Y. Li (192_CR24) 2003; 67 M. Che (192_CR30) 2008; 25 X. F. Yu (192_CR10) 2003; 83 S. G. Johnson (192_CR5) 1999; 60 A. Berrier (192_CR13) 2004; 93 H.M. Nguyen (192_CR47) 2010; 18 E. Yablonovitch (192_CR1) 1987; 58 Y. Z. Liu (192_CR45) 2008; 93 Z. Y. Li (192_CR25) 2003; 68 T. Yoshie (192_CR41) 2004; 432 C. T. Chan (192_CR20) 1995; 51 Z. Y. Li (192_CR18) 1998; 58 L. Gan (192_CR46) 2009; 17 J. D. Joannopoulos (192_CR2) 2008 A. Shinya (192_CR35) 2005; 13 Z. Y. Li (192_CR17) 1998; 81 J. J. Li (192_CR32) 2007; 75 R. Zengerle (192_CR49) 1987; 34 S. Johnson (192_CR16) 2001; 8 L. L. Lin (192_CR26) 2003; 94 K. M. Ho (192_CR15) 1990; 65 A. Taflove (192_CR21) 1995 M. Che (192_CR29) 2008; 77 B. S. Song (192_CR36) 2009; 48 Y. Z. Liu (192_CR44) 2007; 102 N. A. Nicorovici (192_CR22) 1995; 52 C. Y. Luo (192_CR8) 2002; 65 Y. Z. Liu (192_CR37) 2008; 16 Z. Y. Li (192_CR33) 2008; 77 |
References_xml | – volume: 67 start-page: 165104 issue: 16 year: 2003 ident: CR31 article-title: Analytic modal solution to light propagation through layer-by-layer metallic photonic crystals publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.67.165104 – volume: 455 start-page: 376 issue: 7211 year: 2008 end-page: 379 ident: CR3 article-title: Three-dimensional optical metamaterial with a negative refractive index publication-title: Nature doi: 10.1038/nature07247 – volume: 65 start-page: 3152 issue: 25 year: 1990 end-page: 3155 ident: CR15 article-title: Existence of a photonic gap in periodic dielectric structures publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.65.3152 – volume: 83 start-page: 3251 issue: 16 year: 2003 end-page: 3253 ident: CR10 article-title: Bends and splitters for self-collimated beams in photonic crystals publication-title: Applied Physics Letters doi: 10.1063/1.1621736 – volume: 58 start-page: 3721 issue: 7 year: 1998 end-page: 3729 ident: CR18 article-title: Creation of partial band gaps in anisotropic photonic-band-gap structures publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.58.3721 – volume: 8 start-page: 173 issue: 3 year: 2001 end-page: 190 ident: CR16 article-title: Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis publication-title: Optics Express doi: 10.1364/OE.8.000173 – volume: 60 start-page: 5751 issue: 8 year: 1999 end-page: 5758 ident: CR5 article-title: Guided modes in photonic crystal slabs publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.60.5751 – volume: 284 start-page: 1819 issue: 5421 year: 1999 end-page: 1821 ident: CR6 article-title: Two-dimensional photonic band-gap defect mode laser publication-title: Science doi: 10.1126/science.284.5421.1819 – year: 1999 ident: CR14 publication-title: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light – volume: 94 start-page: 811 issue: 2 year: 2003 end-page: 821 ident: CR26 article-title: Lattice symmetry applied in transfermatrix methods for photonic crystals publication-title: Journal of Applied Physics doi: 10.1063/1.1587011 – volume: 17 start-page: 2032 issue: 11 year: 1999 end-page: 2038 ident: CR11 article-title: Superprism phenomena in photonic crystals: toward microscale lightwave circuits publication-title: Journal of Lightwave Technology doi: 10.1109/50.802991 – volume: 52 start-page: 1135 issue: 1 year: 1995 end-page: 1145 ident: CR22 article-title: Photonic band gaps for arrays of perfectly conducting cylinders publication-title: Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics doi: 10.1103/PhysRevE.52.1135 – volume: 18 start-page: 23994 issue: 23 year: 2010 end-page: 24002 ident: CR39 article-title: Near-field observation of anomalous optical propagation in photonic crystal coupled-cavity waveguides publication-title: Optics Express doi: 10.1364/OE.18.023994 – volume: 12 start-page: 4608 issue: 19 year: 2004 end-page: 4613 ident: CR12 article-title: Finite difference time domain study of high efficiency photonic crystal superprisms publication-title: Optics Express doi: 10.1364/OPEX.12.004608 – volume: 75 start-page: 056606 issue: 5 year: 2007 ident: CR32 article-title: Second harmonic generation in one-dimensional nonlinear photonic crystals solved by the transfer matrix method publication-title: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics doi: 10.1103/PhysRevE.75.056606 – volume: 432 start-page: 200 issue: 7014 year: 2004 end-page: 203 ident: CR41 article-title: Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity publication-title: Nature doi: 10.1038/nature03119 – volume: 93 start-page: 241107 issue: 24 year: 2008 ident: CR45 article-title: Multichannel filters via Γ-M and Γ-K waveguide coupling in two-dimensional triangular-lattice photonic crystal slabs publication-title: Applied Physics Letters doi: 10.1063/1.3052687 – volume: 77 start-page: 125138 issue: 12 year: 2008 ident: CR29 article-title: Analysis of photonic crystal waveguide bends by a plane-wave transfer-matrix method publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.77.125138 – volume: 34 start-page: 1589 issue: 12 year: 1987 end-page: 1617 ident: CR49 article-title: Light-propagation in singly and doubly periodic planar wave-guides publication-title: Journal of Modern Optics doi: 10.1080/09500348714551531 – volume: 81 start-page: 2574 issue: 12 year: 1998 end-page: 2577 ident: CR17 article-title: Large absolute band gap in 2D anisotropic photonic crystals publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.81.2574 – volume: 58 start-page: 9587 issue: 15 year: 1998 end-page: 9590 ident: CR23 article-title: Muitiple-scattering approach to finite-sized photonic band-gap materials publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.58.9587 – volume: 84 start-page: 4699 issue: 23 year: 2004 end-page: 4701 ident: CR28 article-title: Light coupling with multimode photonic crystal waveguides publication-title: Applied Physics Letters doi: 10.1063/1.1760596 – volume: 13 start-page: 4202 issue: 11 year: 2005 end-page: 4209 ident: CR35 article-title: Ultrasmall multichannel resonant-tunneling filter using mode gap of width-tuned photonic-crystal waveguide publication-title: Optics Express doi: 10.1364/OPEX.13.004202 – volume: 425 start-page: 944 issue: 6961 year: 2003 end-page: 947 ident: CR42 article-title: High- photonic nanocavity in a two-dimensional photonic crystal publication-title: Nature doi: 10.1038/nature02063 – volume: 14 start-page: 10014 issue: 21 year: 2006 end-page: 10020 ident: CR43 article-title: High resolution three-port filter in two dimensional photonic crystal slabs publication-title: Optics Express doi: 10.1364/OE.14.010014 – volume: 321 start-page: 930 issue: 5891 year: 2008 ident: CR4 article-title: Optical negative refraction in bulk metamaterials of nanowires publication-title: Science doi: 10.1126/science.1157566 – volume: 27 start-page: 084203 issue: 8 year: 2010 ident: CR38 article-title: Waveguide bend of 90° in two-dimensional triangular lattice silicon photonic crystal slabs publication-title: Chinese Physics Letters doi: 10.1088/0256-307X/27/8/084203 – volume: 17 start-page: 9962 issue: 12 year: 2009 end-page: 9970 ident: CR46 article-title: Ray trace visualization of negative refraction of light in two-dimensional air-bridged silicon photonic crystal slabs at 1.55 μm publication-title: Optics Express doi: 10.1364/OE.17.009962 – volume: 68 start-page: 245110 issue: 24 year: 2003 ident: CR25 article-title: Evaluation of lensing in photonic crystal slabs exhibiting negative refraction publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.68.245110 – volume: 48 start-page: 4899 issue: 26 year: 2009 end-page: 4903 ident: CR36 article-title: Resonant-wavelength tuning of a nanocavity by subnanometer control of a two-dimensional silicon-based photonic crystal slab structure publication-title: Applied Optics doi: 10.1364/AO.48.004899 – volume: 77 start-page: 195127 issue: 19 year: 2008 ident: CR33 article-title: Nonlinear frequency conversion in two-dimensional nonlinear photonic crystals solved by a plane-wave-based transfer-matrix method publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.77.195127 – volume: 41 start-page: 209 issue: 2 year: 1994 end-page: 229 ident: CR19 article-title: Photonic Band Structures publication-title: Journal of Modern Optics doi: 10.1080/09500349414550281 – volume: 181 start-page: 687 issue: 3 year: 2010 end-page: 702 ident: CR34 article-title: MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method publication-title: Computer Physics Communications doi: 10.1016/j.cpc.2009.11.008 – volume: 102 start-page: 043102 issue: 4 year: 2007 ident: CR44 article-title: Multichannel filters with shape designing in two-dimensional photonic crystal slabs publication-title: Journal of Applied Physics doi: 10.1063/1.2769263 – volume: 11 start-page: 2927 issue: 22 year: 2003 end-page: 2939 ident: CR7 article-title: Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides publication-title: Optics Express doi: 10.1364/OE.11.002927 – volume: 87 start-page: 111107 issue: 11 year: 2005 ident: CR48 article-title: Highly efficient wide-angle transmission into uniform rod-type photonic crystals publication-title: Applied Physics Letters doi: 10.1063/1.2048823 – volume: 16 start-page: 21483 issue: 26 year: 2008 end-page: 21491 ident: CR37 article-title: Gamma-Mu waveguides in two-dimensional triangular-lattice photonic crystal slabs publication-title: Optics Express doi: 10.1364/OE.16.021483 – volume: 65 start-page: 201104 issue: 20 year: 2002 ident: CR8 article-title: All-angle negative refraction without negative effective index publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.65.201104 – volume: 51 start-page: 16635 issue: 23 year: 1995 end-page: 16642 ident: CR20 article-title: Order-N spectral method for electromagnetic waves publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.51.16635 – year: 1995 ident: CR21 publication-title: Computational Electrodynamics: the Finite-Difference Time-Domain Method – volume: 445 start-page: 896 issue: 7130 year: 2007 end-page: 899 ident: CR40 article-title: Quantum nature of a strongly coupled single quantum dot-cavity system publication-title: Nature doi: 10.1038/nature05586 – volume: 58 start-page: 2059 issue: 20 year: 1987 end-page: 2062 ident: CR1 article-title: Inhibited spontaneous emission in solid-state physics and electronics publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.58.2059 – volume: 93 start-page: 073902 issue: 7 year: 2004 ident: CR13 article-title: Negative refraction at infrared wavelengths in a two-dimensional photonic crystal publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.93.073902 – year: 2008 ident: CR2 publication-title: Photonic Crystals: Molding the Flow of Light – volume: 74 start-page: 1212 issue: 9 year: 1999 end-page: 1214 ident: CR9 article-title: Self-collimating phenomena in photonic crystals publication-title: Applied Physics Letters doi: 10.1063/1.123502 – volume: 25 start-page: 2177 issue: 9 year: 2008 end-page: 2184 ident: CR30 article-title: Analysis of surface modes in photonic crystals by a plane-wave transfer-matrix method publication-title: Journal of the Optical Society of America a-Optics Image Science and Vision doi: 10.1364/JOSAA.25.002177 – volume: 67 start-page: 046607 issue: 4 year: 2003 ident: CR24 article-title: Photonic band structures solved by a plane-wave-based transfer-matrix method publication-title: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics doi: 10.1103/PhysRevE.67.046607 – volume: 68 start-page: 155101 issue: 15 year: 2003 ident: CR27 article-title: Light propagation in semi-infinite photonic crystals and related waveguide structures publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.68.155101 – volume: 18 start-page: 6437 issue: 7 year: 2010 end-page: 6446 ident: CR47 article-title: Compact Mach-Zehnder interferometer based on self-collimation of light in a silicon photonic crystal publication-title: Optics Express doi: 10.1364/OE.18.006437 – volume: 87 start-page: 111107 issue: 11 year: 2005 ident: 192_CR48 publication-title: Applied Physics Letters doi: 10.1063/1.2048823 – volume: 51 start-page: 16635 issue: 23 year: 1995 ident: 192_CR20 publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.51.16635 – volume: 93 start-page: 073902 issue: 7 year: 2004 ident: 192_CR13 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.93.073902 – volume: 41 start-page: 209 issue: 2 year: 1994 ident: 192_CR19 publication-title: Journal of Modern Optics doi: 10.1080/09500349414550281 – volume: 181 start-page: 687 issue: 3 year: 2010 ident: 192_CR34 publication-title: Computer Physics Communications doi: 10.1016/j.cpc.2009.11.008 – volume: 77 start-page: 195127 issue: 19 year: 2008 ident: 192_CR33 publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.77.195127 – volume: 74 start-page: 1212 issue: 9 year: 1999 ident: 192_CR9 publication-title: Applied Physics Letters doi: 10.1063/1.123502 – volume: 94 start-page: 811 issue: 2 year: 2003 ident: 192_CR26 publication-title: Journal of Applied Physics doi: 10.1063/1.1587011 – volume: 432 start-page: 200 issue: 7014 year: 2004 ident: 192_CR41 publication-title: Nature doi: 10.1038/nature03119 – volume-title: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light year: 1999 ident: 192_CR14 doi: 10.1017/CBO9781139644181 – volume: 13 start-page: 4202 issue: 11 year: 2005 ident: 192_CR35 publication-title: Optics Express doi: 10.1364/OPEX.13.004202 – volume: 14 start-page: 10014 issue: 21 year: 2006 ident: 192_CR43 publication-title: Optics Express doi: 10.1364/OE.14.010014 – volume: 84 start-page: 4699 issue: 23 year: 2004 ident: 192_CR28 publication-title: Applied Physics Letters doi: 10.1063/1.1760596 – volume: 67 start-page: 046607 issue: 4 year: 2003 ident: 192_CR24 publication-title: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics doi: 10.1103/PhysRevE.67.046607 – volume: 65 start-page: 201104 issue: 20 year: 2002 ident: 192_CR8 publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.65.201104 – volume: 68 start-page: 155101 issue: 15 year: 2003 ident: 192_CR27 publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.68.155101 – volume: 48 start-page: 4899 issue: 26 year: 2009 ident: 192_CR36 publication-title: Applied Optics doi: 10.1364/AO.48.004899 – volume: 284 start-page: 1819 issue: 5421 year: 1999 ident: 192_CR6 publication-title: Science doi: 10.1126/science.284.5421.1819 – volume: 75 start-page: 056606 issue: 5 year: 2007 ident: 192_CR32 publication-title: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics doi: 10.1103/PhysRevE.75.056606 – volume: 67 start-page: 165104 issue: 16 year: 2003 ident: 192_CR31 publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.67.165104 – volume: 65 start-page: 3152 issue: 25 year: 1990 ident: 192_CR15 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.65.3152 – volume: 18 start-page: 6437 issue: 7 year: 2010 ident: 192_CR47 publication-title: Optics Express doi: 10.1364/OE.18.006437 – volume: 58 start-page: 3721 issue: 7 year: 1998 ident: 192_CR18 publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.58.3721 – volume: 12 start-page: 4608 issue: 19 year: 2004 ident: 192_CR12 publication-title: Optics Express doi: 10.1364/OPEX.12.004608 – volume-title: Computational Electrodynamics: the Finite-Difference Time-Domain Method year: 1995 ident: 192_CR21 – volume: 25 start-page: 2177 issue: 9 year: 2008 ident: 192_CR30 publication-title: Journal of the Optical Society of America a-Optics Image Science and Vision doi: 10.1364/JOSAA.25.002177 – volume: 34 start-page: 1589 issue: 12 year: 1987 ident: 192_CR49 publication-title: Journal of Modern Optics doi: 10.1080/09500348714551531 – volume-title: Photonic Crystals: Molding the Flow of Light year: 2008 ident: 192_CR2 – volume: 17 start-page: 2032 issue: 11 year: 1999 ident: 192_CR11 publication-title: Journal of Lightwave Technology doi: 10.1109/50.802991 – volume: 81 start-page: 2574 issue: 12 year: 1998 ident: 192_CR17 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.81.2574 – volume: 68 start-page: 245110 issue: 24 year: 2003 ident: 192_CR25 publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.68.245110 – volume: 425 start-page: 944 issue: 6961 year: 2003 ident: 192_CR42 publication-title: Nature doi: 10.1038/nature02063 – volume: 445 start-page: 896 issue: 7130 year: 2007 ident: 192_CR40 publication-title: Nature doi: 10.1038/nature05586 – volume: 8 start-page: 173 issue: 3 year: 2001 ident: 192_CR16 publication-title: Optics Express doi: 10.1364/OE.8.000173 – volume: 17 start-page: 9962 issue: 12 year: 2009 ident: 192_CR46 publication-title: Optics Express doi: 10.1364/OE.17.009962 – volume: 60 start-page: 5751 issue: 8 year: 1999 ident: 192_CR5 publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.60.5751 – volume: 11 start-page: 2927 issue: 22 year: 2003 ident: 192_CR7 publication-title: Optics Express doi: 10.1364/OE.11.002927 – volume: 77 start-page: 125138 issue: 12 year: 2008 ident: 192_CR29 publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.77.125138 – volume: 102 start-page: 043102 issue: 4 year: 2007 ident: 192_CR44 publication-title: Journal of Applied Physics doi: 10.1063/1.2769263 – volume: 27 start-page: 084203 issue: 8 year: 2010 ident: 192_CR38 publication-title: Chinese Physics Letters doi: 10.1088/0256-307X/27/8/084203 – volume: 93 start-page: 241107 issue: 24 year: 2008 ident: 192_CR45 publication-title: Applied Physics Letters doi: 10.1063/1.3052687 – volume: 18 start-page: 23994 issue: 23 year: 2010 ident: 192_CR39 publication-title: Optics Express doi: 10.1364/OE.18.023994 – volume: 16 start-page: 21483 issue: 26 year: 2008 ident: 192_CR37 publication-title: Optics Express doi: 10.1364/OE.16.021483 – volume: 83 start-page: 3251 issue: 16 year: 2003 ident: 192_CR10 publication-title: Applied Physics Letters doi: 10.1063/1.1621736 – volume: 58 start-page: 9587 issue: 15 year: 1998 ident: 192_CR23 publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.58.9587 – volume: 58 start-page: 2059 issue: 20 year: 1987 ident: 192_CR1 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.58.2059 – volume: 455 start-page: 376 issue: 7211 year: 2008 ident: 192_CR3 publication-title: Nature doi: 10.1038/nature07247 – volume: 321 start-page: 930 issue: 5891 year: 2008 ident: 192_CR4 publication-title: Science doi: 10.1126/science.1157566 – volume: 52 start-page: 1135 issue: 1 year: 1995 ident: 192_CR22 publication-title: Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics doi: 10.1103/PhysRevE.52.1135 |
SSID | ssj0000315836 ssib031263387 ssib044084465 ssj0002710203 ssib013581866 ssib051630257 ssib020093027 ssib058688231 |
Score | 1.8431598 |
SecondaryResourceType | review_article |
Snippet | Photonic crystal (PhC) has offered a powerful means to mold the flow of light and manipulate light- matter interaction at subwavelength scale. Silicon has a... Photonic crystal (PhC) has offered a powerful means to mold the flow of light and manipulate light-matter interaction at subwavelength scale. Silicon has a... |
SourceID | crossref springer higheredpress chongqing |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 21 |
SubjectTerms | Biomedical Engineering and Bioengineering channel-drop filter Electrical Engineering Engineering high-quality (high- Q) cavity negative refraction photonic crystal (PhC) Physics Review Article waveguide 二维光子晶体 光子晶体波导 实验工作 扫描近场光学 硅板 红外波段 经设计 设备 |
Title | Designs and experiments on infrared two-dimensional silicon photonic crystal slab devices |
URI | http://lib.cqvip.com/qk/71244X/201201/41519434.html https://journal.hep.com.cn/foe/EN/10.1007/s12200-012-0192-y https://link.springer.com/article/10.1007/s12200-012-0192-y |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB5qRbBI1VPxWit58EkJ3CbZbPaxaEsR2icP6lPYTbKeUHbr7Uq5_96Z3ObOohz0bbNJ9kdmJvmSTL4B-CArU1RFrnmNM2uupHK8Ji5CHGobEaTWKsYhu7zSF3P19Tq_Hs9x98nbPW1Jxp56e9hNCDoFHV0JSsFXj-Bxji8ga5yL06REGRF6mS1GodV_2ptLaZkJjdOyTZoiLhNpWErnCFAQBxSbhRoKg2BiqEGBcISLIi_T7uj_voo4GhZd--MX_sG9se7ZIjpuBB8dXP_ZeI3j2fkLOByBKDtda85L2AvtBJ6PoJSNJt9P4OAvxsIJPIkeo65_Bd-_RN-PnlWtZ9s4AT3rWoZauyTHdjbcddzT_TX3B-t_3qDmtex20Q3EycvccoXwFDNQGZkPsdt6DfPzs2-fL_gYp4E7qeXAq0aWhgzf0YJqI50J-SyrK5PhSKhQ8njLF2jqMWtW67xpNF4J7UXpQyHfwH7bteEtMNfMGh0yUyIQVFWB8ytVlblXXhlRZsZN4WjTuvZ2zcdhEYNkRHM3hVlqbutGhnMKtHFjt9zMJC2L0rIkLbuawsdNlfS4HYWzezK0DXFMUMTyXXU-JTnbsXfYUfroQaWP4amIikcece9gf1j-DicIkYb6fTSJP5WW_R4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BEQJU8bFQdcuXD5xAkTa24zjHilIt0PbUlcrJSmyni1Ql7SYI7b_vjDfepQKtxC127CjJjO1ne_wewAdR6rzMM5VUOLNOpJA2qYiLEIfamnuhlAw6ZKdnajqT3y6yi-Ecdxej3eOWZOipN4fdOKdT0CGUoODJ8j48QCygSbZgxg-jE6VE6KU3GIVW_2lvLqZFyhVOy9ZpUlwm0rCYzhCgIA7I1ws1JIOgg9QgRziS8Dwr4u7ov96KOBrmbXN5g19wZ6zbnYfADe9CgOtfG69hPDt-Dk8HIMoOV57zAu75ZgTPBlDKhibfjeDJH4yFI3gYIkZt9xJ-HIXYj46VjWMbnYCOtQ1Dr11QYDvrf7eJo_wV9wfrfl6h5zXset72xMnL7GKJ8BRvoDMy50O39Qpmx1_OP0-TQachsUKJPilrUWhq-JYWVGthtc8maVXqFEdCiZbHLJdjUw-3JpXK6lrhFVeOF87nYg92mrbx-8BsPamVT3WBQFCWOc6vZFlkTjqpeZFqO4aD9d811ys-DoMYJCWauzFM4u82dmA4J6GNK7PhZiZrGbSWIWuZ5Rg-rqvEx20pnN6xoamJY4IUy7fV-RTtbIbeYUvpg_8q_R4eTc9PT8zJ17Pvr-ExD05I0XFvYKdf_PJvES711bvQPG4BsiYAIA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZgCARCXMrQOm5-4Alkrb7EcR4nRjVuEw9UGk9WYsd00pSUJmjqv-ccN26ZQJV4ixMnSnKO7c8-x99HyGtZmrzMM80qmFkzJZVjFXIRwlAbRC21VlGH7MuZPp2pj-fZ-aBz2qVs9xSSXO9pQJampj9a-HC03fgmBO6IjmkFhWCrm-QW9MYcHX0mjpNDcST3Mlu8gpEAjNOlsuRCwxRtU0b1ZSQQS-UMwApggnyzaIOSCCbKDgqAJkzkWZEipf96K-RrmLfNj5_wNdfGvfvzmMRR-5js-lcQNo5t00fkwQBK6fHaix6TG3UzIg8HgEqH5t-NyL0_2AtH5HbMHnXdE_L9JOaBdLRsPN1qBnS0bSh48BKT3Gl_1TKP59c8ILS7uAQvbOhi3vbIz0vdcgVQFS6AY1Jfxy5sn8ym77-9O2WDZgNzUsuelUEWBjsBh4urQTpTZxNelYbDqKjAC-CUz6HZx0uTSmchaDgS2ovC17l8SvaatqkPCHVhEnTNTQGgUJU5zLVUWWReeWVEwY0bk8PN37WLNTeHBTzCkfJuTCbpd1s3sJ2j6Mal3fI0o7UsWMuitexqTN5sbkmP21GZX7OhDcg3gerlu-55m-xsh55iR-3D_6r9itz5ejK1nz-cfXpG7orog5go95zs9ctf9QtATn31MraO39UvBFw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designs+and+experiments+on+infrared+two-dimensional+silicon+photonic+crystal+slab+devices&rft.jtitle=%E4%B8%AD%E5%9B%BD%E5%85%89%E7%94%B5%E5%AD%90%E5%AD%A6%E5%89%8D%E6%B2%BF%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Lin+GAN+Zhiyuan+LI&rft.date=2012-03-01&rft.issn=1674-4128&rft.eissn=1674-4594&rft.volume=5&rft.issue=1&rft.spage=21&rft.epage=40&rft_id=info:doi/10.1007%2Fs12200-012-0192-y&rft.externalDocID=41519434 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F71244X%2F71244X.jpg |